
Munich Personal RePEc Archive

On amending the Maskin’s theorem by

using complex numbers

Wu, Haoyang

5 April 2011

Online at https://mpra.ub.uni-muenchen.de/38157/

MPRA Paper No. 38157, posted 17 Apr 2012 18:16 UTC

On amending the Maskin’s sufficiency

theorem by using complex numbers

Haoyang Wu ∗

Abstract

The Maskin’s theorem is a fundamental work in the theory of mechanism design.
In this paper, we will propose a self-enforcing agreement by which agents may
break through the Maskin’s sufficiency theorem if the designer uses the Maskin’s
mechanism, i.e,. a social choice rule which satisfies monotonicity and no-veto may
be not Nash implementable. The agreement is based on an algorithm with complex
numbers. It is justified when the designer communicates with the agents through
some channels (e.g., Internet). Since the designer cannot prevent the agents from
signing such self-enforcing agreement, the Maskin’s sufficiency theorem is amended.

Key words: Mechanism design; Nash implementation.

1 Introduction

Nash implementation is the cornerstone of the mechanism design theory. The
Maskin’s theorem provides an almost complete characterization of social choice
rules (SCRs) that are Nash implementable: When the number of agents are at
least three, the sufficient conditions for Nash implementation are monotonicity
and no-veto, and the necessary condition is monotonicity [1]. Note that an SCR
is specified by a designer, a desired outcome from the designer’s perspective
may not be desirable for the agents. However, when the number of agents are
at least three, by the Maskin’s theorem the designer can always implement an
SCR which satisfies monotonicity and no-veto in Nash equilibrium even if all
agents dislike it (See Table 1 in Section 3.1).

∗ Wan-Dou-Miao Research Lab, Suite 1002, 790 WuYi Road, Shanghai, 200051,
China.

Email address: hywch@mail.xjtu.edu.cn, Tel: 86-18621753457 (Haoyang
Wu).

With the development of network economics, it is more and more common that
the designer communicates with agents through some channel (e.g., Internet).
For this case, we will show that the agents may find a way to break through the
restriction of the Maskin’s sufficiency theorem. Suppose that the agents face a
bad SCR that satisfies monotonicity and no-veto, and the designer claims the
traditional Maskin’s mechanism. We will propose a self-enforcing agreement
by which agents can make the SCR not Nash implementable if an additional
condition is satisfied.

The rest of the paper is organized as follows: Section 2 recalls preliminaries
of the mechanism design theory [2]; Section 3 is the main part of this paper,
where we will propose a self-enforcing agreement using complex numbers to
amend the Maskin’s sufficiency theorem. Section 4 draws conclusions.

2 Preliminaries

Let N = {1, · · · , n} be a finite set of agents with n ≥ 2, A = {a1, · · · , ak}
be a finite set of social outcomes. Suppose each agent j privately observes
a parameter tj that determines his preferences over the outcomes in A. We
refer to tj as agent j’s type. The set of possible types for agent j is denoted
as Tj. We refer to a profile of types t = (t1, · · · , tn) as a state. Let T =
∏

j∈N Tj be the set of states. At state t ∈ T , each agent j ∈ N is assumed
to have a complete and transitive preference relation ºt

j over the set A. We
denote by ºt= (ºt

1, · · · ,ºt
n) the profile of preferences in state t, and denote

by ≻t
j the strict preference part of ºt

j. Fix a state t, we refer to the collection
E =< N, A, (ºt

j)j∈N > as an environment. Let ε be the class of possible
environments. A social choice rule (SCR) F is a mapping F : ε → 2A\{∅}. A
mechanism Γ = ((Mj)j∈N , g) describes a message or strategy set Mj for agent
j, and an outcome function g :

∏

j∈N Mj → A. Mj is unlimited except that if
a mechanism is direct, i.e., Mj = Tj.

An SCR F satisfies no-veto if, whenever a ºt
j b for all b ∈ A and for ev-

ery agent j but perhaps one k, then a ∈ F (E). An SCR F is monotonic if
for every pair of environments E and E ′, and for every a ∈ F (E), when-
ever a ºt

j b implies that a ºt′

j b, there holds a ∈ F (E ′). We assume that
there is complete information among the agents, i.e., the true state t is com-
mon knowledge among them. Given a mechanism Γ = ((Mj)j∈N , g) played in
state t, a Nash equilibrium of Γ in state t is a strategy profile m∗ such that:
∀j ∈ N, g(m∗(t)) ºt

j g(mj,m
∗
−j(t)),∀mj ∈ Mj. Let N (Γ, t) denote the set of

Nash equilibria of the game induced by Γ in state t, and g(N (Γ, t)) denote
the corresponding set of Nash equilibrium outcomes. An SCR F is Nash im-

plementable if there exists a mechanism Γ = ((Mj)j∈N , g) such that for every
t ∈ T , g(N (Γ, t)) = F (t).

2

Maskin [1] provided an almost complete characterization of SCRs that were
Nash implementable. The main results of Ref. [1] are two theorems: 1) (Neces-

sity) If an SCR is Nash implementable, then it is monotonic. 2) (Sufficiency)
Let n ≥ 3, if an SCR is monotonic and satisfies no-veto, then it is Nash im-
plementable. In order to facilitate the following investigation, we briefly recall
the Maskin’s mechanism published in Ref. [2] as follows:

Consider the following mechanism Γ = ((Mj)j∈N , g), where agent j’s message
set is Mj = A × T × Z+, where Z+ is the set of non-negative integers. A
typical message sent by agent j is described as mj = (aj, tj, zj). The outcome
function g is defined in the following three rules: (1) If for every agent j ∈ N ,
mj = (a, t, 0) and a ∈ F (t), then g(m) = a. (2) If (n − 1) agents j 6= k send
mj = (a, t, 0) and a ∈ F (t), but agent k sends mk = (ak, tk, zk) 6= (a, t, 0),
then g(m) = a if ak ≻t

k a, and g(m) = ak otherwise. (3) In all other cases,
g(m) = a′, where a′ is the outcome chosen by the agent with the lowest index
among those who announce the highest integer.

3 Amending the Maskin’s sufficiency theorem

This section is the main part of this paper. In the beginning, we will show a
bad SCR which satisfies monotonicity and no-veto. It is Nash implementable
although all agents dislike it. Then, we will define some matrices and propose
a self-enforcing agreement using complex numbers, by which the agents can
amend the Maskin’s sufficiency theorem and make the bad SCR not Nash
implementable.

3.1 A bad SCR

Table 1: A bad SCR that satisfies monotonicity and no-veto.

State t1 State t2

Apple Lily Cindy Apple Lily Cindy

a3 a2 a1 a4 a3 a1

a1 a1 a3 a1 a1 a2

a2 a4 a2 a2 a2 a3

a4 a3 a4 a3 a4 a4

F (t1) = {a1} F (t2) = {a2}

Let N = {Apple, Lily, Cindy}, T = {t1, t2}, A = {a1, a2, a3, a4}. In each

3

state t ∈ T , the preference relations (ºt
j)j∈N over the outcome set A and

the corresponding SCR F are given in Table 1. The SCR F is bad from
the agents’ perspectives because in state t2, all agents unanimously prefer a
Pareto-efficient outcome a1 ∈ F (t1): for each agent j, a1 ≻t2

j a2 ∈ F (t2).

At first sight, in state t2, (a1, t1, 0) should be a unanimous mj for each agent j,
because by doing so a1 would be generated by rule 1. However, Apple has an
incentive to unilaterally deviate from (a1, t1, 0) to (a4, ∗, ∗) in order to trigger
rule 2, since a1 ≻t1

Apple a4, a4 ≻t2

Apple a1; Lily also has an incentive to unilaterally

deviate from (a1, t1, 0) to (a3, ∗, ∗), since a1 ≻t1

Lily a3, a3 ≻t2

Lily a1.

Note that either Apple or Lily can certainly obtain her expected outcome
only if just one of them deviates from (a1, t1, 0) (If this case happened, rule
2 would be triggered). But this condition is unreasonable, because all agents
are rational, nobody is willing to give up and let the others benefit. Therefore,
both Apple and Lily will deviate from (a1, t1, 0). As a result, rule 3 will be
triggered. Since Apple and Lily both have a chance to win the integer game,
the final winner is uncertain. Consequently, the final outcome is uncertain
between a3 and a4.

To sum up, although every agent prefers a1 to a2 in state t2, a1 cannot
be yielded in Nash equilibrium. Indeed, the Maskin’s mechanism makes the
Pareto-inefficient outcome a2 be implemented in Nash equilibrium in state t2.

Can the agents find a way to let the Pareto-efficient outcome a1 be Nash im-

plemented in state t2 when the designer uses the Maskin’s mechanism? Inter-
estingly, we will show that the answer may be “yes”. To do so, a new weapon
- the complex number - will be used. Although it has been well-known for
hundreds of years, it has never been used in the theory of mechanism design.
In what follows, first we will define some matrices with complex numbers, then
we will propose a self-enforcing agreement to help agents break through the
Maskin’s sufficiency theorem.

3.2 Definitions

Definition 1: Let Î , σ̂ be two 2× 2 matrices, and
−→
C ,

−→
D be two basis vectors:

Î ≡






1 0

0 1




 , σ̂ ≡






0 1

1 0




 ,

−→
C ≡






1

0




 ,

−→
D ≡






0

1




 . (1)

Hence, Î
−→
C =

−→
C , Î

−→
D =

−→
D ; σ̂

−→
C =

−→
D , σ̂

−→
D =

−→
C .

Definition 2: For n ≥ 3 agents, suppose each agent j ∈ N possess a basis

4

vector.
−→
ψ 0 is defined as the tensor product of n basis vectors

−→
C :

−→
ψ 0 ≡

−→
C ⊗n ≡ −→

C ⊗ · · · ⊗ −→
C

︸ ︷︷ ︸

n

≡













1

0

· · ·
0













2n×1

(2)

−→
C ⊗n contains n basis vectors

−→
C and 2n elements.

−→
C ⊗n is also denoted as−−−−−−→

C · · ·CCn. Similarly,

−−−−−−→
C · · ·CDn ≡ −→

C ⊗ · · · ⊗ −→
C

︸ ︷︷ ︸

n−1

⊗−→
D =













0

1

· · ·
0













2n×1

(3)

Obviously, there are 2n possible vectors {−−−−−−→C · · ·CCn, · · · ,
−−−−−−→
D · · ·DDn}.

Definition 3: Ĵ ≡ 1√
2
(Î⊗n + iσ̂⊗n), i.e.,

Ĵ ≡ 1√
2




















1 i

· · · · · ·
1 i

i 1

· · · · · ·
i 1




















2n×2n

, Ĵ+ ≡ 1√
2




















1 −i

· · · · · ·
1 −i

−i 1

· · · · · ·
−i 1




















2n×2n

(4)
where the symbol i denotes an imaginary number, and Ĵ+ is the conjugate
transpose of Ĵ . In what follows, we will not explicitly claim whether i is an
imaginary number or an index. It is easy for the reader to know its exact
meaning from the context.

5

Definition 4:

−→
ψ 1 ≡ Ĵ

−→
ψ 0 =

1√
2

















1

0

· · ·
0

i

















2n×1

(5)

Definition 5: For θ ∈ [0, π], φ ∈ [0, π/2],

ω̂(θ, φ) ≡






eiφ cos(θ/2) i sin(θ/2)

i sin(θ/2) e−iφ cos(θ/2)




 . (6)

Ω̂ ≡ {ω̂(θ, φ) : θ ∈ [0, π], φ ∈ [0, π/2]}. Hence, Î = ω̂(0, 0), σ̂ = −iω̂(π, 0).

Definition 6: For j = 1, · · · , n, θj ∈ [0, π], φj ∈ [0, π/2], let ω̂j = ω̂(θj, φj),

−→
ψ 2 ≡ [ω̂1 ⊗ · · · ⊗ ω̂n]

−→
ψ 1. (7)

The dimension of ω̂1 ⊗ · · · ⊗ ω̂n is 2n × 2n. Since only two elements in
−→
ψ 1 are

non-zero, it is not necessary to calculate the whole 2n × 2n matrix to yield−→
ψ 2. Indeed, we only need to calculate the leftmost and rightmost column of

ω̂1 ⊗ · · · ⊗ ω̂n to derive
−→
ψ 2.

Definition 7:
−→
ψ 3 ≡ Ĵ+−→ψ 2.

Suppose
−→
ψ 3 = [η1, · · · , η2n]T , let ∆ = [|η1|2, · · · , |η2n|2]. It can be easily

checked that Ĵ , ω̂j (j = 1, · · · , n) and Ĵ+ are all unitary matrices. Hence,

|−→ψ 3|2 = 1. Thus, ∆ can be viewed as a probability distribution, each element
of which represents the probability that we randomly choose a vector from the

set of all 2n possible vectors {−−−−−−→C · · ·CCn, · · · ,
−−−−−−→
D · · ·DDn}.

Definition 8: Condition λ contains five parts. The first three parts are defined
as follows:
λ1: Given an SCR F , there exist two states t̂, t̄ ∈ T , t̂ 6= t̄ such that â ºt̄

j ā (for

each j ∈ N , â ∈ F (t̂), ā ∈ F (t̄)) with strict relation for some agent; and the
number of agents that encounter a preference change around â in going from
state t̂ to t̄ is at least two. Denote by l the number of these agents. Without
loss of generality, let these l agents be the last l agents among n agents, i.e.,
agent (n − l + 1), · · · , n.
λ2: Consider the state t̄ specified in condition λ1, if there exists another t̂′ ∈ T ,
t̂′ 6= t̂ that satisfies λ1, then â ºt̄

j â′ (for each j ∈ N , â ∈ F (t̂), â′ ∈ F (t̂′))
with strict relation for some agent.

6

�������

�
����

�
��
�
�
	

��

�

...

��

��

�

	�
�����

�
��...

���

��

��

�

���

φθ

�������

������

������������
��������������������������	����������������

��������������������	
��
���
����������	�������������

���

��

��

�

���

φθ

��� ��

�φθ

���

�� �

���

�� �

���

��

��������

λ3: Consider the outcome â specified in condition λ1, for any state t ∈ T , â is
top ranked for each agent j among the first (n − l) agents.

3.3 An agreement that uses complex numbers

As we have seen, the Maskin’s mechanism is an abstract mechanism. People
seldom consider the manner in which the designer actually receives messages
from agents. Roughly speaking, there are two manners: direct and indirect
manner. In a direct manner, agents report their messages to the designer
directly (e.g., by hand, or face to face etc), thereby the designer can be sure
that any message is submitted by an agent himself, not by any other device.
In an indirect manner, the agents report messages to the designer through
some channels (e.g., Internet). Therefore, when the designer receives a message
from a channel, he cannot know what has happened on the other side of
the channel. Put differently, the designer cannot discriminate whether the
message is submitted by an agent himself, or generated by some other device.
In what follows, we assume the designer receives messages from the agents in
an indirect manner.

Definition 9: Suppose conditions λ1, λ2 and λ3 are satisfied, and the designer
uses the Maskin’s mechanism. An agreement ComplexMessage is constructed
by the agents (see Fig. 1). It is constructed after the designer claims the out-
come function g, and before the designer receives messages m = (m1, · · · ,mn)
from agents indirectly. The algorithm MessageComputing is given in Definition
10.

Definition 10: The algorithm MessageComputing is defined as follows:
Input: (θj, φj, aj, tj, zj) ∈ [0, π/2] × [0, π] × A × T × Z+, j = 1, · · · , n.
Output: mj ∈ A × T × Z+, j = 1, · · · , n.

7

1: Reading (θj, φj) from each agent j ∈ N (See Fig. 2(a)).
2: Computing the leftmost and rightmost columns of ω̂1 ⊗ · · · ⊗ ω̂n (See Fig.
2(b)).

3: Computing
−→
ψ 2 = [ω̂1 ⊗ · · · ⊗ ω̂n]

−→
ψ 1,

−→
ψ 3 = Ĵ+−→ψ 2, and the probability

distribution ∆ (See Fig. 2(c)).

4: Randomly choosing a vector from the set of all 2n possible vectors {−−−−−−→C · · ·CCn,

· · · ,
−−−−−−→
D · · ·DDn} according to the probability distribution ∆.

5: For each agent j ∈ N , let mj = (â, t̂, 0) (or mj = (aj, tj, zj)) if the j-th

basis vector of the chosen vector is
−→
C (or

−→
D) (See Fig. 2(d)).

6: Sending m = (m1, · · · ,mn) to the designer through channels 1, · · · , n.

When ComplexMessage has been constructed, it can be seen from Fig. 1 that
all agents has transferred their channels to the computer. After then, each
agent j ∈ N can leave his channel to the computer, or take back his channel
and send his message to the designer directly:
1) Whenever any agent takes back his channel, every other agent will detect
this deviation and take back their channels too. Thereby, all agents will send
their messages to the designer directly.
2) When all agents leave their channels to the computer, the algorithm Mes-

sageComputing works, i.e., calculates m = (m1, · · · ,mn) and sends it to the
designer.
Put differently, after ComplexMessage is constructed, each agent j ∈ N inde-
pendently faces two options:
• S(j, 0): leaving his channel to the computer, and submitting (θj, φj, aj, tj, zj)
to the algorithm MessageComputing.
• S(j, 1): taking back his channel, and submitting (aj, tj, zj) to the designer
directly.

To sum up, suppose the agents sign the agreement ComplexMessage after the
designer claims the outcome function g, the timing steps of the mechanism
are updated as follows:
Time 1: The designer claims the outcome function g to all agents;
Time 2: The agents sign the agreement ComplexMessage;
Time 3: Each agent j ∈ N chooses an option between S(j, 0) and S(j, 1).
Time 4: The designer receives m = (m1, · · · ,mn) from n channels;
Time 5: The designer computes the outcome g(m).

Remark 1: Although the time and space complexity of MessageComputing

are exponential, i.e., O(2n), it works well when the number of agents is not
large. For example, the runtime of MessageComputing is about 0.5s for 15
agents, and about 12s for 20 agents (MATLAB 7.1, CPU: Intel (R) 2GHz,
RAM: 3GB).

Remark 2: The problem of Nash implementation requires complete informa-
tion among all agents. In the last paragraph of Page 392 [2], Serrano wrote:

8

“We assume that there is complete information among the agents... This as-

sumption is especially justified when the implementation problem concerns a

small number of agents that hold good information about one another”. Hence,
the fact that MessageComputing is suitable for small-scale cases (e.g., less than
20 agents) is acceptable for Nash implementation.

Definition 11: Consider the state t̄ specified in condition λ1. Suppose λ1 and
λ2 are satisfied, and m = (m1, · · · ,mm) is computed by MessageComputing.
$C···CC , $C···CD, $D···DC and $D···DD are defined as the payoffs to the n-th agent

in state t̄ when the chosen vector in Step 4 of MessageComputing is
−−−−−−→
C · · ·CCn,−−−−−−→

C · · ·CDn,
−−−−−−→
D · · ·DCn or

−−−−−−→
D · · ·DDn respectively.

Definition 12: Suppose conditions λ1, λ2 and λ3 are satisfied. When the true
state is t̄, consider each message mj = (aj, tj, zj), where aj is top-ranked for
each agent j. The rest two parts of condition λ are defined as:
λ4: $C···CC > $D···DD.
λ5: $C···CC > $C···CD cos2(π/l) + $D···DC sin2(π/l).

3.4 Main result

Proposition 1: For n ≥ 3, suppose the agents send messages to the designer
indirectly. Consider an SCR F that satisfies monotonicity and no-veto. Sup-
pose the designer uses the Maskin’s mechanism Γ and condition λ is satisfied,
then in state t̄ the agents can sign the agreement ComplexMessage to make
the Pareto-inefficient outcome F (t̄) not be yielded in Nash equilibrium.

Proof : Since λ1 and λ2 are satisfied, then there exist two states t̂, t̄ ∈ T , t̂ 6= t̄
such that â ºt̄

j ā (for each j ∈ N , â ∈ F (t̂), ā ∈ F (t̄)) with strict relation
for some agent; and the number of agents that encounter a preference change
around â in going from state t̂ to t̄ is at least two. Suppose the true state is t̄,
now let us check whether the agents can make the Pareto-inefficient outcome
ā not be implemented in Nash equilibrium by constructing ComplexMessage.

Note that after the agents construct ComplexMessage, in Time 4 the designer
cannot discriminate whether the received messages (m1, · · · ,mn) are submit-
ted by agents themselves or sent by MessageComputing. However, from the
viewpoints of agents, the situation is different from the traditional Maskin’s
mechanism. After constructing ComplexMessage, there are two possible cases
in Time 3:
1) Suppose every agent j chooses S(j, 0), then the algorithm MessageCom-

puting works. Consider the following strategy profile chosen by the agents:
each agent j = 1, · · · , (n − l) submits (θj, φj) = (0, 0); each agent j =

9

(n − l + 1), · · · , n submits (θj, φj) = (0, π/l). Since condition λ is satisfied,
according to Lemma 1 (see Appendix), this strategy profile is a Nash equilib-
rium of Γ in state t̄. As a result, in Step 4 of MessageComputing, the chosen

vector will be
−−−−−−→
C · · ·CC; in Step 5 of MessageComputing, mj = (â, t̂, 0) for

each j ∈ N . In Time 5, g(m) = â /∈ F (t̄). Each agent j’s payoff is $C···CC .
2) Suppose some agent j ∈ N chooses S(j, 1), i.e., takes back his channel and
reports mj to the designer directly. Then all of the rest agents will observe this
deviation, thereby take back their channels and submit messages to the de-
signer directly. In Time 5, the final outcome implemented in Nash equilibrium
will be F (t̄), and each agent j’s payoff is $D···DD.

Since condition λ4 is satisfied, it is not profitable for any agent j to unilaterally
take back his channel and send a message to the designer directly. According
to Telser [3], ComplexMessage is a self-enforcing agreement among the agents.
Put differently, although the agents collaborate to construct ComplexMessage

in Time 2, they do not require a third-party to enforce it after then.

To sum up, in state t̄, the agents can sign a self-enforcing agreement Com-

plexMessage to make the Pareto-inefficient outcome F (t̄) not be implemented
in Nash equilibrium. ¤

4 Conclusions

In this paper, we propose a self-enforcing agreement to help agents avoid the
Pareto-inefficient outcome when they face a bad social choice rule. When the
designer uses the Maskin’s mechanism and receives messages from the agents
indirectly (e.g., Internet), the designer cannot restrict the agents from signing
such agreement. It should be noted that the introduction of complex numbers
plays an important role in this paper. To the best of our knowledge, there is
no similar work before. Since the Maskin’s mechanism has been widely applied
to many disciplines, there are many works to do in the future to generalize
the self-enforcing agreement further.

References

[1] E. Maskin, Nash equilibrium and welfare optimality, Rev. Econom. Stud. 66

(1999) 23-38.

[2] R. Serrano, The theory of implementation of social choice rules, SIAM Review

46 (2004) 377-414.

10

[3] L.G. Telser, A theory of self-enforcing agreements. Journal of Business 53

(1980) 27-44.

[4] A.P. Flitney and L.C.L. Hollenberg, Nash equilibria in quantum games with
generalized two-parameter strategies, Phys. Lett. A 363 (2007) 381-388.

11

Appendix

Lemma 1: Suppose the algorithm MessageComputing works. If condition λ
is satisfied, consider the following strategy:
1) Each agent j = 1, · · · , (n − l) submits (θj, φj) = (0, 0);
2) Each agent j = (n − l + 1), · · · , (n − 1) submits (θj, φj) = (0, π/l);
then the optimal value of (θ, φ) for the n-th agent is (0, π/l).

Proof : Since condition λ1 is satisfied, then l ≥ 2. Let

Ĉl ≡ ω̂(0, π/l) =






ei π

l 0

0 e−i π

l






2×2

, thus, Ĉl ⊗ Ĉl =













ei 2π

l

1

1

e−i 2π

l













22×22

,

Ĉl ⊗ · · · ⊗ Ĉl
︸ ︷︷ ︸

l−1

=













ei
(l−1)

l
π

∗
· · ·

e−i
(l−1)

l
π













2l−1×2l−1

.

Here we only explicitly list the up-left and bottom-right entries because only
these two entries are useful in the following discussions. The other entries in
diagonal are simply represented as symbol ∗. Note that

Î ⊗ · · · ⊗ Î
︸ ︷︷ ︸

n−l

=













1

1

· · ·
1













2n−l×2n−l

,

thus,

Î ⊗ · · · ⊗ Î
︸ ︷︷ ︸

n−l

⊗ Ĉl ⊗ · · · ⊗ Ĉl
︸ ︷︷ ︸

l−1

=













ei
(l−1)

l
π

∗
· · ·

e−i
(l−1)

l
π













2n−1×2n−1

.

Suppose the n-th agent chooses arbitrary parameters (θ, φ) in his strategy

12

(θ, φ, an, tn, zn), let

ω̂(θ, φ) =






eiφ cos(θ/2) i sin(θ/2)

i sin(θ/2) e−iφ cos(θ/2)




 ,

then,

Î ⊗ · · · ⊗ Î
︸ ︷︷ ︸

n−l

⊗ Ĉl ⊗ · · · ⊗ Ĉl
︸ ︷︷ ︸

l−1

⊗ω̂(θ, φ)

=
























ei[
(l−1)π

l
+φ] cos(θ/2) ∗

iei
(l−1)π

l sin(θ/2) ∗
∗ ∗
∗ ∗

· · ·
∗ ie−i

(l−1)π
l sin(θ/2)

∗ e−i[
(l−1)π

l
+φ] cos(θ/2)
























2n×2n

.

Recall that

−→
ψ 1 =

1√
2

















1

0

· · ·
0

i

















2n×1

,

thus,

−→
ψ 2 = [Î ⊗ · · · ⊗ Î

︸ ︷︷ ︸

n−l

⊗ Ĉl ⊗ · · · ⊗ Ĉl
︸ ︷︷ ︸

l−1

⊗ω̂(θ, φ)]
−→
ψ 1 =

1√
2
























ei[
(l−1)π

l
+φ] cos(θ/2)

iei
(l−1)π

l sin(θ/2)

0

· · ·
0

−e−i
(l−1)π

l sin(θ/2)

ie−i[
(l−1)π

l
+φ] cos(θ/2)
























2n×1

,

13

−→
ψ 3 = Ĵ+−→ψ 2 =

1

2
























ei[
(l−1)π

l
+φ] cos(θ/2) + e−i[

(l−1)π
l

+φ] cos(θ/2)

iei
(l−1)π

l sin(θ/2) + ie−i
(l−1)π

l sin(θ/2)

0

· · ·
0

ei
(l−1)π

l sin(θ/2) − e−i
(l−1)π

l sin(θ/2)

−iei[
(l−1)π

l
+φ] cos(θ/2) + ie−i[

(l−1)π
l

+φ] cos(θ/2)
























2n×1

=
























cos(θ/2) cos(l−1
l

π + φ)

i sin(θ/2) cos l−1
l

π

0

· · ·
0

i sin(θ/2) sin l−1
l

π

cos(θ/2) sin(l−1
l

π + φ)
























2n×1

.

The probability distribution ∆ is computed from
−→
ψ 3:

PC···CC = cos2(θ/2) cos2(φ − π

l
) (8)

PC···CD = sin2(θ/2) cos2 π

l
(9)

PD···DC = sin2(θ/2) sin2 π

l
(10)

PD···DD = cos2(θ/2) sin2(φ − π

l
) (11)

Obviously,
PC···CC + PC···CD + PD···DC + PD···DD = 1.

Consider the payoff to the n-th agent,

$n = $C···CCPC···CC + $C···CDPC···CD + $D···DCPD···DC + $D···DDPD···DD. (12)

Since λ4 is satisfied, i.e., $C···CC > $D···DD, then the n-th agent chooses φ = π/l
to minimize sin2(φ − π

l
). As a result, PC···CC = cos2(θ/2).

Since λ5 is satisfied, i.e., $C···CC > $C···CD cos2(π/l) + $D···DC sin2(π/l), then
the n-th agent prefers θ = 0, which leads $n to its maximum $C···CC . Therefore,
the optimal value of (θ, φ) for the n-th agent is (0, π/l). ¤

Note: The proof of Lemma 1 is similar to the derivation of Eq. (25) [4].

14

% A Matlab program of the algorithm MessageComputing

start_time = cputime

% n: the number of agents. In Table 1, there are 3 agents: Apple, Lily, Cindy
n = 3;

% Defining the array of and .
theta = zeros(n,1);
phi = zeros(n,1);

% Reading Apple’s parameters. For example,
theta(1) = 0;
phi(1) = pi/2;

% Reading Lily’s parameters. For example,
theta(2) = 0;
phi(2) = pi/2;

% Reading Cindy’s parameters. For example,
theta(3) = 0;
phi(3) = 0;

���������
� πωωω == �����

�θ ��� ���� �=φ

	
��
�
����
����
��
����
�����

� �
����������

���

�

���������
� πωωω == ���	

��������
� ωωω ==
���	

�θ ��� ���� �=φ

���������	��
��
���

% Defining two 2*2 matrices
A=zeros(2,2);
B=zeros(2,2);

% In the beginning, A represents
A(1,1)=exp(i*phi(1))*cos(theta(1)/2);
A(1,2)=i*sin(theta(1)/2);
A(2,1)=A(1,2);
A(2,2)=exp(-i*phi(1))*cos(theta(1)/2);
row_A=2;

% Computing
for agent = 2 : n

% B varies from to
B(1,1) = exp(i*phi(agent))*cos(theta(agent)/2);
B(1,2) = i*sin(theta(agent)/2);
B(2,1) = B(1,2);
B(2,2) = exp(-i*phi(agent))*cos(theta(agent)/2);

% Computing the leftmost and rightmost columns of C= A ⊗ B
C = zeros(row_A*2, 2);
for row=1 : row_A

C((row-1)*2+1, 1) = A(row,1) * B(1,1);
C((row-1)*2+2, 1) = A(row,1) * B(2,1);
C((row-1)*2+1, 2) = A(row,2) * B(1,2);
C((row-1)*2+2, 2) = A(row,2) * B(2,2);

end
A=C;
row_A = 2 * row_A;

end
% Now the matrix A contains the leftmost and rightmost columns of

�
�ω

�
ωω ��

� ⊗⊗ �

�
�ω

�
ω�

�
ωω ��

� ⊗⊗ �

�
ωω ��

� ⊗⊗ �

15

���������	��
��
����������

% Computing
psi2 = zeros(power(2,n),1);
for row=1 : power(2,n)

psi2(row) = (A(row,1) + A(row,2)*i) / sqrt(2);
end

% Computing
psi3 = zeros(power(2,n),1);
for row=1 : power(2,n)

psi3(row) = (psi2(row) - i*psi2(power(2,n)-row+1)) / sqrt(2);
end

% Computing the probability distribution
distribution = psi3.*conj(psi3);

��
� ψψ �� += �

���
����� ψωωψ �

�
�

�
�

⊗⊗=

∆

∆�� �� ψψ ��

% Randomly choosing a vector according to the probability distribution
random_number = rand;
temp = 0;
for index=1: power(2,n)

temp = temp + distribution(index);
if temp >= random_number

break;
end

end

% indexstr: a binary representation of the index of the chosen vector
% ‘0’ stands for , ‘1’ stands for
index_str = dec2bin(index-1);
sizeofindexstr = size(index_str);

% Defining an array of messages for all agents
m = cell(n,1);

% For each agent , the algorithm generates the message
for index = 1 : n - sizeofindexstr(2)

m{index,1} = strcat('s(',int2str(index),'): ');
end
for index = 1 : sizeofindexstr(2)
 if index_str(index)=='0' % Note: ‘0’ stands for

m{n-sizeofindexstr(2)+index,1} = strcat('s(',int2str(n-sizeofindexstr(2)+index),'): ');
else

m{n-sizeofindexstr(2)+index,1} = strcat('s(',int2str(n-sizeofindexstr(2)+index),'):3rd , 4th ,5th parameters');
end

end

% The algorithm sends messages to the designer
for index = 1 : n

disp(m(index));
end

end_time = cputime;
runtime=end_time – start_time

∆

�
��� ∈

�
�� ��� �

�������	
����
������������������������
�
�� ��� �

�

�

�

�
�
�

����� ��

����� ��

16

