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A note on the pricing of the perpetual American

capped power put option

Yoshitaka Sakagami∗

Abstract

We give an explicit solution to the perpetual American capped power
put option pricing problem in the Black-Scholes-Merton Model. The ap-
proach is mainly based on free-boundary formulation and verification. For
completeness we also give an explicit solution to the perpetual American
standard power (≥ 1) option pricing problem.

Key words: The perpetual American capped power put option, geo-
metric Brownian motion, free-boundary.

1 Introduction

A standard American power put option is a financial contract that allows the
holder to sell an asset for a prescribed amount at any time. The price of this
asset is raised to some power. The case of power being one corresponds to the
usual American put option.

For the European power put option, the value of this option is given ( see
[2], [3], [4] , [7] ). For the perpetual American power (≥ 1) put option, for
completeness, we give the value of this option and the optimal stopping time.

A capped power option is a power option whose maximum payoff is set to a
prescribed level. For the European capped power put option , the value of this
option is given (see [2], [3] ). For the perpetual American capped power put
option, we give the value of this option and the optimal stopping time.

Throughout this note, the approach is mainly based by free-boundary for-
mulation and verification. Only one exception is Theorem 2.2.

This note is organized as follows. In Section 2, we explicitly solve the per-
petual American power put option pricing problem. In Section 3, we explicitly
solve the perpetual American capped power put option pricing problem.
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2 The perpetual American power put option

The arbitrage-free price of the perpetual American power put option is given
by

V∗(x) = sup
τ
E

x
(e−rτ (K − (Xτ )

i

)+) (1)

where K is the strike price, τ is a stopping time, i is a positive constant greater
than or equal 1, and x > 0 is the initial value of the stock price process X =
(Xt)t≥0. In (1), the supremum is taken over all stopping times τ of the process
X started at x. The stock price process X = (Xt)t≥0 is assumed to be a
geometric Brownian motion. That is,

dXt = rXtdt+ σXtdBt (2)

where r, σ > 0. The infinitesimal generator of X is given by

LX = rx
∂

∂x
+

σ2

2
x2 ∂2

∂x2
. (3)

As in the case of standard perpetual American put option, we suppose that
there exists a point b ∈ (0,K

1
i ) such that

τb = inf{t ≥ 0 : Xt ≤ b}. (4)

is optimal in (1). Then we solve the following free-boundary problem for un-
known V and b. Here 0 < bi < K.

LXV = rV x > b, (5)

V (x) = (K − xi)+ x = b, (6)

V ′(x) = −ixi−1 x = b, (7)

V (x) > (K − xi)+ x > b, (8)

V (x) = (K − xi)+ 0 < x < b. (9)

The steps to solve this free-boundary problem is same as in the case of the
standard American put option (i = 1) (see [5]), so we only outline the steps.
Since V (x) ≤ K, the equation (5) implies

V (x) = cx−r/D (10)

where D = σ2

2 and c is an undetermined constant. Using (10), we solve two
equations (6) and (7) to give

b =

(

K

1 +Di/r

)1/i

, (11)

c =
Di

r

(

K

1 +Di/r

)1+ r

Di

. (12)
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Thus V (x) is written as

V (x) =

{

Di
r

(

K
1+Di/r

)1+ r

Di

x−r/D if x ∈ [b,∞),

K − xi if x ∈ (0, b].
(13)

Now we have the following theorem.

Theorem 1.1 V (x) coincides with V∗(x), and the optimal stopping time is given
by τb.

The steps to prove this theorem is same as in the case of the standard American
put option (i = 1) (see [5]), so we omit.

It should be noted that for i < 1, limx→0 |V
′(x)| = ∞, so we assume that

i ≥ 1 in this section.

3 The perpetual American capped power put

option

The arbitrage-free price of the perpetual American capped power put option is
given by

V∗(x) = sup
τ
Ex

(

e−rτ min
[

(K − (Xτ )
i)

+
, C

])

(14)

where C(< K) and i are positive constants. First we suppose there exists a

point b ∈ (h,K
1
i ) such that

τb = inf{t ≥ 0 : Xt ≤ b} (15)

is optimal in (14). Here h satisfies K − hi = C. Then we solve the following
free-boundary problem for unknown V and b.

LXV = rV x > b, (16)

V (x) = (K − xi)+ x = b, (17)

V ′(x) = −ixi−1 x = b, (18)

V (x) > (K − xi)+ x > b, (19)

V (x) = (K − xi)+ h < x ≤ b, (20)

V (x) = C 0 < x ≤ h. (21)

It is clear that for 0 < x ≤ h, the arbitrage-free price from (14) is given by
(21). Thus, 0 < x ≤ h is the stopping region.

Since we suppose that b ∈ (h,K
1
i ), b is same as in the case of the American

power put option. Thus the free-boundary b is given by

b =

(

K

1 +Di/r

)1/i

. (22)
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V (x) is written as

V (x) =











Di
r

(

K
1+Di/r

)1+ r

Di

x−r/D if x ∈ [b,∞),

K − xi if x ∈ (h, b],
C if x ∈ (0, h].

(23)

Note that b > h is equivalent to C > K · Di/r
1+Di/r .

Theorem 2.1 Suppose that C > K · Di/r
1+Di/r , then V (x) coincides with V∗(x), and

the optimal stopping time is given by τb.

Proof. From our earlier consideration we can suppose that x ∈ (h,∞). Since
P (Xs = h) = 0 and P (Xs = b) = 0, the change-of-variable formula (see Remark
2.3 in [5]) with the smooth-fit condition (18) gives

V (Xt) = V (X0) +

t
∫

0

e−rs(L
X
V − rV )(Xs)I(Xs ̸= h,Xs ̸= b)ds (24)

+

t
∫

0

Vx(Xs)σXsI(Xs ̸= h,Xs ̸= b)dBs

+
1

2

t
∫

0

(Vx(Xs+)− Vx(Xs−))I(Xs = h)dlcs(X).

When V (x) = (K − xi), we see that (L
X
V − rV )(x) = xi(1−i)(r+ σ2

2 i)−rK <
0 for h < x ≤ b. For i ≥ 1, it clearly holds. For i < 1, from xi < h it is easily
seen to hold. Thus

e−rt(K −Xt
i)+ ≤ e−rtV (Xt) ≤ V (x) +Mt

where M = (Mt)t≥0 defined by

Mt =

t
∫

0

Vx(Xs)σXsI(Xs ̸= h,Xs ̸= b)dBs

is a continuous martingale (because |V ′(x)| is bounded for all x > 0). Thus it
is easily verified by standard means (using the localization of M and Fatou’s
lemma) that we get that

V∗(x) ≤ V (x)

for all x ∈ (h,∞).
Next we set t = τb ∧ τn in (24). Here (τn)n≥1 is a localization sequence of

bounded stopping times for M . For s ≤ τb, Xs ≥ b > h. Hence the fourth term
in the right-hand side of this equation is zero. Moreover using (16), we find
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the second term in the right-hand side is also zero. Finally using the optional
sampling theorem we get

Ex(e
−r(τb∧τn)V (Xτb∧τn)) = V (x). (25)

Letting n go to infinity and using the dominated convergence and (17), we get
that

V∗(x) ≥ V (x)

for all x ∈ (h,∞). The proof is completed.

Theorem 2.2 Suppose that C ≤ K · Di/r
1+Di/r , then V (x) is written as

V (x) =

{

C̄(K − C̄)
r

Di · x− r

D if x ∈ (h,∞),
C if x ∈ (0, h].

(26)

The optimal stopping time is given by τh.

Proof. We set τh = inf{t ≥ 0 : Xt ≤ h}. Then

Ex(e
−rτh(K − (Xτh)

i)
+

) (27)

= Ex(e
−rτh(K − hi))

= (K − hi)Ex(e
−rτh)

= C̄(K − C̄)
r

Di · x− r

D (28)

where the final equality follows by the formula for the expected first hitting time
for a geometric Brownian motion (see e.g. [1]).

Now we show for K
1
i > x > h,

C̄(K − C̄)
r

Di · x− r

D > K − xi. (29)

We set f(x) to be equal to the left-hand side minus the right-hand side in (29).
Clearly f(h) = 0. To show that f ′(x) > 0, it suffices to show

C̄x
r

D (−
r

D
)x

−

r

D
−1

+ i(K − C)x−1 ≥ 0 (30)

because x > h. Since C ≤ K · Di/r
1+Di/r , (30) holds. Since V (x) > 0, (29) and (30)

imply that (h,∞) is a continuous region. On the other hand, (0, h] is a stopping
region. Thus τh is the optimal stopping time and V (x) is given by (26). The
proof is completed.
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