

Multivariate Granger Causality between CO2 Emissions, Energy Intensity,Financial Development and Economic Growth: Evidence from Portugal

Muhammad, Shahbaz

COMSATS Institude of Information Technology, Lahore, Pakistan

24 March 2012

Online at https://mpra.ub.uni-muenchen.de/37774/ MPRA Paper No. 37774, posted 31 Mar 2012 14:29 UTC

Multivariate Granger Causality between CO₂ Emissions, Energy Intensity, Financial Development and Economic Growth: Evidence from Portugal

Muhammad Shahbaz Department of Management Sciences COMSATS Institute of Information Technology Off Raiwind Road Lahore, Pakistan Email: <u>shahbazmohd@live.com</u>

Abstract: The present study aims to investigate the relationship between economic growth, energy intensity, financial development and CO_2 emissions over the period of 1971-2009 in case of Portugal. The stationarity analysis is conducted by applying Zivot-Andrews unit root test and ARDL bounds testing approach for long run relationship between the variables. The direction of causal relationship between the series is examined by VECM Granger causality approach and robustness of causality analysis is tested by innovative accounting approach (IAA).

Our results confirmed that the variables are cointegrated for long run relationship. The empirical findings of this study reported that economic growth and energy intensity increase CO_2 emissions, while financial development condenses it. The VECM causality analysis showed the feedback hypothesis between energy intensity and CO_2 emissions, while economic growth and financial development Granger-cause CO_2 emissions.

Keywords: Growth, Energy, Financial Development, CO₂ Emissions.

Introduction

The analysis of Portuguese energy system enables us in suggesting an appropriate energy and environmental policy to sustain economic growth as well as to improve the environmental quality for better living standards in the country. In these days, Portugal's economy is under debate on the basis of two hot issues; how its economy is growing for the last two decades and following political agenda of Kovoto Protocol reductions in emissions of greenhouse gases. So, adoption of energy and environmental policy in Portuguese economy can affect the policy targets imposed by European Union. This entails that there is a tradeoff between the efficient use of energy including environmental quality and sustained economic growth in the long span of time. Since 1986, the more concern has been paid on energy security, environmental protection and economic growth, after the inclusion of Portugal as a member in European Union. The surface area of Portuguese economy is 92,000 square kilometers with a population of around 10.7 million. After accessed to European Union, Portugal has been diversifying herself by developing service-based economy, for instance; telecommunications, finance, transportation, and energy sectors. These services have enhanced international competitiveness that resulting in stimulated economic growth. Portugal was recognized as a rapid growing economy among the member countries of European Union after 1990s, although energy market in the country is relatively small and has a limited access to the domestic energy resources.

Due to limited availability of energy resources, per capita energy consumption is low in Portugal as compared to other EU member countries, although energy consumption is growing higher than the growth of GDP per capita. But rising trend of primary and final energy intensities result in absolute energy intensity. Absolute energy intensity is upsetting the environmental situation, which seems to be unfavorable for Portugal relatively to other EU member countries. The pattern of energy is based on oil products, although Portugal has not much her owned fossil energy resources but due to sustained economic growth, domestic energy resources such as, hydroelectric and biomasses are utilized to meet the rising demand of the country.

Following the terms of the EU allocation agreement, it is required to analyze whether Portugal can fulfill the targets set by European Union by preventing the hike in greenhouse gases emissions up to 40 per cent, for the period of 2008-2012 or not. The principal cause of the rise in CO_2 emissions is the rapid use of fossil fuel. Portugal contributed 74.6 per cent to total greenhouse gases emissions in 2000. Due to fossil fuel consumption in 1990-2000, only 43.6 per cent of CO_2 emissions were increased. This shows that target to increase CO_2 emissions up to 40 per cent in 2008-2012 would not be fulfilled. During the era of 1990s, fossil fuel consumption raised CO_2 emissions to 90-91 per cent and carbon emissions were increased to 44.5 per cent. This implies that it is difficult for Portuguese economy to reduce present CO_2 emissions up to 40 per cent. That is why; rising trend of carbon emissions is the most important issue in the current political debate. The most important challenge for energy policy making authorities is to introduce new measures that can help in reducing energy emissions.

The present study investigates the relationship between economic growth, energy intensity financial development and CO_2 emissions using the annual data of Portuguese economy over the period of 1971-2009. Due to our limited knowledge, this study may be pioneering effort on this topic for the economy of Portugal and it has five fold contribution to the energy literature by applying: (i) Zivot-Andrews [1] structural break unit root test; (ii), ARDL bounds testing

approach to cointegration for long run relationship between the variables; (iii), OLS and ECM for long run and short run impacts (iv) VECM Granger causality approach for causal relationship and (v) Innovative Accounting Approach (IAA) to test the robustness of causality analysis.

Our empirical findings show that cointegration is found for long run relationship among the variables such as; economic growth, energy intensity, financial development and CO_2 emissions in case of Portugal. A rise in economic growth and energy intensity (financial development) increases (condenses) CO_2 emissions. The causality analysis reveals that bidirectional causal relationship is found between CO_2 emissions and energy intensity while economic growth and financial development Granger-cause CO_2 emissions. These results may provide new avenues for policy makers to design a comprehensive economic, financial and environmental plan to sustain economic growth as well as, to help the Portuguese economy in attaining Kyoto Protocol targets.

II. Literature Review

First strand of existing energy literature deals with wide range of mixed result studies about energy consumption and economic growth nexus. Now a days, energy-growth relation has been empirically investigated extensively since the pioneering study conducted by Kraft and Kraft [2]. The empirical findings of the existence energy literature are not unambiguous due to the use of various econometrical approaches such as; correlation analysis, simple regressions, bivariate causality, unit root testing, multivariate cointegration, panel cointegration, vector error correction modeling (VECM) and innovative accounting approach to detect the direction of causality between economic growth and energy consumption (Chontanawat et al. [3]). These inconclusive empirical evidences could not help to economic policy architects in articulating a comprehensive energy plan to sustain long run economic growth (Payne, [4] and Ozturk, [5]). The appropriate knowledge about direction of causality between energy consumption and economic growth is very important regarding theoretical and policy point of view (Ghali and El-Sakka, [6]).

In recent studies, Payne [4] and Ozturk [5] reviewed the existing literature between energy consumption and economic growth nexus and provided four empirical competing hypotheses for said issue. Such as; (i) growth hypothesis i.e. energy consumption Granger causes economic growth implies that energy reduction policies should be discouraged and new sources of energy must be explored, (ii) if causality is found running from economic growth to energy consumption, then energy reduction policies would not have adverse affect on economic growth because economic growth of the country does not seem to be dependent on energy, (iii) feedback hypothesis implies the interdependence of energy consumption and economic growth. A rise in economic growth leads to increase in energy demand, which in return stimulates economic growth and (iv) no causality between energy consumption and economic growth infers neutrality hypothesis indicating that energy and growth are not interdependent. The adoption of conservation and exploration of energy policies will not favorable affect the economic growth.

In case of Portugal, few studies investigated the relationship between energy consumption and economic growth. For instance, Narayan and Prasad [7] investigated the direction of causality between both variables by applying bootstrapping causality approach¹. Chontanawat et al. [3] examined the causal relationship between energy consumption and economic growth by applying bivariate system using cross section data of 100 developed and developing countries including

Portugal. Their empirical exercise indicated that energy consumption Granger causes economic growth in case of Portugal. On same line, Shahbaz et al. [8] re-examined the relationship between energy consumption, economic growth and employment and reported the feedback hypothesis between energy consumption and economic growth. This implies that new sources of energy should be explored to spur economic growth in Portuguese economy. Fuinhas and Marques [9] examined relationship between energy use and economic growth in Portugal, Italy, Greece, Spain and Turkey applying ARDL bounds testing and VECM Granger causality approach for long run and causal relationship between the variables. Their empirical findings confirmed that variables are cointegrated for long run relationship while feedback hypothesis is validated between energy consumption and economic growth. Later on, Behemiria and Mansob [10] applied VECM and Toda-Yamamatoo [11] Granger causality approaches to test the relationship between crude oil consumption and economic growth. They reported the bidirectional causality between both variables, which implies that energy conservation policies should be discouraged.

Second strand of existing literature on this topic provides empirical evidence on the relationship between economic growth and CO₂ emissions i.e. so called environmental Kuznets curve (EKC). The EKC hypothesis postulates that relationship between economic growth and CO₂ emissions is non-linear and inverted-U shaped. This implies that economic growth is linked with an increase in CO₂ emissions initially and declines it, once economy matures². Existing studies including Hettige et al. [12], Cropper and Griffiths [13], Selden and Song [14], Grossman and Kueger [15], and Martinez-Zarzoso and Bengochea-Morancho [16], among others investigated the relationship between income and emissions and validated the existence of EKC. But Dinda and Coonndoo [17] used panel data and provided ambiguous results about economic growth and CO₂ emissions relationship. Recently, various studies validated the environmental Kuznets curve (EKC) using cross-sectional data, for instance, Lean and Smyth [18] for ASEAN; Apergis and Payne [19-20] for Central America and commonwealth of independent states; Pao and Tsai [21] for BRIC countries; Acaravci and Ozturk [22] for Denmark and Italy; Pao et al. [23] for Russia; Iwata [24] for 28 countries and Wang [25] for 138 developing and developing countries etc. But using time series data, Machado [26], Mongelli et al. [27], Ang [28-29], Song et al. [30], Jalil and Mahmud [31]; Shiyi [32]; Dhakal [33], Halicioglu [34], Ozturk and Acaravci [35]³; Alam et al. [37], Fodha and Zaghdoud [38], Nasir and Rehman [39] and Shahbaz et al. [40] also supported the empirical presence of environmental Kuznets curve (EKC) for Brazil, Italy, France, Malaysia, China, India, Tunisia and Pakistan.

Third strand deals with case country studies, for example in case of United States, Soytas et al. [41] investigated the dynamic relationship between CO_2 emissions, income and energy consumption. Their results showed that CO_2 emissions Granger causes income and energy consumption contributes to CO_2 emissions. A same exercise conducted by Ang [28-29] in France and Malaysia. The results indicated that economic growth Granger causes energy consumption and carbon emissions in France and in Malaysia, unidirectional causality is found running from economic growth to energy consumption. Chebbi [42] collected the Tunisian data to investigate causal relationship between energy consumption, income and CO_2 emissions. The empirical evidence indicated that energy consumption stimulates economic growth which Granger causes CO_2 emissions. In case of India, Gosh [43] investigated the causal relationship between income and CO_2 emissions by incorporating investment and employment as additional determinants of

CO₂ emissions but reported no causality between income and CO₂ emissions. Chang [44] applied multivariate causality test to examine causal relation between economic growth, energy consumption and CO₂ emissions using Chinese time series data. The finings of the study revealed that economic growth Granger causes energy consumption that leads to CO₂ emissions. Using Turkish data, Halicioglu [34] also reported feedback hypothesis between economic growth and CO2 emissions. In case of South Africa, Menyah and Wolde-Rufeal [45] concluded that energy consumption Granger causes CO2 emissions and resulting in economic growth is being Granger caused by CO₂ emissions. On contrarily, Odhiambo [46] reinvestigated the causality between energy consumption, economic growth and CO₂ emissions and unidirectional causality also found running from economic growth to CO₂ emissions. Similarly, Alam et al. [37] examined the link between energy consumption, economic growth and energy pollutants in case of India. Their empirical evidence revealed the bidirectional causal relationship between energy consumption and CO₂ emissions while neutral hypothesis exists between CO₂ emissions and economic growth. In case of Bangladesh, Alam et al. [47] detected the causal relationship between these variables and opined that variables are cointegrated for long run. These long run results are robust confirmed by ARDL bounds testing. Their VECM causality analysis reported the presence of feedback hypothesis between energy consumption and CO₂ emissions, while unidirectional causality is found running from CO2 emissions to economic growth. In case of Greece, Hatzigeorgiou et al. [48] applied VECM Granger causality test to investigate the causality between energy intensity, income and CO₂ emissions by applying Johansen multivariate cointegration approach. Their results concluded the existence of long run relationship between the series. The VECM granger causality analysis reported that

unidirectional causality is found running from economic growth to energy intensity and CO₂ emissions, while feedback hypothesis exists between energy intensity and CO₂ emissions.

In fourth strand of economic literature, Tamazian et al. [49] paid their attention to test the affect of other potential determinants of CO₂ emissions such as economic, institutional, financial variables. In their pioneering effort, Tamazian et al. [49] investigated the impact of economic development as well as financial development on CO₂ emissions in case of Brazil, Russia, India, China, Untied States and Japan and later on Tamazian and Rao [50] examined the role of institutions on CO₂ emissions. Their empirical evidence reported that economic development, trade openness, financial development and institutions play their role to control environment from degradation while supporting the presence of EKC hypothesis. Additionally, Claessens and Feijen [51] explored the role of governance in reducing CO_2 emissions and reported that with the help of more advanced governance; enterprises can lower growth of CO₂ emissions. So, financial development may stimulate the performance of firms due to the adoption of energy efficient technologies which reduce carbon emissions. In case of China, Yuxiang and Chen [52] argued that financial sector polices enables the firms to utilize advanced technology which emits less CO₂ emissions and enhances domestic production. They also claim that financial development promotes capitalization and financial regulations that favor environmental quality. Later on, Jalil and Feridun [53] tested the impact of economic growth, energy consumption and financial development on carbon emissions in case of China. They disclosed that energy consumption, economic growth and trade openness are harmful for environmental quality. On contrary, financial development and foreign direct investment save environment from degradation. Recently, Zhang [54] reinvestigated the finance-environment nexus and concluded that financial

development increases CO_2 emissions due to inefficient allocation of financial resources to enterprises. In case of Sub Saharan African countries, Al-mulali and Sab [55] examined the dynamic relationship between energy consumption, income, financial development and CO_2 emissions by incorporating investment and employment as potential determinants of domestic production. Their empirical exercise reported that energy consumption spurs economic growth. A rise in economic growth and energy consumption add in the demand of financial services and hence financial development that increases the improvements in environmental quality by controlling CO_2 emissions through the implementation of well-organized and transparent financial policies.

The existing review of literature failed to provide any study in case of Portugal which discusses the causality between energy intensity, economic growth, financial development and CO_2 emissions. Only, Hatzigeorgiou et al. [48] empirically investigated the said issue for Greek economy but did not pay their attention to include financial development as a potential determinant of CO_2 emissions. Financial development may affect CO_2 emissions by stimulating economic activity and encouraging the enterprises to use advanced technology for the enhancement of domestic production that saves the environment from degradation. The exact direction of causality between economic growth and CO_2 emissions in case of Portugal. The unidirectional causality running from carbon emissions to economic growth implies that we have to sacrifice economic growth to lower energy pollutants. An efficient energy policy must be implemented which may not have detrimental impact on economic growth if economic growth Granger causes carbon emissions. So, CO_2 emissions can be reduced without fall in economic growth. The policy regarding environment may be adopted to improve the environmental quality if there is no causal relationship between income and CO_2 emissions then environmental policy does not have adverse impact on economic growth. But reductions in CO_2 emissions may have negative affect on economic growth if feedback hypothesis exists between both the variables. The present study is an effort to fill the gap in energy literature regarding the case study of Portugal.

III. Modelling Framework and Data Collection

Existing literature provides various empirical studies investigating the dynamic relationship between economic growth, energy consumption and CO2 emissions. For instance, Ang [28-29] for France and Malaysia; Soytas et al. [41] for United States; Zhang and Cheng [56], Chang [44] and Wang et al. (2011) for China; Halicioglu (2009) and, Ozturk and Acaravci [58] for Turkey; Pao and Tsai [59] for Brazil and Alam et al. [37, 47] for India and Bangladesh examined causal relationship between the series. Some studies included other potential determents of CO₂ emissions such as capital by Xepapadeas [60] and latter on by Menyah and Wolde-Rufael [45], fossil fuels consumption by Lotfalipour et al. [61], coal consumption by Bloch et al. [62], electricity consumption by Lean and Smyth [18], openness and urbanisation by Hossain [63], foreign direct investment by Pao and Tsai [64], energy intensity by Roca and AlcaHntara [65] and latter on by Hatzigeorgiou et al. [48].

Tamazian et al. [49] and Tamazian and Rao, [50] added financial development as potential determinant of CO_2 emissions. Latter on, Yuxiang and Chen [52], Jalil and Feridun [53] and Zhang [54] investigated the empirical relationship between financial development and energy

pollutants. Sound and development financial markets stimulate capitalization by attracting local and foreign investors to accelerate economic growth (Frankel and Romer, [66]). Financial development allocates financial resources to firms to utilize environment-friendly technology (Frankel and Rose, [67]) which uses energy efficiently (Sadorsky, [68-69]) and emits less carbon emissions (Tamazian et al. [49] and, Tamazian and Rao, [50]). However, financial development harms environment by increasing CO_2 emissions through the growth of industrial sector. Following above discussion, we investigate the relationship between economic growth, energy intensity, financial development and CO_2 emissions. The general form of our empirical model can be written in the following way:

$$C_t = f(E_t, Y_t, F_t) \tag{1}$$

Now we transform all the series into logarithms to attain direct elasticities. The empirical equation is modelled as follows:

$$\ln C_t = \alpha_0 + \alpha_E \ln E_t + \alpha_Y \ln Y_t + \alpha_E \ln F_t + \mu_i$$
(2)

Where C_i is CO₂ emissions (measured in kt) per capita, E_i is energy intensity per capita, F_i is financial development proxies by real domestic credit to private sector per capita and Y_i real GDP per capita is used as a proxy of economic growth. Finally, μ_i is error term assumed to be normally distributed with zero mean and constant variance. We presume that a rise in energy intensity will increase carbon emissions and $\alpha_E > 0$. $\alpha_Y > 0$, an increase in economic growth is linked with high CO₂ emissions otherwise $\alpha_Y < 0$. Sound financial sector may act as conduits by enabling firms in adopting advanced cleaner and environment friendly techniques (Talukdar and Meisner, [70]) to save environment from degradation and $\alpha_F < 0$ otherwise $\alpha_F > 0$ if the focus of financial sector is to boost industrial sector.

The data on real GDP per capita, energy intensity per capita, domestic credit to private sector per capita and CO_2 emissions (measured in kt) per capita has been collected from world development indicators (CD-ROM). The data sample of the present study is 1971-2009.

III.1. Estimation Strategy

Numerous unit root tests are available in applied economics to test the stationarity properties of the variables. These unit tests are ADF by Dickey and Fuller [71], P-P by Philips and Perron [72], KPSS by Kwiatkowski et al. [73], DF-GLS by Elliott et al. [74] and Ng-Perron by Ng-Perron [75]. These tests provide biased and spurious results due to not having information about structural break points occurred in series. In doing so, Zivot-Andrews [1] developed three models to test the stationarity properties of the variables in the presence of structural break point in the series: (i) this model allows a one-time change in variables at level form, (ii) this model permits a one-time change in the slope of the trend component i.e. function and (iii) model has one-time change both in intercept and trend function of the variables to be used for empirical propose. Zivot-Andrews [1] followed three models to check the hypothesis of one-time structural break in the series as follows:

$$\Delta x_{t} = a + ax_{t-1} + bt + cDU_{t} + \sum_{j=1}^{k} d_{j} \Delta x_{t-j} + \mu_{t}$$
(3)

$$\Delta x_{t} = b + bx_{t-1} + ct + bDT_{t} + \sum_{j=1}^{k} d_{j} \Delta x_{t-j} + \mu_{t}$$
(4)

13

$$\Delta x_{t} = c + cx_{t-1} + ct + dDU_{t} + dDT_{t} + \sum_{j=1}^{k} d_{j} \Delta x_{t-j} + \mu_{t}$$
(5)

Where dummy variable is indicated by DU_t showing mean shift occurred at each point with time break while trend shift variables are shown by DT_t^4 . So,

$$DU_{t} = \begin{cases} 1 \dots if \quad t > TB \\ 0 \dots if \quad t < TB \end{cases} \text{ and } DU_{t} = \begin{cases} t - TB \dots if \quad t > TB \\ 0 \dots if \quad t < TB \end{cases}$$

The null hypothesis of unit root break date is c = 0 which indicates that series is not stationary with a drift not having information about structural break point while c < 0 hypothesis implies that the variable is found to be trend-stationary with one unknown time break. Zivot-Andrews unit root test fixes all points as potential for possible time break and provides estimation through regression analysis for all possible break points successively. Then, this unit root test selects that time break which decreases one-sided t-statistic to test $\hat{c}(=c-1)=1$. Zivot-Andrews intimates that in the presence of end points, asymptotic distribution of the statistics is diverged to infinity point. It is necessary to choose a region where end points of sample period are excluded. Further, we followed the Zivot-Andrews suggested "trimming regions" i.e. (0.15T, 0.85T).

After testing the stationarity properties of the series, we apply ARDL bounds testing approach developed by to Pesaran et al. [77] to investigate cointegration for long run relationship between economic growth, energy intensity, financial development and carbon emissions for Portuguese economy. Various cointegration approaches have been applied to test the presence of cointegration between the variables in numerous studies. These approaches are Engle and Granger [78]; Johansen and Juselius [79] and Phillips and Hansen [80] require that all the series

should be integrated at unique order of integration. The ARDL bounds testing approach is more appropriate as compared to other traditional cointegration approaches. For example, it seems flexible regarding the stationarity properties of the variables. This approach is more suitable once variables are found to be stationary at I(1) or I(0) or I(1)/I(0). The ARDL bounds testing approach provides efficient and consistent empirical evidence for small sample data (Smyth and Narayan, [81]) as in case of Portugal. This approach investigates short run as well as long run parameter instantaneously. The unrestricted error correction model (UECM) version of ARDL model is expressed as follows:

$$\Delta \ln C_{t} = \beta_{1} + \beta_{T}T + \beta_{C} \ln C_{t-1} + \beta_{E} \ln E_{t-1} + \beta_{Y} \ln Y_{t-1} + \beta_{F} \ln F_{t-1} + \sum_{i=1}^{p} \beta_{i} \Delta \ln C_{t-i} + \sum_{j=0}^{q} B_{j} \Delta \ln E_{t-j} + \sum_{k=0}^{r} \beta_{k} \Delta \ln Y_{t-k} + \sum_{l=0}^{s} \beta_{l} \Delta \ln Y_{t-l} + \mu_{t}$$
(6)

$$\Delta \ln E_{t} = \phi_{1} + \phi_{T}T + \phi_{C} \ln C_{t-1} + \phi_{E} \ln E_{t-1} + \phi_{Y} \ln Y_{t-1} + \phi_{F} \ln F_{t-1} + \sum_{i=1}^{p} \phi_{i} \Delta \ln E_{t-i} + \sum_{j=0}^{q} \phi_{j} \Delta \ln C_{t-j} + \sum_{k=0}^{r} \phi_{k} \Delta \ln Y_{t-k} + \sum_{l=0}^{s} \phi_{l} \Delta \ln F_{t-l} + \mu_{t}$$
(7)

$$\Delta \ln Y_{t} = \varphi_{1} + \varphi_{T}T + \varphi_{C} \ln C_{t-1} + \varphi_{E} \ln E_{t-1} + \varphi_{Y} \ln Y_{t-1} + \varphi_{F} \ln F_{t-1} + \sum_{i=1}^{p} \varphi_{i} \Delta \ln Y_{t-i} + \sum_{j=0}^{q} \varphi_{j} \Delta \ln C_{t-j} + \sum_{k=0}^{r} \varphi_{k} \Delta \ln E_{t-k} + \sum_{l=0}^{s} \varphi_{l} \Delta \ln F_{t-l} + \mu_{t}$$
(8)

$$\Delta \ln F_{t} = \theta_{1} + \theta_{T}T + \theta_{C} \ln C_{t-1} + \theta_{E} \ln E_{t-1} + \theta_{Y} \ln Y_{t-1} + \theta_{F} \ln F_{t-1} + \sum_{i=1}^{p} \theta_{i} \Delta \ln F_{t-i}$$

$$+ \sum_{j=0}^{q} \theta_{j} \Delta \ln C_{t-j} + \sum_{k=0}^{r} \theta_{k} \Delta \ln E_{t-k} + \sum_{l=0}^{s} \theta_{l} \Delta \ln Y_{t-l} + \mu_{t}$$
(9)

15

The 1st difference operator is shown by Δ and μ_t is for residual terms. The appropriate lag length of the first differenced regression is chosen on the basis of minimum value of akaike information criteria (AIC). The F-statistic is much sensitive with lag order selection. The inappropriate lag length selection may provide misleading results. Pesaran et al. [77] developed an F-test to determine the joint significance of the coefficients of lagged level of the variables. For example, the hypothesis of no cointegration between the variables in equation (3)is $H_0: \beta_C = \beta_E = \beta_F = 0, H_0: \phi_C = \phi_E = \phi_F = 0, H_0: \phi_C = \phi_F = 0, H_0: \phi_C = \phi_F = 0, H_0: \theta_C = \theta_E = \theta_F = 0$ while hypothesis of cointegration is $H_0: \beta_C \neq \beta_E \neq \beta_Y \neq \beta_F \neq 0, H_0: \phi_C \neq \phi_E \neq \phi_Y \neq \phi_F \neq 0,$

 $H_0: \varphi_c \neq \varphi_E \neq \varphi_Y \neq \varphi_F \neq 0, H_0: \theta_c \neq \theta_E \neq \theta_Y \neq \theta_F \neq 0$. Pesaran et al. [77] generated two asymptotic critical values i.e. upper critical bound (UCB) and lower critical bound (LCB), are used to take decisions whether cointegration exists or not between the series. The lower critical bound is used to test cointegration if all the series are integrated at I(0) otherwise we use upper critical bound (UCB). Our computed F-statistics are $F_c(C/E,Y,F)$, $F_E(E/C,Y,F)$, $F_Y(Y/C,E,F)$ and $F_F(F/C,E,Y)$ for equations (6) to (9) respectively. The long run relationship between the variables exists if our calculated F-statistic is greater than upper critical bound (UCB). There is no cointegration between the series, if our calculated F-statistic does not exceed lower critical bound (LCB). Our decision regarding cointegration is inconclusive if calculated F-statistic falls between LCB and UCB. In such an environment, error correction method is an easy and suitable way to investigate cointegration between the variables. We have used critical bounds generated by Narayan [82] to test cointegration rather than Pesaran et al. [77] and Turner [83]. The directional of causality between economic growth, energy intensity, financial development and CO_2 emissions is investigated by applying VECM Granger causality approach after confirming the presence of cointegration between the variables. On the same lines, Granger [84] argued that vector error correction method (VECM) is more appropriate to examine the causality between the series if the variables are integrated at I(1). The VECM is restricted form of unrestricted VAR (vector autoregressive) and restriction is levied on the presence of long run relationship between the series. The system of error correction model (ECM) uses all the series endogenously. This system allows the predicted variable to explain itself both by its own lags and lags of forcing variables as-well-as error correction term and by residual term. The VECM equations are modeled as follows:

$$\Delta \ln C_{t} = \alpha_{01} + \sum_{i=1}^{l} \alpha_{11} \Delta \ln C_{t-i} + \sum_{j=0}^{m} \alpha_{22} \Delta \ln Y_{t-j} + \sum_{k=0}^{n} \alpha_{33} \Delta \ln E_{t-k} + \sum_{r=0}^{o} \alpha_{44} \Delta \ln F_{r-t} + \eta_{1} E C T_{t-1} + \mu_{1i} \quad (10)$$

$$\Delta \ln E = \beta_{11} + \sum_{i=1}^{l} \beta_{11} \Delta \ln E_{t-i} + \sum_{j=0}^{m} \beta_{22} \Delta \ln C_{t-j} + \sum_{k=0}^{n} \beta_{33} \Delta \ln Y_{t-k} + \sum_{r=0}^{o} \beta_{44} \Delta \ln F_{t-r} + \eta_2 E C T_{t-1} + \mu_{2i}$$
(11)

$$\Delta \ln Y_{t} = \varphi_{01} + \sum_{i=1}^{l} \varphi_{11} \Delta \ln Y_{t-i} + \sum_{j=0}^{m} \varphi_{22} \Delta \ln C_{t-j} + \sum_{k=0}^{n} \varphi_{33} \Delta \ln E_{t-k} + \sum_{r=0}^{o} \varphi_{44} \Delta \ln F_{t-r} + \eta_{3} E C T_{t-1} + \mu_{3i}$$
(12)

$$\Delta \ln F_{t} = \rho_{11} + \sum_{i=1}^{l} \rho_{11} \Delta \ln F_{t-i} + \sum_{j=0}^{m} \rho_{22} \Delta \ln C_{t-j} + \sum_{k=0}^{n} \rho_{33} \Delta \ln Y_{t-k} + \sum_{r=0}^{o} \rho_{44} \Delta \ln EF_{t-r} + \eta_{4} ECT_{t-1} + \mu_{4i}$$
(13)

Where u_{it} , are random terms and supposed to be normally distributed with zero means and constant variances. The established long run relation between the series is further confirmed by the statistical significance of lagged error term i.e. ECT_{t-1} . The estimates of ECT_{t-1} also shows the speeds of convergence from short run towards long run equilibrium path. The vector error

correction method (VECM) is appropriate to examine causality between the variables once series are found to be cointegrated and then causality must be found at least from one direction. The VECM also distinguishes causality relationships between short-and-long runs. The VECM is also used to detect the causality in long run, short run and joint i.e. short-and-long runs respectively.

The t-statistic of estimate of lagged error term i.e. ECT_{i-1} with negative sign is used to test long run casual relation and the joint χ^2 statistical significance of the estimates of first difference lagged independent variables is used to investigate short run causality. Economic growth Granger causes carbon emissions if $\alpha_{22,i} \neq 0 \forall_i$ is found statistically significant. On contrary, if $\beta_{22,i} \neq 0 \forall_i$ is statistically significant then causality runs from CO₂ emissions to economic growth. The rest of causality hypotheses can be inferred similarly. The joint causality i.e. longand-short runs is investigated by using Wald or F-test on the joint significance of estimates of lagged terms of independent variables and error correction term. The presence of short-and-long run causality relation between the variables is known as measure of strong Granger-causality (Shahbaz et al. [8]).

IV. Results and their Discussions

We applied ARDL bound testing approach to examine the long run relationship between economic growth, energy intensity, financial development and CO_2 emissions in case of Portugal. The advantage of bounds testing is that it is flexible regarding the order of integration of the series. This requires that the variables should be integrated at I(0) or I(1) or I(0)/I(1). The computation of ARDL F-statistic becomes useless if none of the variables is stationary at I(2) or beyond that order of integration. In doing so, we have applied Zivot-Andrews structural break trended unit root test to ensure that all the variables are integrated at I(0) or I(1) or $I(0)/I(1)^5$. The results of Zivot-Andrews [1] structural break trended unit root test are reported in Table-1. Our empirical evidence discloses that all the series show unit root problem at their level but found to be integrated at I(1). This entails that the series are stationary at their first differenced form. So, unique level of the variables leads us to examine the existence of long run relationship between economic growth, energy intensity, financial development and CO₂ emissions by applying ARDL bounds testing approach to cointegration over the period of 1971-2009.

Variable	iable At Level		At 1 st Difference		
	T-statistic	Time Break	T-statistic	Time Break	
$\ln C_t$	-3.522 (2)	2001	-8.107 (0)*	1991	
$\ln E_t$	-3.462 (2)	2002	-8.824 (1)*	1996	
$\ln F_t$	-3.551 (3)	1990	-3.871(1)***	2000	
$\ln Y_t$	-3.729 (3)	2002	-6.817 (1)*	1990	

Table-1: Zivot-Andrews Structural Break Trended Unit Root Test

Note: * and *** represent significant at 1%, and 10% level of significance. Lag order is shown in parenthesis.

Before applying ARDL bounds testing, there is a pre-requisite to choose appropriate lag order of the variables to compute suitable ARDL F-statistic and to test whether cointegration exists between the variables or not. The computation of F-test is very much sensitive with the selection of lag length (Ouattara, [86]). We chose lag length 2 following minimum value of akaike information criterion (AIC). The AIC criterion has superior power properties as compared to SBC and provides effective and reliable results which help in capturing the dynamic relationship between the series (Lütkepohl, [87])⁶. The next step is to apply F-test investigating cointegration for long run between the variables. Table-2 reports the results of ARDL bounds testing approach to cointegration. The results showed that our calculated F-statistics are greater than upper critical bound at 1 per cent level, once we used CO_2 emissions and energy intensity are treated as predicted variables.

Bounds Testing to Cointegration			Diagnostic tests			
Estimated Models	Optimal lag length	F-statistics	χ^2_{NORMAL}	χ^2_{ARCH}	χ^2_{RESET}	χ^2_{SERIAL}
$F_C(C/E,F,Y)$	2, 2, 2, 2	10.667*	0.3285	[1]: 0.7889	[1]: 0.9365	[1]: 0.2083; [2]: 0.7884
$F_E(E/C,F,Y)$	2, 2, 2, 1	14.158*	0.6448	[1]: 3.9821	[1]: 0.3746	[1]: 1.7145; [2]: 1.3143
$F_F(F/C,E,Y)$	2, 2, 2, 1	0.217	0.4757	[1]: 0.1547	[1]: 1.5110	[1]: 4.5934; [2]: 4.1174
$F_{Y}(Y/C,E,Y)$	2, 2, 2, 2	2.705	0.2622	[1]: 0.9978	[1]: 2.9656	[1]: 0.0173; [2]: 0.0086
Significant level	Critical values (T= 40)					
	Lower bounds <i>I</i> (0)	Upper bounds <i>I</i> (1)				
1 per cent level	7.527	8.803				
5 per cent level	5.387	6.437				
10 per cent level	4.447	5.420				
Note: * represents signi	ificant at 1 per cent at level.					

Table-2: The Results of ARDL Cointegration Test

It leads us to reject the null hypothesis of no cointegration. This indicates that there are two cointegrating vectors. This confirms that the variables are cointegrated for long run relationship between economic growth, energy intensity, financial development and CO₂ emissions in case of Portugal.

Dependent variable = $\ln C_t$								
Long Run Analysis								
Variables	Coefficient	T-Statistic	Coefficient	T-Statistic				
Constant	-5.3958*	-5.0277	-13.8480*	-4.4327				
$\ln E_t$	0.9559*	6.1073	0.7555*	6.1057				
$\ln F_t$	-0.0784*	-2.7983	1.6100**	2.6310				
$\ln F_t^2$			-0.0917*	-2.7576				
$\ln Y_t$	1.0078*	9.4075	1.0483*	13.2041				
Short Run Ana								
Variables	Coefficient	Std. Error	T-Statistic	Prob. values				
Constant	-0.0023	0.0090	-0.2601	0.7966				
$\ln E_t$	0.8823*	0.1391	6.3404	0.0000				
$\ln F_t$	-0.0399	0.0621	-0.6423	0.5257				
$\ln F_{t-1}$	0.1389***	0.0783	1.7735	0.0866				
$\ln Y_t$	0.8774*	0.2034	4.3138	0.0002				
ECM_{t-1}	-0.9916*	0.2183	-4.5412	0.0001				
R^2	0.7890							
F-statistic	21.6962*							
D. Watson	1.8870							
Short Run Diagnostic Tests								
Test	F-statistic	Prob. value						
$\chi^2 NORMAL$	0.3332	0.8464						
$\chi^2 SERIAL$	0.1976	0.8218						
$\chi^2 ARCH$	2.3768	0.1101						
$\chi^2 WHITE$	0.5167	0.8614						
$\chi^2 REMSAY$	0.8386	0.3676						
Note: * and ** show significant at 1 and 5 per cent level of significance respectively.								

Table-3: Long-and-short Runs Analysis

After investigating long run relationship between the variables, next step is to examine marginal impacts of economic growth, energy intensity and financial development on CO₂ emissions. The results are reported in Table-3 indicated that energy intensity has positive and statistically significant impact on CO₂ emissions. This shows that an increase in energy intensity contributes to energy pollutants significantly. The results inferred that a 1 per cent rise in energy intensity is linked with a 0.9559 per cent increase in CO₂ emissions, all else same. The impact of financial development is negative and it is statistically significant at 1 per cent level of significance. It implies that a 0.0784 per cent decline in CO₂ emissions is linked with a 1 per cent increase in financial development. This exposes that financial sector development contributes in condensing CO₂ emissions by directing banks to provide loans to firms for those investment projects which are environment friendly. The relationship between economic growth and CO₂ emissions is positive and it is significant at 1 per cent level. Keeping other things same, a 1 per cent increase in economic growth raises CO₂ emissions by a 1.007 per cent. Our empirical exercise indicates that economic growth is a major contributor to CO2 emissions after energy intensity in case of Portugal. Furthermore, our results confirmed the presence of inverted-U shape relationship between financial development and CO₂ emissions. The impact of linear and nonlinear terms of financial development is positive and negative on CO₂ emissions and it is statistically significant at 5 per cent and 1 per cent levels respectively. This entails that initially CO2 emissions are positively linked with financial development and financial development starts to decline it once financial sector matures. It is suggested that financial sector should provide loans (subsidies) for energy efficient technologies and allocate funds to energy system for exploring new sources of energy such as renewables.

The short run results illustrated that energy intensity and economic growth have positive impact on carbon emissions and it is statistically significant at 1 per cent level of significance. It is found that energy intensity is major contributor to carbon emissions in short run. Financial sector development is negatively related with CO₂ emissions but insignificant. Surprisingly, financial sector development with lagged period also increases carbon emissions. The statistically significant estimate of lagged error term i.e. ECM_{t-1} with negative sign corroborates our established long run relationship between economic growth, energy intensity, financial development and carbon emissions. The empirical evidence reported in Table-3 pointed out that coefficient of ECM_{t-1} is -0.9916 which is statistically significant at 1 per cent level of significance. This concludes that changes in CO₂ emissions are corrected by 99 per cent every year in long run⁷. It suggests that full convergence process will take more than a year to reach the stable path of equilibrium. This implies that adjustment process is very fast and significant for Portuguese economy in any shock to carbon emissions equation.

The plots of both CUSUM and CUSUMsq are shown by Figure-1 and 2 at 5 per cent level of significance. Results indicated that plots of both tests are within critical bounds at 5 per cent level of significance. The empirical evidence for diagnostic tests is detailed in Table-4. The results opined that short run model seems to pass all tests successfully such as test of normality, serial correlation, autoregressive conditional heteroskedasticity, white heteroskedasticity and specification of short run model. This indicated that there is no problem of non-normality of error term, no serial correlation between the variables as well as no evidence is found for autoregressive conditional heteroskedasticity. The variables are homoscedastic and functional form of short run model is well organized. The stability and sensitivity analysis favors that the

parameters of long run and short run ARDL and short run empirical evidence is consistent and stable for policy purpose regarding carbon emissions in case of Portugal.

Figure-1 Plot of Cumulative Sum of Recursive Residuals

The presence of cointegration for long run economic growth, energy intensity, financial development and carbon emissions leads us to implement the VECM Granger causality approach to analyze the direction of causal relationship between the series. The appropriate knowledge about the direction of causality between the variables helps policy making authorities in articulating inclusive energy, economic, financial and environmental policy to sustain economic growth and improve the environmental quality over the long period of time. Granger [84] suggested that in the presence of cointegration, once variables are found to be stationary at unique order then VECM Granger causality framework is an appropriate approach to detect the long-and-short runs causal relationship between economic growth, energy intensity, financial development and carbon emissions. The Table-4 reports the results of Granger causality test.

In long span of time, empirical evidence indicated that the bidirectional causal relationship is found between energy intensity and CO_2 emissions. This implies that efficient use of modern technology declines energy intensity that in resulting leads to lower CO_2 emissions during production process and vise versa. This finding is with the line of existing energy literature such as Papadopoulos and Haralambopoulos [89] and later on with Hatzigeorgiou et al. [48] in case of Greece. This implies that in current setup it is difficult for Portuguese economy to find decoupling carbon emissions. There is a need of overhauling energy structure to encourage energy efficient technologies by considering a number of policy reforms. The unidirectional causality is found running from economic growth to energy intensity also suggests adopting energy efficient technology which helps in enhancing domestic production but with less CO_2 emissions. Economic growth Granger causes CO_2 emissions.

V					I D				
Variable	Short Run				Long Run	Joint Long-and-Short Run Causality			
	$\Delta \ln C_{t-1}$	$\Delta \ln E_{t-1}$	$\Delta \ln F_{t-1}$	$\Delta \ln Y_{t-1}$	<i>ECT</i> _{<i>t</i>-1}	$\Delta \ln C_{t-1}, ECT_{t-1}$	$\Delta \ln E_{t-1}, ECT_{t-1}$	$\Delta \ln F_{t-1}, ECT_{t-1}$	$\Delta \ln Y_{t-1}, ECT_{t-1}$
$\Delta \ln C_t$	••••	24.5188*	0.6861	27.8183*	-0.5729**	••••	20.2686*	2.8869***	46.8625*
		[0.0000]	[0.5811]	[0.0000]	[-2.4283]		[0.0000]	[0.0532]	[0.0000]
$\Delta \ln E_t$	28.6458*	••••	0.9136	4.7349**	-0.7317*	20.6499*	••••	2.9131***	14.6628*
	[0.0000]		[0.4123]	[0.0166]	[-2.8783]	[0.0000]		[0.0512]	[0.0000]
$\Delta \ln F_t$	0.0467	0.0175	••••	0.5131	••••	••••	••••	••••	••••
	[0.9544]	[0.9825]		[0.6038]					
$\Delta \ln Y_t$	15.4471*	12.4398*	0.3213	••••	••••	••••	••••	••••	••••
	[0.0000]	[0.0001]	[0.7277]						

Table-4: The VECM Granger Causality Analysis

This implies that a rise in economic activity raises more demand for energy and in resulting increases the CO₂ emissions. Our empirical evidence is contradictory with findings of Hatzigeorgiou et al. [48] who reported bidirectional causal relationship between economic growth and energy intensity. Finally, unidirectional causality is also found running from financial development to energy intensity. This supports the view argued by Shahbaz and Lean [90] that sound financial sector enables the firms to adopt advance and energy efficient technology during production process. Although, they reported that bidirectional causality exists between financial development and energy consumption in case of Tunisia. Finally, unidirectional causality is found runs from financial development to carbon emissions. This supports the argument that financial sector development lowers CO₂ emissions by encouraging the firms to adopt advanced technology which emits less carbon emissions during production. These results are consistent with energy literature such as Talukdar and Meisner, [70].

In short span of time, causality analysis exposed that economic growth and energy intensity Granger cause each other. The bidirectional causality is found between energy intensity and CO_2 emissions. The feedback hypothesis also exists between economic growth and CO_2 emissions. The joint long-and-short runs causality analysis also supports the empirical findings for long run as well as short run.

It is argued in economic literature that the Granger causality approaches such as VECM Granger causality test has some limitations. The causality test cannot capture the relative strength of causal relation between the variables beyond the selected time period. This weakens the reliability of causality results by VECM Granger approach. To solve this issue, we applied

innovative accounting approach (IAA) i.e. variance decomposition method and impulse response function. We have implemented the generalized forecast error variance decomposition method using vector autoregressive (VAR) system to test the strength of causal relationship between economic growth, energy intensity, financial development and CO2 emissions in case of Pakistan. The variance decomposition approach indicates the magnitude of the predicted error variance for a series accounted for by innovations from each of the independent variable over different time-horizons beyond the selected time period. It is pointed by Pesaran and Shin [91] that the generalized forecast error variance decomposition method shows proportional contribution in one variable due to innovative shocks stemming in other variables. The main advantage of this approach is that like orthogonalized forecast error variance decomposition approach; it is insensitive with ordering of the variables because ordering of the variables is uniquely determined by VAR system. Further, the generalized forecast error variance decomposition approach estimates the simultaneous shock affects. Engle and Granger [78] and Ibrahim [92] argued that with VAR framework, variance decomposition approach produces better results as compared to other traditional approaches.

The results of variance decomposition approach are describes in Table-5. The empirical evidence indicates that a 10.65 per cent portion of CO_2 emissions is contributed by its own innovative shocks and one standard deviation shock in financial development explains energy pollutants by 59.96%. The implies that financial development plays vital role to improve the environmental quality by directing financial resources to projects where firms utilize advanced technology to enhance domestic production with less CO_2 emissions.

Variance Decomposition of $\ln C_t$									
Period	S.E.	$\ln C_t$	$\ln E_t$	$\ln F_t$	$\ln Y_t$				
1	0.0522	100.0000	0.0000	0.0000	0.0000				
2	0.0638	76.6092	2.1222	0.6995	20.5690				
3	0.0748	63.4918	2.8381	2.5768	31.0931				
4	0.0886	47.0122	6.6878	7.13683	39.1630				
5	0.1021	36.3854	8.7809	15.3446	39.4889				
6	0.1152	28.9803	9.6342	23.5514	37.8339				
7	0.1274	24.0528	9.4032	30.9497	35.5941				
8	0.1386	20.5698	8.9114	36.8973	33.6213				
9	0.1490	18.0081	8.4077	41.7433	31.8407				
10	0.1587	16.0382	7.9792	45.7951	30.1874				
11	0.1678	14.4817	7.6004	49.3234	28.5943				
12	0.1763	13.2282	7.2468	52.4534	27.0715				
13	0.1842	12.2058	6.9068	55.2478	25.6393				
14	0.1916	11.3622	6.5834	57.7409	24.3133				
15	0.1984	10.6582	6.2809	59.9652	23.0955				
	Variance Decomposition of $\ln E_t$								
Period	S.E.	$\ln C_t$	$\ln E_t$	$\ln F_t$	$\ln Y_t$				
1	0.0397	41.3522	58.6477	0.0000	0.0000				
2	0.0427	40.9854	57.2635	1.6685	0.0825				
3	0.0453	42.2503	51.0118	5.9790	0.7586				
4	0.0483	39.5151	45.0318	9.1273	6.3256				
5	0.0521	35.1489	39.2479	13.3500	12.2530				
6	0.0567	30.1423	35.0699	19.1538	15.6338				
7	0.0614	25.8761	31.5370	26.2586	16.3281				
8	0.0660	22.5906	28.2826	33.1124	16.0142				
9	0.0702	20.1345	25.4707	38.9132	15.4814				
10	0.0739	18.2557	23.1955	43.5723	14.9764				
11	0.0774	16.7622	21.3710	47.3929	14.4737				
12	0.0806	15.5348	19.8806	50.6536	13.9309				
13	0.0836	14.5082	18.6277	53.5168	13.3471				
14	0.0864	13.6447	17.5533	56.0483	12.7535				
15	0.0889	12.9165	16.6260	58.2762	12.1811				
Variance Decomposition of $\ln F_t$									
Period	S.E.	$\ln C_t$	$\ln E_t$	$\ln F_t$	$\ln Y_t$				
1	0.0770	0.0408	0.0000	99.9591	0.0000				
2	0.1255	0.6199	0.3527	97.2746	1.7527				
3	0.1649	0.5499	0.2049	93.6071	5.6380				
4	0.1946	0.4757	0.5709	89.5279	9.4252				

5	0.2166	0.4086	1.5751	85.3679	12.6483				
6	0.2327	0.3697	2.6028	81.6620	15.3653				
7	0.2450	0.3514	3.3926	78.3072	17.9486				
8	0.2553	0.3510	3.9892	75.0770	20.5826				
9	0.2645	0.3642	4.5265	71.8050	23.3040				
10	0.2729	0.3876	5.0845	68.4894	26.0383				
11	0.2808	0.4184	5.6766	65.2112	28.6936				
12	0.2882	0.4553	6.2742	62.0685	31.2018				
13	0.2953	0.4978	6.8441	59.1347	33.5232				
14	0.3023	0.5449	7.3671	56.4568	35.6310				
15	0.3092	0.5954	7.8368	54.0673	37.5004				
	Variance Decomposition of $\ln Y_t$								
Period	S.E.	$\ln C_t$	$\ln E_t$	$\ln F_t$	$\ln Y_t$				
1	0.0244	8.7243	18.4880	0.2776	72.5100				
2	0.0394	5.0323	7.1570	1.3121	86.4983				
3	0.0521	3.5118	10.4445	0.7509	85.2926				
4	0.0620	2.7139	16.0544	1.9805	79.2510				
5	0.0694	2.3590	18.1751	5.2498	74.2160				
6	0.0755	2.2222	17.9333	9.0049	70.8394				
7	0.0811	2.1861	17.0002	12.3479	68.4656				
8	0.0866	2.1698	16.1278	15.2859	66.4163				
9	0.0921	2.1412	15.4834	18.1446	64.2307				
10	0.0974	2.0993	14.9746	21.1300	61.7959				
11	0.1027	2.0539	14.4755	24.2461	59.2243				
12	0.1078	2.0108	13.9415	27.3862	56.6613				
13	0.1127	1.9712	13.3897	30.4480	54.1909				
14	0.1174	1.9336	12.8481	33.3804	51.8377				
15	0.1219	1.8966	12.3319	36.1716	49.5997				

The contribution of economic growth to CO_2 emissions is 23.09 per cent. This contribution in CO_2 emissions due to economic growth first rises, goes to peak point, and then starts to fall. This confirms the existence of inverted-U relationship between economic growth and CO_2 emissions in case of Portugal. A very little portion of CO_2 emissions is explained by innovative shocks stemming in energy intensity i.e. 6.28 per cent.

A 12.91 per cent portion of energy intensity is explained by one standard deviation shock in CO_2 emissions and 16.62 per cent portion is contributed to energy intensity by its own innovative shocks. A standard deviation shock stemming in financial development and economic growth attribute to energy intensity by 58.27 and 12.18 per cent respectively. A 37.50 per cent contribution exists in financial development by shocks stemming in economic growth. CO_2 emissions and energy intensity explain financial development minimally and one standard innovative shock stems in financial development explains itself by 54.06 per cent. The contribution of CO_2 emissions, energy intensity and financial development to economic growth 1.89, 12.33 and 36.17 per cent respectively and rest is being explained by its own standard innovative shocks. The existing empirical evidence confirms the feedback hypothesis between financial development and economic growth.

The impulse response function is alternate of variance decomposition approach and shows the reaction in one variable due to shocks stemming in other variables. The Figure-3 indicated the positive response in carbon emissions due to standard shocks stemming in economic growth and energy intensity while CO_2 emissions is negatively responded by financial development. This means that financial sector development contributes in condensing carbon emissions. The contribution of carbon emissions and economic growth is positive to energy intensity while financial development declines energy intensity due use of energy efficient technologies. The response of financial development is positive due to innovative shocks stemming in energy intensity and economic growth. A standard shock occurs in energy intensity stimulates economic growth while financial sector development declines it. This shows that financial development

does not contribute to economic growth. This confirms that current financial crisis in Europe has decayed economic activity in Portugal.

Figure-3: Impulse Response Function

V. Conclusion and Future Directions

This study investigated the dynamic relationship between economic growth, energy intensity, financial development and CO_2 emissions in case of Portuguese economy over the period of 1971-2009. For this purpose, we applied ARDL bounds testing approach to cointegration to

check the cointegration among the variables for long run, VECM Granger causality to test the direction of causal relationship between the variables and robustness of causality analysis was tested by applying innovative accounting approach (IAA).

Our results indicated that the variables are cointegrated for long run relationship. The empirical evidence showed that energy intensity increases carbon emissions and economic growth is a major contributor to CO_2 emissions. Financial sector development condenses carbon emissions and inverted-U shape relationship is confirmed between financial sector development and carbon emissions. This validates the contribution of financial sector to improve the quality of environment. The causality analysis exposed the bidirectional causality between energy intensity and carbon emissions. The unidirectional causal relation is found running from economic growth and financial development to CO₂ emissions. This implies that carbon emissions can be reduced at the cost of economic growth or energy efficient technologies should be encouraged to enhance domestic production with the help of financial sector. Economic growth and financial development Granger cause energy intensity which reveals that adoption of energy conservation would not adversely affect economic growth. Again, financial sector must fix her focus on the allocation of funds to those firms which adopt environment friendly technologies and encourage the firms to use more energy efficient technology for production purpose and hence to save environment from degradation.

The rising trend of carbon emissions in current momentum is a debatable issue in case of Portugal. To overcome this ambiguous (controversial) issue, there is a need of comprehensive economic, financial and energy policy reforms to sustain economic growth by developing domestic financial sector. The present study can be augmented for future research by investigating the relationship between renewable energy consumption, nonrenewable energy consumption, economic growth and carbon emissions following (Tiwari, [93-94]). Other variables may also be included in model as potential determinants of carbon emissions such as urbanisation, (Hossain, [63]); trade openness, (Hossain, [63]); foreign direct investment, (Pao and Tsai, [21]); exchange rate / terms of trade (Jalil and Feridun, [31]); interest rate (Karanfil, [95]); population or population density (Himayatullah et al. [96]) and industrialization (Zhang, [54]) to examine relationship between economic growth, energy intensity and CO₂ emissions in case of Portugal.

Footnote

- Narayan and Prasad [7] and Shahbaz et al. [8] used electricity consumption as an indicator of energy consumption to examine the energy-growth nexus.
- 2. At initial level of economic growth, a rise in income is linked with an increase in energy consumption that raises CO₂ emissions and hence environmental degradation. It implies that there is positive relationship between economic growth and CO₂ emissions at low level of income. After achieving certain of level of income, awareness about clean environment increases. This leads the government and people to increase their spending on environment protection and regulation. In such situation, environmental degradation and CO₂ emissions tend to decrease. This show that how EKC is an inverted-U shape i.e. an increase in income shifts the positive link between economic growth and CO₂ to zero and then goes to negative relation between the both variables (Wang, [24]).
- 3. Akbostanci et al. [36] did not support their findings.
- 4. We used model-5 for empirical estimations following Sen [76].
- 5. Various unit root tests are available in economics literature to examine the stationarity properties of the series. These unit root tests are ADF (Dickey and Fuller, [71]), DF-GLS (Elliot et al. [74]); Ng-Perron (Ng and Perron, [75]) etc. These tests may provide biased and inconsistent empirical evidence regarding stationarity properties of the variables. The main reason is that ADF, DF-GLS and Ng-Perron do not seem to have information about structural breaks occurring in the time series data (Baum, [85]).
- 6. The results of lag order of the variables are available from authors upon request.
- 7. The statistically significance of lagged error term i.e. ECM_{t-1} is a further proof of the existence of stable long run relationship between the series (Bannerjee et al. [88]).

Reference

- Zivot E, Andrews D. 1992. Further evidence of great crash, the oil price shock and unit root hypothesis. Journal of Business and Economic Statistics 1992; 10: 251-270.
- [2]. Kraft J, Kraft A. On the relationship between energy and GNP. Journal of Energy and Development 1978; 3: 401-403.
- [3]. Chontanawat J, Hunt LC, Pierse R. Does energy consumption cause economic growth? Evidence from a systematic study of over 100 countries. Journal of Policy Modeling 2008; 30: 209-220.
- [4]. Payne J. A survey of the electricity consumption-growth literature. Applied Energy 2010; 87: 3723-3731.
- [5]. Ozturk A. A literature survey on energy-growth nexus. Energy Policy 2010; 38: 340-349.
- [6]. Ghali KH, El-Sakka M IT. Energy use and output growth in Canada: a multivariate cointegration analysis. Energy Economics 2004; 26: 225-238.
- [7]. Narayan PK, Prasad A. Electricity consumption-real GDP causality nexus: evidence from a bootstrapped causality test for 30 OECD countries. Energy Policy 2008; 36: 910-918.
- [8]. Shahbaz M, Tang CF, Shabbir MS. Electricity consumption and economic growth nexus in Portugal using cointegration and Causality approaches. Energy policy 2011; 39: 3529-3536.
- [9]. Fuinhas JA, Marques AC. Energy consumption and economic growth nexus in Portugal, Italy, Greece, Spain and Turkey: An ARDL bounds test approach (1965–2009). Energy Economics 2012; 43: 511-517.
- [10]. Behemiria NB, Mansob JRP. Does Portuguese economy support crude oil conservation hypothesis? 2012, University of Beira Interior, Covilha, Portugal.
- [11]. Toda HY, Yamamoto T. Statistical inferences in vector autoregressions with possibly integrated processes. Journal of Econometrics 1995; 66: 225-250.
- [12]. Hettige, H., Lucas, R.E.B., Wheeler, D., 1992. The toxic intensity of industrial production: global patterns, trends, and trade policy. American Economic Review 82, 478-481.
- [13]. Cropper M, Griffiths C. The interaction of population growth and environmental quality. American Economic Review 1994; 84: 250-254.
- [14]. Selden TM, Song D. Neoclassical growth, the J curve for abatement and the inverted U for pollution. Journal of Environmental Economics and Management 1995; 29: 162-168.

- [15]. Grossman G, Krueger A. Economic environment and the economic growth. Quarterly Journal of Economics 1995; 110: 353-377.
- [16]. Martinez-Zarzoso I, Bengochea-Morancho A. Pooled mean group estimation of an environmental Kuznets curve for CO2. Economics Letters 2004; 82: 121-126.
- [17]. Dinda S, Coondoo D. Income and emission: a panel data-based cointegration analysis. Ecological Economics 2006; 57: 167-181.
- [18]. Lean HH, Smyth R. CO2 emissions, electricity consumption and output in ASEAN. Applied Energy 2010; 87: 1858-1864.
- [19]. Apergis N, Payne JE. CO2 emissions, energy usage, and output in Central America. Energy Policy 2009; 37: 3282-3286.
- [20]. Apergis N, Payne JE. The emissions, energy consumption, and growth nexus: evidence from the commonwealth of independent states. Energy Policy 2010; 38: 650-655.
- [21]. Pao H-T, Tsai C-M. CO2 emissions, energy consumption and economic growth in BRIC countries. Energy Policy 2010; 38: 7850-7860.
- [22]. Acaravci, A., Ozturk, I. On the relationship between energy consumption, CO2 emissions and economic growth in Europe. Energy 2010; 35: 5412-5420.
- [23]. Pao H-T, Yu H-C, Yang Y-H. Modeling CO2 emissions, energy use, and economic growth in Russia. Energy 2011; 36: 5094-5100.
- [24]. Wang K-M. The relationship between carbon dioxide emissions and economic growth: quintile panel-type analysis. Quality & Quantity 2012. DOI 10. 1007/s11135-011-9594-y.
- [25]. Iwata H, Okada K, Samreth S. A note on the environmental Kuznets curve for CO2: A pooled mean group approach. Applied Energy 2011; 88: 1986-1996.
- [26]. Machado GV. Energy use, CO2 emissions and foreign trade: an IO approach applied to the Brazilian case. Thirteenth International Conference on Input–Output Techniques, Macerata, Italy (2000) 21-25 Aug.
- [27]. Mongelli, I., Tassielli, G and Notarnicola, B. Global warming agreements, international trade and energy/carbon embodiments: an input-output approach to the Italian case. Energy Policy 2006; 34: 88–100.
- [28]. Ang, J. B. CO2 emissions, energy consumption, and output in France. Energy Policy 2007; 35: 4772-4778.

- [29]. Ang, J. B. Economic development, pollutant emissions and energy consumption in Malaysia. Journal of Policy Modeling 2008; 30: 271-278.
- [30]. Song, T., Zheng, T and Tong, L. An empirical test of the environmental Kuznets curve in China: a panel cointegration approach. China Economic Review 2008; 19: 381-392.
- [31]. Jalil, A and Mahmud, S. Environment Kuznets curve for CO2 emissions: a cointegration analysis for China. Energy Policy 2009; 37: 5167-5172.
- [32]. Shiyi, C. Energy consumption, CO2 emission and sustainable development in Chinese industry. Economic Research Journal 2009; 4: 1-5.
- [33]. Dhakal, S. Urban energy use and carbon emissions from cities in China and policy implications. Energy Policy 2009; 37: 4208-4219.
- [34]. Halicioglu F. An econometric study of CO2 emissions, energy consumption, income and foreign trade in Turkey. Energy Policy 2009; 37: 1156-1164.
- [35]. Ozturk I, Acaravci A. CO2 emissions, energy consumption and economic growth in Turkey. Renewable and Sustainable Energy Reviews 2010; 14: 3220-3225.
- [36]. Akbostanci E, Türüt-AsIk S, Ipek TG. The relationship between income and environment in Turkey: is there an environmental Kuznets curve? Energy Policy 2009; 37: 861-867.
- [37]. Alam MJ, Begum IA, Buysse J, Rahman S, Huylenbroeck GV. Dynamic modeling of causal relationship between energy consumption, CO2 emissions and economic growth in India. Renewable and Sustainable Energy Reviews 2011; 15:3243-3251.
- [38]. Fodha M, Zaghdoud O. Economic growth and pollutant emissions in Tunisia: an empirical analysis of the environmental Kuznets curve. Energy Policy 2010; 38: 1150-1156.
- [39]. Nasir M, Rehman F-U. 2011. Environmental Kuznets curve for carbon emissions in Pakistan: An empirical investigation. Energy Policy 2011; 39: 1857-1864.
- [40]. Shahbaz M, Lean HH, Shabbir MS. Environmental Kuznets Curve Hypothesis in Pakistan: Cointegration and Granger Causality. Renewable and Sustainable Energy Reviews 2012; forthcoming issues.
- [41]. Soytas U, Sari U, Ewing BT. Energy consumption, income and carbon emissions in the United States. Ecological Economics 2007; 62: 482-489.
- [42]. Chebbi HE. Long and short–run linkages between economic growth, energy consumption and CO₂ emissions in Tunisia. Middle East Development Journal 2010; 2: 139-158.

- [43]. Gosh S. Import demand of crude oil and economic growth: evidence form India. Energy Policy 2009; 37: 699-702.
- [44]. Chang C-C. A multivariate causality test of carbon dioxide emissions, energy consumption and economic growth in China. Applied Energy 2010; 87: 3533-3537.
- [45]. Menyah K, Wolde-Rufeal Y. Energy consumption, pollutants emissions and economic growth in South Africa. Energy Consumption 2010; 32: 1374-1382.
- [46]. Odhiambo MN. Economic growth and carbon emissions In South Africa: An empirical investigation. International Business & Economics Research Journal 2011; 10: 75-84.
- [47]. Alam MJ, Begum IA, Buysse J, Huylenbroeck GV. Energy consumption, carbon emissions and economic growth nexus in Bangladesh: Cointegration and dynamic causality analysis. Energy Policy 2012. In Press, Corrected Proof.
- [48]. Hatzigeorgiou E, Polatidis H, Haralambopoulos D. CO2 emissions, GDP and energy intensity: A multivariate cointegration and causality analysis for Greece, 1977-2007. Applied Energy 2011; 88: 1377-1385.
- [49].Tamazian A, Piñeiro J, Vadlamannati KC. 2009. Does higher economic and financial development lead to environmental degradation: evidence from BRIC countries? Energy Policy 2009; 37: 246-253.
- [50]. Tamazian A, Rao BB. Do economic, financial and institutional developments matter for environmental degradation? Evidence from transitional economies. Energy Economics 2010; 32: 137-145.
- [51]. Claessens S, Feijen E. Financial sector development and the millennium development goals. World Bank Working Paper 2007; 89: The World Bank.
- [52]. Yuxiang K, Chen Z. Financial development and environmental performance: evidence from China. Environment and Development Economics 2010: 16: 1-19.
- [53]. Jalil A, Feridun M. The impact of growth, energy and financial development on the environment in China: A cointegration analysis, Energy Economics 2010; 33: 284-291.
- [54]. Zhang Y-J. 2011. The impact of financial development on carbon emissions: An empirical analysis in China. Energy Policy 39, 2197–2203.

- [55]. Al-mulali U, Sab CNBC. The impact of energy consumption and CO2 emission on the economic growth and financial development in the Sub Saharan African countries. Energy 2012; 39: 180-186.
- [56]. Zhang XP, Cheng XM. Energy consumption, carbon emissions, and economic growth in China. Ecological Economics 2009; 68: 2706-2712.
- [57]. Wang SS, Zhou DQ, Zhou P, Wang QW. CO2 emissions, energy consumption and economic growth in China: A panel data analysis. Energy Policy 2011; 39: 4870-4875.
- [58]. Ozturk I, Acaravci A. CO2 emissions, energy consumption and economic growth in Turkey. Renewable and Sustainable Energy Reviews 2010; 14: 3220-3225.
- [59]. Pao HT, Tsai CM. Modelling and forecasting the CO2 emissions, energy consumption and economic growth in Brazil. Energy 2011; 36: 2450-2458.
- [60]. Xepapadeas A. Regulation and evolution of compliance in common pool resources. Scandinavian Journal of Economics 2005; 107: 583-599.
- [61]. Lotfalipour MR, Falahi MA, Ashena M. Economic growth, CO2 emissions, and fossil fuels consumption in Iran. Energy 2010; 35: 5115-5120.
- [62]. Baloch H, Rafiq S, Salim R. Coal consumption, CO2 emission and economic growth in China: Empirical evidence and policy responses. Energy Economics 2012; 43: 518-528.
- [63]. Hossain SM. Panel estimation for CO2 emissions, energy consumption, economic growth, trade openness and urbanisation of newly industrialized countries. Energy Policy 2011; 39: 6991-6999.
- [64]. Multivariate Granger causality between CO2 emissions, energy consumption, FDI (foiegn direct investment) and GDP (gross domestic product): Evidence from a panel of BRIC (Brazil, Russian Federation, India, and China) countries. Energy 2011; 36: 685-693.
- [65]. Roca J, AlcaHntara V. Energy intensity, CO2 emissions and the environmental Kuznets curve. The Spanish case. Energy Policy 2001; 29: 553-556.
- [66]. Frankel J, Romer D. Does trade cause growth? American Economic Review 1999; 89: 379-399.
- [67]. Frankel J, Rose A. An estimate of the effect of common currencies on trade and income. Quarterly Journal of Economics 2002; 117: 437–466.

- [68]. Sadorsky P. The impact of financial development on energy consumption in emerging economies. Energy Policy 2010; 38: 2528-2535.
- [69]. Sadorsky P. Financial development and energy consumption in Central and Eastern European frontier economies. Energy Policy 2011; 39: 999-1006.
- [70]. Talukdar D, Meisner CM. Does the private sector help or hurt the environment? Evidence from carbon dioxide pollution in developing countries, World Development 2001; 29: 827-840.
- [71]. Dickey D, Fuller WA. Distribution of the estimates for autoregressive time series with unit root. Journal of the American Statistical Association 1979; 74: 427-431.
- [72]. Phillips PCB, Perron P. Testing for a unit root in time series regression. Biometrika 1988;75: 335-346.
- [73]. Kwiatkowski D, Phillips P, Schmidt P, Shin Y. Testing the null hypothesis of stationary against the alternative of a unit root: how sure are we that economic time series have a unit root? Journal of Econometrics 1992; 54: 159-178.
- [74]. Elliott G, Rothenberg TJ, Stock JH. Efficient tests for an autoregressive unit root. Econometrica 1996; 64: 813-836.
- [75]. Ng, S and Perron, P. Lag selection and the construction of unit root tests with good size and power. Econometrica 2001; 69: 1519-1554.
- [76]. Sen A. On unit root tests when the alternative is a trend break stationary process, Journal of Business and Economic Statistics 2003; 21: 174-184.
- [77]. Pesaran MH, Shin Y, Smith RJ. Bounds testing approaches to the analysis of level relationships. Journal of Applied Econometrics 2001; 16: 289-326.
- [78]. Engle RF, Granger CWJ. Cointegration and error correction representation: estimation and testing. Econometrica 1987; 55: 251-276.
- [79]. Johansen S, Juselius K. Maximum likelihood estimation and inference on cointegration with applications to the demand for money. Oxford Bulletin of Economics and Statistics 1990; 52: 169-210.
- [80]. Phillips PCB, Hansen BE. Statistical inference in instrumental variables regression with I(1) processes. Review of Economic Studies 1990; 57: 99-125.

- [81]. Narayan PK, Smyth R. Electricity consumption, employment and real income in Australia: Evidence from multivariate granger causality Tests. Energy Policy 2005; 33: 1109-1116.
- [82]. Narayan PK. The saving and investment nexus for China: evidence from co-integration tests. Applied Economics 2005; 37: 1979-1990.
- [83]. Turner P. Response surfaces for an F-test for cointegration. Applied Economics Letters 2006; 13: 479-482.
- [84]. Granger CWJ. Investigating Causal Relations by Econometric Models and Cross-Spectral Methods. Econometrica 1969; 37: 424-438.
- [85]. Baum CF. A review of Stata 8.1 and its time series capabilities. International Journal of Forecasting 2004; 20: 151-161.
- [86]. Ouattara B. Foreign aid and fiscal policy in Senegal. Unpublished manuscript 2004. University of Manchester, Manchester, UK.
- [87]. Lütkepohl H. Structural vector autoregressive analysis for cointegrated variables, AStA Advances in Statistical Analysis 2006; 90: 75-88.
- [88]. Banerjee A, Dolado JJ, Mestre R. Error-correction mechanism tests for cointegration in a single-equation framework. Journal of Time Series Analysis 1998; 19: 267-283.
- [89]. Papadopoulos E, Haralambopoulos DA. Carbon emissions: responses to energy intensity, energy conversion and energy prices. Cointegration analysis for Greece. In: 19th Int conf on efficiency, cost, optimization, simulation and environmental impact of energy systems. ECOS, American Society for Mechanical Engineers (ASME); 2006.
- [90]. Shahbaz M, Lean HH. Does financial development increase energy consumption? The role of industrialization and urbanization in Tunisia. Energy Policy 2012; 40: 473-479.
- [91]. Pesaran MH, Shin Y. An autoregressive distributed-led modeling approach to cointegration analysis. In *Econometrics and Economic Theory in the 20th Century. The Ragnar Frisch Centennial Symposium*, ed. Steinar Strom. Cambridge: Cambridge University Press 1999.
- [92]. Ibrahim MH. Sectoral effects of monetary policy: evidence from Malaysia. Asian Economic Journal 2005; 19: 83-102.
- [93]. Tiwari AK. A structural VAR analysis of renewable energy consumption, real GDP and CO2 emissions: evidence from India. Economic Bulletin 2011a; 31: 1793-1806.

- [94]. Tiwari AK. Comparative performance of renewable and nonrenewable energy source on economic growth and CO2 emissions of Europe and Eurasian countries: A PVAR approach. Economic Bulletin 2011b; 31: 2356-2372.
- [95]. Karanfil F. How many times again will we examine the energy-income nexus using a limited range of traditional econometric tools? Energy Policy 2009; 36: 3019-3025.
- [96]. Himayatullah K, Inamullah E, Shams K. Population, environment and poverty in Pakistan: linkages and empirical evidence. Environmental and Development Sustainability 2009; 11: 375-392.

Appendix-A

Zivot-Andrews Structural Break Trended Unit Root Test at 1st Difference

