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Abstract

Based on the frictional matching framework, the paper provides a

theoretical model for a specific type of two-sided platform: The buyer-

seller transaction platform. In the model, the number of participants

and the source of network externalities are endogenously determined.

The platform is shown to exhibit both positive cross-group and neg-

ative within-group network externalities. The optimal pricing of the

platform depends not only on the cost of providing service and the

benefits of the participants, but also on how the marginal entrant (ei-

ther a buyer or a seller) affects the matching probability. Since the

sellers can shift the burden of entry fee to the buyers, the platform

never subsidizes the sellers.
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1 Introduction

Recent research in two-sided platforms has greatly enhanced our understand-

ing of the factors which might influence the pricing policy of the platforms.1

For example, early contributions of Rysman (2004), Armstrong (2006) and

Rochet and Tirole (2006) all emphasize the importance of externalities in

platform’s pricing decision, especially its incentives to subsidize the partici-

pants who generate large positive externalities to others. Recent contribution

by Weyl (2010) also shows that platform pricing can be designed as an in-

sulating tariff to avoid coordination failure in a multi-equilibrium setting,

which is common when externalities are present.

The literature on platforms has been based on the unifying insight that

profit-maximizing prices charged by the platforms must depend on the de-

gree of externalities. Despite this common denominator, there exists enor-

mous difference between different types of platforms. For example, in certain

platforms, there is a clear distinction between between different “sides” (e.g.,

sellers and buyers in the online auctions, stores and consumers in the credit

cards, and female and male in online matching service), while in some other

there exists no such distinction (e.g., social networks). Even among plat-

forms in which different sides can be clearly identified, there are some in

which buyers and seller can be easily distinguished (e.g., the online auctions)

1 See Caillaud and Jullien (2003), Rysman (2004), Rochet and Tirole (2006), and Arm-

strong (2006) for seminal contributions, and the Autumn 2006 symposium issue of RAND

Journal of Economics and Weyl (2010) for recent developments. Evans and Schmalensee

(2007) and Rysman (2009) provide excellent surveys of important issues.
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and others in which it cannot (e.g., the online matching service). These

differences (and perhaps also others) result in an array of different pricing

practices observed in reality.2 Current literature informs us little beyond the

principal that the users who confer greater externalities should be charged

less or, when externalities are large enough, even be subsidized. But where

do the externalities come from, what determines their size, how they interact

with the optimal platform pricing? That different types of platform differ

substantially in pricing policy implies that a more detailed investigation of

the user’s strategic behavior in a platform can further enhance our under-

standing of the platform’s strategic consideration in setting user fees.

In this paper, we set out to answer the above questions in a specific type

of two-sided platform: The buyer-seller platform. We explicitly model the

price-searching decision of the buyers and price-setting strategy of the sellers,

together with the matching outcomes implied by their decision and strategy.

A theoretical model which explicitly spells out the details of the participants’

interaction within the platforms will have several advantages. First, it can

endogenize the size of network externalities. The literature mostly recog-

nizes network externalities in the platform by assuming that the benefit of

participating in a platform is a linear function of the number of participants

one interacts with.3 This is a laconic and very useful qualitative approxima-

2 See Evans and Schmalensee (2007), and especially Table 1 therein, for a thorough

but non-exhaustive classification and discussion of pricing strategies in various types of

platforms.
3 An incomplete list of papers using the linear specification is: Armstrong (2006),

Armstrong and Wright (2007), Caillaud and Jullien (2001 and 2003), Guthrie and Wright
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tion. However, unlike the network products in which the users directly gain

utility from the increase of the adopters (see, e.g., Arthur 1989), network

externalities in the platforms are usually indirect. Their values critically de-

pend on the rule of transaction and the nature of the participants’ interaction,

which in turn determine the platform’s pricing policy. Second, in a two-sided

platform, although the participant enjoy greater positive externalities as the

number of participants on the other side of the platform increases, they also

suffer a negative externality from participants on the same side.4,5 This is

also an important consideration in the platform’s pricing policy, as its incen-

tives to subsidize the participants in order to facilitate positive externalities,

a fact much emphasized in the literature, will be checked by the existence of

negative externalities. An explicit modeling of interaction within the plat-

form can help our understanding of the inter-play of positive and negative

externalities in shaping platform’s pricing decision.

Our model incorporate ingredients of both the literature of two-sided plat-

form and frictional price-matching. Specifically, we impose on the traditional

model of platforms a frictional matching framework (Burdett et al. 2001) for

price-determination. In the framework, a group of sellers (each having one

(2007), Rochet and Tirole (2003, 2006 and 2008) and, Weyl (2010).
4 Take the online auction platform as an example, although a bidder’s (seller’s) expected

benefit from entering the platform increases with the number of sellers (bidders), his

expected benefit also decreases with the number of bidders (sellers).
5 Belleflamme and Toulenomde (2009), Ellison and Fudenberg (2003) and Ellison, Fu-

denberg and Mobius (2004) have explicitly considered negative externalities in their model.

In the first paper, externalities are exogenous. The latter two are mainly concerned with

platform competition, rather than pricing policy. Wely (2010) also considers negative

externalities, but only for participants from the other side of the platform.
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unit of a good) meet a group of buyers (each needing one unit of the good) in

a platform. The sellers post prices, and the buyers choose the sellers to buy

from. A seller’s good is sold (at the price he posts) if and only if at least one

buyer visits his store. A buyer, if he is the only visitor of a seller, buys the

good with probability one. Otherwise he has an equal chance of buying the

good as every other visitor. The platform charges both buyers and sellers for

using the platform. Prices set by the platform determine how many buyers

and sellers will enter.

We solve for the equilibrium prices of both the platform and the sellers,

together with the equilibrium numbers of the sellers and buyers and their

utilities. A buyer’s utility is shown to be increasing (decreasing) in the num-

ber of sellers (buyers). Similarly, a seller’s utility is increasing (decreasing) in

the number of the buyers (sellers). Moreover, a buyer’s or a seller’s utility is

bounded, regardless of the number of agents on the other side of the platform.

The platform’s pricing decision is more complicated than in the previous lit-

erature. In addition to factors such as service costs and positive externalities

considered in the previous literature, it also has to take into consideration its

effect on the matching probability and the influence of negative externalities.

We therefore provide a model in which externalities, prices, and the num-

ber of traders are all endogenously determined. In particular, the presence of

negative externalities and the ability of the sellers to pass through their entry

fees to consumers are not merely to add a reasonable feature to the platform.

It has a strong implication for the platform’s pricing policy: the platform
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never subsidizes the sellers by charging a fee lower than its marginal cost.

This provides a theoretical explanation of why, in a buyer-seller platform, it

is usually buyers who are subsidized while the sellers seldom are.6

Our model is closest to that of Galeotti and Moraga-Gonzalez (2009).

Similar to our paper, they also explicitly model the interaction of the buyers

and sellers within a platform. In their model, the matching values between

the buyers and sellers are (ex post) random, so that it is essentially a product

differentiation model. There are two additional features in the paper which

are different from our model. First, in their model there is a continuum of

buyers whose total mass is restricted to one. Second, the buyers and sellers

are ex ante identical, implying that the pricing policy of the platform is

either for all the buyers and sellers to enter, or none at all. Given the two

features, their paper’s main focus is not on how externalities are affected by

the numbers of buyers or sellers and, therefore, to show how the platform set

fees to balance the tradeoff between entry fees and network externalities, but

on the interplay between product variety (in term of the number of sellers)

and the buyer’s entry fee.

Hagiu (2009) also proposes a model with product differention. The con-

sumer’s utility is assumed to be increasing in product variety, which in turn

is assumed to be the same as the number of producers. Given the assump-

tions, the number of producers has a positive network externality for the

6 As can be seen from Table 1 in Evans and Schmalensee (2007), the sellers are almost

always charged by either a usage or an access fee, while the buyers are sometimes free

from any charge.
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consumers. The paper has not derived the pricing decision of the producer,

but it is shown that whether the platform will subsidize the producers or

the consumers critically depends on the producer’s market power over the

consumers, as measured by the ratio of producer’s profit to the marginal

contribution of an additional producer to consumer’s gross surplus.

In our model, the seller’s products are identical to the buyers, ex ante or

ex post. Therefore, the source of externalities is not product variety, as in

the above two papers, but the value of matching probability as determined

by the numbers of buyers and sellers and, ultimately, entry fees charged by

the platform.

2 Transactions and Frictional Matching

2.1 The Model

Consider the market of a good in which N potential risk-neutral buyers are

to trade with N potential risk-neutral sellers on a monopoly platform. Each

seller has one unit, and each buyer needs one unit, of the good. The prices

charged by the platform determine how many buyers, denoted by N b, and

how many sellers, denoted by N s, actually enter the platform. Assume that

the prices charged by the platform are in the form of entry fees, so that

when a seller (buyer) joins the platform, he pays a fee of F s (F b).7 Each

7 Since in our model the buyers and the sellers transact at most once, the entry fee

(properly discounted by matching probability) and transaction fee (commission charged

by the platform every time an agent makes transaction) are perfect substitutes.
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seller posts a price for the good, which every buyer observes. Based on the

observation, every buyer determines the probability that he will visit each

seller. A buyer can only buy from the seller he visits. As a result, a seller’s

commodity might remain unsold if no buyer arrives. This is true even if he

is among the lowest-price sellers. If more than one buyer arrives, the good

is sold to each visitor with equal probability. This also implies that a buyer

might fail to buy the good even if his willingness to pay is greater than the

price posted by the seller he visits, as that seller might have more than one

visitor.

Under the setup, the role that a platform plays is, on the one hand, to

provide price information to the buyers and, on the other hand, to match the

buyers and sellers. As mentioned above, a seller might fail to sell his good if

no buyer visits him, and a buyer might not be able to buy a good if there are

other buyers who visit the same seller. Therefore, this is a price matching

model with friction.

The buyers are homogeneous regarding the valuation of the good, but are

heterogeneous in the cost of entering and using the platform. Let vb be each

buyer’s valuation of the good. Following Armstrong (2006), the heterogeneity

in cost is captured by a “cost” or “location” parameter, xb, which is uniformly

distributed on the interval [0, 1]. In addition to the entry fee, a buyer with

cost parameter xb will incur an entry cost tbxb when he enters the platform,

where tb measures the buyer’s sensitivity to the cost. Similarly, the sellers’

reservation prices are identical at vs, and they are heterogeneous in their costs
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of entering and using the platform, tsxs, where xs is also a cost parameter

uniformly distributed on [0, 1], and ts is the measure of sensitivity. A buyer’s

utility function is therefore

U b =



























vb − p− F b − tbxb, if he visits a seller and buys the good at price p;

−F b − tbxb, if he visits a seller but fails to buy the good;

0, if he does not join the platform.

Similarly, a seller’s utility function is

U s =



























p− vs − F s − tsxs, if he posts a price p and sells the good;

−F s − tsxs, if he posts a price but fails to sell the good;

0, if he does not join the platform.

Let the platform’s cost of serving a buyer and a seller be cb and cs, respec-

tively.8 We assume that the costs are not very high so that at least two

buyers and two sellers enter the platform.9 The platform’s objective is to set

the entry fees to maximize its profit:

max
F b,F s

π = (F b − cb)N b + (F s − cs)N s.

Timing of events is as follow. Stage 1: the platform sets its entry fees (F s

and F b). Each seller and buyer then decides whether to enter the platform (by

incurring entry fees and entry costs). This decision determines the values of

N b and N s. Stage 2: each seller on the platform posts a price, and each buyer

on the platform chooses a probability density function, which determines the

8 Note that the platform incurs cost cb (cs) even if a buyer (seller) fails to trade.
9 The sufficient condition for this is cb ≤ 1

2
(ln 2)(vb−vs)−4 t

b

N
and cs ≤ 1

4
(vb−vs)−4 t

s

N
.
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buyer’s probability of visiting each seller. We call stage 1 as the pricing stage

and stage 2 the frictional matching stage. In the following two sections, we

will solve for the equilibrium in each stage by backward induction.

2.2 Frictional Matching Stage

In the frictional matching model in Burdett et al. (2001), there is a unique

symmetric equilibrium such that every buyer visits each seller with the same

probability, and all sellers post the same price. In our model, there is also a

symmetric equilibrium:

Proposition 1. (Burdett, et al. 2001) Given N b buyers and N s sellers in

the platform, the symmetric equilibrium has every buyer visiting each seller

with probability 1
Ns . Every seller posts the same price

p∗ =
vb[1− (1 + Nb

Ns
−1

)(1− 1
Ns )

Nb

] + vs N
b

Ns (1−
1
Ns )

Nb

1− [1 + Nb

Ns(Ns
−1)

](1− 1
Ns )N

b
. (1)

The expected number of matches is

M(N b, N s) = N s[1− (1−
1

N s
)N

b

]. (2)

The proof is a simple adaptation of Burdett et al. (2001).10

We can rewrite the equilibrium price in (1) as

p∗ = zvb + (1− z)vs, (3)

10 We provide a proof in A1 of the Appendix for the sake of completeness.
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where

z =
1− (1 + Nb

Ns
−1

)(1− 1
Ns )

Nb

1− [1 + Nb

Ns(Ns
−1)

](1− 1
Ns )N

b
∈ [0, 1].

For a successful match, the total surplus is vb−vs ≡ v. Moreover, the benefit

for the buyer is vb − p∗ = (1 − z)v, and that for the seller is p∗ − vs = zv.

Therefore, the value of z determines the share that the seller gets from the

surplus of the transaction. Since z is a function of only N s and N b, the

buyer’s and seller’s share of the surplus from transaction is solely determined

by their numbers in the platform.

The sellers and the buyers are “complements” in the expected number of

matches, M(·), in the sense that ∂2M
∂Nb∂Ns > 0.11 Moreover, the value of M(·)

relative to the number of agents on one side of the platform is a measure of

how likely a trader on that side can have a match. The lower its value, the

less likely a trader on that side will be successfully matched. Specifically, we

measure the degree of friction on side i by Ai(N b, N s) ≡ M(·)
N i , i = b, s. Ai

is also called the arrival rate, and can be shown to be increasing in N j and

decreasing in N i; i, j ∈ {b, s}, i 6= j.12 That is, the arrival rate is increasing

in the number of traders on the other side, and decreasing in the number of

traders on the same side.

The expected utility functions of a buyer and a seller on the platform can

11 See A2 in the Appendix.
12 See A2 in the Appendix.
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be rewritten as

U b = [vb − p∗(N b, N s)]Ab(N b, N s)− F b − tbxb ≡ ub − F b − tbxb, (4)

U s = [p∗(N b, N s)− vs]As(N b, N s)− F s − tsxs ≡ us − F s − tsxs, (5)

where ub and us are willingness-to-pay of the buyer and seller to enter the

platform, respectively. We can then investigate how the number of traders

affects the equilibrium price and the traders’ utilities:13

Proposition 2. (a) The equilibrium price p∗ is increasing in N b and decreas-

ing in N s. (b) The buyer’s and seller’s expected utilities exhibit positive cross-

group externalities and negative within-group externalities: ∂ui

∂Nj > (<) 0 if

i 6= j (i = j), i, j ∈ {s, b}.

Proposition 2 shows that in a model in which the matching process and

price formation are explicitly spelled out, the platform exhibits not only the

well-known positive network externalities in the literature, but also negative

externalities as well.

The exogenous specification of linear positive network externalities in the

literature implies that the seller’s (buyer’s) utility is infinite when the number

of buyers (sellers) grows without bound. In our matching framework, since

the maximum utility a trader gains cannot surpass the surplus of transaction,

v, the utility of any trader is necessarily bounded regardless of the number

of traders on any side. This is shown in the following corollary.

13 The proofs of all the propositions are in the Appendix.
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Corollary 1. The willingness of a buyer and a seller to pay to enter the

platform, ub and us, is bounded above by v regardless of the number of par-

ticipants.

Another important feature of our matching framework is that although

positive externalities encourages more agents to enter the platform when

there are more agents on the other side, the presence of negative externalities

also discourages their entrance. The optimal pricing decision of the platform

is therefore more complicated than one with only positive externalities. This

issue is discussed in the next section.

3 The Stage of Pricing

Given the equilibrium outcome for the frictional matching stage discussed

in the previous section, in this section we will derive the optimal pricing

strategy of the platform, together with the equilibrium number of buyers

and sellers (N b and N s) implied by the optimal strategy.

Since a trader receives zero utility if he does not enter the platform, his

expected utility must be at least 0 for him to join the platform willingly.

We focus on the interior solution case in which there exists an x̂b < 1 such

that U b(x̂b) = 0, or equivalently ub − F b = tbx̂b.14 Buyers with expected

utilities greater than or equal to 0 (that is, buyers with xb ≤ x̂b) will join the

platform. Since xb is uniformly distributed on [0, 1], the number of buyers

14 The conditions for having an interior solution on each side are: tb > 1

2
[v(1− 1

N
)N ln(1−

1

N
)−N − cb] and ts > 1

2
{v[1− (1 + N

N−1
)(1− 1

N
)N − cs]}.
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entering the platform, given F b, is

N b = Pr(xb ≤ x̂b)N = xbN =
ub − F b

tb
N. (6)

The same reasoning applies to the seller’s side, so that

N s = Pr(xs ≤ x̂s)N = xsN =
us − F s

ts
N. (7)

Simultaneously solving for (6), (7), we can write the numbers of buyers

and sellers in the platform as the functions of entry fees, N b(F b, F s) and

N b(F b, F s).15 The platform’s profit can then be written as

π = (F b − cb)N b(F b, F s) + (F s − cs)N s(F b, F s).

In the following proposition we characterize the equilibrium fees and the

equilibrium number of buyers and sellers in the platform.

Proposition 3. The profit-maximizing entry fees satisfy

F b =cb +
tb

N
N b − (us

bN
s + ub

bN
b), (8)

F s =cs +
ts

N
N s − (ub

sN
b + us

sN
s); (9)

where ub
i ≡ ∂ub

∂N i and us
i ≡ ∂us

∂N i , i ∈ {b, s}. The equilibrium numbers of

participants of buyers and sellers satisfy

vMb =cb + 2
tb

N
N b∗, and (10)

vMs =cs + 2
ts

N
N s∗; (11)

15 Note that N b and Ns as calculated in (6) and (7) are not necessarily integers. How-

ever, the model in Section 2 requires that they be integers. We can take the values of

N b and Ns in Section 2 to be the nearest integers to those defined by (6) and (7) respec-

tively. When N is large, as a meaningful model of two-sided platform should exhibit, this

approximation does not the results in the paper.
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where N i∗ ≡ N i(F b∗, F s∗), i = b, s, Mb ≡
∂M
∂Nb > 0, and Ms ≡

∂M
∂Ns > 0.

It might be helpful to compare the optimal pricing strategy in our model

with that in Armstrong (2006) and Rochet and Tirole (2006).16 In their

papers, the equilibrium entry fees are F b = cb + tb

N
N b − asN s and F s =

cs+ ts

N
N s−abN b; where ab > 0 and as > 0 are the parameters of cross-group

positive externalities to buyers and sellers.17 The effects of the cross-group

externalities, −asN s and −abN b, help to reduce the the equilibrium fees.

We capture the same effects by the terms −us
bN

s and −ub
sN

b.18 However,

our model also captures the effects of within-group negative externalities

by the terms −ub
bN

b and −us
sN

s, which help to raise the equilibrium fees.

Consequently, other things being equal, the optimal fees are higher than

when only positive externality is considered. In particular, the incentives

for the platform to subsidize one side of the platform (by charging a below-

cost price), a result much emphasized in the platform-pricing literature, is

weaker in our model. For example, in Armstrong (2006) and Rochet and

Tirole (2006), if the external effect enjoyed by the buyers, ab, is large so that

abN b > ts

N
N s, then the platform will subsidize the sellers by setting F s < cs.

Note that since ab is exogenously given and there is no negative externality,

if the value of ab is large, the platform will have an incentive to attract a

16 Rochet and Tirole (2006) consider the case in which the platform charges not only

entry fees but also transaction fees. In order to compare with our model (in which there

is only an entry fee), we set the transaction fee to be zero in their model.
17 In their models, the potential number of users, N , is normalized to 1.
18 Recall that us

b
≡ ∂u

s

∂Nb and ub
s ≡ ∂u

b

∂Ns are the measures of cross-group externalities in

our model.
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large number of sellers by subsidizing them, and thereby creates enormous

network benefit. In that case the platform can charge a very high fee for the

buyers. However, this cannot happen in our model. In fact, we will show

that the platform never subsidizes the sellers.

Corollary 2. The total marginal network effect of the seller is negative, i.e.,

ub
sN

b + us
sN

s < 0, ∀N b ≥ 2 and N s ≥ 2.

Proof. From the definitions of ui and Ai, (i = b, s), we know that ubN b +

usN s = vM , implying that ub
sN

b + us
sN

s = vMs − us. As a result,

ub
sN

b + us
sN

s = vMs − us

= −vz[
N b

N s(N s − 1)
(1−

1

N s
)N

b

] < 0.

Corollary 2 and (9) then imply that F s > cs, i.e., the platform never

subsidizes the sellers. However, there are still cases in which the platform

charges the buyers a fee lower than the marginal cost.19 This result is con-

sistent with many pricing strategies in reality, where the buyers (consumers)

are usually subsidized while the sellers usually are not.20 The reason for this

result is quite intuitive: since the price of the commodity is set by the sellers,

they can shift some of the burden of the entry fee to the buyers. The buy-

ers, on the other hand, can only refrain from joining the platform (in which

19 For example, us

b
Ns+ub

b
N b ≈ −0.02v < 0 when N b∗ = 3 and Ns∗ = 2. us

b
Ns+ub

b
N b ≈

0.06v > 0 when N b∗ = 2 and Ns∗ = 2.
20 For example, credit card, shopping mall, newspaper and magazine, network TV,

online auction et. al.
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case the platform loses the revenues from their fees) if they think the fee is

too high. In other words, the price elasticity (for entry fee) of the sellers is

lower than that of the buyers. Therefore, the platform’s cost of raising fees

is greater on the buyer’s side than on the seller’s side.

We can rewrite (8) and (9) as21

F b∗ =
1

2
(ub + cb)−

1

2
(us

bN
s + ub

bN
b), and (12)

F s∗ =
1

2
(us + cs)−

1

2
(ub

sN
b + us

sN
s). (13)

As can be seen from (12) and (13), the equilibrium entry fees can be

separated into two parts. The first part is the traditional markup pricing

formula of the monopolist (without externalities), 1
2
(ui+ci). The second part

is the total marginal network effects caused by the agent, −1
2
(uj

iN
j + ui

iN
i).

By our previous discussion, this term is positive for i = s, but can be either

positive or negative for i = b. Therefore, the optimal fee for the sellers is

higher than the monopolistic price, but can be either higher or lower for the

buyers.

Using (6) and (7), we can also rewrite the platform’s profit function as

π = vM(N b, N s)− [cbN b +
tb

N
(N b)2 + csN s +

ts

N
(N s)2]. (14)

The buyers and the sellers can be therefore viewed as two inputs to produce

successful matchings as output, with vM(N b, N s) as the production function,

and cbN b + tb

N
(N b)2 + csN s + ts

N
(N s)2 the cost function. Then equations (10)

21 By substituting ui − F i = tix̂i and x̂i = N
i

N
, i = {b, s}, into (8) and (9).
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and (11) simply say that the platform’s optimal strategy is to “hire” each

input until its marginal product, vMi, equals its marginal cost, ci + 2 ts

N
N s.

A change in fee to one side of the platform affects both the number of agents

on this side and (therefore) the externalities enjoyed by agents on the other

side. Since the price elasticity for side i is larger when ti

N
N i−ui

iN
i is smaller,

and the positive network effect which side i brings to side j is larger when

u
j
iN

j is larger, the optimal fee F i is lower when ti

N
N i − ui

iN
i is smaller or

u
j
iN

j is larger.

4 Some Comparative Static Results

In this section we will perform several comparative statics exercises regarding

changes in costs and trading surplus. For each result we only discuss the

intuition behind it, and leave its proof to the appendix. Moreover, we only

derive results on the seller’s side. Those on the buyer’s side are symmetric.

If cs or ts increases, in order to restore the equilibrium condition vMs =

cs+2 ts

N
N s, the platform should lower the number of sellers, so that the value

of marginal contribution of the sellers increases. Moreover, since the buyers

and the sellers are complements (see Section 2.2), when the platform reduces

the number of sellers, it also reduces the number of buyers as well. As a

result, the number of both sellers and the buyers will decrease in response to

an exogenous increase in the costs of serving the seller or the seller’s cost of

using the platform.
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When the surplus from trade, v, increases exogenously, it makes a suc-

cessful matching more valuable. The platform’s best response is to induce

more agents to join the platform, so that the marginal contributions of all

agents become smaller, in order to recover (10) and (11). Therefore, an in-

creasing in trade surplus leads to the intuitive result that the numbers of

both sellers and buyers increase.

The change in the platform’s pricing policy in response to parametric

change is harder to pin down. However, when the number of users in the

platforms is large, as we expect to see in the real world, there will be definite

answers, as the following lemma shows.

Lemma 1. When both N b and N s are large, the entry fee is positively related

to the matching value v: ∂F i

∂v
> 0. Moreover, it is positively (negatively)

related to entry cost of serving users on the same (opposite) side: ∂F i

∂ci
> 0

and ∂F i

∂cj
< 0. Finally, an agent’s entry fee is positively related to his cost,

and negatively related to entry fee of agents on the other side ∂F i

∂ti
> 0 and

∂F i

∂tj
< 0.

When the numbers of buyers and sellers are large, we can also show that

the entry fees are substitutes, i.e., ∂2π
∂F b∂F s < 0.22 This result is consistent with

the famous “seesaw principle” in Rochet and Tirole (2006). The intuition of

this result is as follows. If, for example, serving the seller becomes more costly

(the profit margin on the seller side is lower), then attracting the buyers is

22 See A6 for the proof.
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more profitable. As a result, the platform will not only raise the fee for the

sellers but also lower the fee for the buyers.

In Weyl (2010), the seesaw principle is derived by way of showing the

number of participants on the two sides being substitutes. In his model the

substitution in the numbers of participants on the two sides is the source

of the seesaw effect. However, buyers and sellers being substitutes is not

the reason for the seesaw principle in our model. By Weyl’s definition,

the participation levels on the two sides are substitutes (complements) if

∂π
∂Nb∂Ns < 0 (> 0). From (14), we know that ∂π

∂Nb∂Ns = Mbs > 0. Therefore,

in our model the buyers and sellers are complements, while the fees are sub-

stitutes. In other words, the seesaw principle in fees still holds in our model

even if the participants in two sides are substitutes.

5 Conclusion

In this paper we provide a theoretical model of the two-sided platform in

which the number of buyers and sellers, the seller’s prices, and, more im-

portantly, the sources of network externalities are endogenously determined.

The platform is shown to exhibit both positive and negative network exter-

nalities: A participant’s benefit in joining the platform is increasing in the

number of participants on the other side of the platform, and decreasing in

the number of participants on the same side. Moreover, unlike the case of lin-

ear externalities, the benefit of a participant is bounded, even if the number

20



of participants on the other side of the platform goes to infinity. The optimal

pricing policy of the platform is shown to depend not only on the costs of

providing service and benefit to the participants but, more importantly, also

on how a new entrant (either a buyer or a seller) affects the matching prob-

ability. Beside providing a microfoundation for how the platforms function,

we also derive certain theoretical predictions which differ from past litera-

ture. For example, we show that the platform never subsidizes the sellers by

charging a fee lower than its marginal cost, but might subsidize the buyers.

This result is consistent with the platform pricing policy generally observed

in practice.

This paper considers only the monopoly platforms. For future research,

it will be interesting to also study the oligopoly case. In particular, since our

model provides a microfoundation for the platform, issues that are difficult

to tackle in the previous theoretical models such as single- vs. multi-homing

choice might be more easily analyzed in the present framework.
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Appendix

A1. The Proof of Proposition 1

Follow Burdett et al. (2001), let φ(a) be the probability that at least one

buyer visits a particular seller when all buyers visit this seller with probability

a. Given there are N b buyers in the platform, φ(a) = 1 − (1 − a)N
b

. Let Ω

be the probability that a given buyer gets served when he visits this seller.

Hence,

Ω =
φ(a)

N ba
=

1− (1− a)N
b

N ba
.

If every seller posts a price p and one contemplates deviating to pd, the buyer

visits the deviant with probability ad. The probability that he visits each of

the nondeviants is 1−ad

Ns
−1

, given there are N s sellers in the platform. As a

result,

Ωd =
1− (1− ad)N

b

N bad
,

and a buyer who visits a nondeviant gets served with probability

Ω =
1− (1− 1−ad

Ns
−1

)N
b

N b( 1−ad

Ns
−1

)
.

In the equilibrium,

(vb − p)Ω = (vb − pd)Ωd.

This condition can be written as

vb − p

vb − pd
=

(1− ad)[1− (1− ad)N
b

]

(N s − 1)ad[1− (1− 1−ad

Ns
−1

)Nb ]
. (15)
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Because the expected profit of the deviant is (pd − vs)[1 − (1 − ad)N
b

], the

first-order condition of the deviant’s utility maximize problem is

[1− (1− ad)N
b

] + (pd − vs)N b(1− ad)N
b
−1∂a

d

∂pd
= 0.

If we focus on the interior solution such that ad ∈ (0, 1), we can differentiate

(15) and then insert the symmetric equilibrium conditions pd = p, ad = 1
NS

to derive

∂ad

∂pd
= −

(N s − 1)2[1− (1− 1
Ns )

Nb

]

(N s)2[(N s − 1)− (N s − 1 +N b)(1− 1
Ns )N

b ](vb − pd)
< 0.

Inserting this into the first-order condition, we arrive at

p∗ =
vb[1− (1 + Nb

Ns
−1

)(1− 1
Ns )

Nb

] + vs N
b

Ns (1−
1
Ns )

Nb

1− [1 + Nb

Ns(Ns
−1)

](1− 1
Ns )N

b
.

A2. Properties of the Matching Function and the Ar-

rival Rates

We will show that the arrival rate of one side of the platform is increasing

(decreasing) in the number of agents on the other (same) side of the platform.

To complete the proof, it is necessary to check the properties of the matching

function, M(N b, N s). We can first show that

Mb ≡
∂M

∂N b
=(1−

1

N s
)N

b

ln(1−
1

N s
)−Ns

> 0, and (16)

Ms ≡
∂M

∂N s
=1− (1 +

N b

N s − 1
)(1−

1

N s
)N

b

> 0. (17)
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We can also show that M is concave in both N b and N s:

Mbb ≡
∂Mb

∂N b
= −

1

N s
(1−

1

N s
)N

b

[ln(1−
1

N s
)−Ns

]2 < 0, (18)

Mss ≡
∂Ms

∂N s
= −

N b(N b − 1)

N s(N s − 1)2
(1−

1

N s
)N

b

< 0. (19)

Also,

Mbs ≡
∂Mb

∂N s
= −

N s − (N s − 1 +N b) ln(1− 1
Ns )

−Ns

N s − 1
(1−

1

N s
)N

b

> 0. (20)

Finally,

∂Ai

∂N i
=

1

N i
(Mi −

M

N i
),

∂Ai

∂N j
=

Ml

Nk
, ∀i, j ∈ {b, s}, i 6= j.

Since Mi−
M
N i < 0 by the concavity of M in N i, we know that ∂Ai

∂N i < 0. Also,

∂Ai

∂Nj > 0 since Mj > 0.

A3. The Proof of Proposition 2

First note that

∂U b

∂N s
= −

∂p∗

∂N s
Ab + (vb − p∗)

∂Ab

∂N s
,

∂U s

∂N b
=

∂p∗

∂N b
As + (p∗ − vs)

∂As

∂N b
,

∂U b

∂N b
= −

∂p∗

∂N b
Ab + (vb − p∗)

∂Ab

∂N b
,

∂U s

∂N s
=

∂p∗

∂N s
As + (p∗ − vs)

∂As

∂N s
.

To prove this proposition, it suffices to show that (i) the sign of ∂p∗

∂N i is

positive if i = b and negative if i = s; and (ii) the sign of ∂Ai

∂Nj is positive if
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i 6= j and is negative if i = j. As (ii) is already proved in A2, we only need to

prove (i). Since p∗ = vs+(vb−vs)z, the sign of ∂p

∂N i is the same as the sign of

∂z
∂N i . Furthermore, let α = 1− (1 + Nb

Ns
−1

)(1− 1
Ns )

Nb

and β = Nb

Ns (1−
1
Ns )

Nb

,

then

z =
α

α + β
=

α
β

α
β
+ 1

.

It’s easy to show that

∂z

∂N b
=
∂z

∂ α
β

∂ α
β

∂N b
,

∂z

∂N s
=
∂z

∂ α
β

∂ α
β

∂N s
;

where ∂z
∂ α

β

= (α
β
+ 1)−2 > 0. Therefore, we know that ∂z

∂Nb > 0 if and only if

∂ α
β

∂Nb > 0; and ∂z
∂Ns < 0 if and only if

∂ α
β

∂Ns < 0. It can be shown that

∂ α
β

∂N b
=

1

(N b)2
(1−

1

N s
)−Nb

[N b ln(1−
1

N s
)−Ns

−M ] > 0, (21)

∂ α
β

∂N s
=[

1

N b(N s − 1)
(1−

1

N s
)−Nb

](M −N b −Ms) < 0.23 (22)

As a result, ∂z
∂Nb > 0 and ∂z

∂Ns < 0.

A4. The Proof of Corollary 1

To prove this proposition, we will show that Ab converges to 1 and p∗ con-

verges to vs as N s goes to infinity; and As converges to 1 and p∗ converges

to vb as N b goes to infinity. By the definitions of Ab and As, we know that

23To verify these, first note that N b ≥ 2 and Ns ≥ 2 ensures that ln(1 − 1

Ns )
−N

s

> 1

and (1− 1

Ns )
N

b

∈ (0, 1). Second, the term M ≤ min{N b, Ns}.
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Ab converges to 1 as long as M converges to N b; and As converges to 1 as

long as M converges to N s. What we have to show is that the limit of M

is N b when N s goes to infinity, and is N s when N b goes to infinity. Since

1 − 1
Ns < 1 implies that (1 − 1

Ns )
Nb

approaching 0 when N b is large, it is

obvious that M converges to N s as N b goes to infinity. To show that M

converges to N b as N s goes to infinity, we use the L’Hôpital’s rule:

lim
Ns

→∞

N s[1− (1−
1

N s
)N

b

] = lim
Ns

→∞

−N b(1−
1

N s
)N

b
−1 1

(N s)2

−
1

(N s)2

= N b.

Next we will find the limits of p∗ when N b or N s grows to infinity. Recall

that p∗ = zvb + (1− z)vs, and that

z =
M −N b(1− 1

Ns )
Nb

−1

M − Nb

Ns (1−
1
Ns )N

b
−1

.

Since limNs
→∞ M = N b, we have limNs

→∞ z = 0. By L’Hôpital’s rule,

limNb
→∞

N b(1 − 1
Ns )

Nb
−1 = 0, implying that limNb

→∞
z = 1. We there-

fore show that p∗ converges to vb when N b is large, and converges to vs when

N s is large.

A5. The Proof of Proposition 3

Totally differentiating N b and N s, we have







tb

N
− ub

b −ub
s

−us
b

ts

N
− us

s













dN b

dN s






=







−dF b

−dF s






.
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Solving for this equation system, we can derive the following:

∂N b

∂F b
=

−( t
s

N
− us

s)

∆
,

∂N s

∂F b
=

−us
b

∆
,

∂N b

∂F s
=

−ub
s

∆
,

∂N s

∂F s
=

−( t
b

N
− ub

b)

∆
;

where ∆ = ( t
b

N
− ub

b)(
ts

N
− us

s)− (us
b)(u

b
s).

The two first-order conditions of the platform’s profit maximizing problem

are

∂π

∂F b
= N b + (F b − cb)

∂N b

∂F b
+ (F s − cs)

∂N s

∂F b
= 0, and (23)

∂π

∂F s
= (F b − cb)

∂N b

∂F s
+N s + (F s − cs)

∂N s

∂F s
= 0. (24)

Solving for this equation system, we arrive at

F b =cb +
tb

N
N b − us

bN
s − ub

bN
b,

F s =cs +
ts

N
N s − ub

sN
b − us

sN
s.

By the fact that F i = ui − ti

N
N i, the first-order conditions can be written as

ub + ub
bN

b + us
bN

s = cb + 2 tb

N
N s and us + ub

sN
b + us

sN
s = cs + 2 ts

N
N s. By

the definitions of M and ui we know that ubN b + usN s = vM . Therefore,

ub
bN

b + ub + us
bN

s = vMb and ub
sN

b + us + us
sN

s = vMs. We therefore have

vMb =cb + 2
tb

N
N b,

vMs =cs + 2
N s

N
N s.
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A6. The Proof of Comparative Static Results

Firstly, we investigate the effects of the change in the exogenous parameters

on the number of users. We already know that Mbb < 0, Mss < 0 and

Mbs = Msb > 0 from A2. Furthermore, the Hessian matrix associated with

π is

H =







∂2π
(∂F b)2

∂2π
(∂F b)(∂F s)

∂2π
(∂F b)(∂F s)

∂2π
(∂F s)2






,

with H being negative definite if and only if |H1| < 0 and |H| > 0. However,

|H| = φ

∆2 where φ ≡ (2 tb

N
− vMbb)(2

ts

N
− vMss) − (vMbs)

2. Therefore, the

second-order condition, |H| > 0, implies that φ > 0.

Totally differentiating (10) and (11), we have






2 tb

N
− vMbb −vMsb

−vMbs 2 ts

N
− vMss













dN b

dN s






=







Mbdv − dcb − 2Nb

N
dtb

Msdv − dcs − 2Ns

N
dts






.

Therefore,

∂N b

∂cb
= −

1

φ
(2

ts

N
− vMss) < 0,

∂N s

∂cb
= −

1

φ
(vMbs) < 0,

∂N s

∂cs
= −

1

φ
(2

tb

N
− vMbb) < 0,

∂N b

∂cs
= −

1

φ
(vMbs) < 0,

∂N b

∂tb
= −

2Nb

N

φ
(2

ts

N
− vMss) < 0,

∂N s

∂tb
= −

2Nb

N

φ
(vMbs) < 0,
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∂N s

∂ts
= −

2Ns

N

φ
(2

tb

N
− vMbb) < 0,

∂N b

∂ts
= −

2Ns

N

φ
(vMbs) < 0,

∂N b

∂v
= −

1

φ
[Mb(2

ts

N
− vMss) +MsvMbs] > 0,

∂N s

∂v
= −

1

φ
[Ms(2

tb

N
− vMbb) +MbvMbs] > 0.

Next, we investigate the platform’s pricing policy in response to paramet-

ric changes. To do so, we differentiate (6) and (7) with respect to all param-

eters concerned, respectively. Then the partial derivatives can be written as

the general formula:

∂F i

∂y
=(ui

i −
ti

N
)
∂N i

∂y
+ ui

j

∂N j

∂y
, (25)

where y = ci, ti or v for all i, j ∈ {b, s}. When the numbers of buyers and

sellers are large enough, ln(1− 1
Ns )

−Ns

is approximately equal to 1, and N i−1

is approximately equal to N i, i ∈ {b, s}. Substitute these into (16) to (22)

and z, we have the following approximations:

Mb ≈(1−
1

N s
)N

b

,

Ms ≈1− (1 +
N b

N s
)(1−

1

N s
)N

b

> 0,

Mbb ≈−
1

N s
(1−

1

N s
)N

b

,

Mss ≈−
(N b)2

(N s)3
(1−

1

N s
)N

b

,

Mbs ≈
N b

(N s)2
(1−

1

N s
)N

b

,
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α ≈1− (1 +
N b

N s
)(1−

1

N s
)N

b

,

β ≈
N b

N s
(1−

1

N s
)N

b

,

∂ α
β

∂N b
≈

1

(N b)2
(1−

1

N s
)−Nb

(N b −M),

∂ α
β

∂N s
≈[

1

N bN s
(1−

1

N s
)−Nb

](M −N b −Ms).

We therefore have

ub
b ≈−

1

N s
(1−

1

N s
)N

b

,

ub
s ≈

N b

(N s)2
(1−

1

N s
)N

b

,

us
b ≈

N b

(N s)2
(1−

1

N s
)N

b

,

us
s ≈−

(N b)2

(N s)3
(1−

1

N s
)N

b

.

Putting these into (25), it is straightforward to obtain the comparative static

results: ∂F i

∂v
> 0, ∂F i

∂ti
> 0, ∂F i

∂ci
> 0, ∂F i

∂tj
< 0 and ∂F i

∂cj
< 0 for all i, j ∈ {b, s},

i 6= j.

In addition, twice differentiating the profit function with respect to the

fee on both sides, we have

∂2π

∂F b∂F s
= (πbb

∂N b

∂F s
+ πbs

∂N s

∂F s
)
∂N b

∂F b
+ (πbs

∂N b

∂F s
+ πss

∂N s

∂F s
)
∂N s

∂F b
, (26)

where πij ≡
∂2π

∂N i∂Nj . Substituting the approximation values above into (26),

we can easily show that ∂2π
∂F b∂F s < 0.
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