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Abstract

Despite their popularities in recent years, factor models have long been criticized for the lack

of identification. Even when a large number of variables are available, the factors can only be

consistently estimated up to a rotation. In this paper, we try to identify the underlying factors by

associating them to a set of observed variables, and thus give interpretations to the orthogonal

factors estimated by the method of Principal Components. We first propose a estimation proce-

dure to select a set of observed variables, and then test the hypothesis that true factors are exact

linear combinations of the selected variables. Our estimation method is shown to able to cor-

rectly identity the true observed factor even in the presence of mild measurement errors, and our

test statistics are shown to be more general than those of Bai and Ng (2006). The applicability of

our methods in finite samples and the advantages of our tests are confirmed by simulations. Our

methods are also applied to the returns of portfolios to identify the underlying risk factors.

Keywords: Factor Models, Observed Factors, Estimation, Hypothesis Testing

1. Introduction

Factor models (FM henceforth) are becoming an increasingly important tool for both theo-

retical and empirical research. For example, in macroeconomics, the solutions of DSGE models

can be written in the form of FM when these models allow for measurement errors (Altug 1989

and Sargent 1989 ), so that the structure of FM can help solve these models even when a large

number of variables are considered (Boivin and Giannoni 2006, Kryshko 2011); in structural

analysis, the factors estimated from large panel datasets can be combined with Structural Vector

Autoregressions (SVAR) to identify the effects of fundamental shocks (Bernanke et al 2005), and

solve the problem of non-fundamentalness (Forni et al 2009). Moreover, the estimated factors

can significantly improve the forecasts of macro variables (Stock and Watson 2002a). In mi-

croeconomics, the demand systems are shown to have a factor structure (Lewbel 1991), and in

some recent studies, FM are used to characterize the unobservable cross-sectional dependencies

in panel data models (Pesaran 2006 and Bai 2009). Finally, in finance, the key assumption under-

lying the Arbitrage Pricing Theory (APT) is the multi-factors structure for the security returns.

As is well known, the popularity of FM is mainly due to their capability of summarizing the

co-movements of a large number of variables (N) by a much smaller number of common factors

(r << N). Moreover, the rapidly increasing dimensions of available data sets allow us to depart
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from the restrictive assumptions of the classical factor analysis, and estimate the factor models

consistently using the method of Principal Components (PC hereafter) (Bai and Ng 2002, Bai

2003, Stock and Watson 2002a).

Yet, it is well recognized that FM suffer from identification problems. Consider a factor

model: xt = Λft + et, where xt is the vector of observed variables, Λ is the matrix of factor

loadings, ft is the unobservable factors, and et is the vector of idiosyncratic errors. Since only

xt can be observed, the above model is observably equivalent to: xt = (ΛH−1)(Hft) + et, where

H is any r × r nonsingular matrix. Therefore, unless one imposes r × r prior restrictions, the

factors can only be identified up to a rotation, and thus the estimated factors usually lack a direct

interpretation.1.

In some situations, the object of interest is the conditional mean of some observed variables,

so that the interpretation of the factors is not important. For example, in panel data models, one

only needs to consistently estimate the common parts (Λft) of the unobservable effects, and thus

the indeterminacy of the factors rotation does not matter for the results.

However, there are other instances where the direct object of interest are the factors them-

selves and thus a clear interpretation of them can have important implications for structural anal-

ysis. In financial economics, a large body of empirical research is concerned with identifying

the factors that determine the prices of the securities. Chen et al (1986) and Shanken and We-

instein (2006) are examples of such work that try to interpret the underlying forces in the stock

market in terms of some observed macro variables. Instead of using macro variables, Fama and

French (1993) identify three observed factors related to the market returns and firm characteris-

tics, which can explain most volatilities of the assets returns. In the solutions of DSGE models,

the state variables and exogenous shocks (e.g., preference shocks or technology shocks) play the

role of common factors, so that the interpretation of the factors is equivalent to identifying the

sources of business cycles. In factor-based forecasts, not all the estimated factors necessarily

have prediction power for the target variables (Tu and Lee 2011), and hence the forecasting can

be further improved if some interpretational contents are attached to the factors. For example,

the predictions of inflation rates could be more accurate if the factors associated with monetary

policy shocks are given more weight than other factors identified as productivity changes (For

more examples see Bai and Ng, 2006).

The goal of this paper is to identify the factors by relating them to some observed variables.

The point of departure is the assumption that the common factors can be well approximated by

(or linear functions of) some observed variables. Under this assumption, we will denote these

observed variables as observed factors. We focus on the approximate factor models (Chamber-

lain and Rothschild 1983, Bai and Ng 2002) which allow for quite general assumptions about the

data generating processes (DGP henceforth). More importantly, the space of the factors can be

consistently estimated using the method of PC under the assumption of large N (the number of

variables).

To the best of our knowledge, Bai and Ng (2006) is the only work that has addressed this

issue.2. These authors consider the null hypothesis: gt = Lft for a m × r matrix L and a list

of m(> r) observed variables gt, suggested by some economic reasoning. They develop test

1The conventionally adopted identification assumptions for the estimation of factors using PC are that: (i) the factors

are orthogonal and (ii) the covariance matrix of the factor loadings is diagonal.
2Bai and Ng (2011) study the identification of factors from a statistical point of view, i.e., by imposing restrictive

assumptions on the data generating processes of the factors and factor loadings.
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statistics for each of the observed variables gkt as well as for the whole set of variables gt, based

on the regressions of gt on the estimated factors.

In practice, however, the list of observed factors is not always available, or those suggested

by economic theory may not span the same space of the underlying factors. In view of these

caveats, we propose here to first estimate (in the precise sense defined below) a list of observed

factors from a much larger set of variables, and then test the null hypothesis that the underlying

factors are exact linear combinations of observed variables selected in the first step.

In the estimation part, the estimated factors are regressed on different subsets of observed

variables, and we label as the estimated observed factors that subset of variables that mini-

mizes the Residual Sum of Squares (RSS) in these regressions. We differentiate two cases of

observed factors: the directly observed factors (DOFs henceforth) and the indirectly observed

factors (IOFs). In the first case, the latent factors in the FMs are directly approximated by the

observed factors, i.e., there is a one-to-one correspondence between the r factors and r observed

variables. In the second case, by contrast, the r factors are linear functions of m observed vari-

ables with m ≥ r. Notice that this second setup includes the first one as a special case, but we will

show that, for DOFs, our estimation method is much simpler and allows for larger measurement

errors (i.e., the difference between the latent factors and the observed factors).

In the testing procedure, we consider the null hypothesis: ft = Bx1:m,t for a r × m matrix B

and a list of m observed variables x1:m,t. This hypothesis covers both cases discussed above, and

is shown to be more general than the hypothesis considered by Bai and Ng (2006). We derive

two types of test statistics based on the residuals in the regressions of estimated factors on x1:m,t.

The advantages of our tests are that: (i) each of the proposed tests can be viewed as a test for the

whole set of x1:m,t, rather than each element of x1:m,t; (ii) though Bai and Ng (2006) also proposed

a test for the whole set of x1:m,t, our tests are derived under less restrictive conditions; (iii) since

we consider a more general hypothesis, the tests of Bai and Ng (2006) tend to reject the null in

the case of IOFs, while our tests still perform well.

The rest of the paper is organized as follows: Section 2 defines the basic notations and dis-

cusses the assumptions that define the approximate factor models. In section 3 we define the

directly observed factors, and show how to identify them through estimation. The definition and

identification of indirectly observedfactors are analyzed in Section 4, where we also discuss how

to implement the method in practice. In section 5, we define the null hypothesis of observed

factors and propose several test statistics whose asymptotic distributions are also derived. Sec-

tion 6 studies the finite sample properties of the estimation methods and the test statistics, paying

particular attention to their performance relative to the tests of Bai and Ng (2006). In Section 7

we apply our method to identify the risk factors for the returns of portfolios. Finally, Section 8

concludes. All the proofs are collected in the Appendices.

2. Models, Notations and Assumptions

Throughout this paper, we use the following standard notation. We define the matrix norm:

∥A∥ =
√

Tr(A′A), and use A1:m to denote the 1st to m−th rows of a matrix (or a vector) A.

Further, A > 0 (≥ 0) means that the matrix A is positive (semi) definite.

The following approximate factor models are considered:

xt = Λft + et, (1)
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where xt = (x1t, . . . , xNt)
′ is a N × 1 vector of observed variables, Λ = (λ1, . . . , λN)′ is a N ×

r vector of factor loadings, ft = ( f1t, . . . , frt)
′ is a r × 1 vector of common factors, and et =

(e1t, . . . , eNt)
′ is a N × 1 vector of idiosyncratic errors. Unlike the classical factor analysis, we

allow the number of variables N to go to infinity and the errors {eit} to be both temporarily and

cross-sectionally correlated.

We assume that m among the observed variables xt are observed factors, in a sense to be

defined in the following sections, where m is a fixed number that does not increase as N goes to

infinity. Without loss of generality, we assume these m observed factors are ordered as the first

m variables of xt. The main issue is how to find the these m observed variables in the available

set of size N . Given that the m observed factors are always placed in the first m rows, this

issue becomes equivalent to finding out the first m variables out of N randomly ordered observed

variables xt.

We consider two cases: DOFs and IOFs. In either case, the m observed factors have the

following form:

x1:m,t = Λ1:mft + e1:m,t. (2)

To single out the observed factors, we have to impose some restrictions on Λ1:m and e1:m,t, which

will be discussed in Sections 3 and 4. Roughly speaking, for the DOFs, Λ1:m should be a full-

rank matrix and e1:m,t should go to zero as N and T go to infinity; for IOFs, a necessary condition

is that the covariance matrix of e1:m,t has reduced rank.

Next we impose some assumptions for Λ, ft and et. The following assumptions are necessary

for the consistency of estimated factors using PC. Further, it should be noted that the assumptions

to be imposed in Sections 3 and 4, when defining the observed factors, do not contradict with the

following ones.

Let M denote a finite constant, we assume that:

Assumption 1. (i) E||ft ||4 < M for t = 1, . . . ,T, and 1
T

∑T
1 ftf

′
t → ΣF > 0 as N,T → ∞; (ii)

E||λi||4 < M for i = 1, . . . ,N, and 1
N

∑N
1 λiλ

′
i
→ ΣΛ > 0 as N,T → ∞; (iii) The r eigenvalues of

ΣΛΣF are different.

Assumption 2. (i) E(eit) = 0, E(eit)
8 ≤ M;

(ii) For i, j = 1, . . . ,N and s, t = 1, . . . , T, E(eite js) = τi j,ts, |τi j,ts| ≤ τi j for all (t, s), and

|τi j,ts| ≤ γts for all (i, j). 1
N

∑

i, j τi j ≤ M, 1
T

∑

t,s γts ≤ M, 1
NT

∑

i, j,t,s |τi j,st | ≤ M, and
∑

s γ
2
st ≤ M;

(iii) For any (t, s), E|N−1/2
∑N

i=1[eiseit − E(eiseit)]|4 ≤ M.

Assumption 3. {λi}, {ft} and {eit} are three independent groups.

These Assumptions are quite general in the sense that they allow heteroskedasticitiy, temporal

and cross-sectional correlations in the factors and idiosyncratic terms. For more discussion on

these Assumptions, see Bai (2003). Under Assumptions 1 to 3, the Information Criteria (IC)

proposed by Bai and Ng (2002) can consistently estimate the number of factors, so that we can

proceed as if this number was known. The effect of misspecification of the factor numbers is

discussed in Section 4.

Define the T × r matrix F̃ = (f̃1, . . . , f̃T )′ as
√

T times the eigenvectors corresponding to the

r largest eigenvalues of the T × T matrix XX′, where the T × N matrix X = (x1, . . . , xT )′. Then,

denoting min[
√

N,
√

T ] as δN,T , the following result holds:
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Lemma 1. (Bai and Ng 2002) Under Assumptions 1 to 3, δN,T ||f̃t−H′ft || = Op(1) for t = 1, . . . , T,

where H =
(

Λ
′
Λ

N

)(F′F̃
T

)

V−1
NT

, and VNT is a diagonal matrix containing the r largest eigenvalues of

(NT )−1XX′.

Lemma 1 is a key result underlying our identification method for observed factors. It implies

that the estimated factors are consistent for the space spanned by the true factors and hence for

the observed factors. This relationship between the estimated factors and observed factors can

be explored to identify the latter. For the identification of IOFs, the convergence rate δN,T is

important to design an appropriate objection function, as will be shown in Section 4.

However, it is worth stressing that we do not consider a weak factors structure as in Onatski

(2009a), in which the PC estimator of the factors are not consistent if their explanatory power is

small relative to the idiosyncratic terms. In our setup, factors are strong whenver Assumption 1

is satisfied.

3. Directly Observed Factos

In this section, we deal with the identification of the DOFs. To give the precise definition of

DOFs, the following assumptions are made:

Assumption 4. (i) m = r, Λ1:r has full rank, and eit = κN,Tεit for i = 1, . . . , r, where κN,T → 0 as

N,T → ∞;

(ii) εt = (ε1t, . . . , εrt)
′, 1

T

∑T
t=1 εtε

′
t → Σε and ||Σε|| ≤ M;

(iii) Let eN1:Nr ,t = (eN1,t, . . . , eNr ,t)
′ for r+1 ≤ N1 < N2 . . . < Nr ≤ N, then 1

T

∑T
t=1 eN1:Nr ,te

′
N1:Nr ,t

→
Σ

e
N1:Nr

> 0.

Assumption 4(i) states that the first r variables span the space of the common factors ft

asymptotically: x1:r,t → Λ1:rft as N,T → ∞. When Λ1:r = Ir, it simply means the common

factors are directly measured by the first r observed variables with neglectable measurement

errors. Notice that the nonsingular matrix Λ1:r is just a normalization, and hence we can define

the new factors as gt = Λ1:rft which are directly measured by x1:r,t, because for the remaining

variables we have:

xm+1:N,t = Λm+1:Nft + em+1:N,t

=
(

Λm+1:NΛ
−1
1:r

)(

Λ1:rft

)

+ em+1:N,t

= Λ
∗
m+1:Ngt + em+1:N,t

Therefore, we label the first r observed variables Directly Observed Factors. Notice Bai and Ng

(2006) identify the observed factors by constructing some test statistics under the assumption

of an exact relationship between the observed variables and the factors, i.e., e1:r,t = 0 for t =

1, . . . ,T . By contrast, we allow for small measurement errors in the case of DOFs. We will show

that the larger these measurement errors, the more difficult is the identification of the DOFs.

Indeed, when κN,T = 1, there is no differences between the first m variables and the remaining

N − m ones.

Assumption 4(iii) rules out (asymptotic) multi-collinearity between any set of r observed

variables, such that 1
T

∑T
t=1 xN1:Nr ,tx

′
N1:Nr ,t

→ Σx
N1:Nr

> 0 for 1 ≤ N1 < . . . < Nr ≤ N.
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From Lemma 1 and Assumption 4 we can derive an approximate linear relationship between

the estimated factors and the DOFs:

f̃t = Hft + op(1) = HΛ−1
1:rx1:rt + op(1) = Ax1:r,t + op(1), (3)

where A = HΛ−1
1:r

. As will be defined shortly, our method of identification is based on the regres-

sions of the r estimated factors on r observed variables (in contrast to Bai and Ng 2006 where

the observed variables are regressed on the estimated factors). The intuition for our approach is

that, if f̃t are regressed on the right set of observed variables: x1:m,t, the OLS estimator Â will

converge to A and the residuals will be op(1), so that RSS/ T will converge to 0. If the regressors

are chosen as a set of r observed variables different from x1:r,t, we show that RSS/T will instead

converge to some positive numbers. As a result, we can identify the DOFs by comparing the

RSS in the regression of f̃t on different sets of observed variables.

Let N1 : Nr = [N1, . . . ,Nr] denote a set of r indices such that 1 ≤ N1 < N2 < . . .Nr ≤ N, and

let xN1:Nr ,t = ΛN1:Nr
ft + eN1:Nr ,t be the corresponding observed variables. By defining:

S (N1 : Nr,A) =
1

T

T
∑

t=1

∥

∥

∥

∥

f̃t − AxN1:Nr ,t

∥

∥

∥

∥

2

, (4)

and

[N̂1, N̂2, . . . , N̂r] = arg min
N1:Nr

(

min
A

S (N1 : Nr,A)
)

, (5)

then xN̂1:N̂r ,t
is the vector of DOFs identified by our method.

Notice that

1

T

T
∑

t=1

∥

∥

∥

∥

f̃t − AxN1:Nr ,t

∥

∥

∥

∥

2

=
1

T

r
∑

k=1

T
∑

t=1

(

f̃kt − a′kxN1:Nr ,t

)2
,

and therefore

min
A

S (N1 : Nr,A) = S (N1 : Nr, Â),

where Â′ = [â1, â2, . . . , âr], and âk is the OLS estimator of ak. This procedure can be simply

implemented as follows: we first choose r observed variables, then calculate RSSk in the OLS

regression of f̃kt on these chosen variables, and get RSS =
∑r

k=1 RSSk, where the set of variables

that yield the smallest RSS are the identified DOFs.

The following theorem states that, using our method, the probability of correctly identifying

the DOFs goes to 1 as N and T go to infinity.

Theorem 1. Under Assumption 1 to 4, P
(

[N̂1, N̂2, . . . , N̂r] = [1, 2, . . . , r]
)

→ 1 as N,T → ∞.

This result holds as long as κN,T = o(1). However, with finite samples, the DOFs may not be

easily distinguishable from the remaining variables, due to either large measurement errors (κN,T )

or large estimation errors of the PC. The finite sample properties of our identification procedure

will be studied in Section 5 using simulations.
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4. Indirectly Observed Factors

4.1. Definitions and comparison with Bai and Ng (2006)

In the previous section, we have studied the simple case where the common factors are di-

rectly observed, i.e., ft = x1:r,t for t = 1, . . . ,T . However, in practice it is quite likely that the

common factors are well approximated by the linear combinations of some observed variables,

i.e., ft = Bx1:m,t for a r ×m matrix B with full row rank. For example, one of the macro variables

considered by Chen et al (1986) is the spread of interest rates. When m = r, we have shown in

the previous section that this case is equivalent to DOFs. Further, when m < r, the space spanned

by the factors has rank m, instead of r, and so we should get m factors using Bai and Ng’s IC.

Hence, without loss of generality, we focus on the case: m > r throughout this section.

We impose the following assumption to define the IOFs:

Assumption 5. (i) ft = Bx1:m,t for t = 1, . . . ,T, the r × m matrix B = (b1, . . . , bm) has full row

rank, and ∥bk∥2 , 0 for k = 1, . . . ,m;

(ii) x1:m,t = Λ1:mft + e1:m,t, and e1:m,t = C1ϵt, where C1 is a m × (m − r) matrix such that

C = [Λ1:m,C1] is a full rank matrix.

(iii) For any constant number k, and any set of indices 1 ≤ N1 < . . . < Nk ≤ N, 1
T

∑T
t=1 xN1:Nk

x′
N1:Nk

p
→

Σ
x
N1:Nk

> 0.

(iv) For any set of k indices: m + 1 ≤ N1 < . . . < Nk ≤ N, 1
T

∑T
t=1 eN1:Nk ,te

′
N1:Nk ,t

p
→ Σe

N1:Nk
> 0.

Although Assumption 5(ii) implies that the relation ft = Bx1:m,t does exist, Assumptions

5 (i) (iii) and (iiii) guarantee that the IOFs x1:m,t are uniquely determined. To see this notice

that, from Assumption 5(ii), we can write x1:m,t = C

(

ft

ϵt

)

. It follows that C−1
1:r

x1:m,t = ft, which

yields the expression in 5(i) with B = C−1
1:r

. Yet, Assumption 5(ii) alone is not enough to define

a unique set of IOFs. For example, when C = I, we have C−1
1:r
= (Ir, 0), and thus ft = x1:r,t,

which reduces to the case of DOFs. Besides, if x1:m,t are IOFs, x1:m+1,t will also be IOFs, since

ft = (B, 0)x1:m+1,t. Therefore, the second part of Assumption 5(i) is necessary to exclude these

undesirable cases. Moreover, Assumption 5(iii) excludes multi-collinearity among the element

of any subset of observed variables. Together with 5(iv), it rules out the existence of IOFs formed

by linear functions of other variables.

Note that the assumption ft = Bx1:m,t is essential. To see this, recall that the hypothesis of

interest in Bai an Ng (2006) is that gt = Lft for a m × r matrix L, so that their tests are based

on the regressions of the observed variables: gt on the estimated factors: f̃t. On the contrary, as

mentioned above, we regress the estimated factors on the observed variables. The difference is

trivial for the case of DOFs since, given that the observed variables span the same space of the

factors and that the estimated factors are consistent for the true factor space, then both regressions

will produce neglectable residuals. However, this difference becomes nontrivial for the case of

IOFs.

We use a simple example to illustrate the difference for IOFs. Consider a factor model with

only one factor: ft = x1t − x2t for t = 1, . . . ,T , where x1t and x2t are two observed variables. The

null hypothesis considered by Bai and Ng (2006) is:

(

x1t

x2t

)

=

(

c

c − 1

)

ft, (6)
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where c is any real number. Suppose now there is an estimator f̃t such that ft = f̃t + op(1), one

can write

x1t = c f̃t + op(1), (7)

and the residuals in the regression of x1t on f̃t will be op(1) (note that the result is similar for x2t).

Their test statistics are based on exploring the exact order of the op(1) term, namely Op(1/
√

N)

when
√

N/T → 0. Now suppose there is another observed variable: x3t = ft +e3t with Var(e3t) =

σ2 > 0. Then, since the residuals in the regression of x3t on f̃t will be larger than op(1) because

we can write x3t = f̃t + e3t + op(1), their tests have power to reject x3t as a member of gt.

In our definition, only ft = x1t − x2t is required, whereas x1t and x2t are allowed have the

following FM representation:
(

x1t

x2t

)

=

(

c

c − 1

)

ft +

(

1

1

)

εt, (8)

for any real number c and random process εt. Note that (6) is a special case of (8) with εt = 0

but with x1t and x2t being defined as in (8), the tests of Bai and Ng (2006) will reject the null if

εt is a process with positive variance, despite being true that ft = x1t − x2t.

To summarize, the null hypothesis considered by Bai and Ng (2006) is equivalent to the

definition of DOFs without measurement errors. Hence,it is less general the definition of IOFs

considered here.

4.2. Identifying the IOFs

The idea for identifying the IOFs is similar to the identification of DOFs. If the number of

IOFs: m is a priori known, one can use the method in Section 3 to select the m out N observed

variables that yield the smallest RSS, where the probability of correctly selecting the m IOFs

goes to 1 as N and T goes to infinity.

However, when m is not known in practice, one is faced with the choices of both m and x1:m,t.

Let m̂ be an estimator of m. If m̂ < m, then any m̂ selected variables cannot span the space of the

r factors, since otherwise Assumption 5(i) will be violated. Then the sum of RSSs (divided by T )

in the regressions of the estimated factors on the selected observed variables will be positive. If

m̂ = m, the sum of RSSs (divided by T ) will converge to 0 if x1:m,t are selected. However, when

m̂ > m and x1:m,t are among the selected variables, the sum of RSSs (divided by T ) will also

converge to 0 because adding more regressors never increases the RSSs. To solve this problem,

we need to impose some penalty functions for adding extra regressors.

To do so, let us define:

[m̂, N̂1, N̂2, . . . , N̂m̂] = arg min
r≤k≤kmax,N1:Nk

(

S (N1 : Nk, Â) + k · p(N, T )
)

, (9)

where S (N1 : Nk, Â) is as defined in Section 3, kmax is a predetermined constant, and p(N, T ) is

a penalty function depending on N and T . The following theorem constitutes the main result of

this paper:

Theorem 2. Under Assumptions 1, 2, 3 and 5,

P[m̂ = m, (N̂1, . . . , N̂m̂) = (1, . . . ,m)]→ 1

as N,T → ∞, if kmax ≥ m, p(N,T )→ 0 and δ2
N,T

p(N,T )→ ∞ as N,T → ∞.
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The estimation procedure in Section 3 is repeated for different values of k, and we add a

penalty term to the object function. Theorem 2 implies that one can identify the number of IOFs

and the IOFs simultaneously with probability approaching to 1 as N and T increase.

4.3. The choice of penalty functions

Since the penalty functions in our procedure and those considered by Bai and Ng (2002)

have to satisfy the same conditions, we can use some of their choices that have been proved

successful in determining the number of factors. Particularly, we consider the following three

penalty functions:

p1(N, T ) =

(

N + T

NT

)

ln

(

NT

N + T

)

,

p2(N,T ) =

(

N + T

NT

)

ln
(

δ2N,T
)

,

p3(N, T ) =
lnδ2

N,T

δ2
N,T

.

These penalty functions have the same asymptotic properties but may perform differently in finite

samples ( see Bai and Ng, 2002) for a detailed discussion). The finite sample properties of our

method using these functions are studied in the Section 6.

4.4. Practical implementation

In the previous discussion, we have assumed that the number of factors (r) is known or cor-

rectly estimated. However, in practice, the estimated number of factors using different methods

usually differ for the same data set. For example, if one applies the test of Onatski (2009b) to

the U.S macro data set used in Stock and Watson (2009), 2 factors can be found; but if one uses

the 6 different information criteria of Bai and Ng (2002) to the same data, the estimated numbers

of factors range from 2 to 6. Actually, it is very rare in practice that the number of factors can

be uniquely determined by different methods. Therefore, a discussion on how to implement our

methods in practice becomes necessary when the number of factors cannot be correctly specified.

When the estimated number of factors r̂ is larger than the true one r, Lemma 1 does not hold,

so that the above-mentioned methods will fail to identify the IOFs (or DOFs). When r̂ < r,

Lemma 1 continues to hold, but our methods will not necessarily identify all of the IOFs. To see

this, we first write:

f̃t = H′Bx1:m,t + op(1) = Ax1:m,t + op(1)

by Lemma 1 and Assumption 5(i), where the matrix A = H′B is r × m. Let ak be the kth row of

A, then f̃kt = akx1:m,t + op(1). If we apply our procedure to each of the f̃kt for k = 1, . . . , r, then

f̃kt can only identify those variables corresponding to the non-zero elements of āk = plim ak. For

example, if a1

p
→ (1, 0, . . . , 0), f̃1t can only identify x1t. However, Theorem 2 guarantees that

the union of the variables identified by f̃1t to f̃rt is equal to the IOFs. The reason is that, since H

(also plimH) is nonsingular and B has no zero columns (Assumption 5(i)), A (also plimA) does

not have zero columns.
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The previous discussion suggests that we can implement our procedure as follows: Instead

of regressing all the estimated factors on the observed variables, we run the regression for each

of the estimated factors, starting with the first one: f̃1t. For each f̃kt, define:

[m̂k, N̂1, N̂2, . . . , N̂m̂k
] = arg min

r≤h≤kmax,N1:Nh

( 1

T

T
∑

t=1

( f̃kt − âkxN1:Nh,t)
2 + h · p(N,T )

)

, (10)

where âk is the OLS estimator and p(N,T ) is as defined above. The key here is when to stop

the process. If one stops when k < r, the union of the selected variables may be a subset of the

IOFs; if one stops when k > r, some of the selected variables will not belong to the IOFs. The

practitioner can combine the results with some economic theory to judge the appropriateness of

the selected variables. If some obvious irrelevant variables are selected for some large k, one

should stop the process and restrict attention to the variables already selected.

The main advantage of this procedure is that one can at least identify all of the IOFs, at the

cost of identifying some non-IOF variables. While the result in Theorem 2 is much simpler, one

bears the risk that none of the selected variables belong to the IOFs when the estimated number

of factors is larger than r.

Another practical issue is that the computational cost of our method tend to explode as N, r,

m and kmax increase. As will be shown in the simulations, when N = 100, r = 2, m = 3 and

kmax = 4, the searching process takes about 1 hour. 3 In practice, N is at least around 100 in

most cases, and can be as large as thousands in financial data sets. Since the number of factors r

usually ranges from 2 to 8 in many applications, if we were to search in the whole set of variables

for those cases, the computational cost could be huge.

To solve this problem, we can restrict our attention to a subset of n variables with n < N.

Theorems 1 and 2 should still hold if these n variables contain the observed factors (DOFs or

IOFs). In practice, a list of n candidate variables can be selected by prior knowledge and/or

economic reasoning. In theory, with large samples, our methods should correctly select the

observed factors as long as they are contained in the n variables. However, in practice, the

accuracy of our approach with finite samples will depend on n: the smaller n, the less time the

computation takes, and the more likely that the observed factors are identified. But a smaller

n means that one has to exclude more variables and thus it becomes more likely to miss the

IOFs. To reach a balance, we should make n as large as possible whenever the computation cost

is affordable. The finite sample performances of our methods when selection is restricted to n

variables are studied in Section 6.

Another shortcut that can significantly reduce the computation cost is to start the searching

process with a large number of regressors, l. In the proof of Theorem 2 (See Appendix B), it is

shown that if l > m, we will select the IOFs (x1:m,t) with other l − m variables with probability

approaching 1 as N and T go to infinity. In the next step, we only need to search among the l

selected variables in the first step. By a simple conditional probability argument, this modified

procedure should have the same asymptotic property as the procedure in (9). The computation

cost will be greatly reduced since the second step is really easy to calculate. Moreover, the vari-

ables selected in the first step can be combined with other variables to form a list of n variables.

In this case the computation cost mainly depends on rmax (the maximum of l) and N (or n).

3The calculations are implemented with Matlab 2009
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5. Hypothesis Testing

So far we have assumed the existence of observed factors. Nevertheless, it is possible that

the factors cannot be approximated by any observed variables, such as the potential GDP and the

natural rate of unemployment. In such a case, it is necessary to design some tests for the null

hypothesis H0 : ft = Bx1:m,t when some observed factors have been selected by our estimation

methods. In this section, we propose several test statistics for the H0 based on both individual

and multiple regressions. Notice that the H0 here covers both DOFs and IOFs, because DOFs

can be viewed as a special case of IOFs with B being a r× r nonsingular matrix. We differentiate

these two cases in the estimation because the method for identifying DOFs is simpler, although

the method for identifying IOFs includes DOFs as a special case.

The key result underlying our tests is the following lemma proved by Bai (2003):

Lemma 2.
√

N
(

f̃t −H′ft

) d→ N(0,Ωt) if
√

N/T → 0 as N, T → ∞, where Ωt = V−1QΓtQ
′V−1,

and Γt = limN→
1
N

∑N
i=1

∑N
j=1 E(λiλ

′
j
eite jt).

The matrices V and Q are defined in Appendix A. It follows that:

√
N
(

f̃kt − h′kft

) d→ N(0, σ2
t,k), (11)

where hk is the kth column of H and σ2
t,k
= Ωt(k, k). Our tests are based on the residuals in the

regression of the estimated factors on the selected observed variables. Lemma 1 and the null

hypothesis imply that f̃t = H′ft + vt = Ax1:m,t + vt, where vt = f̃t − H′ft and A = H′B. Let Â

denote the OLS estimator of A, then:

f̃t = Âx1:m,t + (A − Â)x1:m,t + vt = Âx1:m,t + v̂t,

where v̂t = (A− Â)x1:m,t + vt. It follows that
√

Nv̂t −
√

Nvt =
√

N(A− Â)x1:m,t. Therefore
√

Nv̂t

should converge to the same distribution of
√

Nvt because
√

N(A − Â) = op(1). To see this, we

can write:

Â − A =
( 1

T

T
∑

t=1

x1:m,tx
′
1:m,t

)−1( 1

T

T
∑

t=1

x1:m,tv
′
t

)

.

By Assumption 5,
(

1
T

∑T
t=1 x1:m,tx

′
1:m,t

) p
→ Σx

1:m
> 0, and

1

T

T
∑

t=1

x1:m,tv
′
t = Λ1:m

1

T

T
∑

t=1

ftv
′
t +

1

T

T
∑

t=1

e1:m,tv
′
t .

By Lemma B1 and B2 of Bai (2003), 1
T

∑T
t=1 ftv

′
t and 1

T

∑T
t=1 e1:m,tv

′
t are both Op(δ−2

N,T
), whereby it

follows that
√

N(A−Â) = Op(
√

N
min[N,T ]

), which is op(1) under the condition that
√

N/T → 0. As a

result of Lemma 2 and the previous analysis, the distribution of the residuals v̂t in the regressions

of f̃t on x1:m,t can be derived as follows:

Nv̂′tΩ
−1
t v̂t

d→ χ2
r , (12)

N

(

v̂kt

σt,k

)2
d→ χ2

1, (13)
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where v̂kt is the kth element of v̂t, i.e., the residuals in the regression of f̃kt on x1:m,t.

Based on these results, we can construct two types of tests. The first type is similar to the

A( j) test statistics of Bai and Ng (2006). First, we define:

ρ̂t = Nv̂′tΩ̂
−1
t v̂t , ρ̂t,k = N

(

v̂kt

σ̂t,k

)2

, (14)

and

A = 1

T

T
∑

t=1

1(ρ̂t > Φr,α) (15)

Ak =
1

T

T
∑

t=1

1(ρ̂t,k > Φ1,α) for k = 1, . . . , r. (16)

where Φr,α and Φ1,α are two constants such that P[χ2
r ≥ Φr,α] = P[χ2

1
≥ Φ1,α] = α, and Ω̂t is a

consistent estimate of Ωt
4.

By the results in (12) and (13), E
(

1(ρ̂t > Φr,α)
)

= P[ρ̂t > Φr,α] → α. Then, using the

argument behind the Law of Large Numbers (LLN) we can prove the following result:5

Proposition 1. Under Assumptions 1 to 3 and the hypothesis that ft = Bx1:m,t for t = 1, . . . , T,

thenA
p
→ α andAk

p
→ α for k = 1, . . . , r if

√
N/T → 0 as N,T → ∞.

Notice once more that the A( j) test of Bai and Ng (2006) is based on individual regressions

of the observed variables on the estimated factors (regress each of x1:m,t on f̃t), while we do

the opposite here (regress each of f̃t on x1:m,t ). As discussed in Section 4, the advantage of our

procedure is that it allows us to consider more general relations between the factors and observed

variables. Moreover, it allows us to construct test statistics not only for the individual regressions,

but also for multiple regressions as in (15).

It should be noted that the test statistics defined in (15) and (16) cannot be used in a strict

sense, because although their probability limits are derived, their distributions remain unknown.

However, since they should not be too far away from their limit values under the null, they can

still provide useful information to help us evaluate the hypothesis.

The second type of test are constructed by pooling those statistics defined in (14). Specifi-

cally, let us define:

P =
∑T

t=1 ρ̂t − Tr
√

2Tr
, (17)

Pk =

∑T
t=1 ρ̂t,k − T
√

2T
for k = 1 . . . , r. (18)

The sums of the statistics are standardized by their means and variances, and the following propo-

sition gives their asymptotic distributions.

4See Bai and Ng (2006) for discussions on the estimation of Ωt .
5The proof is omitted because given the results in (12) and (13), it is very similar to the proof of Proposition 1 in Bai

and Ng (2006).
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Proposition 2. Under Assumptions 1 to 3 and the hypothesis that ft = Bx1:m,t for t = 1, . . . , T,

then P d→ N(0, 1) and Pk

d→ N(0, 1) for k = 1, . . . , r, if
√

N/T → 0 as N,T → ∞ and {eit} are

serially uncorrelated for all i = 1, . . . ,N.

Unlike the statisticsA, the statistics P has a known limiting distribution and thus can be used

for testing the null hypothesis. However, the conditions are more restrictive since the error terms

are required to be serially uncorrelated.

Bai and Ng (2006) also proposed some statistics for testing the null hypothesis for a group

of observed variables using the theory of canonical correlations, but the limiting distribution of

their tests are known only under very restrictive conditions, e.g., ft is i.i.d normal (or elliptically)

distributed. Our test statistics can also be viewed as tests for a group of observed variables, but

their limiting distributions are known under more general conditions.

6. Simulations

6.1. Directly Observed Factors

In this section, we study the finite sample performance of our method for identifying the

DOFs. The following DGP is used: xit = λift + eit for i = 1, . . . ,N and t = 1, . . . ,T , where ft

are i.i.d multivariate normal vectors with mean 0 and E(ftf
′
t ) =

(

1 0.5

0.5 1

)

, λik and eit are i.i.d

random variables drawn from standard normal distributions for i = r + 1, . . . ,N, t = 1, . . . , T

and k = 1, . . . , r. Moreover, we let r = 2, Λ1:2 = I2, and the first two variables are generated as

x1:2,t = ft + κεt, where εit are also i.i.d standard normal variables. As has been discussed earlier,

the larger the parameter κ, the more difficult is to identify the DOFs.

In the simulations, we report the probability of correctly identifying the DOFs( i.e., the first

two variables: x1:2,t) out of 1000 replications using the method proposed in Section 3, for sample

sizes N, T = 50, 100, 150, 200, and for 4 different specifications of κ: κ = 0, κ = δ−2
N,T

, κ = δ−1
N,T

and κ = δ
−2/3

N,T
. Recall that δN,T = min[

√
N,
√

T ]. The results are summarized in Table 1.

It can be observed that our method can identify the DOFs correctly with very high prob-

abilities for κ = 0, δ−2
N,T

and δ−1
N,T

, even for N, T = 50. However, when κ increases to δ
−2/3

N,T
, the

probabilities decrease dramatically to less than 30% for N = 50 or T = 50. Note that δ
−2/3

N,T
= 0.27

when N = 50 or T = 50, representing a big measurement error. The probabilities increase to

more than 50% when min[N,T ] = 100 and to more than 80% when min[N,T ] = 150.

To study the finite sample properties of the test statistics proposed in Section 5 and to compare

them to those of Bai and Ng (2006), we generate the simulated data as above except that now κ

is fixed to 0. As discussed in Section 4, for the DOFs our tests should perform closely to those

of Bai and Ng (2006). The simulation results from 1000 replications are summarized in Table 2.

Columns 3 to 5 report the averaged statistics defined in (17) and (18), while columns 6 to 8

display the empirical sizes of the tests defined in (19) and (20). 6 Finally, the last two columns

show the A( j) statistics of Bai and Ng (2006). It can be seen that all the reported numbers are

close to their limiting values (5%), although the Pk tests tend to be oversized in small sample

sizes.

6We use the 2.5% critical value of a standard normal distribution
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Table 1: Probabilities of Correctly Identifying DOFs.

N T κ = 0 κ = δ−2
N,T κ = δ−1

N,T κ = δ
−2/3

N,T

50 50 100 98 74 10

50 100 100 100 87 16

50 150 100 99 92 21

50 200 100 100 84 23

100 50 100 100 95 14

100 100 100 100 100 60

100 150 100 100 100 58

100 200 100 100 100 67

150 50 100 100 93 10

150 100 100 100 100 55

150 150 100 100 100 88

150 200 100 100 100 93

200 50 100 100 94 5

200 100 100 100 100 57

200 150 100 100 100 82

200 200 100 100 100 98

DGP: xit =
∑2

k=1 λki fkt + eit , where ft = ( f1t , f2t)
′ is multivariate normal with E( fkt) = 0, E( f 2

kt
) = 1, and E( f1t f2t) = 0.5.

x1:2,t = ft + κεt . ε jt , eit , and λki are all i.i.d standard normal variables. δN,T = min[
√

N,
√

T ]. The reported numbers are

the probabilities of correctly identifying the DOFs: x1:2,t out of 100 replications.

Table 2: Test with DOFs

N T A1 A2 A P1 P2 P A(1) A(2)

50 50 0.051 0.058 0.056 0.051 0.100 0.080 0.058 0.059

50 100 0.052 0.054 0.054 0.062 0.067 0.068 0.057 0.057

50 150 0.051 0.054 0.053 0.051 0.073 0.073 0.054 0.056

50 200 0.052 0.053 0.052 0.055 0.082 0.075 0.056 0.056

100 50 0.053 0.057 0.055 0.055 0.071 0.065 0.056 0.056

100 100 0.051 0.054 0.053 0.052 0.076 0.067 0.054 0.054

100 150 0.050 0.053 0.052 0.065 0.068 0.070 0.053 0.053

100 200 0.051 0.053 0.053 0.063 0.072 0.075 0.053 0.054

150 50 0.048 0.057 0.053 0.047 0.089 0.072 0.054 0.054

150 100 0.050 0.053 0.052 0.051 0.064 0.054 0.052 0.053

150 150 0.049 0.053 0.051 0.062 0.066 0.064 0.052 0.052

150 200 0.050 0.052 0.051 0.055 0.062 0.074 0.052 0.052

200 50 0.049 0.057 0.054 0.048 0.080 0.069 0.053 0.054

200 100 0.051 0.053 0.052 0.052 0.067 0.062 0.052 0.053

200 150 0.051 0.052 0.052 0.057 0.057 0.070 0.052 0.052

200 200 0.050 0.053 0.052 0.056 0.064 0.052 0.052 0.052

Note: The DGPs are the same as in Table 1 except that κ = 0. In Columns 3 to 5 are the averaged values of Ak from

1000 replications. In Columns 6 to 8 are the empirical sizes of the tests Pk corresponding to the 5% critical value. In

Columns 9 to 10 are the averaged values of the A( j) tests of Bai and Ng (2006).

14



Table 3: Probabilities of Correctly Identifying IOFs

N T p1 p2 p3

n = 10 n = 20 n = 30 n = 10 n = 20 n = 30 n = 10 n = 20 n = 30

50 50 72.2 63.0 52.2 62.2 44.4 34.6 91.6 90.6 84.4

50 100 86.2 80.8 74.4 81.4 75.2 67.4 92.4 90.2 87.8

50 150 89.8 84.4 78.2 87.4 80.8 74.6 94.6 91.0 87.8

50 200 90.4 86.0 85.6 88.6 83.8 81.8 94.0 92.6 91.2

100 50 91.0 87.8 83.0 87.6 82.6 74.8 96.0 95.2 93.8

100 100 97.6 97.0 94.8 96.8 93.0 90.4 99.4 100 99.6

100 150 99.0 99.0 98.2 98.4 97.6 96.4 99.8 99.4 100

100 200 99.2 99.2 98.4 99.0 99.0 98.2 99.8 100 99.8

150 50 95.6 90.8 90.4 94.0 88.4 87.0 97.8 96.4 95.2

150 100 98.4 99.0 98.8 97.6 97.8 97.4 99.8 100 100

150 150 99.8 99.0 9.3 99.8 99.8 98.6 100 100 99.8

150 200 99.8 100 99.4 99.6 100 99.4 100 100 100

200 50 95.2 94.8 92.0 94.4 92.4 89.8 97.4 96.8 95.4

200 100 99.4 98.4 98.8 99.0 98.4 98.2 99.8 100 100

200 150 100 99.8 100 99.8 99.8 99.8 100 100 100

200 200 100 99.6 99.8 100 99.4 99.8 100 100 100

DGP: xit =
∑2

k=1 λki fkt + eit , where ft = ( f1t , f2t)
′ is multivariate normal with E( fkt) = 0, E( f 2

kt
) = 1, and E( f1t f2t) = 0.5.

f1t = x1t − x2t , f2t = x3t , eit , and λki are all i.i.d standard normal variables. The reported numbers are the probabilities

of correctly identifying the IOFs: x1:3,t out of 500 replications for n = 10, 20, 30 and 3 different penalty functions p1, p2

and p3.

6.2. Indirectly observed factors

Now we generate data sets with 2 latent factors and 3 observed factors, i.e., r = 2 and m = 3.

The first latent factor is the difference of the first two observed variables: f1t = x1t − x2t, and the

second latent factors is equal to the third observed variables: f2t = x3t. Therefore we can write:

ft =

(

1 −1 0

0 0 1

)

x1:3,t.

The other parts of the models are generated as in Section 6.1. We use the method described

in Section 4 to identify the IOFs, with rmax = 4. To reduce the computation cost, we restrict

the search to subsets of the variables that contain the IOFs. As discussed in Section 4, the

less variables we consider, the more likely that the IOFs are identified. The results from 500

replications for n = 10, 20, 30 are reported in Table 3, which shows the probabilities of correctly

identifying both the number of IOFs (m = 3) and the IOFs.

Several conclusions can be drawn. First, our method performs well in most cases, with

high probabilities (more than 80%) of correct identification. Secondly, p1(N, T ) performs best

among the three penalty functions we consider. Thirdly, the probabilities of correct identification

decrease as we increase the number of variables (n) that include the IOFs, but the reductions

are not sharp. For most cases, they are less than 2% when we include 10 extra variables in the

searching process.

Next we compare our test statistics proposed in Section 5 to those of Bai and Ng (2006).

The discussions in Section 4 implies that for the DGPs considered here, the tests of Bai and Ng

(2006) will identify x3t as an observed factor but will reject the null hypothesis for x1t and x2t,

while our test should identify all of the three observed factors. The simulation results from 1000

replications are reported in Table 4.
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Table 4: Test with IOFs

N T A1 A2 A P1 P2 P A(1) A(2) A(3)

50 50 0.042 0.048 0.044 0.071 0.066 0.071 0.640 0.705 0.065

50 100 0.044 0.047 0.044 0.069 0.070 0.093 0.644 0.710 0.059

50 150 0.045 0.046 0.045 0.086 0.073 0.112 0.650 0.711 0.059

50 200 0.045 0.046 0.044 0.094 0.098 0.119 0.646 0.707 0.059

100 50 0.043 0.053 0.047 0.044 0.061 0.053 0.752 0.794 0.058

100 100 0.047 0.048 0.045 0.050 0.050 0.054 0.753 0.794 0.055

100 150 0.046 0.048 0.046 0.059 0.066 0.068 0.750 0.803 0.054

100 200 0.047 0.048 0.047 0.066 0.071 0.087 0.755 0.780 0.054

150 50 0.045 0.051 0.048 0.052 0.067 0.070 0.803 0.839 0.055

150 100 0.047 0.050 0.048 0.043 0.054 0.044 0.780 0.845 0.053

150 150 0.047 0.048 0.047 0.042 0.050 0.057 0.780 0.835 0.053

150 200 0.047 0.049 0.047 0.052 0.058 0.058 0.799 0.832 0.052

200 50 0.045 0.052 0.048 0.058 0.066 0.053 0.826 0.857 0.054

200 100 0.046 0.050 0.048 0.049 0.057 0.044 0.827 0.859 0.052

200 150 0.048 0.050 0.048 0.058 0.058 0.067 0.828 0.861 0.052

200 200 0.048 0.050 0.048 0.055 0.049 0.044 0.826 0.855 0.052

Note: The DGPs are the same as in Table 3. In Columns 3 to 5 are the averaged values of Ak from 1000

replications. In Columns 6 to 8 are the empirical sizes of the tests Pk corresponding to the 5% critical value.

In Columns 9 to 11 are the averaged values of the A( j) tests of Bai and Ng (2006).

It can be seen that our tests (columns 3 to 8) still perform good for the all the sample sizes

considered, although our Pk tests are oversized for small sample sizes. However, the A( j) tests

of Bai and Ng (2006) (columns 9 to 12), based on the regressions of IOFs on the estimated

factors, fail to converge to 5% for the first two observed factors because they are not directly

observed (x1t − x2t = f1t). Their tests can only identify x3t as an observed factor because it

directly approximates f2t. Hence, these simulation results confirm the superiority of our test in

the case of IOFs.

7. Applications

7.1. Data sets

In this part, we use our method to identify the underlying factors that determine the excess

returns of portfolios. It is well known that the Fama-French (FF henceforce) 3 factors, including

Market excess return (Market), Small Minus Big (SMB) and High Minus Low (HML), are good

approximates of the unobservable risk factors, in the sense that they can explain well the vari-

ances of the returns. The purpose of the application is to see that, given that the FF 3 factors are

the observed counterpart of the underlying risk factors, and that the estimated factors using PC

are consistent for the underlying factors, if our method can successfully identify these 3 factors

among a panel of other observed variables. One the other hand, if our method fails to identify

the FF 3 factors, we should question the consistency of the estimated factors, or the validity of

the FF 3 factors as approximations of the underlying risk factors.

We use two data sets in our empirical study. The first data set consists of the monthly re-

turns of 100 portfolios formed on Size and Book-to-Market, which can be downloaded from the

webpage of Kenneth French together with the FF 3 factors. The second data set consists of 151
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monthly macro series taken from Stock and Watson (2002b), including variables such as indus-

trial production, employment, prices, interest rates, and exchange rates. The macro variables

are transformed to achieve stationarity, and the transformation methods for each variable can be

found in Stock and Watson (2002b). Both data sets range from 1960 to 1997 (T=444).

We first estimate the factors from the panel of portfolio returns, and then identify the observed

factors from the macro data set and FF 3 factors. Beside the FF 3 factors, it is widely believed

that asset returns are also commonly affected by some macro fundamentals. The use of the macro

data set allows us to find the possible connections between macro variables and financial markets.

7.2. The number of factors

Before estimating the factors, an important question is how many factors are there. We use

two different methods to determine the number of factors for both data sets. The first one is the

information criteria (IC) method of Bai and Ng (2002), which penalizes extra factors in a proper

way such that the penalty functions help to choose the right number of factors. The second one

is Onatski (2010), which is based on the fact that in a factor model with r factors, only the largest

r eigenvalues of the covariance matrix explode as the number of variables go to infinity, while

the remaining eigenvalues are bounded. The method of Bai and Ng (2002) is usually criticized

for overestimating the number of factors, the method of Onatski (2010) is shown to have better

finite sample performance when there are non-trivial cross sectional correlations between the

idiosyncratic errors.

The estimation results for the number of factors are reported in Table 1. It can be seen that for

the panel of portfolio returns, 3 to 5 factors are found using different ICs of Bai and Ng (2002),

while Onatskis method identifies 3 factors. For the macro data set, the estimated numbers using

ICs are all 10, much larger compared to the number (3) found by Onatskis method.

Table 5: The estimated number of factors using the information criteria of Bai and Ng (2002) and the method of Onatski

(2010), with rmak = 10.

Samples PC1 PC2 PC3 IC1 IC2 IC3 Onatski T N

Portfolios 1960-1996 5 4 5 3 3 3 3 444 94

1960-1980 5 4 6 3 3 4 4 240 94

1980-1996 5 4 7 4 3 5 3 204 94

Macro 1960-1996 10 10 10 10 10 10 3 444 153

Variables 1960-1980 10 9 10 10 8 10 4 240 153

1980-1996 10 10 10 10 10 10 3 204 153

We then split the sample by 1980 (for reasons discussed below) and estimate the number

factors for each subsamples. The results from Onatski (2009) is the same for both data sets: 4

factors for samples from 1960 to 1980 and 3 factors from 1980 to 1997. The results from Bai

and Ng (2002) are less consistent: for the financial data set, the estimated numbers range from 3

to 7 for the two subsamples, and the estimated numbers from subsamples are usually larger than

those from the full sample. For the macro data set, the selected numbers of factors using ICs are

almost all 10 for each subsamples.

As discussed in Chen Dolado and Gonzalo (2011), the differences in the numbers of factors

between subsamples and full sample usually imply structural breaks in the factor model, e.g., the
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breaks in the factor loadings or the change of factor numbers. However, the number of factors

in the full sample should be no less than the number of factors in the subsamples, if the number

of factors are correctly estimated. Therefore, the differences of the estimated factors between

subsamples and full sample are more likely due to the estimation errors of the two methods in

finite samples. Finally, the results in Table 1 strongly favors the specification of 3 factors for both

data sets in the full sample.

7.3. Testing for structural instability

Structural instabilities are common features of financial and macro data sets, see Stock and

Watson (2003) for examples. There are enough reasons to expect that the factor models con-

sidered here are subject to some sort of structural instabilities. Breitung and Eickmeier (2011)

is the first paper that proposes formal test statistics to test the null hypothesis of constant factor

loadings in large dimensional factor models, but their test is shown to suffer from several short-

comings by Chen, Dolado and Gonzalo (2011), who propose a new test procedure for the same

null hypothesis, which is shown to have power only against big breaks in the factor loadings. It

is also argued that the small breaks, which are of order 1/
√

NT , will not affect the estimation

and inference of factor models based on PC methods. A similar test is also proposed by Han and

Inoue (2011) independently.

We apply the test of Chen, Dolado and Gonzalo (2011) to both data sets. Their test can be

easily implement in two steps. In the first step, the number of factors is chosen or estimated (one

can apply the test with different chosen number of factors as we will do here), and the factors are

estimated using PC. In the second step, the first estimated factors are regressed on the remaining

ones, and a Sup type test of Andrews (1993) is used to test the constancy of the coefficients

in this regression. If the null is rejected in the second step, we can conclude that there are big

structural breaks in the factor loadings; otherwise there are only mild instabilities that can be

safely ignored.

The results with the Sup Wald tests are reported in figures 1 and 2. The chosen numbers

of factors range from 3 to 6, consistent with previous findings. For the financial data set, the

trimming [0.3, 0.7] is used, while for the macro data set, we use [0.05, 0.95]. The red dotted

lines are critical values (5% for the financial data and 1% for the macro data) of the Sup type test

tabulated by Andrews (1993), and the black dotted lines are the critical values of the χ2
r−1

(for a

known breaking date, the Wald test converges to χ2
r−1

).

The results for the portfolio returns data indicate the existence of a break around 1980, for

all the numbers of factors we consider. For the macro data set, the Wald tests strongly reject the

null of no structural breaks around 1966 and 1973, implying that there may be multiple breaks

during this period. However, the Wald tests for the macro data set can not reject the null at 1%

significant level after 1980, even when the tests are compared to the critical values of the χ2

distributions.

It should be noted that the tests of Chen Dolado and Gonzalo (2011) and Han and Inoue

(2011) are based on the relationships between estimated factors. Therefore, these tests also have

powers against the breaks in the dynamics of the true factors, which can not be differentiated

from breaks in the factor loadings from the tests. However, as pointed out by Chen Dolado

and Gonzalo (2011), the breaks in the factor loadings and in the factors can be differentiated

by comparing the estimated number of factors in the subsamples and the full sample. If the

breaks happen in the factors, the estimated number of factors should be the same before and

after the break; if the breaks happen in the factor loadings, the estimated number of factors using
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the full sample will usually be larger than that using subsamples. This observation, combined

with the results of estimated numbers of factors from previous subsection, provides evidences

for the presence of breaks in the factor dynamics rather than the factor loadings. To check the

consistency of our results, we apply our method in the following subsection to the full sample

and the two subsamples. One should keep in mind that for the macro data, the second subsample

(post 1980) is more stable according to our testing results.
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Figure 1: Wald tests for the returns of portfolios, with trimming [0.3, 0.7]. Red dotted lines: 5% critical values for the

Sup type tests. Black dotted lines: 5% critical values for χ2 distributions.
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Figure 2: Wald tests for the macro variables, with trimming [0.05, 0.95]. Red dotted lines: 1% critical values for the Sup

type tests. Black dotted lines: 1% critical values for χ2 distributions.

7.4. Empirical results

In this subsection, we apply our identification method to find the observed factors in the

portfolio returns. We first estimate the factors from the panel of returns, and then form a list of

50 candidates for the observed factors from the panel of macro variables and FF 3 factors, based

on their correlations with the estimated factors and their economic meanings. As discussed in

Section 4, by creating such a list of candidates, we can significantly reduce the computation cost

to an affordable level. The full list of these 50 candidates including their short names, full names

and transformation codes are given in the appendix. Besides the FF 3 factors, these 50 candidates

include the usual macro variables such as industry production, various interest rates, monetary

measures, inflations and consumptions, which have often been considered as the main economic

factors that affect the financial market in previous studies.

Finally, we identify the observed factors with each of the estimated factors, starting with the

first one, and apply our two type of test statistics to each set of identified observed factors. The

results are reported in Table 6.
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Table 6: Identification of observed factors for the returns of portfolios

1960 − 1996 1960 − 1980 1980 − 1996

m = 1 m = 2 m = 3 m = 4 m = 1 m = 2 m = 3 m = 4 m = 1 m = 2 m = 3 m = 4

f̂1t Market Market Market FYGT10 Market Market Market HSBR Market Market Market FYGT10

SMB SMB Market SMB SMB Market SMB SMB Market

HML SMB HML SMB HML SMB

HML HML HML

p1 0.1660 0.1438 0.1939 0.2497 0.1709 0.1540 0.2064 0.2684 0.1685 0.1641 0.2273 0.2910

p2 0.1685 0.1488 0.2013 0.2596 0.1758 0.1637 0.2211 0.2880 0.1744 0.1758 0.2449 0.3145

p3 0.1583 0.1283 0.1706 0.2187 0.1569 0.1259 0.1643 0.2123 0.1521 0.1313 0.1781 0.2255

A 0.7410 0.3491 0.2117 0.2117 0.7375 0.4125 0.2208 0.2250 0.6912 0.2745 0.1912 0.2010

P 739.4618 81.3144 31.9472 31.9472 613.5771 73.8801 20.4605 19.653 370.3764 27.6731 16.1182 16.0050

f̂2t SMB Market Market FSPIN SMB Market Market FYGT10 SMB Market FYGT10 FSPCOM

SMB SMB Market SMB SMB FYBAAC SMB Market FSPIN

HML SMB HML Market SMB Market

HML SMB SMB

p1 0.5119 0.2502 0.2718 0.3243 0.6100 0.2688 0.3227 0.3777 0.3651 0.2611 0.3101 0.3655

p2 0.5144 0.2551 0.2793 0.3342 0.6149 0.2786 0.3373 0.3973 0.3710 0.2728 0.3277 0.3891

p3 0.5042 0.2347 0.2486 0.2933 0.5959 0.2408 0.2806 0.3215 0.3487 0.2283 0.2609 0.3000

A 0.4955 0.2613 0.1937 0.1914 0.4958 0.2417 0.2167 0.4667 0.5735 0.5049 0.4363 0.4260

P 139.1675 48.0188 28.7555 27.3977 156.1892 34.3494 31.8496 82.7160 91.9813 64.1346 53.9793 48.2843

f̂3t HML Market Market FYGT10 HML FYGT1 Market FYGT1 HML Market Market FYBAAC

HML SMB Market HML SMB Market HML SMB Market

HML SMB HML SMB HML SMB

HML HML HML

p1 0.2912 0.2864 0.3110 0.3594 0.2495 0.2977 0.3318 0.3895 0.3535 0.3115 0.3279 0.3779

p2 0.2937 0.2914 0.3184 0.3694 0.2544 0.3075 0.3465 0.4091 0.3594 0.3233 0.3456 0.4015

p3 0.2834 0.2709 0.2877 0.3284 0.2355 0.2696 0.2897 0.3333 0.3371 0.2788 0.2788 0.3124

A 0.3446 0.2072 0.1351 0.1351 0.2000 0.1750 0.1167 0.1208 0.4265 0.4265 0.0833 0.0833

P 51.3162 29.7754 16.4461 15.2645 18.5583 16.4663 11.5260 11.0523 76.2243 67.4627 5.2939 5.2040

f̂4t PWFSA FSPIN FSPIN FSPIN FYGT5 FSPIN PMNV PMNV SMB FSPIN FSNCOM FSNCOM

FSPCAP PSPCAP FSPCAP FSPCAP FSPIN FSPIN SMB FYGT10 FYGT10

PWFSA PSFSA FSPCAP FSPCAP SMB GMDC

PUNEW FYGT5 SMB

p1 1.0458 1.0797 1.1254 1.1721 1.0259 0.9661 1.0100 1.0564 1.0121 0.9928 0.9561 0.9917

p2 1.0483 1.0847 1.1328 1.1820 1.0308 0.9759 1.0247 1.0760 1.0180 1.0046 0.9738 1.0152

p3 1.0380 1.0642 1.1021 1.1411 1.0118 0.9381 0.9679 1.0002 0.9957 0.9601 0.9069 0.9262

A 0.1441 0.1329 0.1306 0.1509 0.1917 0.1708 0.1708 0.1750 0.3284 0.3333 0.3186 0.3235

P 66.7837 66.1321 65.5915 63.9249 76.6534 74.9080 74.6898 73.1556 50.7730 46.0358 40.3980 39.2865

For each of the estimated factor, we report the minimized object function in (9) with m =

1, . . . , 4 and all the three penalty functions considered in Section 4.3. Several interesting results

are worth noting: (1) When assuming 3 factors and the existence of DOFs, almost all the 3

estimated factors identify the FF 3 factors as the observed factors, except for the second estimated

factor in the second subsample. (2) when we consider the case of IOFs, the first 2 estimated

factors identify Market and SMB as observed factors, and the third estimated factors identify

HML in addition to Market. (3) If a forth factor is estimated, the observed factors identified by

it are mainly interests variables except for the stock market indices, and the minimized values

are much higher than those of the first 3 estimated factors, implying the existence of only 3

underlying factors. (4) The results are robust for the whole sample and the two subsamples,

which implies that the breaks found in the previous subsection are in the factor dynamics since

such breaks will not affect the consistency of the estimated factors.

We also report the two type of test statistics for the null hypothesis of exact observed factors

defined in Section 5, but almost all the tests strongly reject the null, except for the third estimated

factor in the second subsample when FF 3 factors are tested. However, the testing results do
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not necessarily invalidate our identified observed factors. Because for the case of DOFs, we

show that our estimation method can identify the observed factors even with small measurement

errors, while the test proposed statistics converge only when the measurement errors are zero.

Therefore, a rejection of the hypothesis of exact observed factors does not contradict with the

identification of the observed factors with measurement errors. This is also an advantage of our

method compared to that of Bai and Ng (2006).

To provide a rough estimate of the size of the measurement errors, recall that we can write:

f̂t = Hft + vt

= Hft +HBx1:m,t −HBx1:m,t + vt

= Ax1:m,t +H(ft − Bx1:m,t) + vt

= Âx1:m,t + (A − Â)x1:m,t +H(ft − Bx1:m,t) + vt,

where A = HB, and Â is the OLS estimate of A. Define ηt = ft − Bx1:m,t as the measurement

errors, and ût = (A − Â)x1:m,t + H(ft − Bx1:m,t) + vt as the residuals in the OLS regressions.

It is shown in Section 5 that, if
√

N/T → 0, then A − Â = op(1/
√

N) and vt = Op(1/
√

N).

Therefore, the proposed test statistics should converge to the same limit distribution as long as

ηt = op(1/
√

N).

Given the stochastic orders of A−Â and vt, we can get information about the stochastic order

of ηt from the residuals ût. Suppose ût = Op(Nα), then a simple estimator of α can be given as:

α̂ = log(T−1

T
∑

t=1

û2
t )/2 log(N)

because T−1
∑T

t=1 û2
t = Op(N2α). The OLS estimation results of the first 3 estimated factors on

the FF 3 factors and the estimated αs for each regression are reported in Table 7. It is obvious

that the estimated α for the f̂2t and f̂3t are much larger than −1/2, but still less than 0, and the

estimated α for the f̂1t are close to −1/2. Given the sizes of A − Â and vt, and the fact that

f̂2t and f̂3t put most weights on SMB and HML respectively, it is clear that the factors SMB and

HML have larger measurement errors than the Market factor, and these measurement errors cause

the tests to reject the null of exact observed factors. However, it should be noted that since all

estimated α are less than 0, our estimation method should correctly identify the observed factors

despite the measurement errors.

Table 7: Regressions of estimated factors on observed factors.

Market SMB HML R2
∑

û2
t α̂

60- 96 f̂1t 0.1965 0.1239 0.0367 0.9926 3.2460 -0.5364

f̂2t 0.1195 -0.3207 -0.1093 0.8444 68.8791 -0.2032

f̂3t 0.0915 -0.0890 0.3787 0.8698 55.3457 -0.2271

60- 80 f̂1t 0.1826 0.1222 0.0452 0.9932 1.6118 -0.5456

f̂2t 0.1584 -0.2966 -0.0491 0.7654 55.7797 -0.1591

f̂3t 0.0492 -0.0618 0.3892 0.8577 32.8917 -0.2167

80- 96 f̂1t 0.2123 0.1201 0.0217 0.9941 1.1168 -0.5679

f̂2t 0.1320 -0.3037 0.1852 0.8430 31.1217 -0.2016

f̂3t 0.0381 0.2416 0.3677 0.9201 15.8113 -0.2789
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8. Conclusion

In this paper, we have studied the identification of the factors in large dimensional FM. The

observed variables that can span the space of the true factors are called observed factors. To iden-

tify these observed factors and thus provide interpretations to the orthogonal factors estimated

by the method of PC, the estimated factors are regressed on some subsets of the observed vari-

ables, and the identified observed factors are those which minimize the RSS in the regressions.

We show that, if the observed factors exist, this estimation procedure should identify them with

probability approaching 1 as N and T go to infinity. To test the the assumption that the selected

observed factors are indeed observed factors, we propose some test statistics based on individual

regressions as well as multiple regressions. We show that our test statistics are more general than

those of Bai and Ng (2006). The finite sample performance of our methods are studied through

simulations.
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Appendix A. Proof of Theorem 1

Lemma 3. (Bai 2003) Let F̃ = (F̃1, . . . , f̃T )′, and F = (f1, . . . , fT )′, then under Assumptions 1 to

3,

F̃′F/T
p
→ Q,

where Q = V1/2
Γ
′
Σ
−1/2

Λ
, V is a diagonal matrix consisting of the eigenvalues of Σ

1/2

Λ
ΣFΣ

1/2

Λ
in

decreasing order and Γ consists of the corresponding eigenvectors.

Lemma 4. When Q is defined as in Lemma 2, then Q′Q = ΣF .

Proof. By definition, Q′Q = Σ−1/2

Λ
ΓV1/2V1/2

Γ
′
Σ
−1/2

Λ
= Σ

−1/2

Λ
ΓVΓ′Σ−1/2

Λ
. Also we haveΣ

1/2

Λ
ΣFΣ

1/2

Λ
=

ΓVΓ′, so Q′Q = Σ−1/2

Λ

(

Σ
1/2

Λ
ΣFΣ

1/2

Λ

)

Σ
−1/2

Λ
= ΣF .

Now let’s consider a set of indices N1 : Nr = (N1, . . . ,Nr), and the corresponding observed

variables xN1:Nr ,t = (xN1,t, . . . , xNr ,t)
′. We can write:

xN1:Nr ,t = ΛN1:Nr
ft + eN1:Nr ,t.

We have seen that minA S (N1 : Nr,A) = S (N1 : Nr, Â), where Â′ = [â1, â2, . . . , âr], and âk is

the OLS estimator of ak. For simplicity, we use S (N1 : Nr) to denote S (N1 : Nr, Â) in the sequel

which is equal to:
1

T
Tr

[

F̃′
(

IT − XN1:Nr
(X′N1:Nr

XN1:Nr
)−1X′N1:Nr

)

F̃
]

, (A.1)

where XN1:Nr
= (xN1:Nr ,1, . . . , xN1:Nr ,T )′. The following result is key to prove Theorem 1.

Lemma 5. Under Assumptions 1 to 4:

S (N1 : Nr)
p
→ Tr

[

(

ΛN1:Nr
ΣFΛ

′
N1:Nr
+ Σe

N1:Nr

)−1
Σ

e
N1:Nr

]

(A.2)

where Σe
N1:Nr

= plim 1
T

∑T
t=1 eN1:Nr ,te

′
N1:Nr ,t

.

Proof. We have

1

T
F̃′

(

IT − XN1:Nr
(X′N1:Nr

XN1:Nr
)−1X′N1:Nr

)

F̃

=
1

T
F̃′F̃ −

( F̃′XN1:Nr

T

)(X′
N1:Nr

XN1:Nr

T

)−1(X′
N1:Nr

F̃

T

)

= Ir −
( F̃′XN1:Nr

T

)(X′
N1:Nr

XN1:Nr

T

)−1(X′
N1:Nr

F̃

T

)

.

One can write XN1:Nr
= FΛ′

N1:Nr
+ EN1:Nr

, where EN1:Nr
= (eN1:Nr ,1, . . . , eN1:Nr ,T )′. Then:

F̃′XN1:Nr

T
=

F̃′F

T
Λ
′
N1:Nr
+

F̃′EN1:Nr

T

=
F̃′F

T
Λ
′
N1:Nr
+H′

F′EN1:Nr

T
+

(

F̃ − FH
)′

EN1:Nr

T
.

Firstly, F̃′F
T

converges in probability to Q by Lemma 2. Secondly,
F′EN1:Nr

T
= 1

T

∑T
t=1 fte

′
N1:Nr ,t

.

If 1 ≤ i ≤ r, then 1
T

∑T
t=1 fkteit = op(1) by Assumption 4; if i ≥ r, then E| 1√

T

∑T
t=1 fkteit |2 =
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1
T

∑T
t=1

∑T
s=1 E( fks fkt)E(eiteis) ≤ C

T

∑T
t=1

∑T
s=1 γis ≤ CM by Assumptions 1, 2 and 3, where C is a

finite constant, and thus 1
T

∑T
t=1 fkteit is op(1). Moreover, we have ∥H∥ = Op(1) (See Bai 2003).

Therefore H′
F′EN1:Nr

T
= op(1). Finally, the last term is op(1) by Lemma 1 and thus we have:

F̃′XN1:Nr

T

p
→ QΛ′N1:Nr

. (A.3)

Using similar arguments, we can show that:

X′
N1:Nr

XN1:Nr

T

p
→ ΣX

N1:Nr
= ΛN1:Nr

ΣFΛ
′
N1:Nr
+ Σe

N1:Nr
, (A.4)

and it is easy to show that ΣX
N1:Nr

> 0 and thus is invertible by Assumptions 1(i), 4(i) and 4(iii).

Combining the above results we have:

1

T
F̃′

(

IT − XN1:Nr
(X′N1:Nr

XN1:Nr
)−1X′N1:Nr

)

F̃

p
→ Ir −QΛ′N1:Nr

(

ΛN1:Nr
ΣFΛ

′
N1:Nr
+ Σe

N1:Nr

)−1
ΛN1:Nr

Q′,

and

S (N1 : Nr)
p
→ Tr

[

Ir −QΛ′N1:Nr

(

ΛN1:Nr
ΣFΛ

′
N1:Nr
+ Σe

N1:Nr

)−1
ΛN1:Nr

Q′
]

= Tr
[

Ir −
(

ΛN1:Nr
ΣFΛ

′
N1:Nr
+ Σe

N1:Nr

)−1
ΛN1:Nr

Q′QΛ′N1:Nr

]

= Tr
[

Ir −
(

ΛN1:Nr
ΣFΛ

′
N1:Nr
+ Σe

N1:Nr

)−1
ΛN1:Nr

ΣFΛ
′
N1:Nr

]

= Tr
[

(

ΛN1:Nr
ΣFΛ

′
N1:Nr
+ Σe

N1:Nr

)−1
Σ

e
N1:Nr

]

,

as desired.

To prove Theorem 1, notice that when the DOFs are selected, N1 : Nr = 1 : r = (1, 2, . . . , r),

and Σe
1:r
= 0 by Assumption 4(i). Therefore, we have

plim S (1 : r) = 0.

While when we select the wrong set of variables, Σe
N1:Nr

is either positive definite or positive

semi-definite. It is positive semi-definite when part of the selected variables belong to the first r

variables, i.e., when there exists at least one Nl such that 1 ≤ Nl ≤ r, but it cannot be 0 as long as

one of the selected variables does nott belong to DOFs. Then, by the fact that ΛN1:Nr
ΣFΛ

′
N1:Nr
+

Σ
e
N1:Nr

> 0, we have

plim S (N1 : Nr) > 0.

Then Theorem 1 follows easily.

Appendix B. Proof of Theorem 2

Lemma 6. QΣ−1
F

Q′ = Ir
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Proof. By definition, QΣ−1
F

Q′ = V1/2
Γ
′
Σ
−1/2

Λ
Σ
−1
F
Σ
−1/2

Λ
ΓV1/2 = V1/2

Γ
′(
ΓVΓ′

)−1
ΓV1/2 = Ir

Lemma 7. For any k > r and m + 1 ≤ N1 < N2 . . . < Nk ≤ N, we have

plim S (N1 : Nk) > 0.

Proof. By definition we can write:

xN1:Nk ,t = ΛN1:Nk
ft + eN1:Nk ,t.

Using the same arguments in Lemma 4, we can show that:

S (N1 : Nr)
p
→ Tr

[

Ir −QΛ′N1:Nk

(

ΛN1:Nk
ΣFΛ

′
N1:Nr
+ Σe

N1:Nk

)−1
ΛN1:Nk

Q′.
]

(B.1)

But now we can proceed as in the proof of Lemma 4 because ΛN1:Nk
is not r × r. Instead, by

Lemma 5, we can write the matrix in the right hand side of (B.1)as:

QΣ−1
F Q′ −QΛ′N1:Nk

(

ΛN1:Nk
ΣFΛ

′
N1:Nr
+ Σe

N1:Nk

)−1
ΛN1:Nk

Q′

= Q
(

Σ
−1
F − Λ′N1:Nk

(

ΛN1:Nk
ΣFΛ

′
N1:Nr
+ Σe

N1:Nk

)−1
ΛN1:Nk

)

Q′.

By Assumption 5(iii) and matrix inverse equation we have:

(

ΛN1:Nk
ΣFΛ

′
N1:Nr
+ Σe

N1:Nk

)−1

= (Σe
N1:Nk

)−1 − (Σe
N1:Nk

)−1
ΛN1:Nr

(

Σ
−1
F + Λ

′
N1:Nr

(Σe
N1:Nk

)−1
ΛN1:Nr

)−1
Λ
′
N1:Nr

(Σe
N1:Nk

)−1.

Define C = Λ′
N1:Nr

(Σe
N1:Nk

)−1
ΛN1:Nr

, then we have:

Σ
−1
F − Λ

′
N1:Nk

(

ΛN1:Nk
ΣFΛ

′
N1:Nr
+ Σe

N1:Nk

)−1
ΛN1:Nk

= Σ
−1
F −

(

C − C
(

Σ
−1
F + C

)−1
C
)

= Σ
−1
F −

(

C
(

Σ
−1
F + C

)−1(
Σ
−1
F + C

)

− C
(

Σ
−1
F + C

)−1
C
)

= Σ
−1
F − C

(

Σ
−1
F + C

)−1
Σ
−1
F

=
(

Σ
−1
F + C

)(

Σ
−1
F + C

)−1
Σ
−1
F − C

(

Σ
−1
F + C

)−1
Σ
−1
F

= Σ
−1
F

(

Σ
−1
F + C

)−1
Σ
−1
F .

Finally we have:

S (N1 : Nr)
p
→ Tr

[

QΣ−1
F

(

Σ
−1
F + C

)−1
Σ
−1
F Q′

]

= Tr
[

Σ
−1
F

(

Σ
−1
F + C

)−1
]

by Lemma 3. Then the result follows by the fact that both ΣF and Σ−1
F
+ C are positive definite.
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Lemma 8. If e′e is the sum of squared residuals when y is regressed on X and u′u is the sum of

squared residuals when y is regressed on X and z, then

u′u = e′e − c2(z′∗z∗) ≤ e′e,

where c is the coefficient on z in the long regression and z∗ = [I − X(X′X)−1X′]z is the vector of

residuals when z is regressed on X.

Proof. See Green (2002).

Lemma 7 implies that in OLS regressions, adding regressors never increases the RSS.

Lemma 9. S (1 : m) = Op(δ−2
N,T

).

Proof. By Lemma 1 and Assumption 5(i), we have:

f̃t = Hft + vt = HBx1:m,t + vt = Ax1:m,t + vt, (B.2)

where A = HB and vt = Op(δ−1
N,T

). Then we can write:

f̃t = Âx1:m,t + (A − Â)x1:m,t + vt.

Since

A − Â =
(

T−1

T
∑

t=1

x1:m,tx
′
1:m,t

)−1(

T−1

T
∑

t=1

x1:m,tv
′
t

)

= Op(δ−1
N,T )

by Assumption 5(ii). It follows that

∥f̃t − Âx1:m,t∥2 = Op(δ−2
N,T )

and the result follows.

The following lemma states that if the IOFs are selected together with some other variables,

the RSS divided by T also goes to 0.

Lemma 10. Let [1 : m,N1 : Nl] = [1, 2 . . . ,m,N1, . . . ,Nl] with m < N1 < . . . < Nl ≤ N, then

S
(

1 : m,N1 : Nl

)

= Op(δ−2
N,T

) for any constant l ≥ 0.

Proof. The result follows directly from Lemma 7 and Lemma 8.

Lemma 6 considers the case where none of the selected variables belong to the IOFs. In the

following Lemma, we consider the case where only part of IOFs are selected. Without loss of

generality, we assume that among the m IOFs, the kth to the last IOFs are selected.

Lemma 11. S
(

k : m,N1 : Nl

)

≥ S
(

2 : m,N1 : Nl

)

for 1 < k < m, and

plim S
(

2 : m,N1 : Nl

)

> 0.
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Proof. The first part follows directly from Lemma 7. For the second part, let yt = (x′
2:m,t
, x′

N1:Nl,t
)′,

and Y = (y1, . . . , yT )′. Recall that:

S
(

2 : m,N1 : Nl

)

=

r
∑

j=1

S j

(

2 : m,N1 : Nl

)

where S j

(

2 : m,N1 : Nl

)

= 1
T

∑T
t=1( f̃ jt − â′

j
yt)

2. Then by Lemma 7 we have:

S j

(

2 : m,N1 : Nl

)

= S j

(

1 : m,N1 : Nl

)

+ b2T−1

T
∑

t=1

x̂2
1t,

where x̂1t are the residuals in the regression of x1t on yt, and b is the coefficient of x1t in the OLS

regression of f̃ jt on x1t and yt.

By (B.2) we have

f̃t = HBx1:m,t + op(1) = Ax1:m,t + op(1).

If we write A = (a1, . . . , am), then ∥ak∥2 > 0 for k = 1, . . . ,m by Assumption 5(i) and the fact

that H is nonsingular (Bai and Ng 2002). In the vector a1 there must exit an element a1 j , 0.

Thus we can write

f̃ jt = a1 jx1t + cyt + op(1),

where c = [a2 j, . . . , am j, 0 . . . , 0]. It follows that b2
p
→ a2

1 j
> 0.

Finally, we prove that plim T−1
∑T

t=1 x̂2
1t
> 0 by contradiction. Suppose plim T−1

∑T
t=1 x̂2

1t
=

0, define zt = (x′
1:m,t
, x′

N1:Nl,t
)′, and write x1t = d̂′yt + x̂1t, where d̂ is the OLS estimator. Then:

T−1

T
∑

t=1

ztz
′
t =

(

T−1
∑T

t=1 x2
1t

T−1
∑T

t=1 d̂′yty
′
t

T−1
∑T

t=1 yty
′
t d̂ T−1

∑T
t=1 yty

′
t

)

=

(

d̂′
(

T−1
∑T

t=1 yty
′
t

)

d̂′ +
(

T−1
∑T

t=1 x̂2
1t

)

d̂′
(

T−1
∑T

t=1 yty
′
t

)

(

T−1
∑T

t=1 yty
′
t

)

d̂ T−1
∑T

t=1 yty
′
t

)

p
→

(

d′ΣYd d′ΣY

ΣYd ΣY

)

.

The last matrix is a singular matrix, which is a contradiction with Assumption 5(ii). Therefore

we have:

plim S j

(

2 : m,N1 : Nl

)

= plim S j

(

1 : m,N1 : Nl

)

+ plim
(

b2T−1

T
∑

t=1

x̂2
1t

)

= 0 + a2
1 jplim

(

T−1

T
∑

t=1

x̂2
1t

)

> 0.

And thus plim S
(

2 : m,N1 : Nl

)

≥ plim S j

(

2 : m,N1 : Nl

)

> 0.

Proof of Theorem 2
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Proof. Since

P[m̂ = m, (N̂1, . . . , N̂m̂) = (1, . . . ,m)]

= P[m̂ = m] · P[(N̂1, . . . , N̂m̂) = (1, . . . ,m)|m̂ = m],

and it is obvious that P[(N̂1, . . . , N̂m̂) = (1, . . . ,m)|m̂ = m]→ 1 as N,T → ∞ by Lemma 6, 8 and

10, it suffices to prove that P[m̂ = m]→ 1.

When l < m:

P[m̂ = l]

= P[min S (N1 : Nl) + l · p(N,T ) > min S (N1 : Nm) + m · p(N,T )]

= P[min S (N1 : Nl) −min S (N1 : Nm) > (m − l) · p(N,T )]

By Lemma 6 and 10, we have plim inf S (N1 : Nl) = τl > 0, and plim min S (N1 : Nl) = 0. Then

we have P[m̂ = l]→ 0 because p(N,T )→ 0.

Similarly, when l > m:

P[m̂ = l]

= P[min S (N1 : Nl) + l · p(N,T ) < min S (N1 : Nm) + m · p(N,T )]

= P[min S (N1 : Nm) −min S (N1 : Nl) > (l − m) · p(N,T )]

From Lemma 8,9 and 10 we know that min S (N1 : Nm) − min S (N1 : Nl) = Op(δ−2
N,T

). By the

assumption that δ−2
N,T

p(N,T ) → ∞ as N,T → ∞, ·p(N,T ) goes to zero slower than min S (N1 :

Nm) − min S (N1 : Nl), therefore P[m̂ = l] → 0 as N,T → ∞. The desired result then follows

easily.

Appendix C. Proof of Proposition 2

Proof. Following the argument of Bai and Ng (2006), {
√

Nv̂t} are asymptotic normal and inde-

pendent under the assumption that {eit} are serially uncorrelated. It follows that ρ̂t and ρ̂t,k are

also independent. Then the results follow easily from Central Limit Theorem.
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Appendix D. Tables and Figures

Table D.8: Candidates for Observed Factors

Short Name Long Name T code

1 IP industrial production: total index 5

2 IPMFG industrial production: manufacturing 5

3 IPXMCA capacity util rate: manufacturing, total 1

4 LHELX employment: ratio; help-wanted ads:no. unemployment clf 4

5 LHUR unemployment rate: all workers, 16 years over 1

6 LPNAG employment on nonag. payrolls: total 5

7 LEHCC avg hr earnings of constr wkrs: construction 6

8 LEHM avg hr earings of prod wrks: manufacturing 6

9 HSFR housing starts: nonfarm (1947-58) ; total farm & nonfarm(1959-) 4

10 HSBR housing authorized by build: total new priv housing units 4

11 MSMTQ manufacturing & trade: total 5

12 MSMQ manufacturing & trade: manufacturing; total 5

13 WTQ merchant wholesalers: total 5

14 RTQ retail trade:total 5

15 IVMTQ manufacturing & trade inventories: total 5

16 PMI purchasing managers’ index 1

17 PMP napm production index 1

18 PMNO napm new orders index 1

19 PMNV napm inventories index 1

20 PMEMP napm employment index 1

21 MO mfg new orders: all manufacturing industries, total 5

22 MDO mfg new orders: durable goods industries, total 5

23 FM2 money stock: m2 6

24 FMFBA monetary base, adj for reserve requirement changes 6

25 FSNCOM NYSE common stock price index: composite 5

26 FSPCOM S&P common stock price index: composite 5

27 FSPIN S&P common stock price index: industries 5

28 FSPCAP S&P common stock price index: capital goods 5

29 FYFF interest rate: federal funds 2

30 FYCP90 interest rate: 90 day commercial paper 2

31 FYGM3 interest rate: U.S. treasury bills, sec mkt, 3-m0 2

32 FYGM6 interest rate: U.S. treasury bills, sec mkt, 3-m0 2

33 FYGT1 interest rate: U.S. treasury const maturities, 1-yr 2

34 FYGT5 interest rate: U.S. treasury const maturities, 5-yr 2

35 FYGT10 interest rate: U.S. treasury const maturities, 10-yr 2

36 FYAAAC bond yield: moody’s aaa corporate 2

37 FYBAAC bond yield: moody’s baa corporate 2

38 FYFHA secondary market yields on fha mortgages 2

39 EXRUS United States effective exchange rate 5

40 EXRGER foreign exchange rate: Germany 5

41 EXRJAN foreign exchange rate: Japan 5

42 EXRUK foreign exchange rate: United Kingdom 5

43 EXRCAN foreign exchange rate: Canada 5

44 PWFSA producer price index: finished goods 6

45 PUNEW cpi-u: all items 6

46 PUC cpi-u: commodities 6

47 GMDC pce, impl pr defl: pce 6

48 Market Market minus risk free rate 1

49 SMB small minus big 1

50 HML high minus low 1

ii
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