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Abstract

The overlapping generations (OLG) model is an important framework
for analyzing any type of question in which age cohorts are affected dif-
ferently by exogenous shocks. However, as the dimensions and degree of
heterogeneity in these models increase, the computational burden imposed
by rational expectations solution methods for non-stationary equilibrium
transition paths increases exponentially. As a result, these models have
been limited in the scope of their use to a restricted set of applications
and a relatively small group of researchers. In addition to providing a de-
tailed description of the benchmark rational expectations computational
method, this paper presents an alternative method for solving for non-
stationary equilibrium transition paths in OLG life cycle models that is
new to this class of model. We find that our alternate model forecast
method reduces computation time to 15 percent of the benchmark time
path iteration computation time, and the approximation error is less than
1 percent.
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1 Introduction

In 2008, the overlapping generations (OLG) model proposed by Samuelson (1958)

turned 50.1 OLG models provide a dynamic general equilibrium setting with hetero-

geneous agents that looks more simple and intuitive on the surface than the more

conventional models with infinitely lived agents. The OLG framework is invaluable

for analyzing any type of question in which age cohorts are affected differently by

exogenous shocks. However, the intuitive structure of new generations of finitely

lived agents being born in each period comes at a cost. The first two fundamental

welfare theorems do not hold in OLG models, and the computation of non-stationary

equilibrium transition paths can require a tremendous computational burden.

It is the latter complexity of OLG models—namely, the increased computational

burden of computing non-stationary equilibrium transition paths—that we wish to

address in this paper. In particular, we propose a new method for computing the equi-

librium transition path, which we call the alternate model forecast (AMF) method.

As the AMF method represents an approximation of the benchmark rational expec-

tations time path iteration (TPI) solution method, we compare the AMF method to

the TPI method in terms of both speed and accuracy.

As a recent example of the constraints exacted by the computational require-

ments for equilibrium transition paths in OLG models with a significant degree of

heterogeneity and uncertainty, Nishiyama and Smetters (2007) lament that “[t]he

more extensive model contained in this paper requires the addition of another state

variable, which significantly increases the...required computation time from several

hours to typically several days per simulation.” Even a computation time of several

hours makes procedures like forecasting prohibitive if the model must be simulated

numerous times in order to approximate the distribution of forecasts.

The benchmark conventional solution method for the non-stationary rational ex-

pectations equilibrium transition path in OLG models is outlined in Auerbach and

1See Weil (2008) and Solow (2006). We do not know what was the earliest reference to the strange
OLG acronym. However, Karl Shell refers to it—in a manner more consistent with conventional rules
of acronyms—as the OG model. See Ghiglino and Shell (2003, pp. 407, 416-418).
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Kotlikoff (1987, ch. 4) for the perfect foresight case and in Nishiyama and Smetters

(2007, Appendix II) for the stochastic case. We call this method time path iteration

(TPI). We will show the conventional TPI method is a rational expectations equilib-

rium concept in which each agent correctly forecasts the decisions of the other agents,

thereby correctly forecasting the future distribution of savings.

Our new AMF solution method incorporates some of the flavor of the finding of

Krusell and Smith (1998) that the law of motion for the aggregate variables can be

closely approximated by a finite dimensional function instead of the often infinite

dimensional true law of motion. In particular, we show that using a simple func-

tion of the mean of the distribution, rather than the entire distribution of wealth,

delivers a computed equilibrium transition path of the economy that is very close to

the benchmark TPI transition path. We call this method AMF because the model

used to forecast aggregate variables is arbitrary and comes from outside the model

of the economy. In this sense, the AMF method relaxes the rational expectations

assumption in that some error is introduced into agents’ forecasts. As in Krusell and

Smith (1998), the approximation becomes nearer to the benchmark transition path

the more moments are used in the alternate model forecast method. But the increase

in accuracy diminishes in the number of moments. This idea of agents not using all

available information is also similar to the rational inattention concept of Mankiw

and Reis (2002) and Sims (2003).

We find that the AMF transition path solution method reduces computation time

by 85 percent with an approximation error of less than 1 percent. This result is robust

to both the degree of heterogeneity in the model and the distance of the initial state

to the new steady-state equilibrium.

This paper is organized as follows. Section 2 describes a model with S-period

lived agents with heterogeneous stochastic ability and defines both the steady-state

equilibrium and the non-steady-state transition path equilibrium. Section 3 describes

the benchmark equilibrium TPI solution method, the AMF solution method, and

compares the two methods in terms of speed and accuracy. Section 4 concludes.
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2 Model

2.1 Household problem

A measure 1/S of individuals with heterogeneous working ability e ∈ E ⊂ R is born

in each period t and live for S ≥ 2 periods. Their working ability evolves over their

lifetime according to an age-dependent i.i.d. process es ∼ fs(e), where fs(e) is the

age-dependent probability distribution function over working ability e. Individuals

are endowed with a measure of time in each period t that they supply inelastically to

the labor market. Let s represent the periods that an individual has been alive. The

fixed labor supply in each period t by each age-s individual is denoted by n(s).

At time t, all generation s agents with ability e know the real wage rate wt and

know the one-period real interest rate rt on bond holdings bs,t that mature at the

beginning of period t. In each period t, age-s agents with working ability e choose how

much to consume cs,t and how much to save for the next period by loaning capital to

firms in the form of a one-period bond bs+1,t+1 in order to maximize expected lifetime

utility of the following form,

Us,t = E

[

S−s
∑

u=0

βuu (cs+u,t+u)

]

where u (cs,t) =
(cs,t)

1−σ − 1

1 − σ
∀s, t (2.1)

where u(c) is a constant relative risk aversion utility function, σ > 0 is the coeffi-

cient of relative risk aversion, β ∈ (0, 1) is the agent’s discount factor, and E is the

expectations operator.

Because agents are born without any bonds maturing and because they purchase

no bonds in the last period of life S, the per-period budget constraints for each agent

normalized by the price of consumption are the following,

wtes,tn(s) ≥ cs,t + bs+1,t+1 for s = 1 ∀t (2.2)

(1 + rt) bs,t + wtes,tn(s) ≥ cs,t + bs+1,t+1 for 2 ≤ s ≤ S − 1 ∀t (2.3)

(1 + rt) bs,t + wtes,tn(s) ≥ cs,t for s = S ∀t (2.4)
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where es,t ∈ E ⊂ R is an age-specific working ability shock that is i.i.d. and has a

discrete support with age-dependent probability mass function fs(e).

es,t ∈ Es = {es,1, es,2, ...es,J} ⊂ RJ ∼ fs(e) = θs(e) (2.5)

The i.i.d. age-dependent probability mass function fs(e) assigns probabilities θs(e)

to each possible ability level es,t such that
∑eJ

e=e1
θs(e) = 1 for all ages s. The law

of large numbers ensures that θs(ej) percent of all age-s households have working

ability ej. The expected value of ability at age s is ēs ≡ E(es,t) =
∑eJ

e=e1
θs(e)es,t. We

assume that the work ability shock is either private information to the household or

is manifest after the workers have been hired. In addition to the budget constraints

in each period, we impose a borrowing constraint.2

bs,t ≥ 0 ∀s, t (2.6)

We next describe the Euler equations that govern the choices of consumption cs,t

and savings bs+1,t+1 by household of age s and ability e in each period t. We work

backward from the last period of life s = S. Because households do not save in

the last period of life bs+1,t+1 = 0 due to our assumption of no bequest motive, the

household’s final-period maximization problem is given by the following.

max
cS,t

(cS,t)
1−σ − 1

1 − σ
s.t. (1 + rt) bS,t + wteS,tn(S) ≥ cS,t ∀t (2.7)

Because the s = S problem (2.7) involves only time-t variables that are known with

certainty, the solution to the problem is trivially that the household consumes all of

its income in the last period of life.

cS,t = (1 + rt) bS,t + wteS,tn(S) ∀t (2.8)

2This borrowing constraint is not too restrictive given the OLG environment. Some type of
borrowing constraint must be imposed either exogenously or endogenously in order to constrain
borrowing at the end of life. We set our exogenous constraint arbitrarily at zero, but it could be
negative and age-dependent without changing the computation speed of the equilibrium.
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In general, maximizing (2.1) with respect to (2.2), (2.3), (2.4), and (2.6) gives the

following set of S − 1 intertemporal Euler equations,

(cs,t)
−σ = βE

[

(1 + rt+1) (cs+1,t+1)
−σ

]

for 1 ≤ s ≤ S − 1, ∀t
(2.9)

that become inequalities when optimal savings is negative bs+1,t+1 < 0. Note from

(2.3) that cs,t in (2.9) depends on the household’s age s, which ability shock es,t the

particular age-s household received, and the initial wealth with which the household

entered the period bs,t. The expectations operator E on the right-hand side of (2.9)

integrates out any expected heterogeneity in ability es+1,t+1 in the next period. How-

ever, the presence of next period prices rt+1 and wt+1 on the right-hand-side of (2.9)

requires an assumption about the housdhold’s beliefs about the distribution of capital

in the next period and, therefore, about other households’ choices.

As will be shown in Section 2.3, equilibrium prices depend on the entire distribu-

tion of capital. Let the object Γt = {γt(s, e, b)} ⊂ RS ×RJ ×RB represent the entire

distribution of capital in period t among all types of households s, e, and b, where

each γt(s, e, b) represents the fraction of the total population that is age s, ability e,

and wealth b. Let general beliefs about the future distribution of capital in period

t + u be characterized by the linear operator Ω(·) such that:

Γe
t+u = Ωu (Γt) ∀t, u ≥ 1 (2.10)

where the e superscript signifies that Γe
t+u is the expected distribution of wealth at

time t + u based on general beliefs Ω(·) that are not constrained to be correct.

Now we can express the policy function for savings in the next period from (2.9)

as a function of the state and beliefs b′ = φ(s, e, b|Ω), where s ∈ {1, 2, ...S − 1},

e ∈ {e1, e2, ...eJ}, and b = {b1, b2, ...bB}. Discretizing the support of the current

period wealth in bond holdings b allows us to not have to account for the history of

ability shocks received up to age s. That is, equations (2.8) and (2.9) are perfectly

identified but represent
∑S−1

v=1 Jv equations and
∑S−1

v=1 Jv unknowns. If agents only
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live S = 10 periods and there are only J = 5 different abilities, then (2.8) and

(2.9) represent 2,441,405 equations and 2,441,405 unknowns. Discretizing the possible

values of current wealth to B points such that bs,t ∈ {b1, b2, ...bB} allows us to deal

with only (S − 1) × J × B equations and unknowns. If the number of points in the

support of b is B = 100, then (2.8) and (2.9) only represent 4,500 equations and 4,500

unknowns.

2.2 Firm problem

A unit measure of identical, perfectly competitive firms exist in this economy. The

representative firm is characterized by the following Cobb-Douglas production tech-

nology,

Yt = AKα
t N1−α

t ∀t (2.11)

where A is the fixed technology process and α ∈ (0, 1) and Nt is measured in efficiency

units of labor. Firms hire workers before their ability shock is realized.3 Profit

maximization results in the real wage wt and the real rental rate of capital rt being

determined by the marginal products of labor and capital, respectively.

wt = (1 − α)
Yt

Nt

∀t (2.12)

rt = α
Yt

Kt

∀t (2.13)

There is no expectations operator in (2.12) and (2.13) because the ability shock to

households is i.i.d., and we assume that firms know the distribution of the shock. So

if the wage clears the labor market, then all the firm needs to know is the average

ability of each age cohort ēs.

3An alternative assumption that gives an equivalent result is that worker ability is private infor-
mation to the households.
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2.3 Market clearing and equilibrium

Labor market clearing requires that aggregate labor demand Nt measured in efficiency

units equal the sum of individual efficiency labor supplied es,tn(s). The supply side

of market clearing in the labor market is trivial because household labor is supplied

inelastically. Capital market clearing requires that aggregate capital demand Kt equal

the sum of capital investment by households bs,t. Aggregate consumption Ct is defined

in (2.16), and investment is defined by the standard Y = C + I constraint as shown

in (2.17).

Nt =
1

S

S
∑

s=1

eJ
∑

e=e1

θs(e)es,tn(s) ∀t (2.14)

Kt =
S − 1

S

S
∑

s=2

eJ
∑

e=e1

bB
∑

b=b1

γt(s, e, b)b ∀t (2.15)

Ct ≡
S − 1

S

S
∑

s=2

eJ
∑

e=e1

bB
∑

b=b1

γt(s, e, b)c(s, e, b) +
1

S

eJ
∑

e=e1

θ1(e)c(1, e, 0) ∀t (2.16)

Yt = Ct + Kt+1 − (1 − δ)Kt (2.17)

where c(s, e, b) in (2.16) is the optimal consumption rule for each household resulting

from the optimal savings rule b′ = φ(s, e, b|Ω) through the period budget constraints

(2.2), (2.3), and (2.4). Then the steady-state rational expectations equilibrium for

this economy is defined as follows.

Definition 1 (Steady-state rational expectations equilibrium). A non-autarkic
steady-state rational expectations equilibrium in the overlapping generations model
with S-period lived agents and heterogeneous ability e is defined as a constant dis-
tribution of capital

Γt = Γ̄ = γ̄(s, e, b) ∀t,

a savings decision rule given beliefs b′ = φ(s, e, b|Ω), consumption allocations cs,t

for all s and t, aggregate firm production Yt, aggregate labor demand Nt, aggregate
capital demand Kt, real wage wt, and real interest rate rt for all t such that the
following conditions hold:

i. households optimize according to (2.6), (2.8) and (2.9),

ii. firms optimize according to (2.12) and (2.13),
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iii. markets clear according to (2.14), (2.15), and (2.17),

iv. and the steady-state distribution Γt = Γ̄ is induced by the policy rule b′ =
φ(s, e, b|Ω).

Note that the steady-state rational expectations equilibrium definition has no con-

straint that beliefs be correct Γt+1 = Γe
t+1 = Ω(Γt). The steady-state assumption that

Γt = Γt+1 = Γ̄ removes the need for beliefs about other households’ actions because

Γt+1 is known.

The steady-state rational expectations equilibrium is computed by guessing a

steady-state distribution Γ̄i, where i is the index of the guess, and finding the implied

steady-state real wage and real interest rate w̄i and r̄i.
4 The policy function for each

individual can then be found by backward induction by first solving the age-S − 1

savings problem for bS for all values of bS−1 and eS−1,

(

[1 + r̄i] bS−1 + w̄ieS−1n(S − 1) − bS

)

−σ

= ...

β(1 + r̄i)E

[

(

[1 + r̄i] bS + w̄ieSn(S)
)

−σ
] (2.18)

and then using the solution for bS to solve the previous period problem for bS−1.The

process is repeated from the age S − 1 Euler equation (2.18) backward to the age-1

Euler equation.

(

[1 + r̄i] bs + w̄iesn(s) − bs+1

)

−σ

= ...

β(1 + r̄i)E

[

(

[1 + r̄i] bs+1 + w̄ies+1n(s + 1) − bs+2

)

−σ
]

for s ∈ {S − 2, S − 3, ...2, 1}

(2.19)

Once a policy function is found b′ = φi(s, e, b|Ω) given the guess for the steady-

state distribution of wealth Γ̄i and the corresponding steady-state real wage w̄i and

real interest rate r̄i, the policy function can be used to check if the next period

distribution of wealth Γ̄′

i is equal to the initial guess for the steady-state distribution

4Wendner (2004) provides an analytical proof for the existence and uniqueness of the steady-state
rational expectations equilibrium.
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of wealth Γ̄i. If they are equal, then Γ̄ = Γ̄i = Γ̄′

i. If they are not equal, then choose

another steady-state distribution that is a convex combination of the initial guess and

the new implied distribution Γ̄i+1 = ρΓ̄′

i + (1 − ρ)Γ̄i where ρ ∈ (0, 1).5

Figure 1 shows the computed steady-state equilibrium distribution of savings Γ̄

over the life cycle for a particular calibration of the model parameters [S, β, σ, α, ρ, A] =

[60, 0.96, 3, 0.35, 0.2, 1]. We assume that labor is supplied inelastically, and we cali-

brate the labor supply at each age to match the average labor supply reported by

age in the CPS monthly survey.6 The steady-state aggregate capital stock shown in

Figure 1 is K̄
(

Γ̄
)

= 7.62, and the steady-state equilibrium real wage and real interest

rate are w̄
(

Γ̄
)

= 1.43 and r̄
(

Γ̄
)

= 0.08, respectively.

Figure 1: Steady-state distribution of savings b̄s:
S = 60
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Outside of the steady state, an age-s household’s intertemporal consumption deci-

sion in each period from (2.9) also depends on both the current period’s distribution

of capital Γt and the expected value of next period’s distribution of capital Γt+1. But

Γt 6= Γt+1 in general outside of the steady state.

5A detailed description of the algorithm for computing the steady-state distribution is given in
Appendix A-1.

6A person’s lifespan here is defined as the duration from the period they start working until the
period they die. We ignore childhood. The exact calibration of n(s) is reported in Appendix A-1.
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(

[

1 + r (Γt)
]

bs,t + w (Γt) es,tn(s) − bs+1,t+1

)

−σ

= ...

βE

[

(

1 + r (Γt+1)
)

(

[

1 + r (Γt+1)
]

bs+1,t+1 + w (Γt+1) es+1,t+1n(s + 1) − bs+2,t+2

)

−σ
]

for 1 ≤ s ≤ S − 1, and b1,t = bS+1,t = 0, ∀t

(2.20)

The non-steady-state equilibrium in this economy is much more complicated be-

cause the savings policy rule depends not only on age s, ability e, individual wealth

b and beliefs Ω, but also on the current distribution of capital Γ.

b′ = φ(s, e, b, Γ|Ω) (2.21)

In contrast to the steady-state equilibrium, this means that each household must be

able to forecast future prices, and therefore future capital distributions, in order to

make its own savings decisions with the added complication that the capital distribu-

tion is changing over time. Let general beliefs about the future distribution of capital

in period t + u be characterized by the linear operator Ω(·) as in (2.10).

The expression of individual beliefs in (2.10) is a weak assumption in the sense

that it does not constrain the beliefs to be correct. However, it is a strong assump-

tion in that it implies the following two properties. First (2.10) implies that each

household knows the entire distribution of savings Γt at time t. It also implies that

each household has symmetric beliefs about the savings policy function of all the

other households. That is, Ω(·) has no s subscript. We can now define a general

non-steady-state rational expectations equilibrium.

Definition 2 (Non-steady-state rational expectations equilibrium). A non-
steady-state rational expectations equilibrium in the overlapping generations model
with S-period lived agents and heterogeneous ability e is defined as a distribution of
capital Γt, household beliefs about how the distribution of capital will evolve Ω (Γt),
a policy function b′ = φ(s, e, b, Γ|Ω), aggregate firm production Yt, aggregate capital
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stock Kt, real wage wt, and real rental rate rt for all t such that:

i. households have symmetric beliefs Ω(·) about the future savings decisions of the
other agents described in (2.10), and those beliefs about the future distribution
of savings equal the realized outcome (rational expectations),

Γt+u = Γe
t+u = Ωu(Γt) ∀t, u ≥ 1

ii. households policy function b′ = φ(s, e, b, Γ|Ω) maximizes utility according to
(2.6) and (2.9),

iii. firms choose aggregate labor demand Nt and aggregate capital demand Kt op-
timally according to (2.12) and (2.13), respectively,

iv. and markets clear according to (2.14), (2.15), and (2.17).

One implication of households having symmetric beliefs is that they will have

symmetric policy functions. In other words, (2.10) implies the following.

Γe
t+u = Ωu (Γt) ∀t, u ≥ 1 ⇒ b′ = φ(s, e, b, Γ|Ω) ⊥ t (2.22)

That is, if the equilibrium savings choice is bs+1,t+1 according to Definition 2 for

an age-s household given the state (s, es,t, bs,t, Γt), then an age-s household in a dif-

ferent period t + u will choose the same equilibrium savings rate if the same state

(s, es,t+u, bs,t+u, Γt+u) occurs. The intuition is that if a household knows what savings

level bs+1 it would choose at any age s, ability es, wealth bs, and distribution of wealth

Γ, then the symmetry of the problem implies that the household knows what all the

other households would choose at any age s, ability es, wealth bs, and distribution Γ.

With Definition 2, the non-steady-state equilibrium can be computed by rewriting

the set of S − 1 intertemporal Euler equations from (2.20) in the following way.

(

[

1 + r (Γt)
]

bs,t + w (Γt) es,tn(s) − bs+1,t+1

)

−σ

= ...

βE

[

(

1 + r
(

Ω(Γt)
)

)

(

[

1 + r
(

Ω(Γt)
)

]

bs+1,t+1 + w
(

Ω(Γt)
)

es+1,t+1n(s + 1) − bs+2,t+2

)

−σ
]

for 1 ≤ s ≤ S − 1, and b1,t = bS+1,t = 0, ∀t

(2.23)
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The rational expectations equilibrium assumption (i) in Definition 2 that beliefs be

correct Γe
t+u = Γt+u implies that a new agent s = 1 at time t can correctly forecast

all future wages and interest rates given the current distribution of capital.

wt+u = w (Ωu(Γt)) and rt+u = r (Ωu(Γt)) 1 ≤ u ≤ S − 1 (2.24)

Knowing the path of wages and interest rates will allow each household to backward

induct their non-steady-state equilibrium savings policy function b′ = φ(s, e, b, Γ|Ω)

in the same way as the steady-state distribution of capital. The solution to this non-

steady-state equilibrium problem is a fixed point in which the savings policy function

b′ = φ(s, e, b, Γ|Ω) induces the transition path for the distribution of capital Γt+u

consistent with the path implied by beliefs Ωu(Γt).

3 Transition Path Solution Methods

This section outlines the benchmark time path iteration (TPI) method for solving the

non-steady-state rational expectations equilibrium transition path of the distribution

of savings and then details our new alternate model forecast (AMF) method for

computing the equilibrium transition path. Because the AMF method represents an

approximation of the rational expectations assumption, we compare the AMF method

to the benchmark TPI method in terms of both speed and accuracy.

3.1 Benchmark: Time path iteration

The most common method of solving for non-steady-state equilibrium transition path

for the capital distribution in OLG models is finding a fixed point for the transition

path of the distribution of capital for a given initial state of the distribution of cap-

ital. This solution method is detailed for the perfect foresight case in Auerbach and

Kotlikoff (1987, ch. 4) and for the stochastic case in Nishiyama and Smetters (2007,

Appendix II). The idea is that the economy is infinitely lived, even though the agents

that make up the economy are not. Rather than recursively solving for equilibrium
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policy functions by iterating on individual value functions, one must recursively solve

for the policy functions by iterating on the entire transition path of the endogenous

objects in the economy (see Stokey and Lucas (1989, ch. 17)).

The key assumption is that the economy will reach the steady-state equilibrium

Γ̄ described in Definition 1 in a finite number of periods T < ∞ regardless of the

initial state Γ0. The first step is to assume a transition path for aggregate capital

Ki = {Ki
1, K

i
2, ...K

i
T} such that T is sufficiently large to ensure that ΓT = Γ̄ and

Ki
T (ΓT ) = K̄

(

Γ̄
)

. The superscript i is an index for the iteration number. The

transition path for aggregate capital determines the transition path for both the real

wage wi = {wi
1, w

i
2, ...w

i
T} and the real return on investment ri = {ri

1, r
i
2, ...r

i
T}. The

exact initial distribution of capital in the first period Γ1 can be arbitrarily chosen

as long as it satisfies Ki
1 = S−1

S

∑S

s=2

∑eJ

e=e1

∑bB

b=b1
γ1(s, e, b)b according to market

clearing condition (2.15). One could also first choose the initial distribution of capital

Γ1 and then choose an initial aggregate capital stock Ki
1 that corresponds to that

distribution. As mentioned earlier, the only other restriction on the initial transition

path for aggregate capital is that it equal the steady-state level Ki
T = K̄

(

Γ̄
)

by period

T . But the aggregate capital stocks Ki
t for periods 1 < t < T can be any level.

Given the initial capital distribution Γ1 and the transition paths of aggregate

capital Ki = {Ki
1, K

i
2, ...K

i
T}, the real wage wi = {wi

1, w
i
2, ...w

i
T}, and the real return

to investment ri = {ri
1, r

i
2, ...r

i
T}, one can solve for the optimal savings policy rule for

each type of S − 1-aged agent for the last period of his life bS,2 = φ1(S − 1, e, b) using

his intertemporal Euler equation, where the “1” subscript on φ represents the time

t = 1 savings decision with the real wage wi
1 and real interest rate ri

1.
7

(

[

1 + ri
1

]

bS−1,1 + wi
1eS−1,1n(S − 1) − bS,2

)

−σ

= ...

β
(

1 + ri
2

)

E

[

(

[

1 + ri
2

]

bS,2 + wi
2eS,2n(S)

)

−σ
] (3.1)

The final two savings decisions of each type of S − 2-aged household in period 1,

bS−1,2 and bS,3, are characterized by the following two intertemporal Euler equations

7Note that the Γ and Ω that usually appear in the policy functions φ have been dropped because
they are assumed in the guess of the transition path K

i.
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and are solved by backward induction.

(

[

1 + ri
1

]

bS−2,1 + wi
1eS−2,1n(S − 2) − bS−1,2

)

−σ

= ...

β
(

1 + ri
2

)

E

[

(

[

1 + ri
2

]

bS−1,2 + wi
2eS−1,2n(S − 1) − bS,3

)

−σ
]

(

[

1 + ri
2

]

bS−1,2 + wi
2eS−1,2n(S − 1) − bS,3

)

−σ

= ...

β
(

1 + ri
3

)

E

[

(

[

1 + ri
3

]

bS,3 + wi
3eS,3n(S)

)

−σ
]

(3.2)

The solution to the second equation delivers the savings policy function for bS,3 =

φ2(S − 1, e, b). This policy function is then used in the first equation of (3.2) in order

to solve for the policy function bS−1,2 = φ1(S − 2, e, b).

This process is repeated for every age of household in t = 1 down to the age-1

household at time t = 1. This household solves the full set of S − 1 savings decisions

characterized by the following equations.

(

wi
1e1,1n(1) − b2,2

)

−σ

= ...

β
(

1 + ri
2

)

E

[

(

[

1 + ri
2

]

b2,2 + wi
2e2,2n(2) − b3,3

)

−σ
]

(

[

1 + ri
2

]

b2,2 + wi
2e2,2n(2) − b3,3

)

−σ

= ...

β
(

1 + ri
3

)

E

[

(

[

1 + ri
3

]

b3,3 + wi
3e3,3n(3) − b4,4

)

−σ
]

...
(

[

1 + ri
S−1

]

bS−1,S−1 + wi
S−1eS−1,S−1n(S − 1) − bS,S

)

−σ

= ...

β
(

1 + ri
S

)

E

[

(

[

1 + ri
S

]

bS,S + wi
SeS,Sn(S)

)

−σ
]

(3.3)

Once the remaining lifetime decision rules have been solved for all households alive

in period t = 1, the set of first period policy functions φ1(s, e, b) is complete. The first

period policy function φ1(s, e, b) is then combined with the first period distribution of

capital Γ1 to compute the second period distribution of capital Γ2.The second period

distribution of capital Γ2 implies an aggregate capital stock Ki′

2 through (2.15) which

is not equal to the originally assumed second period aggregate capital stock Ki′

2 6= Ki
2,
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in general.

For every 1 < t < T , the set of period-t policy functions φt(s, e, b) is computed by

solving the full set of S−1 savings decisions for the age-1 household at period t. The

policy rule φt(s, e, b) is then combined with the distribution of savings Γt computed

in period t−1 in order to compute the distribution of savings in the next period Γt+1.

The new Γt+1 implies an aggregate capital stock Ki′

t+1 that, in general, is not equal

to the originally assumed aggregate capital stock Ki′

t+1 6= Ki
t+1.

8

Once this process has been completed for all 1 < t < T , a new transition path for

the aggregate capital stock has been computed Ki′ = {Ki′

1 , Ki′

2 , ...Ki′

T }. Let |·| be the

sup norm. Then the fixed point necessary for the equilibrium transition path from

Definition 2 has been found when the distance between Ki′ and Ki is arbitrarily close

to zero.

|Ki′ − Ki| < ε for ε > 0 (3.4)

If the fixed point has not been found |Ki′ − Ki| > ε, then a new transition path for

the aggregate capital stock is generated as a convex combination of Ki′ and Ki.

Ki+1 = ρKi′ + (1 − ρ)Ki for ρ ∈ (0, 1) (3.5)

This process is repeated until the initial transition path for the aggregate capital

stock is consistent with the transition path implied by those beliefs and household

and firm optimization. The time path iteration (TPI) non-steady-state equilibrium

transition path is characterized in Definition 3.

Definition 3 (Time path iteration (TPI) equilibrium transition path of the
distribution of capital). Given some initial distribution of wealth Γ1, a steady-
state distribution of wealth arrived at after T periods ΓT = Γ̄, and a transition path
for the aggregate capital stock Ki = {Ki

1, K
i
2, ...K

i
T} such that Ki

1 = K1 (Γ1) and
KT = K̄

(

Γ̄
)

according to (2.15), the equilibrium transition path of the distribution
of wealth {Γt}

T
t=1 and the associated transition path of the aggregate capital stock

K = {Kt}
T
t=1 is defined as the path of the distribution of wealth for which the level of

aggregate capital Ki′ implied by household and firm optimization b′ = φ(s, e, b) and

8A check here for whether T is large enough is if Ki
′

T
= K̄

(

Γ̄
)

. If not, then T needs to be larger.
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beliefs is arbitrarily close to the beliefs for the transition path of aggregate capital
Ki = {K1(Γ1), K2

(

Ω(Γ1

)

, K3

(

Ω2(Γ1

)

, ...KT

(

ΩT−1(Γ1

)

},
∣

∣

∣
Ki′ − Ki

∣

∣

∣
< ε

where | · | is the sup norm and ε > 0 is arbitrarily close to zero.

In essence, the TPI method iterates on beliefs represented by a transition path for

the aggregate capital stock Ki until a fixed point in beliefs is found that are consistent

with the transition path implied by optimization based on those beliefs.

Figure 2: TPI computed equilibrium transition
path for aggregate capital stock Kt
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Figure 2 shows the TPI computed transition path of the aggregate capital stock

using the same calibrated example from the steady-state computation in Section

2.3. A detailed outline of the computational algorithm is given in Appendix A-2.

The benchmark TPI computational method shows the aggregate capital stock Kt

converging to its steady state K̄ in roughly 60 periods. It took 31 hours, 59 minutes,

and 39 seconds to compute the solution by time path iteration.

The equilibrium transition path overshoots the steady state and takes 60 periods

to arrive at the new steady state because the initial state is so different from the new

16



steady state. The initial state K0 = 5.45 is 28 percent less than the steady-state

aggregate capital stock level K̄ = 7.62 to which it must converge. Also, the initial

distribution of savings Γ0 is very different from the steady-state distribution Γ̄.

3.2 Relax rational expectations: Alternate model forecast

We propose an alternative method for computing non-steady-state rational expec-

tations transition paths in OLG life cycle models that we call the alternate model

forecast (AMF) method. AMF approximates the rational expectations requirement

from part (i) of Definition 2 that each agent knows the policy function of all other

agents. Instead, AMF uses a weaker assumption that agents use some general alter-

native model to forecast in each period the transition path of the aggregate capital

stock
{

Kf
u , wf

u, rf
u

}S

u=t
for the remaining periods of their lives, where the “f” super-

script represents forecast values. This forecasted series is then updated each period

when the value of the capital stock next period is realized.

The approximation error in the AMF method comes from agents’ beliefs about the

future trajectory of the distribution of capital not being exactly correct, Γe
t+u 6= Γt+u

for all u ≥ 1. But the size of the error is limited because beliefs are updated after

each period as new information becomes available. In contrast to the benchmark TPI

method from Section 3.1, AMF is faster because the household decision rules only

have to be computed for one transition path rather than iterating until beliefs equal

the truth.

This approach of using a forecasting method from outside the model is analogous

to the approach taken by Krusell and Smith (1998). They conjectured a law of motion

for the moments of the distribution of wealth in an infinitely lived heterogeneous agent

environment, and the moments determined the levels of the aggregate variables. They

found that a simple log-linear law of motion was enough to closely approximate the

benchmark rational expectations equilibrium.

The AMF method also has some of the flavor of the rational inattention concept of

Mankiw and Reis (2002) and Sims (2003) who justify relaxing the information burden

of rational expectations on the grounds that agents update their information infre-
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quently and agents have limited information-processing capacity. We use this type of

assumption in the AMF method in order to streamline computation time. However,

we find that the resulting equilbrium transition path has a very small approximation

error relative to the benchmark TPI rational expectations transition path.

Let Ωa(·) represent the general form of the alternative model each agent uses to

forecast the transition paths of the aggregate capital stock, real wage, and real rental

rate {Kf
u , wf

u, rf
u}

S
u=t which are functions of the distribution of capital Γu at time u.

Then let the forecast for the aggregate capital stock be generated by the following

general alternative model:

Γf
t+u = Ωu

a (Γt) s.t. lim
u→∞

Ωu (Γt) = Γ̄ (3.6)

where wf
t+u and rf

t+u are just functions of Kf
t+u

(

Ωu
a(Γt)

)

. The only condition that

must be imposed on the alternative model is that the forecasts must go to the steady

state in the limit limu→∞ Ωu(Γt) = Γ̄. With
{

Kf
u , wf

u, rf
u

}S

u=t
, each agent can choose

their savings for the next period bs+1,t+1 as well as planned savings levels bp
s+u,t+u for

u ∈ {2, 3, ..S−s} for the remaining periods of life given the forecasted transition path

of the aggregate variables in the same way as described in equations (3.1) through

(3.3) in Section 3.1. The “p” superscript refers to a planned policy decision because

that policy will likely change by the time the household needs to make that choice

due to the updating of the forecast.

At the end of period t, the distribution of capital for the next period Γt+1 has been

decided and implies an aggregate capital stock that is not equal to the forecasted

capital stock Kt+1 (Γt+1) 6= Kf
t+1, in general. With the new aggregate capital stock

Kt+1, each agent repeats the process of forecasting the future values of the aggregate

variables using the alternative model Ωa(·) until the transition path reaches the steady

state in period T . Each distribution of capital Γt+u calculated using the alternative

model from (3.7) and the corresponding time-t allocations and prices in the computed

equilibrium transition path {bt}
T

t=1 represents an alternate model forecast non-steady-

state equilibrium transition path.
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Definition 4 (Alternate model forecast (AMF) equilibrium transition path
of the distribution of capital). Given some initial distribution of capital Γ0 and
a steady-state distribution of capital arrived at after T periods Γt = Γ̄ for t ≥ T ,
the alternate model forecast (AMF) equilibrium transition path of the distribution
of capital {Γt}

T

t=1 is defined as the individual distributions of capital Γt calculated by
forecasting future aggregate variables using the alternative forecasting model Ωa(·)
specified in equation (3.7) that is specified as follows:

Γf
t+1 = Ωa (Γt) ⇒ Γf

t+u = Ωu
a (Γt) s.t. lim

u→∞

Ωu (Γt) = Γ̄

Each individual distribution of capital is calculated using the remaining life forecasts
of aggregate variables Kf

t+u according to equations (3.1) through (3.3).

Figure 3 shows the AMF computed transition path of the aggregate capital stock

using the same calibrated example from the steady-state computation in Section 2.3.

To this point, the alternative model Ωa(·) has been generally specified. In practice,

it could be a complex econometric model based on observed data, or it could be an

extremely simple interpolation. We use a näıve linear forecast between the current

aggregate capital stock and the steady state to forecast the future aggregate capital

stock,

Kt+1 = Kt +
K̄ − Kt

T − t
(3.7)

where K̄ is the steady-state capital stock, t is the current period, and T is the period

in which the economy has reached the steady state.9 The AMF rule (3.7) is simply

a linear forecast between the current state Kt and the steady state K̄. The näıve

alternative model is conservative in that our computed approximation errors should

represent an upper bound. A detailed outline of the computational algorithm is given

in Appendix A-3.

The AMF transition path is very close to the benchmark TPI transition path even

though we use a fairly näıve alternative model to forecast future wage rates and inter-

est rates. In terms of mean percent deviation from the TPI path, the approximation

9We tried this with a log-linear forecast between the current state and the steady state, similar
to Krusell and Smith (1998), and the transition path was nearly identical to the one from Figure 3
using the more näıve linear forecast.
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Figure 3: AMF computed equilibrium transition
path for aggregate capital stock Kt
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error of the AMF path was only 0.7 percent. It took 4 hours, 50 minutes, and 9

seconds to compute the solution by the AMF method, which is roughly 15 percent of

the TPI computation time.

3.3 Comparison of solution methods and robustness

Because the AMF method is an approximation of the benchmark TPI method, the

goal of this paper is to compare the AMF method to the TPI method in terms

of both computing time and accuracy. The benchmark time path iteration (TPI)

method for computing the non-steady-state equilibrium transition path of the distri-

bution of capital is the exact rational expectations equilibrium concept. The alternate

model forecast (AMF) method approximates the benchmark TPI method by using

the alternative model Ωa(·) to forecast future aggregate variables rather than the

TPI method’s rational expectations requirement. In addition to comparing compu-

tation speed and accuracy for the calibration given previously, we show how these

comparisons change with different calibrations.

Table 1 shows the computation times and accuracy comparisons of the AMF
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method to the TPI method for Calibration 1 from Sections 3.1 and 3.2 that generated

the transition paths in Figure 3 as well as for two additional calibrations that differ

in terms of initial states and degree of heterogeneity.

Table 1: Computation times and accuracy of TPI and AMF
methods

Speed (hours) Mean percent deviation

Calibration TPI AMF % reduction from TPI path

1 (B = 350, K0 = 5.5) 32.0 4.8 84.9% 0.7%

2 (B = 200, K0 = 5.5) 11.7 1.6 86.0% 0.6%

3 (B = 350, K0 = 6.5) 32.0 5.0 84.5% 0.3%

All computations were performed using MatLab on a Dell PowerEdge 2950 with 8 Intel Xeon E5345
2.33GHz processor cores, 16 GB of RAM, and 500 GB RAID hard drive.

The accuracy and speed comparison for the example presented in Sections 3.1

and 3.2 are presented in the first line of Table 1 as Calibration 1. The AMF method

reduces the computation time from almost 32 hours to just under 5 hours, an 85%

reduction. To measure the approximation error of the AMF transition path from the

benchmark TPI transition path shown in Figure 3, we use the mean percent deviation

(MPD) of the AMF path from the TPI path over the first τ periods where τ = 60 in

this case.

MPD =
1

τ

τ
∑

t=1

KAMF
t − KTPI

t

KTPI
t

(3.8)

The approximation error in Calibration 1 is less than 1 percent (0.7%).

In Calibration 2, we test the speed and accuracy of the AMF method in a version

of the model with less heterogeneity. We use a basic simplification of reducing the

grid points in the discretized continuum of possible wealth levels to B = 200 with

the same bounds. The computation times for both the TPI and AMF methods are

less, and the speed reduction of the AMF method over the TPI method is about the

same as the baseline calibration. The approximation error of the AMF method in

Calibration 2 is a little bit smaller than that of the baseline calibration. Figure 4

shows the TPI and AMF transition paths for Calibration 2.

In Calibration 3, we test the speed and accuracy of the AMF method in a version

of the model with an initial state (K0 = 6.5) that is closer to the steady state than
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Figure 4: TPI and AMF equilibrium transition
paths for Calibration 2
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in the baseline calibration. We keep the same number if grid points B = 350 as in

the baseline calibration. The computation times for both the TPI and AMF methods

are comparable to the baseline calibration with a reduction in computation time of

84.5%. The mean percent deviation of the AMF transition path is smaller than that

of the TPI method in Calibration 3 as would be expected with an initial state that

is closer to the steady state. Figure 5 shows the TPI and AMF transition paths for

Calibration 3.

In each calibration, the AMF method reduces computation times by about 85

percent, and the mean percent deviations are less than 1 percent. It is important

to note that the calibrations with the highest approximation error used an initial

state that was relatively far away from the new steady state. In practice, most

policy experiments study changes that imply a much smaller difference between the

initial state and the new steady state. The results of this paper suggest that the

approximation error of the AMF method will be significantly less than 1 percent in

terms of mean percent deviation in more realistic policy experiments.
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Figure 5: TPI and AMF equilibrium transition
paths for Calibration 3
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4 Conclusion

We propose a method for computing rational expectations equilibrium transition

paths for OLG life cycle models that reduces computation time relative to the bench-

mark TPI method by 85 percent and has an approximation error of less than 1 percent.

For our main calibration, the AMF method reduced the computation time from 32

hours to less than 5 hours.

The AMF method presented in this paper used extremely näıve alternative models

for forecasting future prices. When these models are actually taken to the data

to perform policy experiments, more sophisticated alternative models could further

reduce the approximation error without increasing computation time. For example,

a VAR could be used to forecast future prices based on past observables in the data.

An obvious extension of our AMF method is to use it to calculate transition paths

for infinite horizon models. Krusell and Smith (1998) use a similar idea to estimate

the parameters of a stationary equilibrium in an environment with infinitely lived

heterogeneous agents. The AMF method extends this idea and could simplify the

equilibrium transition path computation in this class of models.
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Another characteristic common to the infinitely lived heterogenous agent models

that is often missing in large OLG life cycle models is an uninsurable aggregate

shock. A transition path in an environment with aggregate uncertainty would be

a stochastic object and would require some notion of confidence intervals computed

by simulation. Because each computation of a transition path by the benchmark

TPI method can take more than a day, simulation of confidence intervals can be

computationally impractical. The increased computational speed of the AMF method

makes simulation more practical.10

Lastly, linearization methods are most commonly use for computing equilibrium

solutions to dynamic general equilibrium models, but they have not been applied to

OLG life cycle models with occasionally binding constraints. Uhlig (1999) and Chris-

tiano (2002) present the standard method of undetermined coefficients linearization

method for these types of models. Computers are particularly well suited for dealing

with linear systems, and few methods can match linearization in speed. However,

both Christiano and Uhlig note that the method of undetermined coefficients only

works in models in which there are no occasionally binding constraints.11 Borrow-

ing constraints are a leading example of occasionally binding constraints and are an

important characteristic of OLG life cycle models. A linearization method for solv-

ing OLG life cycle models with occasionally binding constraints has the potential to

increase computation speeds enough to easily simulate the models.

Much research has been dedicated to solution methods for DSGE models with

infinitely lived agents. Taylor and Uhlig (1990) survey a number of papers dedi-

cated to various solution methods to the nonlinear rational expectations stochastic

growth model. More recently, Aruoba, Fernández-Villaverde, and Rubio-Ramı́rez

(2006) compare perturbation methods, finite elements methods, Chebyshev polyno-

mial approximation, and value function iteration solution methods on the stochastic

neoclassical growth model. Fernández-Villaverde and Rubio-Ramı́rez (2006) focus on

10As an example, 1,000 simulations of the TPI transition path in main calibration presented in
Section 3.1 would take 3.65 computer years. The same simulations would take only 0.55 computer
years using the AMF method.

11Christiano and Fisher (2000) detail a parameterized expectations algorithm for solving infinite
horizon DSGE models with occasionally binding constraints. But it is not a linearization method.
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the value of perturbation methods in solving the growth model. It is our hope that

more efforts are dedicated to transition path solution methods for the valuable OLG

life cycle model.
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APPENDIX

A-1 Computational algorithm for steady-state equi-

librium

The computation of the steady-state equilibrium described in Definition 1 requires
the following steps. The MatLab code for this steady-state computation is available
upon request.

1. Calibrate the exogenous parameters of the model S, β, σ, α, ρ, A, the distri-
bution of the ability shock fs(e), and the inelastic labor supply function as a
function of age n(s).

• We chose the parameter values [S, β, σ, α, ρ, A] = [60, 0.96, 3, 0.35, 0.2, 1].

• The inelastic labor supply function of age n(s) was calibrated to match the
average labor supply by age reported in the CPS monthly survey, where
the maximum average hours worked is normalized to unity.

n(s) =































[0.87, 0.89, 0.91, 0.93, 0.96, 0.98] for 1 ≤ s ≤ 6

1 for 7 ≤ s ≤ 40
[

0.95, 0.89, 0.84, 0.79, 0.73, 0.68, 0.63, 0.57, 0.52, ...

0.47, 0.40, 0.33, 0.26, 0.19, 0.12, 0.11, 0.11, 0.10, 0.10, 0.09
]

for 41 ≤ s ≤ 60

• The discretized approximation of the ability shock is the following seven
ability types es,t ∈ {0.1, 0.5, 0.8, 1.0, 1.2, 1.5, 1.9} with a mass function
fs(e) = {0.04, 0.09, 0.20, 0.34, 0.20, 0.09, 0.04} for all s. We could have
just as easily made the probability distribution be conditional on s but
that does not increase the computation time.

2. Discretize the space of possible wealth levels into B possible values such that
b ∈ {b1, b2, ...bB}, where b1 = 0 and bB < ∞.

• We chose a discretized support of B = 350 equally spaced points between
b1 = 0 and bB = 15.

• Note that we have to impose a savings maximum constraint due to there
being some states in which the household wants to save more than their
current wealth level. Setting bmax = 15 is high enough to minimize the
number of states in which the upper bound binds. The smoothness of Fig-
ure 1 at its peak shows that the upper bound creates a minimal distortion.

3. Choose an arbitrary initial guess for the steady-state distribution of wealth
Γ̄0 = γ̄0(s, e, b) such that γ̄0(s, e, b) ∈ [0, 1] and

∑

s

∑

e

∑

b γ̄0(s, e, b) = 1.
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• Our initial guess was simply the distribution across abilities by age spread
across each possible wealth level γ0(s, e, b) = fs(e)/ [(S − 1)B] for all s, e,
and b.

4. Use Γ̄0 to calculate steady-state values for K̄0, Ȳ0, r̄0 and w̄0 using equations
(2.11), (2.12), (2.13), (2.14), and (2.15).

5. Taking r̄0 and w̄0 as given each period, solve for the optimal policy rule of each
agent b′ = φ(s, e, b|Ω) by backward induction.

6. Use b′ = φ(s, e, b|Ω) and Γ̄0 to calculate the distribution of wealth in the next
period Γ̄′

0.

7. Generate a new guess for the steady-state distribution of wealth Γ̄1 as a convex
combination of the two distributions from the previous step Γ̄1 = ρΓ̄′

0+(1−ρ)Γ̄0,
where ρ ∈ (0, 1).

8. Repeat steps (4) through (7) until the distance between Γ̄i and Γ̄′

i is arbitrarily
close to zero, where i is the index of the iteration number. Let | · | be the sup
norm and let ε > 0 be some scalar arbitrarily close to zero. Then the steady
state Γ̄ is found when

∣

∣Γ̄i − Γ̄′

i

∣

∣ < ε.

In our example, the computation of the steady-state equilibrium took 3 hours, 5
minutes, and 25 seconds. Figure 1 shows the steady-state aggregate capital stock K̄
and the average wealth b̄s as a function of age s.
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A-2 Computational algorithm for TPI transition

path

The computation of the time path iteration (TPI) transition path described in Defi-
nition 3 requires the following steps. The MatLab code for this TPI transition path
computation is available upon request.

1. Using the parameterization from the steady-state computation, and choose the
value for T at which the non-steady-state transition path should have converged
to the steady state. We used T = 60.

2. Choose an initial state of the aggregate capital stock K0. Choose an initial
distribution of capital Γ0 consistent with K0 according to (2.15).

• We chose an initial capital stock of K0 = 5.45, which is consistent with
a simple initial distribution of wealth—the distribution of ability by age
spread across all possible wealth levels γ0(s, e, b) = fs(e)/ [(S − 1)B] for
all s, e, and b.

3. Conjecture a transition path for the aggregate capital stock Ki = {Ki
t}

∞

t=0

where the only requirements are that Ki
0 = K0 is your initial state and that

Ki
t = K̄ for all t ≥ T . The conjectured transition path of the aggregate capital

stock Ki, along with the exogenous aggregate labor supply from (2.14), implies
specific transition paths for the real wage wi = {wi

t}
∞

t=0 and the real interest
rate ri = {ri

t}
∞

t=0 through expressions (2.11), (2.12), and (2.13).

4. With the conjectured transition paths wi and ri, one can solve for the lifetime
policy functions of each household alive at time t = 1 by backward induction
using the Euler equations of the form (3.3). Rows 1 through 5 of Table 2
illustrate this process.

• The first line is solving for the solution of the individual who is age S − 1
at time t = 0 obtaining b2,1 = φ0(S − 1, e, b) from equation (3.1).

• Each subsequent row from Table 2 represents the solution of the lifetime
savings policy functions of an individual with more years remaining in their
life at time t = 0, down the the person who is age s = 1 at time t = 0 and
has the entire set of S − 1 policy functions characterized by (3.3).

5. In similar fashion to step (4), solve for the lifetime policy functions by backward
induction for the age s = 1 household at times 2 ≤ t ≤ T . In Table 2, this
means solving for the policy functions in the last two rows down to the age
s = 1 household at time t = T .

6. Each column in Table 2 represents a complete set of policy functions for the
corresponding period. Using the initial distribution of wealth Γ0 and all the
period t = 0 policy functions φ0(s, e, b) for the households alive at time t = 0, the
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Table 2: TPI backward induction policy function solution method

t = 0 t = 1 t = 2 · t = S − 2 t = S − 1 t = S

φ0(S − 1, e, b)

φ0(S − 2, e, b) φ1(S − 1, e, b)

φ0(S − 3, e, b) φ1(S − 2, e, b) φ2(S − 1, e, b)

...
...

...

φ0(2, e, b) φ1(3, e, b) φ2(4, e, b) · · ·

φ0(1, e, b) φ1(2, e, b) φ2(3, e, b) · · · φS−2(S − 1, e, b)

φ1(1, e, b) φ2(2, e, b) · · · φS−2(S − 2, e, b) φS−1(S − 1, e, b)

φ2(1, e, b) · · · φS−2(S − 3, e, b) φS−1(S − 2, e, b) φS(S − 1, e, b)

...
...

...

Γ1, K1 Γ2, K2 Γ3, K3 · · · ΓS−1, KS−1 ΓS , KS ΓS+1, KS+1

next period distribution of wealth Γ1 and the corresponding aggregate capital
stock Ki′

1 can be calculated. Consecutively repeat this procedure for each time
period (column of Table 2) until a new transition path for the aggregate capital
stock has been computed Ki′ = {Ki′

t }
T
t=0.

7. Generate a new guess for the transition path of the aggregate capital stock Ki+1

as a convex combination of the initially conjectured transition path Ki and the
newly generated transition path Ki′ .

Ki+1 = ρKi′ + (1 − ρ)Ki where ρ ∈ (0, 1)

8. Repeat steps (4) through (7) until the distance between Ki′ and Ki is arbitrarily
close to zero, where i is the index of the iteration number. Let | · | be the
sup norm and let ε > 0 be some scalar arbitrarily close to zero. Then the
equilibrium transition path of the economy from Definition 3 is found when
when

∣

∣Ki′ − Ki
∣

∣ < ε.

In our example, the computation of the TPI transition path took 31 hours, 59
minutes, and 39 seconds. Figure 2 shows the transition path of the aggregate capital
stock from its initial state at K0 to the steady state K̄. The aggregate capital stock
arrived at its steady state in about 60 periods.
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A-3 Computational algorithm for AMF transition

path

The computation of the alternate model forecast (AMF) transition path described in
Definition 4 requires the following steps. The MatLab code for this AMF transition
path computation is available upon request.

1. Conjecture an alternative model forecast method Ωa.

• We use a linear trend from the current state Kt to the steady state K̄.

Kt+1 = Ωa (Kt) ⇒ Kt+1 = Kt +
K̄ − Kt

T − t
(3.7)

• Our specific alternative model is written as a law of motion for the aggre-
gate capital stock, but it implies a law of motion for the average wealth.
From (2.15) we know that aggregate capital Kt is just a function of the
average wealth.

Kt =
S − 1

S
b̄t (A.3.1)

So the alternative model Ωa implies a similar linear law of motion for the
moments by combining (3.7) with (A.3.1).

b̄t+1 = Ωa

(

b̄t

)

⇒ b̄t+1 = b̄t +
b̄ss − b̄t

T − t
(A.3.2)

2. Solve the lifetime savings policy functions φ(s, e, b) for each agent alive at time
t by backward induction using the alternate model forecast method (3.7) to
obtain the forecasted series of prices over those lifetimes. (This step is the same
as step 4 in Appendix A-2.)

3. Use the complete set of policy functions for the current period in order to
calculate the next period’s distribution of wealth Γt+1 and the corresponding
aggregate capital stock Kt+1.

4. Repeat this process until the distribution of wealth ΓT and the aggregate capital
stock KT have been computed for time T . Make sure that ΓT = Γ̄ and KT = K̄.

In our example, the computation of the AMF transition path took 4 hours, 50
minutes, and 9 seconds. Figure 3 shows the transition path of the aggregate capital
stock from its initial state at K0 to the steady state K̄ as compared to the benchmark
TPI transition path. The aggregate capital stock arrived at its steady state in about
60 periods.
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