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Abstract 
Exploitation of non–renewable resources is an intensively studied field of 
environmental economics in the last century. Since the influential Hotelling’s paper a 
huge progress is made in the depletable resources literature. Although a variety of 
methodologies is used in that problem’s solutions a basic question of time 
inconsistency arises in the solution process. We show the sources of dynamical time 
inconsistency in a leader – follower game for which the buyer leads while the 
extractor follows and the players employ open loop strategies. Also we make use of 
Markovian informational structure, in a non – renewable resource Nash game, in 
order to extract strategies that are time consistent. Finally we enlarge the utility 
function space from the logarithmic utility to the utility functions that exhibits relative 
risk aversion with the same, with respect to time consistency, strategies. 
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1. Introduction 

Economists have given much attention to the role of natural resources in the 

operation of an economic system. The main interests in environmental history have 

been, at least in the beginning, the scarcity and exhaustion of natural resources. The 

systematic allocation of resources and the importance of markets were emphasized by 

the classical economists in the 19th century. Adam Smith (1776) gave attention to the 

dynamic effects of market. For Smith nature was generous and agriculture capable of 

offering outputs in excess of inputs and he did not consider as an obstacle to growth 

the resources scarcity problem. Malthus (1798, 1820) and Ricardo (1973) considered 

the land of a country as one of the main characteristics of its economy. Malthusian 

scarcity considers natural resources as homogeneous in quality while Ricardian 

considers them as varying in quality (Barnett and Morse, 1963).  

In the first neoclassical models there is an absence in the production functions 

of any natural resources. Natural resources are introduced into neoclassical models of 

economic growth in the 1970s with the systematic investigation of optimal resource 

depletion. Marshall (1890) and the new neoclassical economists adopted an optimistic 

view of natural resource scarcity which holds till 1960s. Modern Marxism has also 

seen natural resource scarcity as a potential growth constraint without proposing any 

alternative view.  

After the Victorian economists and in the beginning of the last century 

economists showed little or no concern for resource exhaustion. Modern theories of 

natural resources scarcity in the 1960s and 1970s were proposed by Hotteling (1931) 

and Ramsey (1928). There is no big difference between Marshall’s and Hotteling’s 

views on exhaustible resource depletion but we may say that Hotteling’s theory is 

more completely developed (Halkos, 2007).  



 3 

In Economics of nonrenewable resources, it is well known that when there is a 

fixed stock of an exhaustible resource, Pareto optimality requires the difference 

between price and marginal extraction cost rise at the interest rate. The above 

Hotelling condition is true only in competitive market equilibrium. A monopolist, 

however, supplies the resource in such a way that the difference between marginal 

revenue and marginal extraction cost rises at the interest rate, as well. This is a type of 

modified Hotelling condition in monopolistic situations. As a result, a monopolist will 

not supply in general the resource efficiently. 

The analysis of the dynamics of an economy with natural resources 

(exhaustible and non) demands attention to the nature of the group of consumption 

(extraction) paths available in this economic system. This requires thoughtful 

consideration of the technology of resource use. An emerging conclusion is that if a 

natural resource is necessary and un-substitutable and at the same time is available in 

a finite amount then in every feasible path extraction must decline to zero.  

In the present paper we propose a simple nonrenewable resource extraction 

model and we find the precise analytic forms of the Markovian equilibrium resource 

exploitation strategies that are strongly time consistent. As a consequence the closed 

loop Markov perfect Nash equilibrium is by definition a robust one. We enlarge the 

utility function space from the usual logarithmic utility function to the wider class of 

utility functions that exhibit relative risk aversion. In this way, we conclude about the 

relationships of the utility functions and discount rates and the number of players of 

the induced dynamic game. Also we use the most recent modern perspective of 

dynamic economic analysis that is the Hamilton – Jacobi – Bellman (hereafter HJB) 

equation of dynamic programming. 
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 The structure of the paper is the following. Section 2 reviews the existing 

literature and states the problem into consideration while section 3 discusses the 

leader-follower formulation and time inconsistency in non-renewable resource 

economics. Section 4 present the proposed model and section 5 discusses the utility 

function in terms of risk aversion. The last section concludes the paper. 

 

2. Literature review and statement of the problem.  

In the Economics of non-renewable resources arisen by the famous article of  

Hotelling (1931) every resource that is mined without the possibility to regenerate, 

also including the forests, is meant as exhaustible resources. The discussion on the 

Hotelling’s paper is based on the problem to find “the optimum social value of the 

resource” under full competitive extraction. That is in a time instant this quantity is 

defined by    
0

q

u q p q dq  , where the integrant is a decreasing function, while the 

upper limit of integration is the market consumed quantity. Consequently if one 

discounts the future utility with the discount rate  , then the present value will be 

expressed as:  
0

T
tV u q t e dt    . In the same manner in an oligopolistic situation 

the same problem is set as the choice of the quantity  q t  under the constraint 

0

qdt a


 , that is the maximization of the present value  
0

tJ qp q e dt


  .  

The above problems have been solved with the calculus of variation method 

and the main conclusion that was extracted of the celebrated Hotelling’s paper is that 

perfect competition is able to induce a time trajectory that is a social optimum one, 
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but the monopoly yields an extraction time path not only more conservative but also 

socially sub–optimal. 

In the same model Stiglitz (1976) adopting a demand function of the form 

  1ap f t q   for one unit of quantity q , with 0 1a   and demand elasticity 

expressed as 1
1 a

, he concludes that in order to maximize the discounted revenues of 

one firm, extraction will be socially optimal, both under perfect competition and in a 

monopolistic environment, the Hotelling rule  must hold. With Hotelling rule to 

represent the equation p r
p



 holds, where r  is the discount rate and p

p


 is the rate of 

the price increment. Substituting in the demand function the Hotelling condition 

yields finally the following necessary conditions that must hold under perfect 

competition and for monopolistic firms, as well:  

                                               
1

fr
q f
q a








 

together with the exhaustion condition of the resource: 

   0
0

q t dt S


 ,  

with 0S  to express the total stock of the resource. 

However if the demand elasticity increases in time, that is an expected fact, 

the original Hotelling condition takes the following form: 

                         p ar
p a


 


, with 0a   

The latter equation leads us to conclude that the price increment rate will be slower in 

the monopolistic firms than in the competitive ones. Consequently the latter implies 
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that if the resource exhaustion condition   0
0

q t dt S


  holds then the resource 

extraction rate for the monopoly will be lower if the monopolistic firms follow more 

conservative extraction policies. The next figure compares  the two extractions time 

paths for monopolistic and competitive firms respectively. 

 

 

Figure 1: Extraction time paths under monopoly and perfect competition with an 
incremental demand elasticity. 
 

A similar biased situation takes place for monopolistic extraction firms that 

follow a conservative extraction policy if the extraction costs are entered into the 

utility function. Assuming constant costs per extracted unit and decreasing with 

respect to time cost functions, that is  g t  is the cost function and   0g t  , then 

monopolistic revenues will be  
0

a rtfq gq e dt


  and after simplifications and 

rearrangement of the terms the Hotelling condition now becomes: 
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                                   1 m m
p gr
p g

   
 

 

where 1m
g

ap
    is the quotient of the division of  the extraction cost by the 

marginal revenue. Clearly the quantity m  is less than unit and if extraction cost 

decays quickly so does the market price.  

The competitive market solution presupposes condition  1 c c
p gr
p g

   
 

 to 

hold, with c
g
p

  . Consequently in any time instant t  the corresponding price  p t  

will be the same in both competitive and monopolistic markets, since    c mt t   

and the rate of price increment p
p


 for the competitive market will be higher from the 

monopolistic. The price curves have only one intersection point and the monopolist 

follows a more conservative extraction policy. The above extraction policies are 

depicted in figure 2. 

 

 

Figure 2: Price time paths for competitive market and monopoly. 
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3. Leader–follower formulation and time inconsistency in non-renewable 

resources economics 

A considerable literature exists on the behavior of monopolistic or 

oligopolistic sellers of a non–renewable resource (Bergstrom et al., 1981; Dasgupta 

and Heal, 1979; Lewis et al. 1979; Ulph and Folie, 1980) but less progress has been 

made in analyzing imperfections on the buyer’s side of the market. Karp (1984) 

studies the effect of allowing the buyers to exercise market power by using a tariff 

against sellers that assumed to behave competitively or monopolistically. While 

Kemp and Long (1980), in the same tariff argument, derive the open loop tariff for a 

non–renewable there is a considerable objection on the buyer’s announced tariff. 

Precisely an importing country (modeled as a buyer) wants to revise the originally 

announced tariff. Kemp and Long point out that the open loop extracted tariff, in their 

model with constant extraction costs, is dynamically inconsistent. Karp (1984) in a 

different, with respect to extraction costs, model makes the assumption that the seller 

obtains no utility from consuming the resource, finds that the inconsistency on open 

loop tariff caused by the assumption of stock – dependence cost.  

The well known leader – follower formulation can be adapted in the non – 

renewable resource modeling. The conflict between buyers (the users of the resource 

or even the importers) and sellers (the extractors of the resource) can be modeled as a 

Stackelberg game in which the buyers lead. The buyers choose a tariff and the sellers 

choose the rate of extraction. If the sellers control the rate of extraction in a non – 

cooperative Nash game, it would never be optimal for them to extract anything. If 

they committed themselves to extracting at a certain rate, the buyers could charge an 

arbitrary high tariff. Conversely if the sellers lead, consequently were allowed to 



 9 

choose the price at which they would sell the buyers would face an infinitely elastic 

supply curve, and the optimal price charged would be zero.  

It is well known that the rationality of the follower, in a leader – follower 

game, implies that the open loop policy does not in general satisfies the principle of 

optimality (Kydland and Prescott, 1977), consequently that policy is not a time 

consistent one. In the non – renewable resource extraction game, for which the buyer 

leads, it is likely for the seller (the follower) would not believe an inconsistent policy 

even though the resulting payoff is less than with the open loop policy. On the other 

hand, if the buyer uses a consistent price charged against a competitive seller, the 

competitive rate of extraction results and if the buyer uses a consistent price against a 

monopolist, the resulting extraction path may be either more or less conservative than  

the extraction path under pure monopoly. 

More formally the conflict between buyers and sellers in the resource game 

can be modeled, in the case of unit price charged, as follows. The buyer’s payoff is 

the discounted stream of the difference between the utility of consuming at rate  x t  

and the payment   P x q x  and in the infinite date at which consumption 

terminates with discount rate  , buyer’s (leader’s) payoff may be written as 

                                  
0

t
LJ u x P x q x e dt


                     1  

Taking now the follower’s position his payoff maximization can be modeled as 

follows. Let  c z  be the average cost of extracting a unit of the resource given that 

stock size is z  then the instantaneous extraction cost is  c z x . We assume   0c z   

and   0c z   then the seller’s payoff is the following 
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                                   
0

t
FJ P x q c z xe dt


                    2  

In this setting together with the assumption that the follower enjoys no utility from 

consuming the resource, the leader controls the quantity,  q t , that buys and the 

follower controls the rate of its extraction  x t . Both the players are constrained by 

the non negativity of the stock  z t  with the justification that the resource reduces 

with the extraction rate that is the constraint: 

                        z t x t ,   00z z  given,   0z t t       3  

In the price path determination, the buyer takes into consideration the reaction of the 

seller. 

In the case of a competitive seller open loop prices charged results in time 

inconsistent policies except when costs are constant. Indeed if the follower takes the 

announced leader’s control variable  q t  has to solve his problem for which the 

Hamiltonian formed as follows: 

     t
FH P x q c z xe t x        and the resulting first order conditions   

     0 0tFH P x q c z e t
x

         
   4   

(with respect to control) and  

 tFH e c z x
z

      


      5   

(with respect to state variable), with the co–state  t  to denote the follower’s 

marginal utility of an additional unit of stock at time t . It is worth noting that a 

prediction of the arisen time inconsistency is that the follower’s co–state variable 

 t  is dependent upon leader’s control variable  q t .  
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Following Simaan and Cruz (1973) leader’s problem can be converted into an 

optimal control problem that he solves. The intuition behind this approach is 

straightforward. The leader treats the follower’s first order condition as a constraint 

and the follower’s co–state  t as a state (with equation of motion given by the 

second of the two first order conditions). The elimination of the leader’s control using 

the first of the first order conditions yields     tq P x c z e     and substitution 

into the leader’s payoff  1  the payoff can be written as  

   
0

t
LJ u x c z x e x dt 


                 6   

Note the last term in equation  6  gives the present value of the total instantaeous rent 

which the leader pays. In order to find the source of time inconsistency the next step 

is to solve the leader’s optimal control problem which is defined by maximization of 

its payoff, given by  6  subject to the original resource constraint    z t x t  and 

the follower’s constraint given by its maximization problem, that is the constraint 

 te c z x   . The Hamiltonian and first order conditions of the latter problem are 

given by the following equations: 

                               1 2
t t

LH e u x c z x x x e c z x                7  

                            1 2 0t tLH e P x c z x e c z
x

             
    8  

                                     1 2 1
tLH e c z c z x

z
          

            9  

                                                       2 2
LH x 



   


                                10  
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with 1 2,   to denote the co–states of the states z  and   respectively. Setting the 

boundary condition  2 0 0  , equation  10 , which gives the marginal value to the 

leader of an increase of the follower’s rent, has the solution    2 0t z z t    . The 

last condition implies that the leader would like to increase (revise) the follower’s rent 

and the dynamic time inconsistency arises because for the open loop information 

structure a commitment against deviations had made. 

In the next sections we expose a simple nonrenewable resources extraction 

model in the lines of the previous research. For the proposed model the players of the 

Nash game follows Markovian strategies, that are by definition time consistent, and 

the aim is to extract some useful conclusions with respect to the player’s risk aversion 

and for his maximized utility as well. The methodology used is that of the conjectured 

value function and strategies and of the maximized Hamiltonian with an auxiliary 

variables system. 

 

4. The simple model 

Assume an absolutely free natural resource, for example a type of fuel that is 

extracted simultaneously from N  firms or N  countries (players of the game). With 

 x t  we denote the resource stock at time t  and  ic t  denotes the extraction rate for 

player i  at the same time. As it is normal we assume that the extraction rate at every 

time except the bootstrap of the game (zero time) is positive,   0ic t  , and if the 

resource stock at time t  is zero,   0x t  , the extraction process ends up, that is 

  0ic t  .  
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The nonrenewable resource exhaustion equation is described by the following 

differential equation of motion which simply claims the nonrenewable resource stock 

to exhaust with its extraction rate: 

                                        
1

N

i
i

x t c t


                                           11  

Every player enjoys a utility function  iu c , well defined for every 0ic   which is 

concave and increment with the property  0u   . The utility function is 

discounted with the discount rate 0  , so every player’s objective function is given 

as: 

                                      
0

t
i iJ e u c t dt


                          12  

In order to extract every player’s Markovian strategy we make use of the conjectured 

method for strategies and the value functions for problem  12  under constraint  11 . 

 

Proposition 1 

In the symmetric resource extraction game with N firms and utility functions given in 

logarithmic form,    lni iu c t c , every player follows linear Markovian strategies 

that are independent of the number of players. 

 

Proof 

Supposing that all rivals of the arbitrary i N  player use the stationary Markovian 

strategy   the HJB equation for the arbitrary i N  player is given by 

                     max ln 1
i

i i i ic
V x c V x c N x                          13  
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In order to find player’s i  best response we maximize the right hand side of  13  with 

respect to extraction rate ic , that is  

        
 

       1

ln 1 10i i i
i

i i

i i

c V x c N x
V x

c c

c x V x






          


      14
 

We conjecture value functions of the form  

                                                   lniV x A x B                                      15  

and                                                 1
i i

A xV x V x
x A


                      16  

Combining  14  and  16 the equilibrium Markovian strategies are given by the 

expression  

                                                1
i i

xc x V x
A




                              17  

which is clearly independent of the number of players N. 

Substitution of the strategy given by  14  into the maximized HJB equation 

 13  yields 

                       ln 1i i i iV x c V x c N x                         18  

 

Further substitution into  18  of the equilibrium strategy  17  yields the following 

differential equation  

         
1ln 1 lni i

i

x x xV x V x N N
A A A V x


                  

       19  

with solution  



 15 

                                    ln x N
V x





                      20    

Where   is the integration constant. Clearly the value function is dependent upon the 

number of the players and on the extraction rate. 

 

5. Utility function relative to risk aversion 

We discus now the same model entering into the class of games where utility 

functions of the symmetric players exhibit the relative risk aversion. For this reason 

we consider the model as described by equation  12  under constraint  11 . The 

present value of the corresponding Pontryagin function will be: 

          1
1

, , , , ,...,
n

i i i i n i i i i
i

P u c P c u u u c c  


                        21  

 

Extraction rates are supposed to be non-negative 0ic  , so the maximization of 

function  21  yields 

                           0

0 0

i i
i i i i

i i i i

i i

du c
u c c

c dc
c


 




    

  

                         21a  

 

and the latter can be solved for  i i ic   . Substitution into  21  gives the following 

Hamiltonian function of the game: 

                        
1

n

i i i i j j
j

H u     


               22  

For symmetric utility functions the simplified Hamiltonian takes the form  

                        H u N                        23  
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Player’s i  value function is  
10

n
t

i i i i
i

V e u c c dt






    
  , which shows the player’s 

fee for the sub–game that begins at time zero. If the value function is differentiable 

with respect to the nonrenewable resource remainder stock x , then the above function 

satisfies the Hamilton – Jacobi equation1 * * *ˆ ˆ, , , , , ,i i
i i i i i

dV dVV H x u u H x u u
dx dx

        
   

 

with iH  to be given by equation  22  for the non symmetric case and by equation 

 23  for the symmetric one.  

Discussion in the Dockner and Wagener (2008) paper reveals that 

differentiation of the Hamilton – Jacobi equation yields the following condition to 

hold:  

                              H Hx
x

 


   
 

                              24    

with the derivatives  H u N N  


     


  and 0H
x





. Substituting back the  23  

(the symmetric case) into  24  gives 

                            x u N N                           25  

Using the maximization condition as given by  21a  we have    i i
i i i

i

du c
u c

dc
    

and     
1

u
 

 
 


,  25  finally takes the form: 

     

   

1

1

u N Nu ux x N N

ux N N
u

   
     

 

  


                 
       

     (26) 
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We now make use of the Arrow – Pratt relative measure of risk aversion2  in order to 

simplify (26) even more. The Arrow – Pratt measure is given by    
 

u c c
c

u c


  


 and 

the reverse measure is given by    
 
 

1 u c
c

c u c c


   


. Taking into account that 

      x u c x c x    substitution of the latter into  26 yields finally  

                  

         
     

       
 

       

 
     

1

1

1

1

u c
u c c x u c N N u c

u c u c

u cdcu c N N c
dx u c

dcu c N N c c c
dx

c cdc
dx N N c u c









 
        


          

        




    

      (27) 

We introduce the auxiliary variable   making the following assignments 

                           
 

     1

dc c c
d
dx N N c u c
d






 

     

                             28  

and finally:      
     1

dc
c cdc d

dxdx N N c u c
d






 

    
 

Moreover we assume that all players enjoy a utility function of the form 

  i ia c
i iu c e  , where 0ia   is a constant. It can be shown (Varian 1982) that this 

utility form is linear with respect to mean and variance of the ic  parameter that is 

 2 2,
2i c c
au c c   . Moreover the same utility form exhibits constant absolute risk 

aversion as the following simplifications reveals    
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        
 
 

 
 22

ln1 1
ln

i i

i i

a c
i i

i a c
i i i i ii i

u c e a e
c

c u c c a ce a e c






      

 
 

while for symmetric players the latter simplifies to  

                                         1c
ac

                          29  

Substituting  29  into  27  yields 

        
         

 
11 1

c cdc dc
dx dxN N c u c N N au c

ac

 
  

          

30  

The integration of   30  and taking into account the initial condition  0 0c   the 

symmetric extraction rates are given by the following expression: 

                       21 1 2N N Nax
c x

Na
   

                 31  

The previous reasoning leads us to next corollary. 

 

Corollary 1. 

If all players of the nonrenewable resource extraction game enjoy the same utility 

function that exhibits constant relative absolute risk aversion, then in the symmetric 

case extraction rates are dependent upon the total number of extractors and upon the 

remainder stock. Extraction strategies are given by  31 . 

 

Alternatively we can use the auxiliary system  28 which under the assumptions of 

the constant relative risk aversion is modified as: 

                           
   1

dc
d a

Ndx Nu c
d a









 

                        32  
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The integration of the first yields the solution   0c c
a
   , while second’s 

solution is:    0
1 Nx x Nc x

a
 

     
. Taking the initial conditions 0 00, 0x c   

the solutions turn out to the simplified  c
a
   and     1 Nx Nc x

a
 

    
. 

We consider now the utility function of the form:  

 
1

1

acu c
a






                33   

with 0 1a  . The above function exhibits constant relative risk aversion. Indeed 

calculating the reverse relative risk aversion for symmetric player’s we have: 

   
 
 

 

     

 

   

1 1

11 1
2

2 2

1 1
1 11

a a

aa a

u c c cc
c u c c ac ac a cc

c c

 

 


        

    
 

  

        34  

Substituting equation  34  into  27  is transformed into  

            
    11

cdc dc
Ndx dxN N c N a

a

 
  

        
 

                35  

And the solution of  35  (with direct integration) is  

                                1 1
xc x

a N


 
 

 ,   is the integration constant 

Setting zero extraction rates at time zero that is  0 0x  , the extraction strategy 

finally takes the following linear form  

                                 c x Ax                            36  

with                        
 1 1

A
a N



 

                      37  

The previous reasoning leads to the following corollary. 
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Corollary 2 

Under the assumption of the utility function that exhibits constant relative risk 

aversion for the symmetric players of the non renewable resource game, all the game 

players follow Markovian linear strategies of the form  36  proportional to the 

discount rate and decrement to the number of players. 

 

To that end we reexamine the model under the assumption of a logarithmic utility 

function, according to the relative risk aversion approach. Further we assume the 

logarithmic utility function    lnu c c . The reverse function of relative risk 

aversion now is: 

                           
 
 

2

1
1 11

u c cc
c u c c c

c


      

 
 

and substituting the latter into  37  gives 

              
     11

cdc dc
dx dx N NN N c

  


   
     

         38  

 

Direct integration of   38  yields the equilibrium strategy 

                                      c x x                  39  

The form of   39  verifies the conjectured strategy that is used in order to obtain the 

equilibrium Markovian strategies for the symmetric case of Proposition 1 for 1A


 . 
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6. Conclusions 

In this paper we propose a model of nonrenewable resource extraction along 

the lines of the classical Hotelling model and his successors. We adopt the dynamic 

programming techniques in order to extract the equilibrium Markov strategies that the 

players of the proposed differential game must follow. First we make use of a 

conjectured strategy method and conjectured value functions of the Hamilton – Jacobi 

equation. This conjecture is verified at the end of the paper. Moreover we enlarge the 

utility function space from the logarithmic space to the utility functions that exhibits 

relative risk aversion. This enlargement case reveals interesting results. Specifically 

the reverse measure of Arrow – Pratt relative risk aversion is given by the expression 

   
 

u c
c

u c c


  


.  

 

Consequently for utility functions of the form   iac
i iu c e   for every 

symmetric player of the game we are able to derive the analytic forms of the 

equilibrium strategies for every player. These analytic forms of equilibrium strategies 

are dependent on the number of the players and on the discount rate, as well. A 

second application of the shadow price system is the case of constant relative risk 

aversion that is induced for the utility functions of the form  
 1

0 1
1

a
i

i i
cu c a

a



  


. 

Applying the reverse measure of relative risk aversion, that is 

expression    
1 1c
c a

  


 then we are able to calculate the analytic forms of the 

Markovian solution strategies in equilibrium.  
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The Markovian equilibrium strategies for this case were linear expressions 

dependent upon discount rate and decrement with respect to the number of the 

players. To that end the usage of the auxiliary shadow price system verified the initial 

conjecture about linear equilibrium strategies and value functions for logarithmic 

utility functions    lni i iu c c . Precisely Markovian strategies are given by linear 

expressions of the form   xc x
A

 , where 1A


 . 

 
 
 
 
 
 
 
 
 
Notes 
 
1. For a full exposition of differential games see Olsder and Basar (1998) 
 
2. Microeconomic Analysis Varian (1982), page 189 
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