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A Flexible State Space Model and its Applications

Hang Qian1

Abstract

The standard state space model (SSM) treats observations as imprecise mea-

sures of the Markov latent states. Our flexible SSM treats the states and ob-

servables symmetrically, which are simultaneously determined by historical

observations and up to first-lagged states. The only distinction between the

states and observables is that the former are latent while the latter have data.

Despite the conceptual difference, the two SSMs share the same Kalman fil-

ter. However, when the flexible SSM is applied to the ARMA model, mixed

frequency regression and the dynamic factor model with missing data, the

state vector is not only parsimonious but also intuitive in that low-dimension

states are constructed simply by stacking all the relevant but unobserved

variables in the structural model.

Keywords: State Space Model, Kalman Filter, ARMA, Mixed Frequency,

Factor Model

1. Introduction

Starting with the path-breaking paper of Kalman (1960), the state space

model (SSM) has been widely applied in engineering, statistics and eco-
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sponding author: Department of Economics, Iowa State University, Ames, IA, 50010.
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nomics. See Harvey (1989), Hamilton (1994), Durbin and Koopman (2001)

for comprehensive presentations on the SSM and its applications in time

series analysis. Basdevant (2003) surveys various applications in macroeco-

nomics. For practitioners, the art consists in the model building, that is,

to cast a structural model into its state space form. Once an SSM is built,

the likelihood function as well as the smoothed states can be routinely eval-

uated by the Kalman filter. The state space representation is not unique,

for one can increase the dimensions of the state vector but equally represent

the same data generating process. Two aspects of a representation, namely

parsimony and intuitiveness, are of major concern. A parsimonious model

with minimum length of the state vector avoids large matrix manipulations,

saves overheads in computation (say 0 ∗ 0) and thus accelerates the Kalman

filter. An intuitive form with the economically interpretable state vector en-

hances attractiveness of the representation, for both predicted latent states

and smoothed historical states bear economic significances. Furthermore,

intuitiveness also means a practitioner can straightforwardly rewrite a struc-

tural model into its state space form.

The SSM derived its name because the system is driven by unobserved

states that have a Markov dependence structure. The observed variables are

imprecise measures of the states in each period. Based on this structure and

Gaussian disturbances, the Kalman filter first obtains the joint predictive

distribution of the current states and observables, conditional on the previ-

ous information set (historical observables). Then the states are updated by

further conditioning on the current observables. Through recursive predict-

ing and updating at each date, the filter gradually assimilates information
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conveyed by the observed data.

Our argument is that the filtering procedure does not necessarily require

the model structure implied by the standard SSM. The recursion is valid as

long as no higher than first-lagged states are in the dynamic system, without

restrictions on how the lagged observations affect current states and observ-

ables. In other words, the Markov transition of states is suitable but not

required for the forward recursion. That motivates us to bring into SSM

more symmetry and two-way dynamics between the states and observables.

The flexible model allows dynamic dimensions of the state and measurement

vectors, lagged observations in the equations and first-lagged state vector in

the measure equation. Examined individually, each new feature seems triv-

ial. Combining these features, however, will lead to non-trivial simplification

of the state space representation of many time series models. The idea of

our flexible SSM is to put all the relevant but unobserved variables in the

state vector at each date and all the observables in the measurement vector.

Therefore, our state vector always bears structural interpretations. Further-

more, the simplification is not only conceptual but also computational in

that the state vector typically has low dimensions under our flexible SSM.

The rest of the paper is organized as follows. Section 2 sets up the flexible

SSM and Section 3 explains the filtering procedure. Section 3 to 5 applies our

approach to the ARMA model, the mixed frequency vector autoregression

and the dynamic factor model with missing data. Our state space represen-

tations are distinct from those in the literature and fewer variables are put

in the state vector. Section 6 concludes the paper.
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2. A flexible state space model

First consider a standard SSM. Let ξt be a m × 1 latent state vector

and Y t be a n × 1 measurement vector. The dynamic system consists of a

transition equation of states and a measurement equation that bridges the

observables and the unobservables.

ξt = ct + F tξt−1 + εt, (1)

Y t = dt +H tξt + ut.

where the Gaussian white noises


 εt

ut


 ∼ N


0,


 Qt St

S
′

t Rt




. The

coefficients ct,F t,dt,H t,Qt,Rt,St are time-varying but deterministic. The

system starts from Date 1 and runs through Date T with the observations

Y T
1 ≡ {Y 1, ...,Y T}, which is the information set by Date T . The initial state

ξ0 has a known distribution, say the stationary distribution when ct,F t,Qt

are not time-varying and satisfy stability conditions.

The flexible SSM is a moderate generalization of the standard model.

Let ξt be a mt × 1 latent state vector and Y t be a nt × 1 measurement

vector. They are simultaneously determined by lagged observations and up

to first-lagged states:

ξt = ft
(
Y t−1

1

)
+ F tξt−1 + εt, (2)

Y t = gt
(
Y t−1

1

)
+H tξt + J tξt−1 + ut.

where ft (·) , gt (·) are two linear or non-linear functions that maps the infor-

mation set of Date t− 1 into R
mt and R

nt respectively. In some applications

of the flexible SSM, the contemporaneous correlation between εt and ut is
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essential. Note that if we included Y t in the transition equation, the state

and measurement vectors would be perfectly symmetric and distinguished

solely by their observability. Doing so will not change the Kalman filter,

but we are not aware of an application of that, so we do not put Y t in the

transition equation.

The flexible model has three features, though each of them seems trivial

at the first glance.

First, both the state and measurement vectors can change dimensions at

each date. The time-varying dimensions (TVD) of Y t is well understood

and implemented in practice. For example, the missing values in Y t compo-

nents lead to reduced the size of the measurement vector at Date t. If Y t

is completely missing, the updating step in the Kalman filter is effectively

skipped (see Jones, 1980; Harvey and Pierse, 1984). The TVD of ξt has been

under-appreciated in the literature until recently. Jungbacker et al. (2011)

consider a dynamic factor model with missing data. Common factors and

idiosyncratic disturbances corresponding to missing data at Date t and/or

t − 1 are put in the state vector. Since the number of missing data varies

over time, the state vector has TVD. Chan et al. (2011) explore TVD in a

different setting. The model switches to a more parsimonious representation

at random dates controlled by hidden Markov-switching regimes. This is a

dynamic mixture model with stochastic dimension changes. Our paper is

closer to Jungbacker et al. (2011) in that the dimension changes at deter-

ministic dates. The model per se does not involve dynamic dimensions, we

only rewrite it into a parsimonious form with a TVD state vector.

Second, historical observations Y t−1, ...,Y 1 can affect ξt,Y t. It is a well-
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understood that this feature will not change the Kalman filter. The setup of

the state space model in Hamilton (1994, p.372 - 373) includes an A′xt term

in the measurement equation. Hamilton mentions “xt could include lagged

values of y ...”, though no application of such feature is provided in the book.

In fact, lagged variables in the system are most useful when they are used

together with TVD feature. Suppose we intend to write gt (·) as a function of

p lagged values Y t−1, ...,Y t−p, we will encounter problems handling the initial

observations since Y 0,Y −1, ... are not observed. TVD offers two solutions.

One is to adjust the size of the state vector. Put unobserved lagged variables

in the state vector and remove them when they become available. The other

is to adjust the size of the measurement vector. No measurement variables

are in use at Date 1, ..., p− 1 but they are used together at Date p.

Allowing lagged observations in the states transition equation is rarely

seen in the literature. Some may argue that the modeling philosophy of the

SSM is to keep the state vector Markovian – summarizing the entire history

into states of the last period. This argument is not entirely relevant for our

model, for we never introduce high-order lagged states ξt−2, ξt−3, ... in the

system, but only allow observables Y t−1
1 affecting ξt. In the Kalman filter,

the state ξt updated conditional on Y t−1
1 as well as the new information

Y t. Technically, introducing ft
(
Y t−1

1

)
does not change the filter since it is

treated as a constant conditional on Y t−1
1 . However, this feature substantially

enriches the dependence structure of the SSM. In the standard SSM, ξt has

a law of motion independent of Y t. If we cast a time series model into Eqs.

(1), we must ensure the state vector can evolve in a self-sufficient manner.

This often entails larger size of the state vector by including variables that we
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do observe. However, in the flexible SSM the state vector may temporarily

disappear, but reappear later relying on ft
(
Y t−1

1

)
. Missing data and mixed

frequency regressions illustrate this feature, which will be discussed in Section

5 and 6.

Third, Y t is determined not only by the current states ξt but also by

first-lagged states ξt−1. This feature effectively downsizes the state vector

without affecting the Kalman filter. A simple application of this feature is a

local-location model such that

µt = µt−1 + εt,

Yt − µt = φ (Yt−1 − µt−1) + vt,

where µt is the latent local location. Rewrite this model into the standard

SSM requires a two-dimension state vector, say (µt, µt−1)
′ with the measure-

ment variable Yt. However, the local-location model itself is readily a flexible

SSM with the single state µt.

Another immediate application of the third feature is the dynamic factor

model. Let Y t be a vector of time series observations, determined by a vector

of common factors f t and idiosyncratic terms vt such that

Y t = Λf t + vt.

Suppose both common factors and idiosyncratic components follow AR(1)

processes

f t = Ff t−1 + εt,

vt = Φvt−1 + ut.
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The measurement equation can be rewritten as

Y t = ΦY t−1 +Λf t −ΦΛf t−1 + ut.

Clearly, it is already in the flexible state space form, though a standard SSM

requires doubling the length of the state vector by stacking
(
ξt, ξt−1

)′
.

We want to emphasis the fact that each single feature is trivial and has

limited usage, but when these features are combined together, the state space

representation can take on a parsimonious and intuitive form.

3. The filtering procedure

The procedure presented below is essentially the Kalman filter. We focus

on why the three features of the flexible SSM does not change the filter but

further extension will modify the filter. The forward recursion consists of

the prediction step and update step in a recursive manner. The starting

point is an assumption on the distribution of the initial state. Assume ξ0 ∼

N (c0,Q0). Before the information of Date 1 comes in, the information set

Y 0
1 is empty, so that ξ0

∣∣Y 0
1 ∼ N

(
ξ̂0|0 ,P 0|0

)
, where ξ̂0|0 = c0, P 0|0 = Q0.

At Date t (t = 1, ..., T ), we first predict ξt and Y t conditional on the

information set of Date t− 1. Rewrite Eqs. (2) as


 ξt

Y t


 =


 ft

(
Y t−1

1

)

gt
(
Y t−1

1

)
+H tft

(
Y t−1

1

)


+


 F t

H tF t + J t


 ξt−1+


 εt

H tεt + ut


 .

Clearly, introducing the term J tξt−1 into the measure equation (i.e., the

third feature of the flexible model) does not add complexity to the SSM in
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that J tξt−1 is merged into H tF tξt−1. It follows that


 ξt

Y t


∣∣Y t−1

1 ∼ N




 ξ̂t|t−1

Ŷ t|t−1


 ,


 P t|t−1 Lt|t−1

L
′

t|t−1 Dt|t−1




 ,

where

ξ̂t|t−1 = ft
(
Y t−1

1

)
+ F tξ̂t−1|t−1 ,

Ŷ t|t−1 = gt
(
Y t−1

1

)
+H tξ̂t|t−1 + J tξ̂t−1|t−1 ,

P t|t−1 = F tP t−1|t−1F
′

t +Qt,

Dt|t−1 = H tP t|t−1H
′

t +Rt + J tP t−1|t−1J
′

t +H tF tP t−1|t−1J
′

t

+ J tP t−1|t−1F
′

tH
′

t +H tSt + S
′

tH
′

t,

Lt|t−1 = P t|t−1H
′

t + F tP t−1|t−1J
′

t + St.

Clearly, introducing the terms ft
(
Y t−1

1

)
and gt

(
Y t−1

1

)
into the model

(i.e., the second feature of the flexible model) does not add complexity to

the SSM in that they are predetermined conditional on the information set

of Date t − 1. Then we update ξt conditional on Y t and Y t−1
1 . It follows

that ξt
∣∣Y t

1 ∼ N
(
ξ̂t|t ,P t|t

)
, where

ξ̂t|t = ξ̂t|t−1 +Lt|t−1

(
Dt|t−1

)−1
(
Y t − Ŷ t|t−1

)
,

P t|t = P t|t−1 −Lt|t−1

(
Dt|t−1

)−1
L

′

t|t−1 .

This completes a recursion cycle and the filter proceeds to the next pe-

riod. One can also rewrite the recursion formulas in terms of the Kalman

gain and Riccati equation by plugging ξ̂t|t and P t|t back into ξ̂t+1|t and

P t+1|t . Once the filter goes through the entire sample periods, we obtain
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the likelihood function in its prediction error decomposition form, namely
T∏

t=1

φ
(
Y t; Ŷ t|t−1 ,Dt|t−1

)
, where φ (x;µ,Σ) is the the density of N (µ,Σ).

The TVD state and measurement vectors only reflect in the varying size

of matrixes at each date, while the recursion formula itself does not change.

It is also possible that at some date we have no state or measurement vector,

which can be interpreted as a zero dimension column vector (i.e., a 0 × 1

vector). As long as a programming platform adopts the conformable matrix

algebra for empty matrixes2, the above formula remains the same, though it

can be expressed in a simplified manner.

If ξt has zero dimension, ξ̂t|t−1 , P t|t−1 ,Lt|t−1 , ξ̂t|t , P t|t are empty while

Ŷ t|t−1 = gt
(
Y t−1

1

)
+ J tξ̂t−1|t−1 and Dt|t−1 = Rt + J tP t−1|t−1J

′

t. In other

words, the prediction and update on ξt are skipped. Note that in the next

period, the predicting and updating steps can be conducted normally since

Y t may pass on its value to ξt+1, that is, ξt+1 = ft+1

(
Y t

1

)
+ εt+1.

If Y t has zero dimension, Ŷ t|t−1 , Dt|t−1 , Lt|t−1 are empty while ξ̂t|t =

ξ̂t|t−1 and P t|t = P t|t−1 . In other words, due to no information at Date t, we

can only update the latent states by making a one-period-ahead prediction.

2An m× n matrix is said to be empty if either m = 0 or n = 0 (or both). The matrix

algebra for empty matrixes is defined as follows: i) a 0×m matrix times an m×n matrix

yields a 0 × n matrix. ii) a m × 0 matrix times a 0 × n matrix yields a m × n matrix

of zeros; iii) the summation of two 0 ×m matrixes yields a 0 ×m matrix. For example,

let ξ
t−1

be a m × 1 vector, ξ
t
and εt be 0 × 1 vectors, F t be 0 × m matrix. It follows

that F tξt−1
has the dimension 0 × 1 and F tξt−1

+ εt leads to a 0 × 1 vector, which is

conformable with ξ
t
. Further assume Y t is a n × 1 vector and Ht is a n × 0 matrix. It

follows that Htξt is a n× 1 vector of zeros, whose size is conformable with Y t.
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In the likelihood evaluation, Y t of zero dimension is omitted.

Lastly, despite the innocuous inclusion of J tξt−1 in the measurement

equation, attempting to include more lags such as ξt−2, ξt−3 in the transition

and/or measurement equation will non-trivially alter the forward recursion.

This is because the forward recursion only keeps track of ξt−1

∣∣Y t−1
1 but not

ξt−2

∣∣Y t
1 , ξt−3

∣∣Y t
1 . It does not mean we cannot apply the filter, for we

can modify the filter either by adding a backward recursion (smoothing) at

each date or by tracking the joint distribution of ξt−1, ξt−2, ξt−3

∣∣Y t−1
1 , which

is equivalent to tripling the dimension of the state vector. Either solution

increases the computational complexity of the filter and thus is not further

pursued. If a practitioner does encounter high-order lags in their model, a

quick solution is simply to stack multiple-period states into a big state vector.

4. The state space form of ARMA

One prominent application of the Kalman filter in statistics is to evalu-

ate the likelihood function of an ARMA process. Let {Zt} be a univariate

ARMA (p, q) process

Zt = c+

p∑

i=1

φiZt−i + εt +

q∑

i=1

θiεt−i,

where the disturbances are Gaussian white noises N (0, σ2). There are var-

ious ways to write an ARMA model into its state space form. In Akaike

(1973, 1974) and Jones (1980), the state vector is chosen as the projection of

Zt, Zt+1,...,Zt+r−1 on the information set of Date t, where r ≡ max (p, q + 1).

The measurement equation is simply an extraction of the first element of the

state vector. Hamilton (1994) explores the fact the the lagged sum of an AR
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process is an ARMA process. The state vector keeps track of r recent values

of a latent AR (p) process with coefficients φ1, ..., φp. The measurement vari-

able Zt is the sum of these r recent values weighed by 1, θ1, ..., θq, 0, ..., 0. In

the state space representation of Harvey and Phillips (1979), the transition

matrix is the transpose of Hamilton’s. By a backward substitution from the

last element to the first element of the state vector, one can see the repre-

sentation captures the ARMA process. de Jong and Penzer (2004) extend

the idea of Pearlman (1980) and discuss a canonical form of the state space

model in which the length of the state vector is reduced to max (p, q).

Our flexible state space representation of the ARMA model distinguishes

from the above well-known SSMs in three aspects. First, it is more parsimo-

nious. The state vector only has q dimensions except for the initial p periods

when the state vector has dynamic dimensions. In most applications, T − p

is much larger than p, handling initial distributions accounts for a fraction of

the total computation. Second, it is more general. The well-known SSMs are

mostly suitable for stationary ARMA processes and the initial values typ-

ically come from the steady states. However, our representation can more

conveniently handle other types of initial distribution and time-varying pa-

rameters. Third, it is more intuitive. Latent states simply consist of the

disturbance terms εt and some unobserved initial values in the structural

model.

Suppose the observables are ZT
1 . Let W t = (Zt, ..., Zt−p+1, εt, ..., εt−q+1)

′,

t = 0, ..., T . Since the data generating process of Z1 depends on the unobserv-

able W 0, we must first specify the distribution of W 0. The ARMA literature

distinguishes the exact likelihood and the conditional likelihood. The exact
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likelihood approach assumes W 0 is conformable with the stationary distribu-

tion of ARMA process. The conditional likelihood treats either W 0 or W p

as deterministic. See Hamilton (1994, p.132) and Box and Jenkins (1976,

p.211). The well-known SSMs are all suitable for exact likelihood evaluation,

but apparently have difficulty handling the conditional likelihood since the

states are not expressed in terms of Zt or εt. The flexible SSM accommodates

both exact and conditional likelihood as special cases by properly specifying

the initial distributions. There are two methods to cast an ARMA in the

flexible SSM. One explores the TVD state vector, the other mainly resorts to

the TVD measurement vector. We refer to them model 1 and 2 respectively.

Denote Φ = (φ1, ..., φp), Θ = (θ1, ..., θq), and construct an i × (i+ 1)

matrix Ei =
(

I i 0i,1

)
.

Model 1: Assume W 0 ∼ N (µ,Σ).

Let the state vector be ξt = (Z0, ..., Zt−p+1, εt, ..., εt−q+1)
′. By assumption,

ξ0 ≡ W 0 ∼ N (µ,Σ). Note that the length of the state vector decreases

every period until Date p. After that the state vector only contains structural

disturbances ξt = (εt, ..., εt−q+1)
′.

For Date t = 1, ..., p, the transition equation is given by

ξt =




Ep−t 0p−t,q

01,p−t+1 01,q

0q−1,p−t+1 Eq−1


 ξt−1 +




0p−t,1

εt

0q−1,1


 ,

and the measurement equation is given by

Zt = c+
t−1∑

i=1

φiZt−i +
(

01,p−t 1 01,q−1

)
ξt + (φt, ..., φp,Θ) ξt−1.

13



Note that at Date t = p, Ep−t,0p−t,q,0p−t,p−t,01,p−t are empty, but the for-

mula still applies.

For Date t = p+ 1, ..., T , the dynamic system becomes simpler

ξt =


 01,q

Eq−1


 ξt−1 +


 εt

0q−1,1


 ,

Zt = c+

p∑

i=1

φiZt−i +
(

1 01,q−1

)
ξt +Θξt−1.

Suppose the initial distribution of W 0 is known (as in the case of the

conditional likelihood), we can immediately apply Model 1. However, we

often do not explicitly specify an initial distribution but require W 0 com-

ing from the stationary distribution (as in the case of the exact likelihood).

Unlike the fixed-dimension SSM, Model 1 cannot automatically generate a

stationary initial distribution due to the shrinking size of the state vector.

The easiest way to enable stationary distribution generation is to slightly

modify Model 1 by temporarily expanding ξ1 by one dimension. To be ex-

act, let ξ1 = W 1 and ξ1 = c1 + F 1ξ0 + ε̃1, where c1 =


 c

0p+q−1,1


,

F 1 =




Φ Θ

Ep−1 0p−1,q

01,p 01,q

0q−1,p Eq−1



, ε̃1 =

(
εt 01,p−1 εt 01,q−1

)′

. Then the sta-

tionary distribution can be generated by

E (ξ0) =
(
I(p+q) − F 1

)−1
c1, (3)

vec [V ar (ξ0)] =
(
I(p+q)2 − F 1 ⊗ F 1

)−1

vec (Q1) .

14



where Q1 is the covariance matrix of ε̃1, that is, a (p+ q)× (p+ q) matrix of

zeros except for (1, 1), (1, p+ 1), (p+ 1, 1),(p+ 1, p+ 1) elements being σ2.

Model 1 takes advantage of the TVD state vector by only including those

relevant but unobserved variables at each date, but the measurement variable

is always the scalar Zt. There is an alternative way to represent an ARMA

process with the TVD measurement vector. Here the initial values are spec-

ified in terms of W p instead of W 0. The alternative representation is ideal

for two scenarios. First, we intend to evaluate the exact likelihood and have

obtained the distribution of W 0 from Eqs. (3). Stationarity implies W p

has the same distribution as W 0. Second, we intend to find the conditional

likelihood for a given distribution of W p such as a deterministic one. The

idea of this representation is to treat the initial values Zp, ..., Z1 as a whole,

so that there is no need to keep track of Z0, Z−1, ... as latent states. To see

this, let the measurement variable Y t be empty for t = 1, ..., p − 1, and at

Date p let Y p = (Zp, ..., Z1)
′ and the state vector be ξp = (εp, ..., εp−q+1)

′. At

Date p the filter starts from the predictive distribution of


 Y p

ξp


∣∣Y p−1

1 ,

which has the same distribution as W p. As long as we properly specify Qp,

Rp and Sp so as to replicate the covariance of W p, the recursion from Date

1 to p−1 becomes irrelevant. This method leads to greater parsimony of the

state vector. The details are specified below.

Model 2: Assume W p ∼ N (µ,Σ).

The flexible SSM is given by Eqs. (2), with the following state and

measurement vector and coefficients:

For t = 1, ..., p− 1, let ξt,Y t be empty.
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For t = p, let ξt = (εp, ..., εp−q+1)
′, Y t = (Zp, ..., Z1)

′.

Partition µ into


 µ1

µ2


 with the length p and q respectively. Similarly

partition Σ into


 Σ11 Σ12

Σ21 Σ22


. Let ft

(
Y t−1

1

)
= µ2, Qt = Σ22, gt

(
Y t−1

1

)
=

µ1, Rt = Σ11, St = Σ21 and F t,H t,J t be empty.

For t = p+ 1, ..., T , the state variables, measurement variables and coef-

ficients are the same as those in Model 1.

In summary, Model 1 and 2 have the same specification from Date p+ 1

to T , which are the main body of the state space model. The main body has

fixed-length state and measurement vectors as well as time-invariant parame-

ters. The state vector only includes recent q disturbance terms, keeping track

of the MA part of the series. The AR part is predetermined and thus treated

as if it were a constant in the measurement equation. The TVD state and

measurement vectors are only employed to handle the initial distribution.

In the flexible SSM, the predicted and smoothed latent states have struc-

tural interpretations, even the distribution of the initial states are of theoret-

ical interest since it provides an exact solution to the autocovariance function

of an ARMA process.

Pick an arbitrary t, let µ = E (Zt), γj = E [(Zt − µ) (Zt−j − µ)], δj =

E [(Zt − µ) εt−j]. Clearly δj = 0, ∀j < 0. Note that (γ0, ..., γp−1, δ0, ..., δq−1)

can be read directly from the first row of V ar (ξ0) in Eqs. (3). It follows

that the analytic expression of the ARMA autocovariance function is

γj =

p∑

i=1

φiγj−i + δ−j +

q∑

i=1

θiδ−j+i, ∀j ≥ p.
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5. Mixed frequency regression

One feature of the flexible state space model is that lagged observations

can affect current states, allowing richer dynamics between the states and

observables. We illustrate its usage by a mixed frequency Vector Autoregres-

sion (VAR) model. Macroeconomic data are not observed at a uniformed

frequency. For example, the best available data of GDP is quarterly, while

that of the unemployment rate is monthly. If a VAR includes both variables,

we may interpret the quarterly GDP data as the sum of latent “monthly

GDP”. Temporal aggregation in the state space framework has been explored

by Zadrozny (1988), Mittnik and Zadrozny (2004), Mariano and Murasawa

(2003, 2010), Hyung and Granger (2008). For illustration purposes, consider

a bivariate V AR (1) model operated at the semi-annual frequency

Zt = c+ΦZt−1 + εt,

or in the expanded form


 Z1,t

Z2,t


 =


 c1

c2


+


 φ11 φ12

φ21 φ22





 Z1,t−1

Z2,t−1


+


 ε1,t

ε2,t


 .

where εt are Gaussian white noises with the variances Σ ≡


 σ11 σ12

σ21 σ22


.

Assume the initial values come from the stationary distribution: Z0 ∼

N (µ,Ω), where µ = (I2 −Φ)−1
c, Ω = (I4 −Φ⊗Φ)−1

vec (Σ).

Though {Z2,t} is fully observed, we do not have semi-annual data on

{Z1,t}. Instead we observe annual data Z1,t = Z1,t−1 + Z1,t, t = 2, 4, 6, ..., T .

For simplicity, T is assumed to be an even number.
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To write this model into a standard SSM, we need a four-dimension state

vector keeping track of the two variates in recent two periods. Let ξt =

(Z1,t, Z2,t, Z1,t−1, Z2,t−1)
′. The transition equation can be written as

ξt =


 c

02,1


+


 Φ 02,2

I2 02,2


 ξt−1 +


 εt

02,1


 ,

and E (ξ0) =
(

µ′ µ′

)′

, vec [V ar (ξ0)] = (I16 − F 1 ⊗ F 1)
−1

vec (Q1).

The measurement equation (with fixed-dimension observations) in Date

t = 1, 3, ..., T − 1 is given by3


 0

Z2,t


 =


 0 0 0 0

0 1 0 0


 ξt,

and in Date t = 2, 4, ..., T is given by


 Z1,t

Z2,t


 =


 1 0 1 0

0 1 0 0


 ξt.

Though this is a valid representation, the state vector is lengthy in that

some observed variables are put as states. The flexible SSM only admits

unobserved variables in the state vector. Let ξ0 = (Z1,0, Z2,0) and ξt = Z1,t

for all t = 1, ..., T .

3The first element of measurement vector is set to zero as that the measurement vector

has fixed length. Alternatively, one can fill in the first element by some exogenous random

variable whose data generating processe is unrelated with model parameters so that the

likelihood is only shifted by a constant (see Mariano and Murasawa, 2003). The only

advantage of introducing such artificial random variables is to keep constant the size of

the measurement vector.
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For t = 1, the transition and measurement equations are given by

ξ1 = c1 +
(

φ11 φ12

)
ξ0 + ε1,1,

Z2,1 = c2 +
(

φ21 φ22

)
ξ0 + ε2,1.

For t = 3, 5..., T − 1, the dynamic equations are

ξt = c1 + φ12Z2,t−1 + φ11ξt−1 + ε1,t,

Z2,t = c2 + φ22Z2,t−1 + φ21ξt−1 + ε2,t.

For t = 2, 4, ..., T , the transition takes the same form as that in odd-

numbered dates, but the measurement equations have two dimensions


 Z1,t

Z2,t


 =


 0

c2 + φ22Z2,t−1


+


 1

0


 ξt +


 1

φ21


 ξt−1 +


 0

ε2,t


 .

In the standard SSM, the state vector has four dimensions and the coeffi-

cient matrixes contain many zeros and ones, which slows down the filter due

to excessive overheads such as 0 ∗ 0. Worse still, to compute the covariance

matrix of the initial state, we need to work on a 16 × 16 matrix and its

inversion. However, the flexible SSM only keeps track of the scalar Z1,t as

the state vector. The state and measurement equations simply replicate the

original V AR (1) process and the aggregation constraints.

6. Dynamic factor model with missing data

Factor models have wide applications in macroeconomic forecasting (e.g.,

Stock and Watson, 2002; Forni et al., 2003; Schumacher, 2007), monetary

policy analysis (Bernanke et al., 2005; Stock and Watson, 2005) and business
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cycle transmission study (Eickmeier, 2007). We adopt the likelihood-based

inference on a dynamic factor model where large amount of observations

are driven by a few common factors. Economic data are not perfect and

possibly a fraction of observations are missing. We consider a factor model

with randomly missing data similar to Jungbacker et al. (2011), but propose

a more parsimonious state space representation.

Let Y t be a n × 1 vector of time series observations, determined by a

m× 1 vector of common factors f t and idiosyncratic terms vt such that

Y t = Λf t + vt. (4)

Both common factors and idiosyncratic components follow AR(1) processes

such that

f t = Ff t−1 + εt,

vt = Φvt−1 + ut,

where εt ∼ N (0,Q) and ut ∼ N (0,R) are white noises.

The term vt can be squeezed out of the measurement equation so that

Y t is determined by its lagged values and lagged factors:

Y t = ΦY t−1 +Λf t −ΦΛf t−1 + ut, (5)

We follow the notations of Jungbacker et al. (2011) in handling missing

data in Y t. Consider some n× 1 vector Zt. The vector Zt (os) contains all

elements of Zt that correspond to observed entries in Y s (t, s = 1, ..., T ). In

other words, os is a logical index indicating the observed entries in Y s and

we use os to select corresponding elements in Zt. Similarly, Zt (ms) contains
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all elements of Zt that correspond to missing entries in Y s. We can also use

the logical indexes to extract corresponding rows and/or columns of a n× n

matrix A. For example, A (os, :) denotes row selections, A (:,os) denotes

column selections, and A (ms,os) denotes both row and column selections.

In principle, we can track both ξt and vt as latent states and straightfor-

wardly write the model with missing data into the state space form. However,

vt is of length n, which is typically much larger than m. It is unfavorable

to work on an SSM with a high-dimension state vector. Jungbacker et al.

(2011) solve this problem by putting a fraction of vt into the state vector.

For those entries observed in both Y t and Y t−1, Eq. (5) is employed to char-

acterize the measurement equation. Otherwise, the measurement equation is

switched to Eq. (4).

Our flexible SSM only relies on Eq. (5) as the measurement equation and

vt never enters the state vector. Recall the idea of our flexible SSM is solely

including those relevant but unobserved variables in the state vector. When-

ever an element in Y t is observed, it is put in the measurement equation.

Whenever it is missing, it enters the state vector. It follows that the state

vector consists of f t and Y t (mt). The measurement vector is simply Y t (ot).

To find out the transition and measurement equations, we first rewrite Eq.

(5) as

Y t = ΦY t−1 + Jf t−1 +wt, (6)

where J = ΛF−ΦΛ,wt = Λεt+ut.


 εt

wt


 ∼ N


0,


 Q QΛ′

ΛQ ΛQΛ′ +R




.

Note that Y t−1 can be decomposed into Y t−1 (ot−1) and Y t−1 (mt−1).

Eq. (6) implies that Y t is determined by Y t−1 (ot−1), Y t−1 (mt−1) and f t−1.
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The first one is predetermined, while the last two are exactly the state vector

of Date t − 1. Furthermore, Y t can be decomposed into observed Y t (ot)

and unobserved Y t (mt). In a symmetric manner, we put Y t (ot) in the

measurement equation and Y t (mt) in the transition equation. It follows

that the measurement equation is given by

Y t (ot) = Φ (ot,ot−1)Y t−1 (ot−1)

+
[
J (ot, :) Φ (ot,mt−1)

]

 f t−1

Y t−1 (mt−1)


+wt (ot) ,

and the transition equation is given by

 f t

Y t (mt)


 =


 0

Φ (mt,ot−1)Y t−1 (ot−1)




+


 F t 0

J (mt, :) Φ (mt,mt−1)




 f t−1

Y t−1 (mt−1)


+


 εt

wt (mt)


 .

In this application, we critically explore the third feature of the flexible

SSM. Introduction of the first-lagged state vector in the measurement equa-

tion not only avoids tracking f t,f t−1 as latent states but also grants Y t (ot)

access to Y t−1 (mt−1). Compared with the state space representation of

Jungbacker et al. (2011), our flexible SSM represents the same process but

has some advantages. First, our state vector is shorter. Suppose Y t has k1

missing entries, Y t−1 has k2 distinct missing entries (entries that are missing

in both periods are counted once). Our state vector is of length m+k1 while

that in Jungbacker et al. (2011) is 2m + k1 + k2. Second, our formulation

puts no restriction on Φ. The transition equation presented in Jungbacker

et al. (2011) is based on a diagonal Φ so that, say, vt (mt−1) only depends
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on vt−1 (mt−1) rather than the whole vt−1. For a non-diagonal Φ, the states

transition would become cumbersome. Third, elements in our state vector

need not to be reshuffled in the states transition. In Jungbacker et al. (2011),

a selection matrix is employed to re-order the states to facilitate transition.

Fourth, our representation is intuitive. The transition and measurement

equation are symmetric and they largely resemble Eq. (4) and Eq. (6). The

elements in Y t, no matter as the states or observables, always fetch all el-

ements of Y t−1 partially from the past observations and partially from the

previous states.

7. Conclusion

In the standard SSM, the state vector is detached from the measurement

vector due to its own autoregressive law of motion. The measure vector is

viewed as a noise-ridden representation of the latent states. The asymmetric

treatment of the states and observations often entails a lengthy state vector

when a structural model is cast into the state space form.

In this paper, the SSM is examined from a new angle. Our SSM is flexible

mainly because of the symmetry of the state and measurement vectors as

well as two-way dynamics. This feature merits concise translation from a

structure model to its state space form. Relevant but unobserved variables

in the structural model are placed in the state vector while all observables are

in the measurement vector. The number of unobserved/observed variables

often varies over time, so the length of the state/measurement vector is also

time-varying. Intuitive representation is the main attraction of the flexible

state space form.

23



Despite different interpretations of system dynamics between the stan-

dard and flexible SSM, the same Kalman filter can be applied to both. In

the flexible SSM, the state vector is shorter in length and the parameter

matrixes have fewer axillary elements such as zeros and ones. Therefore,

the Kalman filter is expected to run faster. Computational efficiency offers

another attraction of the flexible state space form.
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