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Abstract. This paper is a supplement to Ghossoub [11]. In this supplement, some of the
results of Ghossoub [11], as well as the techniques used to obtain these result are extended to a
more general problem of demand for contingent claims with belief heterogeneity. Moreover, a
general problem of monotone comparative statics under heterogeneous uncertainty is examined,
and I show how the idea of vigilance can be used to obtain a monotone comparative statics
result in this case.

8. The Demand for Contingent Claims under Heterogeneous Uncertainty

This section gives an extension of the insurance model considered in Ghossoub [11] to a general
setting of demand for claims that pay contingent on the realization of some underlying random
variable. This setting can encompass, for instance, models of demand for derivative securities,
that is, financial securities that pay contingent on the realization of the (random) price of some
underlying stock. The analysis is purposefully kept at a general level, but it can easily be applied
to different practical situations.

As in Section 4, S is the set of states of the world and G is a σ-algebra of events on S.
Assume that a decision maker (DM) faces a fundamental uncertainty that affects her wealth
and consumption. This uncertainty will be modelled as a (henceforth fixed) element X of B` pGq
with a closed range r0,M s :“ X pSq, where M :“ }X}sup ă `8. The DM wishes to purchase
from a claim issuer (CI) a claim that pays contingent on the realizations of the underlying
uncertainty. For instance, in problems of demand for insurance the uncertainty X can be seen
as the underlying insurable loss against which the DM seeks an insurance coverage I ˝ X. In
problems of optimal debt contracting, the uncertainty X can be seen as the interest on a loan,
and I ˝X as the repayment scheme. Hereafter, I will denote by Σ the σ-algebra σtXu of subsets
of S generated by X.

8.1. Preferences and Utilities. The DM’s decision process is assumed to consist in choosing
a certain act among a collection of given acts whose realization, in each state of the world s,
depends on the value X psq of the uncertainty X is the state s. Formally, the DM and the CI
have preferences over acts in a framework à la Savage. Here, the set of consequences (or prizes)
is taken to be R. Let F denote the collection of all G-measurable functions f : S Ñ R. The
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elements of choice (or acts) are taken to be the elements of B` pΣq Ă F . The nature of the
problem makes this a natural assumption. Indeed, the goal here is to determine the optimal
function of the uncertainty, that is, the optimal claim Y :“ I ˝ X P B` pΣq, for some Borel-
measurable map I : X pSq Ñ R

`, that will satisfy a certain set of requirements (constraints).
The DM’s preferences ěDM over B` pΣq and the CI’s preferences ěCI over B` pΣq determine
their subjective beliefs. These beliefs are represented by subjective probability measures µ
and ν, respectively, on the measurable space pS,Σq. Moreover, I will assume the following
representations for the preferences:

Assumption 8.1. The DM’s preference ěDM admits a representation of the form:

(8.1) Y1 ěDM Y2 ðñ

ż
U pX,Y1q dµ ě

ż
U pX,Y2q dµ

where for each act Y P B` pΣq, the mapping

U pX,Y q : S Ñ R

s ÞÑ U pX psq , Y psqq
(8.2)

is understood to be the DM’s utility of wealth (associated with the act Y ), and where the mapping

U pX, .q : B` pΣq Ñ B pΣq

Y ÞÑ U pX,Y q
(8.3)

is (uniformly) bounded and sequentially continuous in the topology of pointwise convergence.

Similarly, the CI’s preference ěCI admits a representation of the form:

(8.4) Y1 ěCI Y2 ðñ

ż
V pY1q dν ě

ż
V pY2q dν

where for each act Y P B` pΣq, the mapping

V pY q : S Ñ R

s ÞÑ V pY psqq
(8.5)

is understood to be the CI’s utility of wealth (associated with the act Y ), and where the mapping

V : B` pΣq Ñ B pΣq

Y ÞÑ V pY q
(8.6)

is (uniformly) bounded and sequentially continuous in the topology of pointwise convergence.

For instance, if for each Y “ I ˝ X P B` pΣq one has U pX,Y q :“ u pa ´X ` Y q, for
some a P R and some continuous bounded utility function u : R Ñ R, then the mapping
U pX, .q : B` pΣq Ñ B pΣq is (uniformly) bounded and sequentially continuous in the topology
of pointwise convergence. Also, if for each Y “ I ˝ X P B` pΣq one has V pY q :“ v pb´ Y q,
for some b P R and some continuous bounded utility function v : R Ñ R, then the mapping
V : B` pΣq Ñ B pΣq is (uniformly) bounded and sequentially continuous in the topology of
pointwise convergence.

Given Assumption 8.1, the DM’s problem here is choosing the optimal act Y ˚ P B` pΣq that
will maximize her expected utility of wealth, with respect to her subjective probability measure
µ.
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8.2. Subjective Beliefs and Vigilance. The subjectivity of the beliefs of each of the DM
and the CI is reflected in the different subjective probability measure that each has over the
measurable space pS,Σq. I will also make the assumption that the uncertainty X (with closed
range r0,M s) has a nonatomic law induced by the probability measure µ.

Assumption 8.2. The DM’s beliefs are represented by the countably additive1 probability mea-
sure µ on pS,Σq, and the CI’s beliefs are represented by the countably additive probability measure
ν on pS,Σq. Moreover, µ ˝X´1 is nonatomic.

Definition 8.3. The probability measure ν is said to be pµ,Xq-vigilant if for any Y1, Y2 P B` pΣq
such that

(i) Y1 and Y2 have the same distribution under µ, i.e. µ ˝ Y ´1

1
pBq “ µ ˝ Y ´1

2
pBq for each

Borel set B,

(ii) Y2 and X are comonotonic, i.e.
”
Y2 psq ´ Y2 ps1q

ı”
X psq ´X ps1q

ı
ě 0, for all s, s1 P S,

the following holds:

Y2 ěCI Y1, that is,

ż
V pY2q dν ě

ż
V pY1q dν

Clearly, µ is pµ,Xq-vigilant. In Section 9, I show that in the specific setting where the DM
and the CI assign different probability density functions to the uncertainty X with range r0,M s,
the assumption of vigilance is weaker than the assumption of a monotone likelihood ratio.

8.3. The DM’s Problem. The DM seeks the contingent claim that will maximize her expected
utility of wealth, under her subjective probability measure, subject to the CI’s participation
constraint and to some constraints on the claim. Specifically, the DM’s problem is the following:

Problem 8.4.

sup
Y PB`pΣq

#ż
U pX,Y q dµ

+
:

"
0 ď Y ď Xş
V pY q dν ě R

Remark 8.5. By Assumption 8.1, if Problem 8.4 has a nonempty feasibility set then the supre-
mum in Problem 8.4 is finite. Indeed, there is N ă `8 such that for any feasible Y P B` pΣq,
one has U pX,Y q psq ď N , for all s P S. Consequently,

ş
D

U pX,Y q dµ ď Nµ pDq, for each
D P Σ.

Denote by FSB the feasibility set Problem 8.4:

1Countable additivity of the subjective probability measure representing preferences can be obtained by as-
suming that preferences satisfy the Arrow-Villegas Monotone Continuity axiom [2, 8, 25].
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Definition 8.6. Let FSB :“

#
Y P B` pΣq : 0 ď Y ď X and

ş
V pY q dν ě R

+
.

In the following, I will assume that this feasibility set is nonempty:

Assumption 8.7. FSB ‰ ∅.

The following result shows that vigilance is sufficient for the existence of a monotone solution
to the DM’s problem, that is, a solution which is comonotonic with the underlying uncertainty
X. The proof is given in Appendix H.

Theorem 8.8. Under Assumptions 8.1, 8.2, and 8.7, if ν is pµ,Xq-vigilant and if U pX,Y q is
supermodular, then Problem 8.4 admits a solution which is comonotonic with X.

In Appendix H.2, I give a general algorithm that can be used to characterize a monotone
solution to Problem 8.4. The general procedure is based on the following idea:

(1) Lebesgue’s Decomposition Theorem [9, Theorem 4.3.1] suggests a decomposition of the
measure ν with respect to the measure µ, whereby one can write ν as a sum of two
measures, one of which is absolutely continuous with respect to µ, and the other is
mutually singular with µ;

(2) This decomposition then suggests a splitting of the initial problem into three subprob-
lems;

(3) A solution of the initial problem is then obtained from the solutions of the other sub-
problems, combined in an appropriate way.

9. Vigilance and Monotone Likelihood Ratios

The purpose of this subsection is to show that the assumption of vigilance of beliefs is weaker
than the assumption of a monotone likelihood ratio in a setting where the DM and the insurer
assign a different probability density function (pdf) to the random loss on its range. Needless
to say, this presupposes the existence of such pdf-s. Suppose then that the DM’s subjective
probability measure µ on pS,Σq is such that the law µ ˝ X´1 is absolutely continuous with
respect to the Lebesgue measure, with a Radon-Nikodým derivative f , where fptq is interpreted
as the pdf that the DM assigns to the loss X. Similarly, suppose that the insurer’s subjective
probability measure ν on pS,Σq is such that the law ν˝X´1 is absolutely continuous with respect
to the Lebesgue measure, with a Radon-Nikodým derivative g, where gptq is interpreted as the
pdf that the insurer assigns to the loss X. Then fptq and gptq are both continuous functions
with support r0,M s.

Definition 9.1. The likelihood ratio is the function LR : r0,M s Ñ R
` defined by

(9.1) LRptq :“ gptq{fptq

for all t P r0,M s such that fptq ‰ 0.

Now, define the map Z : S Ñ R
` by Z :“ LR˝X. Then Z is nonnegative and Σ-measurable,

and LR is a nondecreasing (resp. nonincreasing) function on its domain if and only if Z is
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comonotonic (resp. anti-comonotonic) with X. Consider the following two conditions that one
might impose.

Condition 9.2 (Monotone Likelihood Ratio). LR is a nonincreasing function on its domain.

Condition 9.3 (Vigilance). ν is pµ,Xq-vigilant.

The following proposition shows that the vigilance condition is implied by the monotone
likelihood ratio condition in this particular setting, and under a mild assumption.

Proposition 9.4. Suppose that V is such that the induced mapping V p.q : R` Ñ R is a nonin-
creasing function2 of the parameter y. If Condition 9.2 (Monotone Likelihood Ratio) holds and
if the map V pI ˝ XqLR pXq : S Ñ R is µ-integrable for each I ˝X P B` pΣq, then condition 9.3
(Vigilance) holds.

Proof. First note that since the mapping V p.q : R` Ñ R is a nonincreasing function of the
parameter y, it follows from Condition 9.2 and Definition B.3 that the map L : r0,M sˆr0,M s Ñ
R defined by L px, yq :“ V pyqLR pxq is supermodular (see Example B.4 (4)).

Suppose that Condition 9.2 holds. To show that Condition 9.3 is implied, choose Y1, Y2 P
B` pΣq such that Y1 and Y2 have the same distribution under µ, and Y2 is comonotonic with
X. Then by the µ-a.s. uniqueness of the nondecreasing µ-rearrangement, Y2 is µ-a.s. equal to
rY1, where rY1 is the nondecreasing µ-rearrangement of Y1 with respect to X, that is, Y2 “ rY1, µ-
a.s. Since the function L px, yq is supermodular, as observed above, then Lemma B.5 yieldsş
L
´
X, rY1,µ

¯
dµ ě

ş
L
´
X,Y1

¯
dµ, that is,

ş
V
´
rY1,µ

¯
Z dµ ě

ş
V pY1q Z dµ, where Z is as

defined above. Since Y2 “ rY1, µ-a.s., one then has
ş
V pY2q Z dµ ě

ş
V pY1q Z dµ, which

yields (by two “changes of variable”3, and using the definition of f and g as Radon-Nikodým
derivatives of µ ˝ X´1 and ν ˝ X´1, respectively, with respect to the Lebesgue measure) the
following: ż

V pY2q dν ě

ż
V pY1q dν

as required. Condition 9.3 hence follows from Condition 9.2. �

10. Monotone Comparative Statics under Heterogeneous Uncertainty

This section gives a monotone comparative statics result for a class of demand problems under
uncertainty, where this uncertainty is perceived differently by the parties involved, in that they
assign different likelihoods to its realizations. The uncertainty is taken as given, and the decision
maker’s (DM) choice variable is a function of this uncertainty. What guarantees that the DM’s
optimal choice is a nondecreasing function of this underlying uncertainty?

2For instance, if V pY q “ v pb ´ Y q, where v is a nondecreasing utility function and b P R, then the induced
mapping V p.q : R Ñ R (defined by V ptq :“ v pb ´ tq) is a nonincreasing function of the parameter y. This situation
occurs most often in contracting problems, and simply says that the CI has an increasing utility function, and
his wealth is a nonincreasing function of the claim Y that he issues.

3As in [1, Theorem 13.46], and since the map V pI ˝ XqLR pXq : S Ñ R is µ-integrable for each I ˝X P B` pΣq.
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This problem is an abstraction of many common problems in economic theory that were
hitherto only considered in a framework of complete homogeneity of beliefs about the realizations
of an underlying uncertainty. It can be formulated as

(10.1) sup
Y PΘ

V pX,Y q :“

ż
U pX,Y q dP

where X is a given random variable on a probability space pS,Σ, P q, B pΣq is the linear space of
all bounded and Σ-measurable functions on S, Θ Ă B pΣq is a given non-empty constraint set,
and U pX,Y q is bounded and Σ-measurable for each Y P Θ. When Θ contains another party’s
individual rationality constraint (participation constraint), one can distinguish between two
types of problems, depending on how the underlying uncertainty is perceived by both parties:
(i) either both parties agree on the distribution of this uncertainty (which will hence be induced
by the probability measure P ), or (ii) they have different perceptions of such randomness. The
first type of problem is one where uncertainty can be called homogeneous, whereas the second
type is a problem in which uncertainty can be referred to as being heterogeneous.

Surprisingly, the literature is mostly silent on problems of the form (10.1) where the uncer-
tainty is heterogeneous, whereas problems of the form (10.1) with homogeneous uncertainty are
abundant. For example, the vast majority of problems of optimal insurance design, or demand
for insurance coverage are based on the classical formulation of Arrow [2], Borch [6], and Raviv
[20], and are usually stated as a problem of the form (10.1) with homogeneous uncertainty.
That is, both the insurer and the insured share the same beliefs about the realizations of some
underlying insurable loss random variable X. As discussed in Ghossoub [11], monotonicity of
an optimal insurance contract Y is typically desired because such contracts can avoid ex-post
moral hazard that might arise from a voluntary downward misrepresentation of the loss by the
insured.

Problems of debt contracting between investors (lenders) and entrepreneurs (borrowers), such
as the ones studied by Gale and Hellwig [10], Townsend [24], or Williamson [27], are also usually
stated as a problem of the form (10.1) with homogeneous uncertainty. In this case, a contract
specifies the repayment Y that the borrower makes to the lender as a function of the (uncertain)
return X on the project being financed. The monotonicity of an optimal contract as a function
of the return on investment is a coveted feature since such contracts will be de facto truthtelling,
and will avoid any misrepresentation of the profitability of the project by the borrower.

Principal-agent problems have also been traditionally stated as problems of the form (10.1)
with homogeneous uncertainty, as in the work of Grossman and Hart [12], Holmstrom [13],
Mirrlees [17], Page [18], or Rogerson [21], for instance. In that setting, a contract specifies the
wage Y that an agent receives from the principal, as a function of the (uncertain) outcome,
or output X that occurs as a result of the agent’s activity. Since the work of Rogerson [21],
monotonicity of the optimal wage contract in the observed output is usually sought after4.

Numerous other problems can be formulated as in (10.1), such as problems of demand for
financial securities given a pricing or budgeting constraint, and where monotonicity of an optimal
security Y might reflect hedging against X, for example. Whatever the nature of the problem
might be, it is interesting to examine under what conditions an optimal choice of the choice
variable Y is monotone in the underlying variable X, and the theory of monotone comparative
statics has usually been very fruitful in answering questions of this sort.

4For various reasons that are beyond the scope of this paper.
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10.1. The Theory of Monotone Comparative Statics and its Limitations. The impor-
tance of monotone comparative statics analyses in economic theory is well-understood. One can
even say that at the core of the motivation behind a sizeable collection of problems in economic
theory, very often lies the question of whether or not a quantity is a monotone function of a
parameter, or whether a variable output changes monotonically with a variable input. This is
even more so significant if the monotonicity of an optimal such output as a function of an input
parameter is desired, and indeed, monotone comparative statics techniques have proven to be
very fruitful (see [23, 26]). Such techniques can be, and have been used in consumer theory,
theory of production, portfolio choice theory, financial economics, and contract theory to answer
some basic and intuitive questions.

The theory of monotone comparative statics is typically concerned with the behavior of a
solution to a given optimization problem when a primitive of the problem changes. Specifically,
let pL,ěLq be a lattice, B Ď L a choice set, pT,ěT q a partially ordered set interpreted as a set
of parameters, and f : L ˆ T Ñ R a given objective function. For the problem of choosing an
x P B that maximizes the objective function given a value t of the parameter, the chief concern
is the isotonicity of an optimal choice x˚ ptq of x as a function of t, that is,

(10.2) t1 ěT t2 ùñ x˚ pt1q ěL x
˚ pt2q

The classical theory of monotone comparative statics [15, 16, 22, 23] seeks conditions on the
function f that guarantee that eq. (10.2) holds.

Athey [3, 4, 5] examined a problem of monotone comparative statics in the presence of un-
certainty, where the objective function is an integral of some function with respect to some
measure. Specifically, let pL,ěLq be a lattice, B Ď L a choice set, S “

śm
i“1

Si with Si Ď R

for i “ 1, . . . ,m, Θ Ď R a set of parameters, µ a finite nonnegative product measure on S, and
u : L ˆ S Ñ R and ψ : S ˆ Θ Ñ R given bounded measurable functions. Define the objective
function Φ : Lˆ Θ Ñ R by

Φ px, θq “

ż

S

u px, sqψ ps, θqdµ psq

For the problem of choosing an x P B that maximizes the objective function given a value θ of
the parameter, the problem of monotone comparative statics in this situation of uncertainty is to
find conditions on the primitives u and ψ so that an optimal choice x˚ pθq of x is a nondecreasing
function of θ, that is,

(10.3) θ1 ě θ2 ùñ x˚ pθ1q ěL x
˚ pθ2q

In particular, in both situations of certainty and uncertainty, the interest is in the variation of
the optimal solution with respect to the lattice order ěL on L, given a variation of the parameter
(t or θ, respectively) in the order on the parameter set (ěT or the usual order on R, respectively).
Often, however, these notions of order are too strong for the problem under consideration. For
instance, in problems of the form (10.1), conditions on the primitive U for the optimal choice
Y ˚ of Y to be monotone in X are desired. Specifically, under what conditions on U do we have
that for all s, s1 P S, X psq ě X ps1q ñ Y ˚ psq ě Y ˚ ps1q? The classical techniques of monotone
comparative statics are of no help in these situations since the lattice order on B pΣq is not
adequate here. This order ěL on L “ B pΣq is defined by

Y1 ěL Y2 if and only if Y1 psq ě Y2 psq , for all s P S
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10.2. A Class of Monotone Comparative Statics Problems. The problem that will be
examined here takes the form

(10.4) sup
Y “I˝X

#ż
U pX,Y q dP : 0 ď Y ď X, V pY q ě R

)

where X is a given underlying uncertainty on the measurable space pS,Σ, P q, Y “ I ˝ X is
a claim contingent on this uncertainty,

ş
U pX, I ˝ Xq dP is a DM’s expected utility of wealth

with respect to the probability measure P , V : B` pΣq Ñ R is some given mapping, and R P R

is fixed.

The first constraint is standard in many problems in economic theory. In the insurance frame-
work [2, 11, 20], this constraint says that an indemnity is nonnegative and cannot exceed the loss
itself. In a framework of debt contracting [10], this constraint is a limited liability constraint.
The second constraint is interpreted as some “aggregation constraint”. For instance, in prob-
lems of insurance demand, R would be the insurer’s reservation utility, and V pI ˝ Xq would be
the insurer’s expected utility of wealth with respect to his probability measure. The “aggrega-
tion constraint” is then simply the insurer’s participation constraint, or individual rationality
constraint.

The mapping V : B` pΣq Ñ R need not be law-invariant with respect to5 P . When V is
not law-invariant with respect to P , this creates some heterogeneity in the perception of the
uncertainty X, and poses some important mathematical complications. For instance, in the
insurance framework, it might be that the DM and the insurer assign different “distributions”
to the underlying uncertainty.

This section’s main result (Theorem 10.3) is that when the mapping V satisfies a property
that will be called Vigilance (Definition 10.2) and a property that will be called the Weak DC-
Property (Definition 10.1), supermodularity of the function U : R

2 Ñ R (Definition B.3) is
sufficient for an optimal choice of Y “ I ˝ X to be a nondecreasing function of the underlying
uncertainty X. Roughly speaking, vigilance of the operator V can be understood as a (weak)
preference for comonotonicity with X (Definition 4.1), on the collection of all functions that
are identically distributed for the probability measure P . Given two elements Y1 and Y2 of
B` pΣq that have the same distribution with respect to the probability measure P , vigilance of
an operator V : B` pΣq Ñ R means that if any one of Y1 or Y2 is a nondecreasing function of
X, it will assigned a higher value by V than the other function. The Weak DC-Property of an
operator roughly means that the operator preserves dominated convergence. This property is
satisfied by a large class of operators on B` pΣq, such as the Lebesgue integral or the Choquet
integral (Appendix G).

Here, the definition of vigilance is extended from the notion of vigilant beliefs, introduced by
Ghossoub [11], to the concept of a vigilant real-valued mapping ρ on the collection of functions
Y over which a decision maker (DM) has a given preference. When ρ pY q “

ş
Y dP , one will

recover Ghossoub’s [11] definition of vigilant beliefs as a special case of the definition of vigilance
given here (Definition 10.2).

10.3. The Setting. As in Section 4, let S denote the set of states of the world, and suppose that
G is a σ-algebra of subsets of S, called events. Denote by B pGq the supnorm-normed Banach

5A mapping Ψ : B pΣq Ñ R is said to be P -law-invariant, or law-invariant with respect to P , if for any
φ1, φ2 P B pΣq, Ψ pφ1q “ Ψ pφ2q whenever φ1 and φ2 have the same distribution according to P .
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space of all bounded, R-valued and G-measurable functions on pS,Gq, and denote by B` pGq the
collection of all R`-valued elements of B pGq. For any f P B pGq, the suprnorm of f is given by
}f}sup :“ supt|f psq| : s P Su ă `8. For C Ď S, denote by 1C the indicator function of C. For
any A Ď S and for any B Ď A, denote by AzB the complement of B in A.

For any f P B pGq, denote by σtfu the σ-algebra of subsets of S generated by f , and denote
by B pσtfuq the linear space of all bounded, R-valued and σtfu-measurable functions on pS,Gq.
Then by Doob’s measurability theorem [1, Theorem 4.41], for any g P B pσtfuq there exists
a Borel-measurable map ζ : R Ñ R such that g “ ζ ˝ f . Denote by B` pσtfuq the cone of
nonnegative elements of B pσtfuq.

For any f P B pGq, if A is any sub-σ-algebra of G such that σtfu Ď A, and if P is any
probability measure on the measurable space pS,Aq, it will be said that f is a continuous
random variable for P when the law P ˝ f´1 of f is a nonatomic Borel probability measure.
Recall that a finite nonnegative measure η on a measurable space pΩ,Aq is said to be nonatomic
if for any A P A with η pAq ą 0, there is some B P A such that B Ĺ A and 0 ă η pBq ă η pAq.

10.4. Vigilant Operators and the Weak DC-Property. Let P be a given probability mea-
sure on the measurable space pS,Gq. In many situations of choice under uncertainty, the elements
of choice are the elements of B` pGq, as in the problem that will be examined in this paper.
Often, a problem of choice involving these elements is stated as an optimization problem subject
to some constraints. In an abstract form, some of these constraints can be stated in terms of
operators ρ : B` pGq Ñ R, and might be called “aggregation constraints”. Here I will define two
special kinds of these operators.

Definition 10.1 (Weak DC-Property). An operator ρ : B` pGq Ñ R is said to have the Weak
DC-Property if for any Y ˚ P B` pGq and for any sequence tYnuně1 Ă B` pGq such that

(1) lim
nÑ`8

Yn “ Y ˚ (pointwise), and

(2) there is some Z P B` pGq such that Yn ď Z, for each n ě 1,

the following holds:

lim
nÑ`8

ρ pYnq “ ρ pY ˚q

When ρ is defined as a Lebesgue integral with respect to P , i.e. ρ pY q “
ş
Y dP for each

Y P B` pGq, then Lebesgue’s Dominated Convergence Theorem [9, Th. 2.4.4] implies that ρ has
the Weak DC-Property. More generally, if ρ is a Choquet integral (Appendix G) with respect to
some continuous capacity ν on pS,Gq (Definition G.2), i.e. ρ pY q “

ű
Y dν for each Y P B` pGq,

then when seen as an operator on B` pGq, ρ has the Weak DC-Property. This is a consequence
of [19, Th. 7.16].

Definition 10.2 (Vigilance). Let X be a given element of B` pGq, and recall that P is a
probability measure on pS,Gq. Denote by Σ the σ-algebra σtXu of subsets of S generated by X.
An operator ρ : B` pΣq Ñ R is said to be pP,Xq-vigilant if for any Y1, Y2 P B` pΣq such that

(i) Y1 and Y2 have the same distribution under P , i.e. P ˝ Y ´1

1
“ P ˝ Y ´1

2
, and,

(ii) Y2 is a nondecreasing function of X, i.e. Y2 and X are comonotonic,
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the following holds:

ρ pY2q ě ρ pY1q

Clearly, if ρ is P -law invariant then it is pP,Xq-vigilant. This covers a large collection of
operators on B` pΣq such that a Lebesgue integral with respect to P , a Choquet integral with
respect to a distortion of P (Appendix G), and so on. When ρ is not P -law invariant, the same
intuition as that behind Ghossoub’s [11] definition of vigilance applies here.

10.5. A Monotone Comparative Statics Result. Let X be a given element of B` pGq with
closed range X pSq “ r0,M s, where M :“ }X}sup ă `8. Denote by Σ the σ-algebra σtXu of
subsets of S generated by X, and let P be a probability measure on pS,Gq. Let U : R2 Ñ R be
a given function, and let V : B` pΣq Ñ R be a given operator. The random variable X is fixed,
and the objects P , U , and V are considered to be the primitives of the following problem:

(10.5) sup
Y PBpΣq

#ż
U pX,Y q dP : 0 ď Y ď X, V pY q ě R

)

where R P R is fixed. The following theorem gives sufficient conditions for the optimal choice
Y ˚ of the choice variable Y to be a nondecreasing function of X. The proof of the theorem is
given in Appendix I.

Theorem 10.3. If the following hold:

(1) Problem 10.5 has a nonempty feasibility set,

(2) The Borel probability measure P ˝X´1 is nonatomic,

(3) The mapping U : R2 Ñ R is supermodular,

(4) The mapping E : B` pΣq Ñ B pΣq defined by E pY q “ U pX,Y q is uniformly bounded and
sequentially continuous in the topology of pointwise convergence6,

(5) V is pP,Xq-vigilant, and,

(6) V has the Weak DC-Property,

then Problem 10.5 admits a solution Y ˚ which is comonotonic with X. Moreover, any other
solution Z˚ which is comonotonic with X and identically distributed as Y ˚ under P is such that
Y ˚ “ Z˚, P -a.s.

A few comments on the assumptions in Theorem 10.3 are in order. First, the assumption of
nonemptiness of the feasibility set of Problem 10.5 is made simply to rule out trivial cases where
no solution can exist. The assumption of nonatomicity of the law of X is a technical requirement,
and it means that the random variable X is diffused enough. This is a very common assumption
in many instances, such as when it is assumed that a probability density function for X exists.

6That is, (i) there exists some N ă `8 such that } E pY q }sup ď N for each Y P B` pΣq; and, (ii) if tYnun
is a sequence in B` pΣq that converges pointwise to some Y P B` pΣq, then the sequence tE pYnqun converges
pointwise to E pY q.
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The assumption of supermodularity of the mapping U : R2 Ñ R is not a strong assumption by
any means. It is usually given in many situations by the very nature of the problem considered.
This happens for instance when U pX,Y q “ u pa´X ` Y q, for a concave utility function u

and some a P R. See Example B.4 (1). Assumption (4) in Theorem 10.3 is typically obtained
whenever U pX,Y q “ u pa´X ` Y q, for some continuous and bounded utility function u, and
some a P R. Assumptions (5) and (6) were discussed in Section 10.4.

Appendix G. Related Analysis

G.1. A Useful Result.

Lemma G.1. If pfnqn is a uniformly bounded sequence of nondecreasing real-valued functions
on some closed interval I in R, with bound N (i.e. |fn pxq | ď N, @x P I, @n ě 1), then
there exists a nondecreasing real-valued bounded function f˚ on I, also with bound N , and a
subsequence of pfnqn that converges pointwise to f˚ on I.

Proof. [7, Lemma 13.15]. �

G.2. Capacities and the Choquet Integral.

Definition G.2. A (normalized) capacity on a measurable space pS,Σq is a set function ν :
Σ Ñ r0, 1s such that

(1) ν p∅q “ 0;

(2) ν pSq “ 1; and,

(3) ν is monotone: for any A,B P Σ, A Ď B ñ ν pAq ď ν pBq.

The capacity ν is said to be

(1) Continuous from above if for any sequence tAnun in G such that An`1 Ď An for each
n ě 1, one has lim

nÑ`8
ν pAnq “ ν

`Ş`8
n“1

An

˘
.

(2) Continuous from below if for any sequence tAnun in G such that An Ď An`1 for each
n ě 1, one has lim

nÑ`8
ν pAnq “ ν

`Ť`8
n“1

An

˘
.

(3) Continuous if it is both continuous from above and continuous from below.

For instance, if P is a probability measure on pS,Σq and T : r0, 1s Ñ r0, 1s is increasing, with
T p0q “ 0 and T p1q “ 1, then the set function ν :“ T ˝P is a capacity on pS,Σq. Such a function
T is usually called a probability distortion, and the capacity T ˝ P is usually called a distorted
probability measure. If, moreover, the function T is continuous, then the set function ν :“ T ˝P
is a capacity on pS,Σq which is continuous. This is an immediate consequence of the continuity
of the measure P for monotone sequences [9, Prop. 1.2.3] and the continuity of T . In particular,
any probability measure is continuous.
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Definition G.3. For a given capacity ν on pS,Σq and a given φ P B pΣq, the Choquet integral
of φ with respect to ν is defined by

¿
φ dν :“

ż `8

0

ν pts P S : φ psq ě tuq dt `

ż
0

´8
rν pts P S : φ psq ě tuq ´ 1s dt

where the integrals are taken in the sense of Riemann.

The Choquet integral with respect to a measure is simply the usual Lebesgue integral with
respect to that measure [14, p. 59]. Unlike the Lebesgue integral, however, the Choquet integral
is not an additive operator on B pΣq. However, the Choquet integral is additive on comonotonic
functions (Definition 4.1). For more about capacities and Choquet integrals, I refer to Marinacci
and Montrucchio [14].

Appendix H. Proofs of the Results of Section 8

H.1. Proof of Theorem 8.8. By Assumption 8.7,

FSB :“

#
Y P B` pΣq : 0 ď Y ď X and

ż
V pY q dν ě R

+
‰ ∅

Let FÒ
SB :“

!
Y “ I ˝ X P FSB : I is nondecreasing

)
denote the collection of all feasible

Y P B` pΣq for Problem 8.4 which are also comonotonic with X.

Lemma H.1. If ν is pµ,Xq-vigilant, then FÒ
SB ‰ ∅.

Proof. Since FSB ‰ ∅, choose any Y “ I ˝ X P FSB , and let rYµ denote the nondecreasing

µ-rearrangement of Y with respect to X. Then (i) rYµ “ rI ˝ X where rI is nondecreasing,

and (ii) 0 ď rYµ ď X, by Lemma B.6. Furthermore, since ν is pµ,Xq-vigilant, it follows thatş
V
´
rYµ
¯
dν ě

ş
V pY q dν, by definition of pµ,Xq-vigilance. But

ş
V pY q dν ě R since Y P FSB.

Therefore,
ş
V
´
rYµ
¯
dν ě R. Thus, rYµ P FÒ

SB, and so FÒ
SB ‰ ∅. �

Definition H.2. If Y1, Y2 P FSB , Y2 is said to be a Pareto improvement of Y1 (or is Pareto-
improving) when the following hold:

(1)
ş
U pX,Y2q dµ ě

ş
U pX,Y1q dµ; and,

(2)
ş
V pY2q dν ě

ş
V pY1q dν.

Lemma H.3. Suppose that ν is pµ,Xq-vigilant and that U pX,Y q is supermodular7. If Y P FSB,

then there is some Y ˚ P FÒ
SB which is Pareto-improving.

7This happens for instance when U pX,Y q “ u pa ´ X ` Y q, or U pX,Y q “ u pa ` X ´ Y q, for a concave
utility function u and some a P R. See Example B.4 (1) and (2).
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Proof. First note that by Lemma H.1 FÒ
SB ‰ ∅. Choose any Y P FSB, and let Y ˚ :“ rYµ, where

rYµ denotes the nondecreasing µ-rearrangement of Y with respect to X. Then Y ˚ P FÒ
SB , as in

the proof of Lemma H.1. Moreover, since U pX,Y q is supermodular, it follows from Lemma
B.5 that

ş
U pX,Y ˚q dµ ě

ş
U pX,Y q dµ. Finally, since ν is pµ,Xq-vigilant, it follows from the

definition of pµ,Xq-vigilance that
ş
V pY ˚q dν ě

ş
V pY q dν. Therefore, Y ˚ P FÒ

SB is a Pareto
improvement of Y P FSB . �

Hence, by Lemma H.3, one can choose a maximizing sequence tYnun in FÒ
SB for Problem

8.4. That is, lim
nÑ`8

ş
U pX,Ynq dµ “ N :“ supY PB`pΣq

 ş
U pX,Y q dµ

(
ă `8. Since 0 ď Yn ď

X ď M :“ }X}sup, the sequence tYnun is uniformly bounded. Moreover, for each n ě 1 one
has Yn “ In ˝ X, with In : r0,M s Ñ r0,M s. Consequently, the sequence tInun is a uniformly
bounded sequence of nondecreasing Borel-measurable functions. Thus, by Lemma G.1, there
is a nondecreasing function I˚ : r0,M s Ñ r0,M s and a subsequence tImum of tInun such
that tImum converges pointwise on r0,M s to I˚. Hence, I˚ is also Borel-measurable, and so
Y ˚ :“ I˚ ˝ X P B` pΣq is such that 0 ď Y ˚ ď X. Moreover, the sequence tYmum, defined
by Ym “ Im ˝ X, converges pointwise to Y ˚. Thus, by Assumption 8.1 and by Lebesgue’s

Dominated Convergence Theorem, Y ˚ P FÒ
SB. Now, by Assumption 8.1 and by Lebesgue’s

Dominated Convergence Theorem, one has
ż
U pX,Y ˚q dµ “ lim

mÑ`8

ż
U pX,Ymq dµ “ lim

nÑ`8

ż
U pX,Ynq dµ “ N

Hence Y ˚ solves Problem 8.4. l

H.2. Characterization of a Monotone Solution to Problem 8.4. By Lebesgue’s decom-
position theorem [9, Theorem 4.3.1] there exists a unique pair pνac, νsq of (nonnegative) fi-
nite measures on pS,Σq such that ν “ νac ` νs, νac ăă µ, and νs K µ. That is, for all
B P Σ with µ pBq “ 0, one has νac pBq “ 0, and there is some A P Σ such that µ pSzAq “
νs pAq “ 0. It then also follows that νac pSzAq “ 0 and µ pAq “ 1. Note also that for
all Z P B` pΣq,

ş
Z dν “

ş
A
Z dνac `

ş
SzA Z dνs. Furthermore, by the Radon-Nikodým

theorem [9, Theorem 4.2.2] there exists a µ-a.s. unique Σ-measurable and µ-integrable func-
tion h : S Ñ r0,`8q such that νac pCq “

ş
C
h dµ, for all C P Σ. Consequently, for all

Z P B` pΣq,
ş
Z dν “

ş
A
Zh dµ `

ş
SzAZ dνs. Moreover, since νac pSzAq “ 0, it follows thatş

SzAZ dνs “
ş
SzA Z dν. Thus, for all Z P B` pΣq,

ş
Z dν “

ş
A
Zh dµ `

ş
SzAZ dν. In partic-

ular,
ş
Y dν “

ş
A
Y h dµ `

ş
SzA Y dν. In the following, the Σ-measurable set A on which µ is

concentrated (and νs pAq “ 0) is assumed to be fixed all throughout. Finally, since A P Σ and
since X pSq “ r0,M s, X pAq is a Borel subset of r0,M s, as previously discussed.

Lemma H.4. Let Y ˚ be an optimal solution for Problem 8.4, and suppose that ν is pµ,Xq-

vigilant and that U pX,Y q is supermodular. Let rY ˚
µ be the nondecreasing µ-rearrangement of

Y ˚ with respect to X. Then:

(1) rY ˚
µ is optimal for Problem 8.4; and,

(2) rY ˚
µ “ rY ˚

µ,A, µ-a.s., where
rY ˚
µ,A is the nondecreasing µ-rearrangement of Y ˚ with respect

to X on A.
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Proof. Optimality of rY ˚
µ for Problem 8.4 is an immediate consequence of Lemmata B.5 and B.6,

and of the pµ,Xq-vigilance of ν. Now, let rY ˚
µ,A be the nondecreasing µ-rearrangement of Y ˚ with

respect to X on A. Since µ pAq “ 1, then by Lemma B.2 one has that rY ˚
µ “ rY ˚

µ,A, µ-a.s. �

Lemma H.5. Let an optimal solution for Problem 8.4 be given by:

(H.1) Y ˚ “ Y ˚
1 1A ` Y ˚

2 1SzA

for some Y ˚
1 , Y

˚
2 P B` pΣq. Let rY ˚

µ be the nondecreasing µ-rearrangement of Y ˚ with respect

to X, and let Y ˚
1,µ be the nondecreasing µ-rearrangement of Y ˚

1 with respect to X. Then rY ˚
µ “

rY ˚
1,µ, µ-a.s.

Proof. Let rY ˚
µ,A be the nondecreasing µ-rearrangement of Y ˚ with respect to X on A. Since

µ pAq “ 1, then by Lemma B.2 one has rY ˚
µ “ rY ˚

µ,A, µ-a.s. Similarly, let rY ˚
1,µ,A be the nonde-

creasing µ-rearrangement of Y ˚
1 with respect to X on A. Then rY ˚

1,µ “ rY ˚
1,µ,A, µ-a.s. Therefore,

it suffices to show that rY ˚
µ,A “ rY ˚

1,µ,A, µ-a.s. Since both rY ˚
µ,A and rY ˚

1,µ,A are nondecreasing func-
tions of X on A, then by the µ-a.s. uniqueness of the nondecreasing rearrangement, it remains
to show that they are µ-equimeasurable with Y ˚ on A. Now, for each t P r0,M s,

µ
´

ts P A : rY ˚
µ,A psq ď tu

¯
“ µ

´
ts P A : Y ˚ psq ď tu

¯
“ µ

´
ts P A : Y ˚

1 psq ď tu
¯

“ µ
´

ts P A : rY ˚
1,µ,A psq ď tu

¯

where the first equality follows from the definition of rY ˚
µ,A (equimeasurabiltiy), the second equal-

ity follows from equation (H.1), and the third equality follows from the definition of rY ˚
1,µ,A

(equimeasurabiltiy). �

Consider now the following two problems:

Problem H.6. For a given β P R,

sup
Y PB`pΣq

"ż

A

U pX,Y q dµ

*
:

"
0 ď Y 1A ď X1Aş
A
V pY q dν “ β

Problem H.7.

sup
Y PB`pΣq

#ż

SzA
U pX,Y q dµ

+
:

"
0 ď Y 1SzA ď X1SzAş
SzA V pY q dν ě R ´ β, for the same β as in Problem H.6

Remark H.8. By Remark 8.5, the supremum of each of the above two problems is finite when
their feasibility sets are nonempty.
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Definition H.9. For a given β P R, let:

(1) ΘA,β be the feasibility set of Problem H.6 with parameter β. That is,

ΘA,β :“

#
Y P B` pΣq : 0 ď Y 1A ď X1A,

ż

A

V pY q dν “ β

+

(2) ΘSzA,β be the feasibility set of Problem H.7 with parameter β. That is,

ΘSzA,β :“

#
Y P B` pΣq : 0 ď Y 1SzA ď X1SzA,

ż

SzA
V pY q dν ě R ´ β

+

Denote by Γ the collection of all β for which the feasibility sets ΘA,β and ΘSzA,β are nonempty:

Definition H.10. Let Γ :“

#
β P R : ΘA,β ‰ ∅, ΘSzA,β ‰ ∅

+

Lemma H.11. Γ ‰ ∅.

Proof. By Assumption 8.7, there is some Y P B` pΣq such that 0 ď Y ď X, and
ş
V pY q dν ě R.

Let βY :“
ş
A
V pY q dν. Then, by definition of βY , and since 0 ď Y ď X, one has Y P

ΘA,βY
X ΘSzA,βY

, and so ΘA,βY
‰ ∅ and ΘSzA,βY

‰ ∅. Consequently, βY P Γ. It then follows
that Γ ‰ ∅. �

Now, consider the following problem:

Problem H.12.

sup
β

#
F ˚
A pβq ` F ˚

A pR ´ βq : β P Γ

+
:

"
F ˚
A pβq is the supremum of Problem H.6, for a fixed β P Γ
F ˚
A pR ´ βq is the supremum of Problem H.7, for the same fixed β P Γ

Lemma H.13. If β˚ is optimal for Problem H.12, Y ˚
3 is optimal for Problem H.6 with parameter

β˚, and Y ˚
4 is optimal for Problem H.7 with parameter β˚, then Y ˚

2 :“ Y ˚
3 1A`Y ˚

4 1SzA is optimal
for Problem 8.4.

Proof. Feasibility of Y ˚
2 for Problem 8.4 is immediate. To show optimality of Y ˚

2 for Problem

8.4, let rY be any other feasible solution for Problem 8.4, and define α :“
ş
A
V
´
rY
¯
dν. Then α

is feasible for Problem H.12, and rY 1A (resp. rY 1SzA) is feasible for Problem H.6 (resp. Problem
H.7) with parameter α. Hence

$
&
%

F ˚
A pαq ě

ş
A
U
´
X, rY

¯
dµ

F ˚
A pR ´ αq ě

ş
SzA U

´
X, rY

¯
dµ
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Now, since β˚ is optimal for Problem H.12, it follows that

F ˚
A pβ˚q ` F ˚

A pR ´ β˚q ě F ˚
A pαq ` F ˚

A pR ´ αq

However,
"
F ˚
A pβ˚q “

ş
A
U pX,Y ˚

3 q dµ

F ˚
A pR ´ β˚q “

ş
SzA U pX,Y ˚

4 q dµ

Therefore,
ş
U
´
X,Y ˚

2

¯
dµ ě

ş
U
´
X, rY

¯
dµ. Hence, Y ˚

2 is optimal for Problem 8.4. �

By Lemma H.13, one can restrict the analysis to solving Problems H.6 and H.7 with a pa-
rameter β P Γ. By Lemmata H.4, H.5, and H.13, if ν is pµ,Xq-vigilant, U pX,Y q is supermod-
ular, β˚ is optimal for Problem H.12, Y ˚

1 is optimal for Problem H.6 with parameter β˚, and

Y ˚
2 is optimal for Problem H.7 with parameter β˚, then rY ˚

µ is optimal for Problem 8.4, and
rY ˚
µ “ rY ˚

1,µ, µ-a.s., where
rY ˚
µ (resp. rY ˚

1,µ) is the µ-a.s. unique nondecreasing µ-rearrangement of

Y ˚ :“ Y ˚
1 1A ` Y ˚

2 1SzA (resp. of Y ˚
1 ) with respect to X.

Solving Problems H.6 and H.7. Since µ pSzAq “ 0, it follows that, for all Y P B` pΣq, one
has

ş
SzA U pX,Y q dµ “ 0. Consequently, any Y which is feasible for Problem H.7 with paramter

β is also optimal for Problem H.7 with parameter β. Now, for a fixed parameter β P Γ, Problem
H.6 will be solved “statewise”, as follows:

Lemma H.14. If Y ˚ P B` pΣq satisfies the following:

(1) 0 ď Y ˚ psq ď X psq, for all s P A;

(2)
ş
A
V pY ˚qh dµ “ β; and,

(3) There exists some λ ě 0 such that for all s P A,

(H.2) Y ˚ psq “ argmax
0ďyďXpsq

«
U
`
X psq , y

˘
´ λV pyqh psq

ff

Then the function Y ˚ solves Problem H.6 with parameter β.

Proof. Suppose that Y ˚ P B` pΣq satisfies p1q, p2q, and p3q above. Then Y ˚ is clearly feasible
for Problem H.6. To show optimality of Y ˚ for Problem H.6 note that for any other Y P B` pΣq
which is feasible for Problem H.6 with parameter β, one has, for all s P A,

U
´
X psq , Y ˚ psq

¯
´ U

´
X psq , Y psq

¯
ě λ

«
h psqV

´
Y ˚ psq

¯
´ h psqV

´
Y psq

¯ff

Consequently, ż

A

U
´
X,Y ˚

¯
dµ´

ż

A

U
´
X,Y

¯
dµ ě λ

”
β ´ β

ı
“ 0,

which completes the proof. �

The application of the general algorithm presented above depends on the specific forms of the
functions U and V. Depending on the nature of the problem considered, these functions can
take different forms, and the algorithm can be carried out further.



BELIEF HETEROGENEITY IN THE ARROW-BORCH-RAVIV INSURANCE MODEL 17

Appendix I. Proof of Theorem 10.3

Suppose that H :“
!
Y P B pΣq : 0 ď Y ď X and V pY q ě R

)
‰ ∅, P ˝ X´1 is nonatomic,

V is pP,Xq-vigilant and has the Weak DC-Property, the mapping U : R2 Ñ R is supermodular,
and the mapping E : B` pΣq Ñ B pΣq defined by E pY q “ U pX,Y q is uniformly bounded and
sequentially continuous in the topology of pointwise convergence.

Lemma I.1. For each Y P H there is Y ˚ P H such that:

(1) Y ˚ is comonotonic with X, i.e. Y ˚ is of the form I˚ ˝ X where I˚ : r0,M s Ñ r0,M s is
nondecreasing;

(2)
ş
U
´
X,Y ˚

¯
dP ě

ş
U
´
X,Y

¯
dP ; and,

(3) V pY ˚q ě V pY q.

Proof. By Assumption, H ‰ ∅. Choose any Y “ I ˝ X P H, and let Y ˚ :“ rYP , where rYP
denotes the nondecreasing P -rearrangement of Y with respect to X. Then (i) Y ˚ “ rI ˝X where
rI : r0,M s Ñ r0,M s is nondecreasing, bounded, and Borel-measurable; and, (ii) 0 ď Y ˚ ď X,
by Lemma B.6. Furthermore, since V is pP,Xq-vigilant, it follows that V pY ˚q ě V pY q, by
definition of pP,Xq-vigilance. But V pY q ě R since Y P H. Therefore, V pY ˚q ě R. Thus,
Y ˚ P H is comonotonic with X. Moreover, since the function U is supermodular, it follows

from Lemma B.5 that
ş
U
´
X,Y ˚

¯
dP ě

ş
U
´
X,Y

¯
dP . �

Now, let HÒ denote the collection of all elements of H that are comonotonic with X. Then
HÒ ‰ ∅, by Lemma I.1. Also, by Lemma I.1, one can choose a maximizing sequence tYnun in HÒ

for Problem 10.5. That is, lim
nÑ`8

ş
U pX,Ynq dP “ N :“ supY PB`pΣq

 ş
U pX,Y q dP

(
ă `8.

Since 0 ď Yn ď X ď M :“ }X}sup, the sequence tYnun is uniformly bounded. Moreover, for
each n ě 1 one has Yn “ In ˝X, with In : r0,M s Ñ r0,M s. Consequently, the sequence tInun is
a uniformly bounded sequence of nondecreasing Borel-measurable functions. Thus, by Lemma
G.1, there is a nondecreasing function I˚ : r0,M s Ñ r0,M s and a subsequence tImum of tInun
such that tImum converges pointwise on r0,M s to I˚. Hence, I˚ is also Borel-measurable, and
so Y ˚ :“ I˚ ˝ X P B` pΣq is such that 0 ď Y ˚ ď X. Moreover, the sequence tYmum, defined
by Ym “ Im ˝ X, converges pointwise to Y ˚. Thus, by the assumption that V has the Weak
DC-Property, Y ˚ P HÒ. Now, by the assumption of uniform boundedness and sequentially
continuity of the map U pX, .q in the topology of pointwise convergence, and by Lebesgue’s
Dominated Convergence Theorem one has

ż
U pX,Y ˚q dP “ lim

mÑ`8

ż
U pX,Ymq dP “ lim

nÑ`8

ż
U pX,Ynq dP “ N

Hence Y ˚ solves Problem 10.5. The P -a.s. uniqueness of Y ˚ is a consequence of Proposition
B.1. This concludes the proof of Theorem 10.3. l

References

[1] C.D. Aliprantis and K.C. Border. Infinite Dimensional Analysis - 3rd edition. Springer-Verlag, 2006.
[2] K.J. Arrow. Essays in the Theory of Risk-Bearing. Chicago: Markham Publishing Company, 1971.



18 MARIO GHOSSOUB

[3] S. Athey. Characterizing Properties of Stochastic Objective Functions. mimeo (1999).
[4] S. Athey. Comparative Statics under Uncertainty: Single Crossing Properties and Log-Supermodularity.

mimeo (1996).
[5] S. Athey. Monotone Comparative Statics under Uncertainty. Quarterly Journal of Economics, 117(1):187–

223, 2002.
[6] K.H. Borch. The Mathematical Theory of Insurance: An Annotated Selection of Papers on Insurance Pub-

lished 1960-1972. Lexington Books, 1974.
[7] N.L. Carothers. Real Analysis. Cambridge University Press, 2000.
[8] A. Chateauneuf, F. Maccheroni, M. Marinacci, and J.M. Tallon. Monotone Continuous Multiple

Priors. Economic Theory, 26(4):973–982, 2005.
[9] D.L. Cohn. Measure Theory. Birkhauser, 1980.

[10] D. Gale and M. Hellwig. Incentive-Compatible Debt Contracts: The One-Period Problem. The Review of
Economic Studies, 52(4):647–663, 1985.

[11] M. Ghossoub. Belief Heterogeneity in the Arrow-Borch-Raviv Insurance Model. mimeo (2011).
[12] S.J. Grossman and O.D. Hart. An Analysis of the Principal-Agent Problem. Econometrica, 51(1):7–45,

1983.
[13] B. Holmstrom. Moral Hazard and Observability. The Bell Journal of Economics, 10(1):74–91, 1979.
[14] M. Marinacci and L. Montrucchio. Introduction to the Mathematics of Ambiguity. In I. Gilboa (ed.),

Uncertainty in Economic Theory. Routledge, London, 2004.
[15] P. Milgrom and J. Roberts. The Economics of Modern Manufacturing: Technology, Strategy, and Orga-

nization. The American Economic Review, 80(3):511–528, 1990.
[16] P. Milgrom and C. Shannon. Monotone Comparative Statics. Econometrica, 62(1):157–180, 1994.
[17] J.A. Mirrlees. The Theory of Moral Hazard and Unobservable Behaviour: Part I. Review of Economic

Studies, 66(1):3–21, 1999.
[18] F.H. Page. The Existence of Optimal Contracts in the Principal-Agent model. Journal of Mathematical

Economics, 16(2):157–167, 1987.
[19] E. Pap. Null-Additive Set Functions. Kluwer Academic Publishers, 1995.
[20] A. Raviv. The Design of an Optimal Insurance Policy. The American Economic Review, 69(1):84–96, 1979.
[21] W.P. Rogerson. The First-Order Approach to Principal-Agent Problems. Econometrica, 53(6):1357–1367,

1985.
[22] D.M. Topkis. Minimizing a Submodular Function on a Lattice. Operations Research, 26(2):305–321, 1978.
[23] D.M. Topkis. Supermodularity and Complementarity. Princeton University Press, 1998.
[24] R. Townsend. Optimal Contracts and Competitive Markets with Costly State Verification. Journal of

Economic Theory, 21(2):265–293, 1979.
[25] C. Villegas. On Qualitative Probability σ-Algebras. The Annals of Mathematical Statistics, 35(4):1787–

1796, 1964.
[26] X. Vives. Oligopoly Pricing: Old Ideas and New Tools. MIT Press, 2001.
[27] S.D. Williamson. Costly Monitoring, Financial Intermediation, and Equilibrium Credit Rationing. Journal

of Monetary Economics, 18(2):159–179, 1986.
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