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Abstract
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1 Introduction

The presence of unknown heteroskedasticity is a common setting in microeconometric re-

search. Inference based on many instruments asymptotics, as introduced by Kunitomo

(1980), Morimune (1983) and Bekker (1994), shows 2SLS is inconsistent under homoske-

dasticity and LIML is inconsistent under heteroskedasicity. A number of estimators have

been considered, including the two step feasible GMM estimator of Hansen (1982), the

continuously updated GMM estimator of Hansen Heaton and Yaron (1996), the grouping

estimators of Bekker and Van der Ploeg (2005), the jackknife estimators of Angrist, Imbens

and Krueger (1999) and the HLIM and HFUL estimators of Hausman et al. (2011). In

particular this last paper has been important for the approach that we present here.

Our starting point is aimed at formulating a consistent estimator for the noise compon-

ent in the expectation of the sum of squares of disturbances when projected on the space

of instruments. That way a method of moments estimator can be formulated similar to the

derivation of LIML as a moments estimator as described in Bekker (1994). Surprisingly

the estimator can be described as a symmetric jackknife estimator, where ’omit one’ fitted

values are used not only for the explanatory variables but instead for all endogenous vari-

ables including the dependent variable. Influential papers on Jackknife estimation include

Phillips and Hale (1977), Blomquist and Dahlberg (1999), Angrist, Imbens and Krueger

(1999), Donald and Newey (2000), Ackerberg and Deveraux (2003). Our genuine jackknife

estimator shares with LIML the property that the endogenous variables are treated sym-

metrically and that the estimation is not affected by the type of normalization beyond the

normalization itself.

Hausman et al. (2011) use a LIML version of the JIVE2 estimator of Angrist, Imbens

and Krueger (1999). The JIVE2 estimator is not a genuine jackknife estimator, but in the

LIML version it treats endogenous variables symmetrically. In case of homoskedasticity and

many weak instruments, while assuming the number of instruments grows slower than the

number of observations, the authors show the HLIM estimator is as efficient as LIML. Thus
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it seems the efficiency problems of jackknife estimators noted in Davidson and McKinnon

(2006) are overcome. Here we show there is room for improvement. The symmetric jacknife

estimator is a genuine jackknife estimator and it has a signal component that is larger than

found for HLIM. The Monte Carlo experiments, with the same set up as used in Hausman

et al. (2011), show it performs better than HLIM and its Fuller modifications.

The asymptotic theory allows for both many instruments and many weak instruments

asymptotics. Influential papers in this area include Donald and Newey (2001), Hahn,

Hausman and Kuersteiner (2004), Hahn (2002), Hahn and Inoue (2002), Chamberlain and

Imbens (2004), Chao and Swanson (2005), Stock and Yogo (2005), Han and Phillips (2006)

and Andrews and Stock (2007). Our results are formulated concisely. They are based on

high level assumptions where the concentration parameter need not grow at the same rate

as the number of observations and the quality of instruments may vary over explanatory

variables.

The plan of the paper is as follows. In Section 2 we present the model and some earlier

estimators. Section 3 uses a method of moments reasoning to formulate a heteroskedasti-

city robust estimator that is subsequently interpreted as a symmetric jackknife estimator.

Asymptotic assumptions and results are given in Section 4 and proved in the Appendix.

Section 5 presents the Monte Carlo findings.

2 The Model and some estimators

Consider observations in the n vector y and the n× k matrix X that satisfy

y = Xβ + ε, (1)

X = ZΠ + V , (2)

where the g vector β and the k × g matrix Π contain unknown parameters, and Z is an

n× k observed matrix of instruments. Similar to Hausman et al. (2011) we assume Z to
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be nonrandom, or we could allow Z to be random, but condition on it, as in Chao et al.

(2010). The assumption E(X) = ZΠ is made for convenience and could be generalized

as in Hausman et al. (2011), or as in Bekker (1994). The disturbances in the n× (1 + g)

matrix (ε,V ) have rows (εi,Vi), which are assumed to be independent, with zero mean

and covariance matrices

Σi =



σ2
i σ12i

σ21i Σ22i


 .

The covariance matrices of rows of (yi,Xi), i = 1, . . . , n, are given by

Ωi =



1 β′

0 Ig


Σi



1 0

β Ig


 . (3)

Throughout we use the notation where P = Z(Z ′Z)−1Z ′ has elements Pij = e′
iPej, and

ei and ej are formable unit vectors.

The estimators that we consider are related to LIML which is found by minimizing the

objective function

QLIML(β) =
(y −Xβ)′P (y −Xβ)

(y −Xβ)′(In − P )(y −Xβ)
, (4)

The LIML estimator and Fuller (1977) modifications are given by

β̂ = {X ′PX − λfX
′(In − P )X}

−1
{X ′Py − λfX

′(In − P )y} ,

λf = λ− α/(n− k),

λ = 1/λmax[{(y,X)′P (y,X)}−1 (y,X)′(In − P )(y,X)],

where λmax indicates the largest eigenvalue. For α = 0 LIML is found, which has no

moments under normality. For α = 1 the Fuller estimator is found. Under normality and

homoskedasticity, where the matrices Σi do not vary over i = 1, . . . , n, it has moments
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and is nearly unbiased. If one wishes to minimize the mean square error, α = 4 would be

appropriate. However, as shown by Bekker and Van der Ploeg (2005), LIML is inconsistent

under many-instruments asymptotics with heteroskedasticity.

Similarly, the Hansen (1982) two-step GMM estimator is inconsistent under many-

instruments asymptotics. It is found by minimizing

QGMM(β) = (y −Xβ)′Z

{
n∑

i=1

σ̂2
iZ

′
iZi

}−1

Z ′(y −Xβ), (5)

where σ̂2
i = (yi−Xiβ̂)

2 and β̂ is a first stage IV estimator such as 2SLS or LIML. A many-

instruments consistent version is given by the continuously updated GMM estimator of

Hansen, Heaton and Yaron (1996), which is found by minimizing the objective function

QCUE(β) = (y −Xβ)′Z

{
n∑

i=1

σ̂2
i (β)Z

′
iZi

}−1

Z ′(y −Xβ), (6)

where σ̂2
i (β) = (yi−Xiβ)

2. Newey and Windmeijer (2009) showed this estimator and other

generalized empirical likehood estimators are asymptotically robust to heteroskedasticity

and many weak instruments. Donald and Newey (2000) gave a jackknife interpretation.

However, the efficiency depends on using a heteroskedastic consistent weighting matrix

that can degrade the finite sample performance with many instruments as was shown by

Hausman et al. (2011) in Monte Carlo experiments.

To reduce problems related to the consistent estimation of the weighting matrix Bekker

and Van der Ploeg (2005) use exogenous clustering of observations. Let Cs define the

sth cluster of size ns such that the ith observation is in the sth cluster if i ∈ Cs, s =

1, . . . ,m. If this clustering, or grouping, is formulated as a function of Z, it is exogenous

and continuously updated GMM estimation can be formulated conditional on it. Let the

group means and group sample covariance matrices of the data be denoted by (ȳs, X̄s)

and Ss, respectively, then the continuously updated Group-GMM estimator is found by
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minimizing

QG-CUE =
m∑

s=1

ns(ȳs − X̄sβ)
2

(1,−β′)Ss(1,−β′)′
. (7)

Bekker and Van der Ploeg (2005) give standard errors that are consistent for sequences

where the number of groups m grows at the same rate as the number of observations.

Contrary to LIML, the asymptotic distribution is not affected by deviations from normality.

It uses the between goup heteroskedasticity to gain efficiency, yet it loses efficiency as

the within goup sample covariance matrices of the instruments are different from zero in

general.

Another way to avoid problems of heteroskedasticity is to use the jackkife approach.

The jackknife estimator, suggested by Phillips and Hale (1977) and later by Angrist, Imbens

and Krueger (1999) and Blomquist and Dahlberg (1999) uses the omit-one-observation

approach to reduce the bias of 2SLS in a homoskedastic context. It is given by

β̂JIVE1 = (X̃ ′X)−1X̃ ′y, (8)

e′
iX̃ = X̃i =

Zi(Z
′Z)−1Z ′X − hiXi

1− hi
,

where hi = Pii, and i = 1, . . . , n. It is robust against heteroskedasticity and many-

instruments consistent. The JIVE2 estimator of Angrist, Imbens and Krueger (1999) is

not a genuine jackknife estimator but it shares the many-instruments consistency property

with JIVE1. It uses X̃ = (P −D)X and thus minimizes a 2SLS-like objective function

QJIVE2(β) = (y −Xβ)′{P −D}(y −Xβ), (9)

where D = Diag(h) is the diagonal matrix formed by the elements of h = (h1, . . . , hn)
′.

JIVE2 is consistent under many instruments asymptotics as has been shown by Ackerberg

and Deveraux (2003). However, Davidson and McKinnon (2006) have shown that the

jackknife estimators can have low efficiency relative to LIML under homoskedasticity.
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Therefore, Hausman et al. (2011) consider jackknife versions of LIML and the Fuller

(1977) estimator by using the objective function

QHLIM(β) =
(y −Xβ)′{P −D}(y −Xβ)

(y −Xβ)′(y −Xβ)
. (10)

The estimators are given by

β̂ = {X ′(P −D)X − α̂X ′X}
−1

{X ′(P −D)y − α̂X ′y} , (11)

α̂ =
(n+ c)α̃− c

n+ cα̃− c
,

α̃ = λmin[{(y,X)′(y,X)}−1 (y,X)′{P −D}(y,X)].

For c = 0, β̂HLIM is found, and c = 1 produces β̂HFUL. Hausman et al. (2011) consider

many-instruments and many-weak-instruments asymptotics and show the asymptotic dis-

tributions are not affected by deviations from normality. The estimators perform much

better than the original jackknife estimators, but there is room for improvement as will be

argued below.

3 A method of moments and jackknife estimator

In order to handle heteroskedasticity the grouping estimator uses data clustering. In many

cases this means information will be lost in the process, although between-group heteroske-

dasticity is used to improve efficiency. The jackknife approach maintains original instru-

ments to a larger extent, but seems to remove possibly relevant information on β contained

in the matrix (y,X)′D(y,X). As an alternative to the jackknife objective function QHLIM,

we consider a method-of-moments approach that maintains the signal component in the

expectation of (y,X)′P (y,X) and aims at estimating the noise component consistently.

Thus we try to maintain the information contained in the data to a larger extent without

adding much additional noise. In a second stage we find our method-of-moments estimator
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can be interpreted as a jackknife estimator.

3.1 A method of moments estimator

To find a method-of moments estimator we need a many-instruments consistent estimator

of the noise component Ω(n) in

E {(y,X)′P (y,X)} = Π ′Z ′ZΠ +Ω(n), (12)

Ω(n) =
n∑

i=1

hiΩi. (13)

If Ω̂(n) = (y,X)′B(y,X) were an unbiased estimator,

E(Ω̂(n)) = E {(y,X)′B(y,X)} =
n∑

i=1

BiiΩi = Ω(n), (14)

then a LIML-like method-of-moments estimator would be given by minimizing

Q(β) =
(y −Xβ)′P (y −Xβ)

(y −Xβ)′B(y −Xβ)
. (15)

As a method-of-moments estimator, the many-instruments consistency would follow easily.

Furthermore, as P and B must have the same diagonal elements, third and fourth order

moments of the disturbances would not affect the many-instruments asymptotic distribu-

tion. Since the signal component Π ′Z ′ZΠ is maintained, the estimator would really have

LIML-like features, but now robust against heteroskedasticity.

The problem is to formulate an unbiased estimator Ω̂(n). As a starting point we consider

an estimator for Ωi given by

Ω̂i = (y,X)′
(In − P )eie

′(In − P )

e′
i(In − P )ei

(y,X),

E(Ω̂i) =
n∑

j=1

e′
j(In − P )eie

′
i(In − P )ej

e′
i(In − P )ei

Ωj = (1− hi)Ωi + (1− hi)
−1

n∑

j 6=i

P 2
ijΩj.
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Obviously, Ω̂i is biased, which also holds for an estimator of Ω(n) given by

n∑

i=1

hiΩ̂i = (y,X)′BHR(y,X), (16)

BHR = (In − P )D(In −D)−1(In − P ). (17)

We find the trace of BHR equals the trace of P , but the diagonal elements, given by

BHRtt = e′
t(In − P )DP{In −DP}

−1(In − P )et

=
n∑

i=1

hi
e′
t(In − P )eie

′
i(In − P )et

e′
i(In − P )ei

= ht −
n∑

i=1

hi
e′
t(In − P )eie

′
iPet

e′
i(In − P )ei

= ht −
h2t

1− ht
+

n∑

i=1

hiP
2
it

1− hi
, (18)

are different from the diagonal elements ht of P . For the second and third terms on the

right hand side we find

0 ≤
h2t

1− ht
≤

ht maxt(ht)

1−maxt(ht)
, (19)

0 ≤
n∑

i=1

hiP
2
it

1− hi
≤

(
maxt(ht)

1−maxt(ht)

) n∑

i=1

P 2
it =

ht maxt(ht)

1−maxt(ht)
. (20)

If maxt(ht) → 0, then BHRtt → ht, but that will not happen with many instruments, if

k/n → 0 does not hold. Yet k/n may be small in practice, and under normality the

bias of
∑n

i=1 hiΩ̂i may have a negligible effect on the distribution of the estimator of

β. However, due to the difference between the diagonals of P and BHR, third and fourth

order moments would enter the asymptotic distribution in case of nonnormality. Therefore,

instead of minimizing the objective function QMM(β) in (15) for B as given by BHR in

(17), we prefer to remove the bias.
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The matrix BHR can be written as B1 +B2, where

B1 = D(In −D)−1 −
1

2

{
PD(In −D)−1 +D(In −D)−1P

}
, (21)

B2 = PD(In −D)−1P −
1

2

{
PD(In −D)−1 +D(In −D)−1P

}
. (22)

We find B1ii = hi, |B2ii| ≤ hi maxi(hi)/{1 − maxi(hi)}, i = 1, . . . , n, and Z ′B1Z =

Z ′B2Z = O. Since an unbiased estimator for Ω(n) is given by Ω̂(n) = (y,X)′B1(y,X),

we could use B1 instead of BHR and thus find a method-moments estimator.

For practical reasons we choose a slightly different estimator with the same many-

instruments asymptotic distribution. The point is that in the presence of exogenous ex-

planatory variables, or a constant term, the covariance matrix Ω(n) is block-diagonal with

one block different from zero. However, the estimator Ω̂(n) is not block diagonal. If the

off-diagonal blocks are replaced by zeros, we would still have an unbiased estimator, but

one that no longer can be written as (y,X)B∗(y,X) for a suitable matrix B∗. A block-

diagonal structure easily allows for minimization over coefficients of endogenous variables

only. Therefore we choose to maintain B. We add B2 to the matrix P in the numerator

of the objective function instead. Summarizing we have

AHR = P −
1

2

{
PD(In −D)−1(In − P ) + (In − P )D(In −D)−1P

}
,

BHR = (In − P )D(In −D)−1(In − P ),

with objective function

QHRMM(β) =
(y −Xβ)′AHR(y −Xβ)

(y −Xβ)′BHR(y −Xβ)
. (23)

The diagonals of AHR and BHR are equal. In comparison with the jackknife objective

function QHLIM in (10) the signal is larger, since Π ′ZAHRZΠ = ΠZ ′ZΠ .
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3.2 Interpretation as a symmetric jackknife estimator

Interestingly, and to our surprise, our objective function QHRMM can be related to jackknife

estimation. That is to say, the minimizer of QHRMM also minimizes QHRMM − 1, which

replaces the matrix AHR by

AHR −BHR = P −B1

= P −D(In −D)−1 +
{
PD(In −D)−1 + (In −D)−1DP

}
/2

= (P̃ + P̃ ′)/2, (24)

P̃ = P −D(In −D)−1 +D(In −D)−1P

= (In −D)−1(P −D). (25)

The jackknife estimator βJIVE1 = (X̃ ′X)−1X̃ ′y is based on X̃ = P̃X. So, if we define

ỹ = P̃ y, then we find the numerator of the objective function is given by

(y −Xβ)′(AHR −BHR)(y −Xβ) =
1

2
(ỹ − X̃β)′(y −Xβ) +

1

2
(y −Xβ)′(ỹ − X̃β)

= (ỹ − X̃β)′(y −Xβ).

That is to say, genuine jackknife prediction is used for all endogenous variables symmet-

rically, including the dependent variable. As the statistical problem is basically symmetric

in the endogenous variables, it seems a good property the symmetry is maintained in the

jackknifing procedure. Thus HRMM can be interpreted as a symmetric jackknife (SJIVE)

procedure.

Equivalent to minimizing QHRMM we use

QSJIVE =
(y −Xβ)′C(y −Xβ)

(y −Xβ)′BHR(y −Xβ)
, (26)

where C = AHR − BHR. Let X = (X1,X2) and X2 = Z2, where Z = (Z1,Z2), so the

explanatory variables in X2 are assumed to be exogenous. Let β = (β′
1,β2)

′ be partitioned
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conformably. Let C∗ = C −AHRX2(X
′
2X2)

−1X ′
2AHR, then the SJIVE estimator and its

Fuller modifications (SJEF) can be computed by

β̂ =
(
X ′CX − λ̂XBHRX

)−1 (
X ′Cy − λ̂XBHRy

)
, (27)

λ̂ = λ− α/ tr(BHR),

λ = λmin

[
{(y,X1)

′BHR(y,X1)}
−1

(y,X1)
′C∗(y,X1)

]
.

For α = 0 β̂SJIVE is found. Based on the Monte Carlo experiments we would use a Fuller

modification β̂SJEF with α = 2. Using Theorem 1 below we compute standard errors as

the square root of the diagonal elements of the estimated covariance matrix, which is

formulated concisely as

V̂ar(β̂) = (X ′ĈX)−1(X − σ̂−2ε̂σ̂12)
′
(
ĈD2

ε̂Ĉ +Dε̂Ĉ
(2)Dε̂

)
(X − σ̂−2ε̂σ̂12)(X

′ĈX)−1,

(28)

where Ĉ = C − λ̂BHR and Ĉ(2) is the element wise or Hadamard product Ĉ ∗ Ĉ. The

diagonal matrix Dε̂ has the residuals ε̂ = y − Xβ̂ on the diagonal. Finally, σ̂2 and σ̂21

are found based on Ω̂ = (y,X)′BHR(y,X)/ tr(BHR), which is transformed to Σ̂ similar

to (30) below.

4 Asymptotic distributions

We consider many instruments and many weak instruments parameter sequences to de-

scribe the asymptotic distributions of the heteroskedasticity robust estimator SJIVE as

given in (27). Our formulation allows for the presence of both weak and strong instru-

ments within a single model. The derivation is based on high-level regularity conditions,

since primitive regularity conditions could be formulated very similar to earlier ones. For

example, the ones used by Hausman et al. (2011) could be used, although our results hold

more generally.
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Assumption 1. The diagonal elements of the hat matrix P satisfy maxi hi ≤ 1− 1/cu.

Assumption 2. The covariance matrices of the disturbances are bounded, 0 ≤ Ωi ≤ cuIg+1

and satisfy tr(BHR)
−1

∑n
i=1 e

′
iBHReiΩi → Ω.

Assumption 3. Let S = (y,X)′BHR(y,X) and C = AHR −BHR, then

plimn→∞ tr(BHR)
−1S = lim

n→∞
tr(BHR)

−1 ES = Ω,

plimn→∞(ΠZ ′ZΠ)−1X ′CX = lim
n→∞

(ΠZ ′ZΠ)−1 E(X ′CX) = Ig.

Let rmin = λmin(Π
′Z ′ZΠ) be the smallest eigenvalue of the signal matrix.

Assumption 4. rmin → ∞.

Let Q∗
SJIVE

(β) = tr(BHR)QSJIVE(β), then the many-instruments asymptotic approximations

are based on the following assumption.

Assumption 5. Many instruments: k/rmin → γ, and

{
∂2Q∗

SJIVE
(β)

∂β∂β′

}1/2

(β̂ − β) =

{
∂2Q∗

SJIVE
(β)

∂β∂β′

}−1/2
∂Q∗

SJIVE
(β)

∂β
+ op(1)

a
∼ N (0, Φ) ,

where Φ = H−1/2JH−1/2 and

H = plimn→∞(Π ′Z ′ZΠ)−1/2∂
2Q∗

SJIVE
(β)

∂β∂β′
(Π ′Z ′ZΠ)−1/2,

(Π ′Z ′ZΠ)−1/2∂Q
∗
SJIVE

(β)

∂β

a
∼ N (0, J),

J = lim
n→∞

Var

{
(Π ′Z ′ZΠ)−1/2∂Q

∗
SJIVE

(β)

∂β
+ op(1)

}
. (29)

The op(1) term in (29) is defined explicitly in (39) in the Appendix.

To formulate the main theorem we use

Σ =



1 −β′

0 Ig


Ω




1 0

−β Ig


 =



σ2 σ12

σ21 Σ22


 , (30)
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where Ω is defined in Assumption 2.

Theorem 1. Many instruments If Assumptions 1-5 are satisfied, then β̂ = β̂SJIVE is

consistent and (XĈX)1/2(β̂ − β)
a
∼ N (0, Ψ ), where Ĉ = C − λ̂BHR and

Ψ = lim
n→∞

[
(ΠZ ′ZΠ)−1/2

{
n∑

i=1

σ2
iΠZ ′Peie

′
iPZΠ (31)

+
n∑

i=1

n∑

j=1

C2
ij

(
−
σ21

σ2
, Ig

) (
σ2
jΣi +Σie1e

′
1Σj

) (
−
σ21

σ2
, Ig

)′
}
(ΠZ ′ZΠ)−1/2

]
.

A consistent estimator for Ψ is given by

Ψ̂ = (X ′ĈX)−1/2(X − σ̂−2ε̂σ̂12)
′
(
ĈD2

ε̂Ĉ +Dε̂Ĉ
(2)Dε̂

)
(X − σ̂−2ε̂σ̂12)(X

′ĈX)−1/2,

where Dε̂ is diagonal with ε̂ = y −Xβ̂ on the diagonal, and Ĉ(2) is the element wise or

Hadamard product Ĉ ∗ Ĉ. Finally, σ̂2 and σ̂21 are found based on Ω̂ = S/ tr(BHR), which

is transformed to Σ̂ similar to (30).

The proof is given in the Appendix. The asymptotic covariance matrix Ψ in (31) has two

terms. Under large-sample asymptotics, when k/rmin → 0 the second term vanishes. As

the second term may be relevant in the finite sample, the many instruments asymptotic

approximation to the finite distribution is usually more accurate than the large-sample ap-

proximation as was shown by Bekker (1994). When instruments are weak the second term

may be dominant and the first term may even be negligible. Chao and Swanson (2005) used

many-weak instruments asymptotic sequences and showed the first term actually vanishes,

while estimators such as LIML under homoskedasticity are still consistent. Hausman et al.

(2011) derived the many-weak instruments asymptotic distribution of HLIM and HFUL as

given in (11). We have a similar result.

Let rmax = λmax(Π
′Z ′ZΠ) be the largest eigenvalue of the signal matrix.

13



Assumption 6. Many weak instruments: k/rmax → ∞, k1/2/rmin → 0 and

k−1/2∂
2Q∗

SJIVE
(β)

∂β∂β′
(β̂ − β) = k−1/2∂Q

∗
SJIVE

(β)

∂β
+ op(1)

a
∼ N (0, Φw) ,

where

Φw = lim
n→∞

Var

{
k−1/2∂Q

∗
SJIVE

(β)

∂β
+ op(1)

}
. (32)

The op(1) term in (32) is defined explicitly in (41) in the Appendix.

Theorem 2. Many weak instruments If Assumptions 1-4 and 6 are satisfied, then

β̂ = β̂SJIVE is consistent and k−1/2XĈX(β̂ − β)
a
∼ N (0, Ψw), where

Ψw = lim
n→∞

k−1

n∑

i=1

n∑

j=1

C2
ij

(
−
σ21
σ2
, Ig

) (
σ2
jΣi +Σie1e

′
1Σj

) (
−
σ21
σ2
, Ig

)′

. (33)

For the actual computation of standard errors the many weak instruments asymptotic

distribution is not needed, since the many-instruments standard errors of Theorem 1 remain

consistent.

5 Monte Carlo simulations

We compare the finite sample properties of the HLIM and SJIVE and their Fuller modi-

fications given by (11) and (27), respectively. We use the same Monte Carlo set up as

Hausman et al. (2011).

The data generating process is given by y = ιγ + xβ + ε and x = zπ + v, where

n = 800, γ = β = 0. The strength of the instruments is varied by using two values π = 0.1

or π = 0.2, so that µ2 = nπ2 = 8 and µ2 = 32, respectively. Furthermore, z ∼ N (0, In)

and independently v ∼ N (0, In). The disturbances ε are generated by

ε = vρ+

√
1− ρ2

φ2 + ψ2
(φw1 + ψw2),

14



where ρ = 0.3, ψ = 0.86 and conditional on z, independent of v, w1 ∼ N (0, Diag(z)2)

and w2 ∼ N (0, ψ2In). The values φ = 0 and φ = 1.38072 are chosen such that

the R-squared between ε2i and the instruments equals 0 and 0.2, respectively.1 The in-

struments Z are given for k = 2, k = 10 and k = 30 by matrices with rows (1, zi),

(1, zi, z
2
i , z

3
i , z

4
i , zib1i, . . . , zib5i) and (1, zi, z

2
i , z

3
i , z

4
i , zib1i, . . . , zib25i), respectively, where in-

dependent of other random variables, the elements bji are i.i.d. Bernoulli distributed with

p = 1/2. We used 20,000 simulations.

Figure 1 plots the nine decile ranges—between the 5th and 95th percentiles—and

the median bias of Fuller modifications HFUL for c = 0, 1, 2, 3, 4, 5, and SJEF for α =

0, 1, 2, 3, 4, 5, when R2
ε2|z = 0. As observed by Hausman et al. (2011), LIML is many-

instruments consistent for this case and no big differences were found between HLIM and

LIML. Here we see that the HFUL and SJEF estimators are also very similar and the

differences are due mainly to the degree of Fullerization.

When R2
ε2|z = 0.2 this situation changes. Table 1 compares the outcomes for HFUL

when c = 1 and SJEF when α = 2. We see that SJEF dominates HFUL in terms of median

bias and nine decile range. The rejection rates of SJEF are smaller than the ones found

for HFUL, indicating that confidence sets based on SJEF are more conservative. Figure

2 plots the median bias and nine-decile ranges for all Fullerizations when R2
ε2|z = 0.2. We

find SJEF performs better for this setup than HFUL.

1R2

ε
2|z = var{E(ε2|z)}/[var{E(ε2|z)}+ E{var(ε2|z)}].
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Figure 1: R2
ε2|z = 0: Median bias against the Nine decimal range of HFUL with c =

0, 1, 2, 3, 4, 5 from right to left, and SJEF for α = 0, 1, 2, 3, 4, 5 from right to left, based on
20,000 replications.
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Figure 2: R2
ε2|z = 0.2: Median bias against the Nine decimal range of HFUL with c =

0, 1, 2, 3, 4, 5 from right to left, and SJEF for α = 0, 1, 2, 3, 4, 5 from right to left, based on
20,000 replications.
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Median bias Nine decile range Rejection rates

µ2 k HFUL SJEF HFUL SJEF HFUL SJEF

8 2 0.071 0.067 1.484 1.393 0.033 0.026

8 10 0.105 0.066 2.603 2.240 0.044 0.025

8 30 0.134 0.101 3.291 2.906 0.043 0.036

32 2 0.017 0.016 0.850 0.846 0.048 0.043

32 10 0.019 0.010 1.077 1.020 0.047 0.038

32 30 0.025 0.017 1.455 1.320 0.045 0.041

Table 1: R2
ε2|z = 0.2: Median bias, Nine decile range and 5% Rejection rates for HFUL

(c = 1) and SJEF (α = 2) based on 20,000 replications.

6 Conclusion

We considered instrumental variable estimation that is robust against heteroskedasticity.

A new estimator has been based on a method of moments reasoning and interpreted as a

symmetric jackknife estimator. Asymptotic theory based on high level assumptions, which

allow for both many instruments and many weak instruments, resulted in a concise formu-

lation of asymptotic distributions and standard errors. A Monte Carlo comparison with

the HFUL estimator of Hausman et al. (2011) showed the symmetric jackknife estimator

SJIVE performs better.
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7 Appendix

7.1 Derivation of Theorem 1

To derive Theorem 1 we use the notation δ = (1,−β′)′ and M = (y,X)′AHR(y,X) in

addition to the definitions of S and C in Assumption 3. We find

E{M − S}δ = 0, (34)

Var [{M − S}δ] = E {(y,X)′C(y,X)δδ′(y,X)′C(y,X)}

= E
n∑

i=1

n∑

s=1

(y,X)′Ceie
′
i(y,X)δδ′(y,X)eje

′
jC(y,X)

= E
∑

i

ε2i (y,X)′Ceie
′
iC(y,X) + E

n∑

i=1

n∑

s=1

εiεj(Cij)
2(y,X)′eje

′
i(y,X), (35)

=
n∑

i=1

σ2
i

(
β′

Ig

)
Π ′Z ′Ceie

′
iCZΠ(β, Ig) +

n∑

i=1

n∑

s=1

C2
ij

(
σ2
jΩi +Ωiδδ

′Ωj

)
. (36)

Using Assumption 2 we find

n∑

i=1

n∑

s=1

C2
ij

(
σ2
jΩi +Ωiδδ

′Ωj

)
≤ c2u(1 + δ′δ)

n∑

i=1

n∑

s=1

C2
ijIg+1 = c2u(1 + δ′δ) tr(C2)Ig+1,

so by Assumption 1 the second term in (36) is of order O(k) just as tr(C2) is. Consequently,

δ′(M − S)δ = Op(k
1/2). (37)

For the first term we find

n∑

i=1

σ2
i

(
β′

Ig

)
Π ′Z ′Ceie

′
iCZΠ(β, Ig) ≤ cu

(
β′

Ig

)
Π ′Z ′C2ZΠ(β, Ig)

= cu

(
β′

Ig

)
Π ′Z ′

{
In +

1

4
D2(In −D)−2

}
ZΠ(β, Ig)

≤ cu

(
1 +

c2u
4

)(
β′

Ig

)
Π ′Z ′ZΠ(β, Ig),
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so by Assumption 5, where k/rn → γ we find

(Π ′Z ′ZΠ)−1/2(0, Ig)(M − S)δ = Op(1). (38)

The first derivative of the objective function is given by

∂Q∗
SJIVE

(β)

∂β
= −2

{
δ′Sδ

tr(BHR)

}−1

(0, Ig)

{
Mδ −

(
δ′Mδ

δ′Sδ

)
Sδ

}

= −2

{
δ′Sδ

tr(BHR)

}−1

(0, Ig)

(
In −

Sδδ′

δ′Sδ

)
{M − S}δ.

Using Assumptions 3 and 5 we find,

−
1

2

{
δ′Sδ

tr(BHR)

}
(Π ′Z ′ZΠ)−1/2∂Q

∗
SJIVE

(β)

∂β
=

(Π ′Z ′ZΠ)−1/2
{
(0, Ig)− σ−2σ21δ

′
}
{M − S}δ −

(
k

rmin

)1/2 (
Π ′Z ′ZΠ

rmin

)−1/2 {
(0, Ig)Sδ

δ′Sδ
−

σ21

σ2

}
k−1/2δ′{M − S}δ =

(Π ′Z ′ZΠ)−1/2
{
(0, Ig)− σ−2σ21δ

′
}
{M − S}δ + op(1). (39)

The second derivative of the objective function is given by

∂2Q∗
SJIVE

(β)

∂β∂β′
= 2

{
δ′Sδ

tr(BHR)

}−1

(0, Ig)

(
2
Sδδ′

δ′Sδ
− Ig+1

){
M −

(
δ′Mδ

δ′Sδ

)
S

}
×

(
2
δδ′S

δ′Sδ
− Ig+1

)(
0

Ig

)

= 2

{
δ′Sδ

tr(BHR)

}−1

(0, Ig)(M − S + F )

(
0

Ig

)
,

where

F = −2(M − S)δ
δ′S

δ′Sδ
− 2

Sδ

δ′Sδ
δ′(M − S)− δ′(M − S)δ

(
S

δ′Sδ
− 4

Sδδ′S

(δ′Sδ)2

)
.
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Due to (37) and (38) we find

(Π ′Z ′ZΠ)−1/2(0, Ig)F

(
0

Ig

)
(Π ′Z ′ZΠ)−1/2 = op(1).

Consequently

1

2

{
δ′Sδ

tr(BHR)

}
(Π ′Z ′ZΠ)−1/2∂

2Q∗
SJIVE

(β)

∂β∂β′
(Π ′Z ′ZΠ)−1/2 =

(Π ′Z ′ZΠ)−1/2(0, Ig) {M − S}

(
0

Ig

)
(Π ′Z ′ZΠ)−1/2 + op(1).

Based on Assumption 3 we thus find

H = (Π ′Z ′ZΠ)−1/2∂
2Q∗

SJIVE
(β)

∂β∂β′
(Π ′Z ′ZΠ)−1/2

= 2σ−2
{
(Π ′Z ′ZΠ)−1/2X ′CX(Π ′Z ′ZΠ)−1/2

}
+ op(1)

= 2σ−2
{
(Π ′Z ′ZΠ)−1/2 E(X ′CX)(Π ′Z ′ZΠ)−1/2

}
+ op(1)

= 2σ−2Ig + op(1). (40)

Assumption 4 says rn → ∞, so (40) implies that λmin

(
∂2Q∗

SJIVE
(β)

∂β∂β′

)
→ ∞, and by Assump-

tion 5 we find β̂
p

−→ β. Finally we find, applying (36), (39) and 40,

Ψ = lim
n→∞

[
(ΠZ ′ZΠ)−1/2

{
n∑

i=1

σ2
iΠZ ′FPeie

′
iPFZΠ

+
n∑

i=1

n∑

s=1

C2
ij

(
−
σ21

σ2
, Ig

) (
σ2
jΣi +Σie1e

′
1Σj

) (
−
σ21

σ2
, Ig

)′
}
(ΠZ ′ZΠ)−1/2

]
.

To compute standard errors, we estimate Var [{M − tr(PFP )S}δ] using (35). A

consistent estimator for Ψ is then given by

Ψ̂ = (X ′ĈX)−1/2
{
(0, Ig)− σ̂−2σ̂21δ̂

′
}
V̂ar [{M − tr(PFP )S}δ] ×

{
(0, Ig)

′ − σ̂−2δ̂σ̂12

}
(X ′ĈX)−1/2,
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where

V̂ar [{M − tr(PFP )S}δ] =
∑

i

ε̂2i (y,X)′Ĉeie
′
iĈ(y,X) +

n∑

i=1

n∑

s=1

ε̂iε̂j(Ĉij)
2(y,X)′eje

′
i(y,X).

The estimated covariance matrix for β̂ is given by

V̂ar(β̂) = (X ′ĈX)−1
{
(0, Ig)− σ̂−2σ̂21δ̂

′
}
V̂ar [{M − tr(PFP )S}δ] ×

{
(0, Ig)

′ − σ̂−2δ̂σ̂12

}
(X ′ĈX)−1

= (X ′ĈX)−1(X − σ̂−2ε̂σ̂12)
′
(
ĈD2

ε̂Ĉ +Dε̂Ĉ
(2)Dε̂

)
(X − σ̂−2ε̂σ̂12)(X

′ĈX)−1,

which is (28).

7.2 Derivation of Theorem 2

Instead of (39) we now have, using Assumptions 3 and 6,

−
k−1/2

2

{
δ′Sδ

tr(BHR)

}
∂Q∗

SJIVE
(β)

∂β
=

k−1/2
{
(0, Ig)− σ−2σ21δ

′
}
(M − S)δ −

{
(0, Ig)Sδ

δ′Sδ
−

σ21

σ2

}
k−1/2δ′(M − S)δ

= k−1/2
{
(0, Ig)− σ−2σ21δ

′
}
(M − S)δ + op(1). (41)
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Using (36) we thus find

Ψw = lim
n→∞

k−1

{
n∑

i=1

σ2
iΠZ ′FPeie

′
iPFZΠ

+
n∑

i=1

n∑

s=1

C2
ij

(
−
σ21
σ2
, Ig

) (
σ2
jΣi +Σie1e

′
1Σj

) (
−
σ21
σ2
, Ig

)′
}

= lim
n→∞

k−1

n∑

i=1

n∑

s=1

C2
ij

(
−
σ21

σ2
, Ig

) (
σ2
jΣi +Σie1e

′
1Σj

) (
−
σ21

σ2
, Ig

)′

.

As (40) remains valid under Assumption 6 we find the result of Theorem 2, where β̂
p

−→ β

since rmin/k
1/2 → ∞.
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