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Abstract

This paper considers a model of observational learning in social networks. Every period, the

agents observe the actions of their neighbors and their realized outcomes, and they imitate the

most successful. First, we study the case where the network has finite population and we show

that, regardless of the structure, the population converges to a monomorphic steady state, i.e.

where every agent chooses the same action. Subsequently, we extend our analysis to infinitely

large networks and we differentiate the cases where agents have bounded neighborhoods, with

those where they do not. Under bounded neighborhoods, an action is diffused to the whole pop-

ulation if it is the only one initially chosen by infinitely many agents. If there exist more than

one such actions, we provide an additional sufficient condition in the payoff structure, which

ensures convergence for any network. Without the assumption of bounded neighborhoods, we

show that an action can survive even if it is initially chosen by a single agent and also that a

network can be in steady state without this being monomorphic.
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1. Introduction

A common characteristic of most economic activities is that they are not organized on a centralized

and anonymous way. They rather involve bilateral interactions between agents. Moreover, they tend

to be local in nature, meaning that, usually, the agents interact only with a small subset of the rest of

the population. The interaction consists of informational exchange, or observation of strategies and

outcomes. Indirectly, this interaction affects not only the direct neighbors, but also all the agents

which are, somehow, connected via mutual neighbors, or neighbors of neighbors, etc. Agents use the

received information to update their choices and improve their future outcomes.

In several dynamic decision problems, the agents seem to behave as if they observe the actions

of their neighbors and tend to imitate those that yielded better results in the past, rather than as

bayesian utility maximizers. Furthermore, in cases such as the use of a production technology, the

choice between substituting products, or even the choice of a route through traffic, we observe that

people tend to imitate neighbors that received extremely positive outcomes in the past. Imitation can

be explained in several ways, mostly caused by lack of information or bounded rationality. Meaning

that, either the agents are not aware of the mechanisms that control the outcome of their choices, or

even if they are, they are unable to make the appropriate calculations in order to use the available

information.

Learning through imitation of extremely successful behavior is not only observed in real-life

examples. Experiments and field studies (see Apesteguia et al., 2007; Conley and Udry, 2010) have

shown that, indeed, people tend to mimic the behavior of others that they have observed to be

successful in the past, even if they are not aware whether this was a result of a correct choice or

because of a lucky draw.

The main contribution of this paper is that we combine the above features, in an environment

with purely informational interactions. Namely, we study a problem of dynamic decision making

under uncertainty, where the agents interact through a social network. The interactions are only

informational, meaning that the decision of an agent does not affect directly the outcome of the

others. Agents update their decisions by imitating their neighbor that received the highest outcome

in the previous period.

Formally, we consider a countable population forming an arbitrary network. Each agent chooses

every period an action from a finite set and receives a payoff, which is drawn from a continuous dis-

tribution associated with the chosen action. The agents are not aware of the underlying distributions

and the payoffs do not depend on the choices of other agents, i.e. there are no payoff externalities.
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However, they observe the actions and realized payoffs of all their neighbors. The draws are inde-

pendent for every agent, meaning that it is possible that two agents choose the same action and

receive different payoffs. After observing actions and payoffs, the agents update their choice, imitat-

ing myopically the choice of their neighbor who received the highest payoff in the previous round.

We extend the model on cases where only a fraction of the population revises its action every period,

as well as on cases where some agents are experimenting by choosing randomly one of the actions

they observed.

The model is in line with the literature of observational learning in social networks, capturing an

environment with local and purely informational interactions and where the agents are using really

few of the available piece of information. The natural question that follows is why this combination is

important to deal with. There are many examples supporting the importance of the used context. For

example, suppose a farmer who has to choose periodically which product to produce. The quantity

she will manage to produce, given spatial and monetary constraints, depends mostly on the product

itself, on her skills and some other random events, rather than on the choice of his neighbors.

Moreover, a consumer who has to choose which telephone company would give her the highest

satisfaction. Also this depends more on factors she may not be aware of, rather than on the choices

of the others. This strengthens the idea of using purely informational interactions. Furthermore,

the inability of analyzing the importance of each factor enforces the use of imitating mechanisms,

instead of bayesian procedures. Finally, behavioral factors indicated by real-life situations, as well

as experimental studies, have shown that the observation of surprisingly successful outcomes creates

a tendency of imitation, without paying attention to the rest of the available information.

Under this context, we show that, in case the population is finite, the network converges with

probability one to a steady state and this steady state has to be monomorphic, meaning that all

the agents choose the same action. This action need not be the most efficient. This is because each

action is vulnerable to sequential negative shocks, that can lead to its disappearance. The result

holds also in the cases of experimentation over other observed actions, as well as if only some of the

agents update their choice each period.

The results differ significantly when the population is infinitely large. First of all, without further

restrictions we cannot ensure the convergence to a monomorphic steady state. Hence, we need to

adjust the conditions under which we can ensure the diffusion of a single action. In case of infinite

population, a crucial property is whether or not the agents have bounded neighborhood, meaning

that they are observed only by a finite number of agents in the society.

Assuming bounded neighborhoods ensures the diffusion of a single action, if it is the only one that

chosen initially by a non-trivial share of the population, i.e. all but a finite number. If this is not the
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case, then we provide a counter example, where the given network never converges. Nevertheless, we

provide a sufficient condition in the payoff structure, that can ensure convergence regardless of the

network structure. This condition is more demanding than first order stochastic dominance and for

this reason we provide an example where convergence occurs under our sufficient condition, but not

under first order stochastic dominance. These observations lead to the conclusion that in a very large

network, the diffusion of a single action is very hard and demands either a very large proportion of

initial adopters, a special network structure, or an action to be much more efficient compared to the

rest. As far as it concerns the use of our sufficient condition, the fact that it disregards completely

the importance of the network architecture makes it useful mostly for networks with small upper

bound in neighborhoods. The behavior of specific network structure would be a very interesting

topic for further research.

Subsequently, if we drop the assumption of bounded neighborhoods, the properties of the network

change significantly. Under these circumstances, we provide an example where an action survives

although it is chosen by only one agent. This happens because this agent is able to affect the choice

of infinitely many others, stressing the role of centrality in social networks. Providing a technology

or a product to a massively observed agent can affect seriously the behavior of the population. We

provide, also, another example that drops the result of steady state being monomorphic, that was

proven to hold for finite population. In this example, we show a network in steady state, where more

than one actions are chosen by infinitely many agents.

Concluding, the present paper provides some important results on the study of ”imitate-the-

best” learning mechanisms, as well as it introduces many important questions, acting as a trigger

for future research. The fact that learning is a natural procedure in societies and that the imitation

of successful behavior is commonly observable in many aspects of social life and in several economic

activities, makes the study of the topic important, promising and, at the same time, interesting and

fascinating.

Related Literature

This paper contributes to the literature of social learning in networks. We use a model of observational

learning, where the agents observe the behavior and payoffs of their neighbors, and each period they

imitate the most successful. Under this framework we study diffusion of a specific behavior in the

whole netowrk. In this section, we connect our work with the existing literature in social learning

and diffusion in networks, while stressing the different perspectives that arise from our analysis.
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Bala and Goyal (1998) study social learning with local interactions, under myopic best-reply.

Learning occurs through Bayesian update, using only information about their own neighbors, and

not about neighbors of neighbors, etc. They provide sufficient conditions for the convergence of

beliefs: Neighborhoods need to be bounded1 in order to ensure convergence to the efficient action.

Existence of a set of agents connected with everybody, often called the “royal family”, can be harmful

for the society. This is because such a set may enforce the diffusion of their action/opinion, even if

it not the optimal for the society.

Bayesian learning and best-response strategies2 are common in the literature of learning in net-

works (see Gale and Kariv, 2003; Acemoglu et al., 2011). More specifically, Gale and Kariv (2003)

study a Bayesian learning procedure, but using a network and payoff structure quite similar to ours.

They show that, given the fact that agent’s information is non-decreasing in time, the equilibrium

payoff must be also non-decreasing and since they assume it to be bounded, it must converge. More-

over, in equilibrium identical agents gain the same in expectation. In general, in Bayesian procedures

the agents accumulate information through time, which is in favor of learning. However, in our set-

ting it is not the case. Hence, it is normal that convergence will be harder to occur, but eventually

not impossible.

On the other hand, Golub and Jackson (2010) study an extended version of the standard DeGroot

model3 (see DeGroot, 1974). In their context a crowd is “wise” if the importance of the most

influential neighbor vanishes as the society grows. Their idea is along the same lines with our of

bounded neighborhood. This is because the existence of agents that are connected with infinitely

many agents can prevent from diffusion of a unique action, or even from convergence to a steady

state. A crucial difference between the two papers, is that their updating rule allows to the agents

to use more information, nevertheless, this is also a type of näıve learning mechanism4.

As we already mentioned, our paper deals with a procedure of observational learning. Obser-

vational learning has been the subject of several studies. The main characteristic of these learning

procedures is that agents tend to decide based on the choices made by other agents in the past,

1by bounded neighborhood we mean that there exists K > 0 such that the number of neighbors of every agent i

satisfies ki ≡ |Ni| ≤ K, ∀i ∈ N
2The agents maximize short-term utility based on the observed behavior of their neighbors in the previous round
3In DeGroot’s model a set of k individuals may reach consensus starting from a subjective probability distribution

for the unknown value of a parameter. Consensus is reached because every agent gets informed about the proba-

bility distributions of the other agents and revise her distribution. The revised belief is a linear combination of the

distributions of all the agents
4Meaning that the agents are using simple rules to update their behavior. Rules that do not demand sophisticated

skills.
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rather than on calculation of payoffs of any given action. Banerjee (1992) introduces a simple de-

cision model, where agents observe the behavior of the previous decision makers and follow a herd

behavior, i.e., they tend to do what others have done, rather than evaluating their own information.

Subsequently, Ellison and Fudenberg (1995), and Banerjee and Fudenberg (2004) switch attention

to word-of-mouth learning, meaning that agents accumulate information from a random sample of

the population, and act based on the average payoffs of each action. Moreover, Smith and Sorensen

(2000) observe and study some possible problems in the long-run behavior of observational learning

procedures.

Additionally, in Ellison and Fudenberg (1993), agents choose between two technologies, and peri-

odically evaluate their choices based on the average performance of each technology at the previous

round. They introduce the concept of an exogenous “window width”, which plays a role similar to

the network structure in our case.

Even though these papers focus on similar learning procedures, they significantly differ from our

work in the role of imitation of the best agent. More specifically, averaging the performance of

several agents, reduces the effect of unexpectedly lucky results, in future behaviors. Imitation of

very successful results can lead to survival of suboptimal actions through time, in case these results

are caused by luckily realized states of nature.

Learning by imitation is also widely-studied in the literature. Various models of evolutionary

game theory (Weibull, 1995; Fudenberg and Levine, 1998) are using different types of imitation

processes. Josephson and Matros (2004) study an evolutionary process with random shocks, where

the agents imitate the most successful behavior. They show that only strictly payoff-dominant

strategies survive in the long-run. In this paper, we extend their results — in a slightly different

environment — for stochastically dominant strategies. Vega-Redondo (1997) studies the evolution of

a Cournot economy, where the agents adjust their behavior by imitating the most successful agent in

the previous round. He concludes that, as time proceeds, this adjustment rule leads to spread of the

most successful behavior in the market. At first glance, this concept appears to be similar to ours.

However, there are still two main differences. First, in our concept, unlike Vega-Redondo (1997), we

restrict our attention to payoff functions without externalities. Second, this paper does not include

local interaction structure, since it is assumed that every agent’s strategy and payoff are publicly

observed.

Payoff uncertainty is introduced by Schlag (1998, 1999). In the first paper Schlag (1998), an

agent with limited memory is randomly matched with another agent from the population. Then,

he studies different adjustment rules, with the property that successful behaviors are imitated, and

concludes that the most efficient mechanism is the one where an agent copies probabilistically the
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other’s behavior if it yielded higher payoff with probability proportional to the difference between the

realized outcomes. In Schlag (1999), he extends his framework to infinite populations, where each

agent is randomly matched with two agents each time. His work differs from ours, because it focuses

more on the selection of the most appropriate behavioral mechanism, rather than the properties of a

specific mechanism. However, the evidence about efficiency of “imitating-the-best” behavior further

strengthens our selected mechanism.

The literature on imitation in networks focuses mainly on coordination games and prisoner’s

dilemma games (e.g., Eshel et al., 1998; Alós-Ferrer and Weidenholzer, 2008; Fosco and Mengel,

2010). In these models, uncertainty comes from the lack of information about the choices made by

each agent’s neighbor. However, for each action profile, the payoffs are deterministic. This is not the

case in our environment, where payoffs are stochastic. Hence, the interaction between agents is only

informational. Alós-Ferrer and Weidenholzer (2008) aim at identifying the conditions for contagion

of efficient actions in the long-run, problem similar to the one we study.

Our analysis focuses on the diffusion of behavior, as well as the long-run properties of a network.

Large part of the literature in diffusion restricts attention to best-response dynamics, and relates

the utility of adopting a certain behavior with the number, or proportion, of neighbors that have

already adopted it. Morris (2000) shows that maximal contagion occurs for sufficiently uniform

local interaction and low neighbor growth. Along the same line, Lopez-Pintado (2008) and Jackson

and Yariv (2007) look into the role of connectivity in diffusion, finding that stochastically dominant

degree distributions favor diffusion. The model and the behavior rules are quite different compared

to our case. However, once again, the role of connectivity in the network is stressed.

The brief review of the literature makes apparent the importance of learning procedures in the

study of social networks, as well as the lack of work dealing with imitation of extremely successful

behaviors in a society linked as a network. These facts stress the importance of the results of the

present work, as a benchmark for further study of the topic.

The rest of the paper is organized as follows. In Section 2, we explain the model. Section 3,

contains some initial remarks on convergence to steady state. Section 4, provides the main results

for networks with finite population. While, Section 5 deals with networks with countably infinite

population. Finally, Section 6 provides conclusions and possible extensions of the present paper.
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2. The Model

2.1. The agents

5There is a countable set of agents N = {1, ..., n}6, with typical elements i and j. The set N is

mentioned as population of the network. Each i ∈ N takes an action ati from a finite set A =

{α1, ..., αM}, at every period t = 1, 2, .... Uncertainty is represented by a probability space (Ω,F ,P),

where Ω is a compact metric space, F is the Borel σ-field, and P is a Borel probability measure. The

states of nature are drawn independently every period and for each agent. Hence, it is possible that

two agents choose the same strategy at the same period and they receive different payoffs.

There is a common stage payoff function U : A × Ω → R, with U(ati, ω
t
i) being a bounded and

compact function for every action a and continuous in ωi. Uninteresting cases occur when some

action is strictly dominant independently of the state of nature 7. Hence, we restrict our attention

to the case where ∀a, a′ ∈ A, U(a,Ω) is a closed interval in R , U(a,Ω) = U(a′,Ω) and they have full

support.

Denote At = {αk ∈ A : ∃i ∈ N such that ati = αk} as the set of actions that are chosen in the

network at time t. Recall that the action in period t depends on the states of nature in period t− 1.

Namely, Ωt−1 = {ωt−1
i , ∀i ∈ N} is the set of realized states of nature in period t− 1.

2.2. The Network

A social network is represented by a family of sets N := {Ni ⊆ N | i = 1, ..., n}, with Ni denoting

the set of agents observed by agent i. Throughout the paper Ni is called i’s neighborhood, and is

assumed to contain i.

The sets N induce a graph with nodes N , and edges E =
⋃n

i=1{(i, j) : j ∈ Ni}. We focus on

undirected graphs: as usual, we say that a network is undirected whenever for all i, j ∈ N , j ∈ Ni if

and only if i ∈ Nj. The network structure describes the flow of information in the network. Namely,

each agent i ∈ N observes the action and the realized payoff of every j ∈ Ni.

A path in a network between nodes i and j is a sequence i1, ..., iK such that i1 = i, iK = j and

ik+1 ∈ Nik for k = 1, ..., K − 1. The distance, lij, between two nodes in the network is the length of

the shortest path between them. The diameter of the network, denoted as dN , is the largest distance

between any two nodes in the network

5Our basic notation follows the one in Gale and Kariv (2003).
6In Section 4 we assume N to be finite, whereas in Section 5 is assumed to be countably infinite
7If an action is strictly payoff dominant, it will be spread to the network
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We say that two nodes are connected if there is a path between them. The network is connected

if every pair of nodes is connected. In our analysis, we focus on connected networks. However, the

analysis would be identical for connected components8 of disconnected networks.

2.3. Behavior

At t = 1, each agent receives a private signal σi(ω), where σi : Ω → R and based on this she makes

her initial choice. At the end of each period, the agents observe the actions and realized payoffs of

all their neighbors. Subsequently, at t = 2, 3, ... each agent switches to the action of her neighbor

that earned the highest payoff in the previous period. Notice that agents imitate others based on

realized, rather than expected payoffs. Tie breaks are broken randomly. Formally, for each t > 1,

at+1
i ∈

{

a ∈ A : a = atk where k = argmaxj∈Ni
U(atj, ω

t
j)

}

(1)

where ωt
j is the actual state at t, for agent j.

The above described behavior is usually called “imitate-the-best” (see also Alós-Ferrer and Wei-

denholzer, 2008). The important aspect of this myopic behavior is that the agents discard most of the

available information. They ignore whatever has happened before the previous round and even from

this round they take into account only the piece of information related to the most successful agent.

This näıve strategy makes the network vulnerable to extreme shocks, that may be very misleading

for the society.

However, there has been empirical and experimental evidence showing that, indeed, agents tend

to switch strategies, imitating those with the most attractive realized outcomes (for example see

Apesteguia et al., 2007; Conley and Udry, 2010). Moreover, under certain conditions that are ex-

plained later, even such a decision rule can lead to efficient outcomes.

Notice that in the present setting there are no payoff externalities, since the outcome of each agent

depends only on his action and the current state of nature. This feature differentiates the present

work from the extended literature on imitation procedures in several types of games. Nevertheless,

there are information externalities, related to the fact that agents adjusted their action based on the

information received by their neighbors.

2.4. Steady state and efficiency

State of period t is called the set that contains the action chosen by each agent at this period . A state

8A component is a non-empty sub-network N ′ such that N ′ ⊂ N , N ′ is connected and if i ∈ N ′ and (i, j) ∈ E then

j ∈ N ′ and (i, j) ∈ E′.
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is called monomorphic if every agent chooses the same action, at period t. Moreover, the network

is in steady state at period t, if no agent changes her action from this period on. Throughout the

paper, it is mentioned the idea of convergence, referring to convergence with probability 1. Formally:

Definition 1. State of period t is called the set St = {ati, . . . , a
t
n}.

Definition 2. A state is monomorphic if there exists k ∈ {1, ...,M}, such that ati = αk for all i ∈ N .

Definition 3. Let t ≥ 1, if for all i ∈ N holds that ati = at
′

i for all t′ > t, the network is in steady

state.

We call an action efficient if it yields the highest expected payoff. An action is mentioned as more

efficient than another one if it yields higher expected payoff. Later on, we will focus on actions that

can be ordered in terms of stochastic dominance.

3. First Results about Convergence to Steady State

Remark 1. If the agents were imitating based on the highest expected payoff of each action, then the

system would converge to a monomorphic state. At this state every agent would choose the efficient

action.

This first remark is trivial, because being aware of the expected payoff diminishes the uncertainty

in the system. This case is the same as having deterministic outcomes for each action, where eventu-

ally every agent imitates the efficient action, as soon as she gets aware of it. A more interesting case

is extensively studied by Ellison and Fudenberg (1993), where the agents have to choose between two

technologies and they adjust their choice based on the average realized payoff of each technology in

the previous round.

Remark 2. Under the behavior rule (1), if a finite population network is complete, it will converge

with probability 1, to a monomorphic steady state, from the second period on.

If the network is complete, each agent is able to observe actions and realized payoffs of every agent

in the society. Hence, the action chosen by the agent that received the highest payoff in the first

period, will be chosen by everyone from the second period on. The probability that two actions will

give exactly the same payoff is zero, because we have assumed continuous probability distributions.

In case of network with infinite population, the result is not obvious. If there exist two, or more,

actions chosen by infinite players, then for each of them will exist some agent receiving the maximum

payoff. However, with probability 1, one of the two action will receive a payoff strictly better than
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the other. This happens because the agents are countably infinite, whereas the possible outcomes

from a continuous distribution are uncountably infinite. Hence, the network converges to a steady

state from the second period on.

Moreover, even when the network is not complete, if there exists a set of agents that is observed

by everyone, then the initial action chosen by these agents is likely to affect the behavior of the whole

system. For finite population, if one of them receives a payoff close to the upper bound, this will lead

to the diffusion of the chosen action from the next round on, irrespectively of the being efficient or

not (see also “Royal Family” in Bala and Goyal, 1998). Once more, the analysis becomes different

in case we assume the population to be infinitely large.

The simple cases analyzed above conclude to the diffusion of a single action to the whole popu-

lation, in the long run. However, we have not yet shown that this has to be always the case. The

following section shows that this is always the case in networks with finite population, whereas sec-

tion 5 provides appropriate conditions that can ensure convergence to a monomorphic steady state,

for infinitely large population.

4. Networks with finite population

In this section, we restrict our attention to networks with finite population. We prove that finite

networks always converge to a steady state, regardless of the initial conditions or the network struc-

ture. Moreover, every action that is initially chosen in the network can be the one to survive in the

long-run (The first proposition shows that in finite networks the steady state has to be monomor-

phic). Recall, that we have restricted our analysis to cases where there is no action that yields always

higher payoffs than all the others.

Proposition 4.1. Let a connected network, with finite population. If the agents behave under behav-

ioral rule (1), then all possible steady states are necessarily monomorphic.

Proof. Suppose not. This means that at the steady state at least two different actions are chosen.

Given that the network is connected, for any arbitrary structure, there will be at least a pair of

neighbors, i, j choosing different actions. Moreover, given that the population is finite, each one

of these agents must have a bounded neighborhood. Let bi,1 and bi,2 the number of neighbors of i

choosing actions α1 and α2 respectively. If we are in a steady state, this means that agent i will

never change her choice. However, because of common support and continuity of payoff functions,
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as well as boundedness of neighborhoods, it holds always that:9

Pr[U(j, ωt
j) > U(l, ωt

l ) : for some j ∈ bi,2 and for all l ∈ bi,1] = (2)

= (1−
∏

j∈bi,2

Pr[U(j, ωt
j) ≤ û])

∏

l∈bi,1

Pr[U(l, ωt
l ) ≤ û] = (3)

= [1− F2(û)
bi,2 ]F1(û)

bi,1 ≥ p > 0 (4)

Hence, every period there is positive probability p that agent i will change her strategy. The proba-

bility that she never changes, given that no other agent in the network does so, is zero, because:

lim
t→∞

∞
∏

t=1

(1− p) = lim
t→∞

(1− p)t = 0

And this leads to contradiction of the initial argument10. Concluding, we have shown that it is

impossible for a connected network with finite population to be in a steady state, when more than

one actions are still present.

Notice that, the proposition is not valid for networks with infinite agents (see Example 5.4 -

two stars). Also, in case the network is not connected, the proposition holds for every connected

component. The above proposition is in line with the work of Gale and Kariv (2003), where, although

the updating mechanism differs, identical agents end up making identical choices in the long run.

Moreover, becomes apparent the advantage of using continuous, rather than discrete, payoff functions,

since this discards an unnecessary large amount of ties.

Nevertheless, we have still not ensured the convergence of the system to a steady state. Subse-

quently, we will focus on identifying necessary and sufficient conditions for convergence. Notice that

all monomorphic states are possible steady states (think of the trivial example where initially every

agent chooses the same action).

The convergence to steady state is quite intuitive. This is because each strategy has a positive

probability of disappearance after a finite number of periods and given that inexistent strategies

never reappear, the set of observed actions shrinks over time until it ends up containing a single

element (i.e. a unique action chosen by every agent in the network). To prove the result, we need

the following three lemmas:

Lemma 4.1. Let an arbitrary finite network (n < ∞), such that more than one action is observed.

Each period t, every action αk ∈ At has positive probability of disappearing after no more than dN

periods.

9For F1 and F2 being the cumulative distribution functions of the payoffs of actions α1 and α2 respectively
10The analysis is identical for more than two actions.
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Proof. At period t, there are at least two actions observed in the network. Take all players i ∈ N

such that ati = αk. Let I tk = {i ∈ N : ati = αk} be the set of agents that chose action αk in period

t and ¬I tk = {i ∈ N : ati 6= αk} the set of agents that did not. Take F t
k = {i ∈ I tk : Ni ∩ ¬I tk 6= ∅},

i.e. the set of agents in I tk that have, at least, one neighbor choosing an action different than αk.

Moreover, take NF t
k = {i ∈ I tk : Ni ∩F t

k 6= ∅ and i /∈ F t
k}, including those agents that have neighbors

belonging to F t
k, but they do not belong themselves.

Think of the following events: b̂t = {ωt
i ∈ Ω, for i ∈ N t

i,αk
= {F t

k ∪ NF t
k} : U t

i (αk, ω
t
i) ≤ ût},

meaning that all agents in Ni,αk
get payoff lower than a certain threshold and B̂t = {ωt

j ∈ Ω, for j ∈

Ni \ N t
i,αk

, where i ∈ N t
i,αk

and k′ 6= k : U t
j (αk′ , ω

t
j) > ût}, meaning that all the neighbors of the

above mentioned agents that choose different strategy get payoff higher than this threshold.

Given that the states of nature are independent between agents, we can define a lower bound of

the event, in which all agents that at time t play αk, change their strategy in the following period,

without making any of their neighbors change to αk, we denote it as Ct. In fact, Ct ⊃ {b̂t ∩ B̂t},

because this intersection is a specific case of the set Ct. Hence, Pr(Ct) ≥ Pr(b̂t∩B̂t) = Pr(b̂t)Pr(B̂t).

Notice that we impose independence between b̂t and B̂t, which holds because of the independence

between the states of nature.

Remark: ∀αk ∈ A and ω ∈ Ω ⇒ Pr(U(αk, ω) ≤ û) ∈ [bt, Bt] where bt, Bt ∈ (0, 1). Hence,

Pr(U(αk, ω) ≤ ût) ≥ bt > 0 and Pr(U(αk, ω) > ût) ≥ 1−Bt > 0. This is because of the full support

of U and the continuity of Ω.

Using the above remark and the independence of the states of nature we get the result that

Pr(b̂t) ≥ b
|Nt

i,αk
|

t and analogously Pr(B̂t) ≥ (1− Bt)
|Ni\Nt

i,αk
|11.Hence,

Pr(Ct) ≥ Pr(b̂t ∩ B̂t) = Pr(b̂t)Pr(B̂t) ≥ b
|Nt

i,αk
|

t (1− Bt)
|Ni\Nt

i,αk
| > 0

Independence of the realization of the states of nature yields the result that Ct and Ct+1 are

conditionally independent. The realization or not of Ct does not give any extra information about

the realization of Ct+1.

One of the possible histories that will lead to disappearance of action αk is the consecutive

realization of the events Ct+τ for τ ≥ 0, until all the agents that were using αk at t have changed

their choice. The number of periods needed depends on the structure of the network and more

specifically is at most equal to the diameter of the network. For any network with n agents the

diameter cannot be greater than n− 1.12

11Recall that | N t
i,αk

| denotes the amount of agents belonging to this set
12and this holds only for the “linear” network, which is similar to the 2-neighbor network, except of the fact that

two of the agents have only one neighbor.
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Hence, we can construct a positive lower bound for the probability of disappearance of an action

αk after no more than dN periods. Denote this event as Dt
αk

and we get:

Pr(Dt
αk
) ≥ Pr(

dN−1
⋂

τ=0

Ct+τ ) = [

dN−1
∏

τ=1

Pr(Ct+τ | Ct+τ−1)]Pr(Ct) ≥

≥
dN−1
∏

τ=0

b
|Nt+τ

i,αk
|

t+τ (1− Bt+τ )
|Ni\N

t+τ
i,αk

|
= Ḃ > 0.�

Lemma 4.2. Given that, at time t, K − 1 actions have disappeared from the network, there is

strictly positive probability that after finite number of periods, τ < ∞, exactly K actions will have

disappeared.

Proof. Denote as Kt the following set of histories:

Kt = {at time t, exactly K actions have disappeared from the network}

It is enough to show that Pr(Kt+τ | (K − 1)t) > 0 where τ < ∞ (in fact, at most τ = dN ).

Pr[Kt+τ | (K − 1)t] =
∑

αk∈At

{Pr[Dt+dN−1
αk

| (K − 1)t]} − Pr[
M−K−1
⋃

m=1

(K +m)t+τ | (K − 1)t] (5)

whereM is the total number of possible actions. Namely, the above expression tells that the prob-

ability of exactly one more action disappearing in the next τ periods, equals the sum of probabilities

of disappearance of each action, minus the probability that more than one actions will disappear in

the given time period. Analogously:

Pr[(K+1)t+τ | (K−1)t] =

k 6=k′
∑

αk,αk′∈At

{P [Dt+dN−1
αk

⋂

Dt+dN−1
αk′

| (K−1)t]}−Pr[
M−K−1
⋃

m=2

(K+m)t+τ | (K−1)t]

Pr[(K+1)t+τ | (K−1)t]+Pr[
M−K−1
⋃

m=2

(K+m)t+τ | (K−1)t] =

k 6=k′
∑

αk,αk′∈At

Pr[Dt+dN−1
αk

⋂

Dt+dN−1
αk′

| (K−1)t]

But:

Pr[(K + 1)t+τ | (K − 1)t] + Pr[
M−K−1
⋃

m=2

(K +m)t+τ | (K − 1)t] = Pr[
M−K−1
⋃

m=2

(K +m)t+τ | (K − 1)t]}

⇒ Pr[
M−K−1
⋃

m=2

(K +m)t+τ | (K − 1)t]} =

k 6=k′
∑

αk,αk′∈At

Pr[Dt+dN−1
αk

⋂

Dt+dN−1
αk′

| (K − 1)t]

13



Hence, by equation (2):

Pr[Kt+τ | (K − 1)t] =
∑

αk∈At

{Pr[Dt+dN−1
αk

| (K − 1)t]}−

k 6=k′
∑

αk,αk′∈At

{Pr[Dt+dN−1
αk

⋂

Dt+dN−1
αk′

| (K − 1)t]}

By lemma 1, we have shown that the first summation is strictly larger than zero, and we just need

to show that it is also strictly larger than the second. Notice that the first summation is trivially

weakly larger13. If the equality was possible, this would mean that, for every action, its disappearance

would necessarily yield the disappearance of another action. However, this cannot be the case for

every action, because of the independence of states of nature (The proof is trivial and available upon

request).

Hence we have shown that: Pr[Kt+τ | (K − 1)t] ≥ B̈ > 0.

Lemma 4.3. At each time t, there is positive probability of convergence to a monomorphic state in

the next T = (M −K + 1)dN periods, when K − 1 actions have already disappeared.

Proof. The event of “convergence to a monomorphic state” is the same as telling that M−1 actions

will have disappeared after T periods. One possible way of this to happen is if one action disappears

every τ = dN periods. Namely:

{(M − 1)t+T} ⊃ {{(K)t+τ | (K − 1)t} ∩ {(K +1)t+2τ | (K)t+τ} ∩ · · · ∩ {(M − 1)t+T | (M − 2)t+T−τ}}

But, notice that the events on the right hand side of the expression are independent, because the

states of nature are independent across time. Hence, recalling the result of lemma (2), we get the

following expression for the related probabilities.

Pt[(M − 1)t+T ] ≥ Pt[{(K)t+τ | (K − 1)t} ∩ {(K + 1)t+2τ | (K)t+τ} ∩ · · · ∩ {(M − 1)t+T | (M − 2)t+T−τ}]

= Pt[(K)t+τ | (K − 1)t]Pt+τ [(K + 1)t+2τ | (K)t+τ ] . . . Pt+T−τ [(M − 1)t+T | (M − 2)t+T−τ ]

≥ B̈(M−K−1) = C > 0

Meaning that the probability of convergence in finite time is strictly positive. Moreover, notice that,

∀K < M − 1 ⇒ C < 1. This remark is trivial because if K = M − 1, the system has already

converged, nevertheless we will use it to prove the following theorem.

Theorem 4.1. Let an arbitrary finite network (n < ∞). Under the behavior rule (1), the network

will converge with probability 1 to a monomorphic steady state.

13In general, Pr[A | C] ≥ Pr[A ∩B | C], ∀A,B,C
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Proof. The previous result shows that the probability that the network will NOT converge to a

monomorphic steady state in the next T periods is bounded below 1, given that it has not converged

until the current period. Formally:

Pt{[(M − 1)t+T ]
c | [(M − 1)t]

c} ≤ 1− C < 1

The event that the network will never converge is just the the intersection of the events were the

network is not converging after t+ T periods, given that it has not converged until period t.

{The Network never Converges} = {NC} =
∞
⋂

i=0

{[(M − 1)t+(i+1)T ]
c | [(M − 1)t+iT ]

c}

But again these expressions are independent. Namely, not converging until t+ 2T given that it has

not converged until t+ T is independent of not converging at t+ T given that it has not converged

until t: {[(M − 1)t+2T ]
c | [(M − 1)t+T ]

c} ⊥ {[(M − 1)t+T ]
c | [(M − 1)t]

c}.

Hence, we can transform the above expression in terms of probabilities:

P [{NC}] = lim
s→∞

s
∏

i=0

P{[(M − 1)t+(i+1)T ]
c | [(M − 1)t+iT ]

c}

≤ lim
s→∞

(1− C)s = 0

So, the network will converge with probability 1 to a monomorphic steady state.

Corollary 4.1. For a finite network, there is always positive probability of convergence to a sub-

optimal action.

The corollary is apparent from the fact that the efficient action faces a positive probability of

disappearance, as long as there are more actions chosen in the network. This result points out a

weak point of the present updating mechanism, which is the inability to ensure efficiency. However,

if the population is infinitely large, then we provide conditions for the diffusion of the most efficient

action (see Section 5).

Probabilistic updating

One of the main assumptions of the model is that all the agents are updating their choices simul-

taneously and every period. However, this need not be always the case. For this reason we repeat

our analysis, allowing for a richer setting. Namely, every period there is positive probability r > 0

for each agent of deciding to update her choice. We notice that there is still positive probability

that every agent in I tk will change her action. The proof is identical to the one of Theorem 4.1, if

we multiply the lower bound of Lemma 4.1 by rI
t
k . Again, the network converges to a monomorphic

steady state with probability 1, although convergence occurs at a slower rate.

15



Experimentation

The result holds even under certain forms of experimentation. In particular, we transform the updat-

ing rule as following: Every period, each agent imitates her most successful neighbor with probability

(1− ǫ) ∈ (0, 1) and with probability ǫ imitates randomly another of the actions she observes, includ-

ing her current choice. Under this updating rule, the proof remains the same, multiplying again the

lower bound of Lemma 4.1 by (1− ǫ)I
t
k . Notice, that here the experimentation is limited to observed

actions, which allows us to ensure that once an action dissappears from the network it does not

reappear.

5. Networks with countably infinite population

At first glance, one could doubt whether there is a difference between the cases of finitely and

infinitely large networks. Throughout this section we show, why the two cases are indeed different.

Intuitively, we expect different behavior, since for infinitely large networks there exist actions chosen

by infinite agents, where the possibility of disappearance in finite time vanishes to zero. Moreover,

the possibility that some agents are connected with infinite number of agents, turn them really

important for the long-term behavior of the society.

Even between different networks with infinitely large population, there is a property that can

differentiate the appropriate analysis. This is the case where some agents have unbounded neighbor-

hoods, i.e. they are observed by an infinite number of agents. We show how this property affects

the behavior of the system and we provide conditions to ensure convergence and efficiency in such

networks.

To assist our analysis, we introduce the following assumption. (Keep in mind that the following

assumption is used only when it is clearly stated.)

Assumption 1. [Bounded Neighborhood] Exists K > 0 ∈ R : ki ≡ |Ni| ≤ K, for all i ∈ N14 ⊳

In the rest of the section, we compare the cases where Assumption 1 holds or not, while stressing

the conditions that make the results of Section 4 to fail.

5.1. Bounded Neighborhoods

In this part we assume that Assumption 1 holds. The main importance of this assumption is that

it makes impossible for an agent to affect the behavior of a non-trivial portion of the population, by

14ki is called the degree of agent i and means the number of agents that i is connected with.
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receiving an extremely good outcome at some period.

An obvious, nevertheless crucial, remark is that for an infinitely large network, there must be at

least one action chosen by a non-trivial portion of the population. Obviously, our analysis will be

different if there is exactly one such action or there are more.

Proposition 5.1. Take a network with countably infinite population, where there is only one action,

αk, that is initially chosen by a non-trivial portion of the population. Under behavioral rule (1), and

assumption (1), the network will converge with probability 1 to a monomorphic steady state, where

every agent will choose αk.

Proof. Let I tk = {i ∈ N : ati = αk} be the set of agents that choose αk at time t and analogously

¬I tk = {i ∈ N : ati 6= αk} the set of agents that do not. By construction of the problem, I tk has

infinite members, while ¬I tk has finite members. For the rest of the notation recall lemma 4.1.

Notice that, every action k′ 6= k is chosen by a finite number of agents, so the longest distance,

Lk′ , between an agent choosing k′ and the closest agent choosing k′′ 6= k′ must have finite length,

l ≤ Lk′ . Hence, for all k′ 6= k, the result of Lemma 4.1 still holds, if we substitute the diameter dN

by the maximum of all these distances, say L.

Pr(Dt
αk′

) ≥ Pr(
L
⋂

τ=0

Ct+τ ) =
L
∏

τ=0

Pr(Ct+τ | Ct+τ−1) ≥
L
∏

τ=0

b
|Nt+τ

i,α
k′
|

t+τ (1− Bt+τ )
|Ni\N

t+τ
i,α

k′
|
= Ḃ > 0

Notice, as well, the importance of the assumption for bounded neighborhoods. If this did not

hold, then we could not ensure that the above product would be strictly positive. Moreover, the

expression does not hold for the action αk. The bounded neighborhood assumption can hold only

if the network has infinite diameter. Given that αk is the only action chosen by infinite number of

agents, Lk has to be infinite, giving a trivial lower bound equal to zero.

More intuitively, action αk faces a zero probability of disappearance in finite time. This is because,

each one of the agents choosing a different action can affect the choice only of a finite number of

agents, each period. Hence, it is not possible that a non-trivial portion of the population will stop

choosing αk in a finite time period.

Subsequently, the result of Lemma 4.2 still holds with some appropriate modification. Namely

τ = L and Pr[Kt+τ | (K − 1)t, I
t+τ
k 6= ∅] ≥ B̈ > 0, meaning that action αk cannot disappear from

the network.

With similar reasoning, we get the modification of Lemma 4.3, which tells that there is positive

probability of convergence to a monomorphic steady state in finite time, given that action αk will

not disappear. But, this is equivalent to the case where every agent chooses action αk, denoted as

{CAk}. Formally, Pt[{CAk}] ≡ Pt[(M − 1)t+T | I t+T
k 6= ∅] ≥ B̈(M−K−2) = C > 0.
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Finally, as in Theorem 4.1, we get a similar expression, showing that the probability that agents’

behavior will not converge to the same action, given as well that action αk is still present, is bounded

below 1. However, this is equivalent to the event of “Not converging to action αk”. This is because

action αk cannot disappear, hence if the system converges to a single action, this has to be αk.

Namely:

P [{NCAk}] ≡ Pt{[(M − 1)t+T ]
c | [(M − 1)t]

c, I t+T
k 6= ∅} ≤ 1− C < 1

P [{NCAk}] = lim
s→∞

s
∏

i=0

P{[(M − 1)t+(i+1)T ]
c | [(M − 1)t+iT ]

c, I t+T
k 6= ∅}

≤ lim
s→∞

(1− C)s = 0

Which means that the network will converge with probability 1, to a monomorphic steady state,

where every agent chooses the action αk.

The above proposition covers the case where there is only one action chosen by a non-trivial

part of the population. The question that follows naturally is whether the network has the same

properties when more than one actions are diffused to infinite agents. For a general network and

payoff structure, the answer is negative. The negative result is supported by a counter-example.

Proposition 5.2. Take an arbitrary network, with countably infinite agents behaving under behav-

ioral rule (1) and satisfying assumption (1). If there are more than one actions chosen by infinite

number of agents, we cannot ensure convergence to a monomorphic steady state, without imposing

further restrictions in the network or/and payoff structure.

The argument is proven by the following example.

Example 5.1. Think of the following infinitely large network (figure 1- linear network).

✚✙
✛✘

✚✙
✛✘

✚✙
✛✘

✚✙
✛✘

✚✙
✛✘

−2 −1 0 1 2

Figure 1: Line...

Notice that, all the agents have bounded neighborhoods, since they are connected with exactly two

agents and the diameter of the network is infinite. At time t, there are two actions still present,

α1 and α2. A line with size equal to half of the population choose each action (i.e. all the agents
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left from zero choose α1 and the rest choose α2). Both actions have the same support of utilities,

U(α1,Ω) = U(α2,Ω) ∈ [0, 1]. The distributions are as shown in the following figure.

✻

✲

f(u)

(u)1

1

1/2

3/2

Figure 2: Probability density functions of α1 and α2.

For these distributions, an agent choosing action α1 is, ex-ante, equally likely to get higher or

lower utility compared to an agent choosing action α2, and vice-versa15. Moreover, notice that the

only agents who can change are those in the boundary between the groups using each action. This

boundary will be moving randomly, but in the form of a random walk without drift. This means that

this boundary will never diverge to infinity, not even in the long-run.

The divergence of the boundary is identical to the disappearance of one of the two actions, i.e.

convergence to a monomorphic steady state. Since we have shown that this is not possible, it means

that this network will never converge to a monomorphic steady state. In fact it will be fluctuating

continuously around zero, without reaching a steady state.

The negative result of the previous example does not allow us to ensure convergence under every

structure, when at least two actions are chosen by non-trivial portion of the population. However,

there exist sufficient conditions, related to the payoff and network structure, that can ensure conver-

gence to a monomorphic steady state.

In the following proposition, we consider cases where all agents have bounded neighborhoods, as

well as, that all the remaining actions are chosen by infinitely many agents. These two facts yield the

initial remark that no action will disappear in finite time. Nevertheless, it is shown that it is possible

15P [X1 > X2] =
1
∫

0

P [X1 > x2]f2(x2)dx2 =
1/2
∫

0

(1− x2)(
1

2
+ 2x2)dx2 +

1
∫

1/2

(1− x2)(
5

2
− 2x2)dx2 = 1

2

19



for some action to be diffused to a continuously increasing share of the population, capturing the

whole of it in the long-run.

Proposition 5.3. Take a network with countably infinite population, where every agent has bounded

neighborhood, behaves under behavioral rule (1) and each of the remaining actions, {α1, ..., αm} is

chosen by a non-trivial share of the population, {s1, ...sm}. If there exists action αk such that:

(i) Fk(u) ≤ [Fk′(u)]
D, for all k′ 6= k16, and

(ii) sk is sufficiently large,

then the network will converge, with probability one, to a monomorphic steady state where every agent

chooses action αk.

Proof. Notice, that Fk(u) ≤ [Fk′(u)]
D ⇔ Pr(U(αk,Ω) ≥ û) ≥ 1 − Pr(U(αk′ ,Ω) ≤ û)D, for all

k′ 6= k and û ∈ U . Before convergence occurs, there is at least one pair of agents such that ai = αk

and aj = αk′ , with k′ 6= k. Condition (i) ensures that for all agents having at least one member of

their neighborhood (including themselves) choosing αk at period t, i.e. ∀i ∈ N such that, ∃j ∈ Ni :

atj = αk, it holds that P (at+1
i = αk) = p1 >

1
2
. Since this holds for each agent we can construct the

following variable, which we assume, in the first part of the proof, to be a finite number. Let:

rt+1 = {#i ∈ N : at+1
i = αk, a

t
i = αk′ , k

′ 6= k} − {#j ∈ N : at+1
j = αk′ , a

t
j = αk, k

′ 6= k}

Namely, this represents the difference between the number of agents changing from any action αk′

to αk, minus those that change from αk to any αk′ . The expected value of rt at each round will be,

at every time period t:

En[rt] =
atj=αk
∑

i:∃j∈Ni

[p1 − (1− p1)] =
atj=αk
∑

i:∃j∈Ni

[2p1 − 1] ≥ r > 0, for all t

The last inequality is direct implication of condition (i) and the assumption about finiteness of rt.

Since for every agent is more probable to change to αk, we expect that more agents will change from

other actions, actions to αk than the opposite.

In order to prove convergence, we need to show that in the long-run and as the population becomes

infinite it holds that:
∑

t

rt + skn → n ⇔ lim
n→∞

lim
t→∞

∑

t

rt

n
+ sk ≥ 1 (6)

By the weak law of large numbers, applied for the population, we get with probability 1:

lim
t→∞

t
∑

τ=1

rτ = lim
t→∞

t
∑

τ=1

En[rt] ≥ lim
t→∞

rt

16Fk is the cumulative distribution of payoffs associated with action αk. D is the upper bound of the neighborhoods

and is an exponent of F.
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Which makes equation (6) equal to:

lim
n→∞

lim
t→∞

∑

t

rt

n
+ sk ≥

lim
t→∞

rt

lim
n→∞

n
+ sk = r + sk ≥ 1

The equality holds because the limits over t and over n are equivalent. Both variables increase

with the same speed. Finally, the last inequality comes from condition (ii) that requires sk to be

sufficiently large. Sufficiency depends on r, which itself depends on the distributions of the payoffs.

Obviously, the more efficient is action αk, the smaller initial population share is needed in order to

ensure convergence.

Recall that we assumed r to be a finite number. if r is a share of the population, it is apparent

that the result still holds. Even more, the result holds without any restriction on sk, because the

limit we calculated diverges to infinity.

Our sufficient condition is weaker than first order stochastic dominance, nevertheless we have

the advantage of providing a result adequate for every network structure. The important fact in

our proof, is that the agents changing to αk are, in expectation, more than those changing from αk

to some other action. In general, this condition may depend not only on the payoff structure and

the initial share, but also on the network structure, which is something we completely disregarded

in the present analysis. Hence, if we can construct some condition depending on both network and

payoff structure, that yields the same result, then we could again ensure convergence. This result

can become the benchmark for future research on stronger conditions for specific structures.

Moreover, it is somehow surprising that a condition as strong as first order stochastic dominance

may not be sufficient. This happens either because of the complexity of the possible network struc-

tures, or because of insufficient initial share of the analogous action. To clarify more this argument,

we construct the following example.

Example 5.2. Take a linear network, as in example 1. At time t = 0, there are two actions present

in the network, α1 and α2. A line with size equal to half of the population chooses action α1 and,

analogously, the other half chooses α2. Notice that each agent has a neighborhood of two agents apart

from herself. Moreover, every period, there are only two agents, one choosing each action, that face

positive probability of changing their chosen action.

The payoffs are such that F1 < F2 (i.e. action α1 First Order Stochastically Dominates action

α2), but F1 ≥ (F2)
2.17 Calling rt the number of agents that change from action α2 to action α1 we

get the following:

17For example, let F1(u) = u and F2(u) = u
2

3
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rt =















1 with probability p1

0 with probability p2

−1 with probability p3

FOSD ensures that p1 > p3. However, the second condition means that p1 ≤ p2 + p3, or equivalently

p1 − p3 < 1
2
. The expected value of rt will be E[rt] = (p1 − p3). So,

lim
τ→∞

τ∑

t=1

rt+s1

limn→∞n
= p1 − p3 + s1. In

order to get diffusion of α1 we need p1 − p3 +
1
2
≥ 1, which here cannot be the case. Hence, although

α1 is FOSD compared to α2, α2 will be chosen by infinitely many agents, even in the long run.

Finally, notice that if F1 ≤ (F2)
2, then it can be the case (not necessarily) that p1 − p3 ≥

1
2
and

action α1 is diffused to the whole population.

5.2. Unbounded Neighborhoods

In case neighborhoods are unbounded, even for finite diameter, we cannot ensure convergence to

monomorphic steady state. This happens because a single agent can affect a non-trivial portion

of the population, meaning that in one period an action can be spread from a finite part of the

population to a non-trivial portion of it. This means that we will have more than one actions played

by infinite agents, which may lead the network not to converge to a monomorphic state. We clarify the

above statement with the following example. Moreover, in case of unbounded neighborhoods, it does

not hold the result of proposition 4.1, stating that steady state has to be necessarily monomorphic.

We provide an example where a network is in steady state, with more than one actions present.

Example 5.3. Think of the star network(figure 3 - one star), that satisfies finite diameter and the

central agent has unbounded neighbors.

Suppose there are two actions present in the network, with payoffs same as in example 1. Initially,

all the (infinitely many) peripheral agents choose action α1, while the central agent chooses α2. It is

apparent that the central agent will change her action in the second period, however she will make

infinite peripheral agents change to α2. This is because, for any realized outcome of U(α2, ·) = u it

holds that Pr[U(α1, ·) ≤ u] = F1(u) > 0.

Given that infinite agents will choose each action, there will be at least one receiving the highest

possible outcome, hence the choice of the central agent will change randomly from the second period

on. This leads the network to a continuous fluctuation, where infinite number of agents chooses each

action. Obviously, the system will never converge to a steady state.

We have shown that we cannot ensure convergence to a steady state in the above example. In

the following part we provide an example where the network can be in steady state, without this
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Figure 3: Star...

being monomorphic. This is also a counter-example to proposition 4.1, where we have shown that

for finite population, steady states are necessarily monomorphic. For infinite population, this may

not be the case.

Example 5.4. Think of the following network (figure 4 - two stars), that satisfies finite diameter

and some of the agents have unbounded neighborhoods.

Suppose there are two actions present in the network, with payoffs same as in example 1. All the

agents on the left star of the figure, including the center choose α1 and similarly all the agents on the

right star choose α2. The central agents are connected with infinitely many other agents choosing the

same action as them and only one choosing differently. Hence, they will continue acting the same,

with probability 118. The peripheral agents have only one neighbor each, who always chooses the same

action as them, so none of them will change her action either. Concluding, this network will be in a

steady state where half of the agents choose each action.

The important difference in this network is the existence of two groups of infinite agents, that

are connected only with agents choosing the same and having only a finite number of links with

18The extreme case where one of the two centers change action, will happen only if the other center receives at some

point the absolute maximum, but by continuity of the distributions, this will happen with probability 0
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agents that choose differently. Moreover, this links are so well connected with agents choosing the

same as them, that they never revise their choice. The intuitive conclusion of this observation is that

the existence of such groups can ensure the survival of the chosen action in the long-run, since no

member of this group is going to change her choice

6. Discussion

This paper considers a model of observational learning in social networks, where agents imitate the

behavior of their most successful neighbor. We focus on diffusion of a single action in the whole

population and the conditions under which this is possible. Our analysis expresses the different

properties between populations of finite and infinite agents.

For finite population, we show that the network necessarily converges to a steady state, and this

steady state has to be monomorphic. This happens, mainly, because an action chosen by finitely

many agents is vulnerable to a series of sequential negative shocks, that can lead to its disappearance.

This fact, combined with the assumption that actions never reappear, leads to the survival of a single

action in the long-run. Moreover, it cannot be ensured that the action that is diffused is the socially

optimal. In practical terms, this means that small populations can be easily manipulated and even
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misguided to take sub-optimal decisions. Additionally, for the establishment of a product, or a

technology in a society, is crucial that the agents initially choosing it will not receive bad shocks in

the first periods, since this can lead to early extinction from the society.

The results differ in case of infinitely large population. In this case, we differentiate between

networks where all the agents have bounded neighborhoods, i.e. are observed by a finite number of

agents, and networks where there exist agents observed by non-trivial portion of the population.

Under the assumption of bounded neighborhoods, an action is necessarily diffused, regardless

of its efficiency, only when it is the only one to be chosen by infinitely many agents. If not, we

need some additional conditions in the payoff or/and the network structure to ensure convergence

to a monomorphic steady state. This leads to the conclusion that, if there are no agents influencing

very large part of the population, for the establishment of a product or a technology in a society, is

required to be introduced initially to a sufficiently large portion of the population.

To overcome such problems, we provide a condition in the payoff structure, stricter than first

order stochastic dominance, that can ensure convergence regardless of the network architecture. We

show an example where first order stochastic dominance fails to guarantee convergence, while our

condition does. An important conclusion, is that the diffusion of an action in a very large network

is quite hard and requires either very special structure, very large proportion of initial adopters, or

the action to be much more efficient compared to the rest. This happens even for the most efficient

action.

Also, our sufficient condition is valuable mostly in networks where the maximum neighborhood

has quite small size. This increases the importance of studying the role of network architecture,

rather than the payoff structure, when applying to network where agents have large neighborhoods.

The advanced complexity of this problem, makes hard to deal with its general version. A very

interesting and natural extension of the present paper would be to study the behavior of specific

network for different payoff structures and vice versa, with importance in applied problems. Our

results could work as a benchmark for initial intuitions on the general behavior of such models.

The properties of the network change once again, when the property of bounded neighborhoods

is not satisfied. Under these circumstances, we provide an example where an action can survive in

the long-run, even if it is initially chosen by a single agent. This happens if this agents behavior is

observed by infinite agents. This can lead the network never converging to a steady state. In general,

this stresses the importance of central agents in a social network and the influential power they have

to the society. Introducing a technology to massively observed agents, such as social media, can

become very beneficial for its diffusion.

The last example exposes the possibility of converging to a steady state where more than one
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actions survive, unlike what we have shown for finite networks. This is because we observe groups

of infinite agents that are connected only with other agents choosing identically, except of a finite

number of links with agents choosing differently. Those agents will never observe, hence never change

their strategy. If, additionally, the agents that observe different actions have infinite links with their

own group, then they will never change as well. Concluding, the members of such groups will keep

using the same strategy forever.

In the present paper, we have shown some very important properties of an ”imitate-the-best”

mechanism in a social network. However, there are still crucial questions to be answered. Specif-

ically, our analysis is referring only to long-run behavior, without mentioning neither the speed of

convergence, nor the finite time properties of the society. Different network structures are expected

to have much different speed of convergence. For example, networks with lower connectivity, or

where there are no groups of agents choosing the same action, may retard the diffusion of an action

to the population.

Concluding, learning by imitation, and especially imitation of successful outcomes is a commonly

observable behavior in real life societies. This paper provides some explanations of societies whose

members act likewise and seek to turn attention into further analysis of similar problems.
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