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Abstract

We propose a dynamic efficiency wage model with learning by doing. By taking into account the change in
the stock of workers’ knowledge, firms set efficiency wages such that the effort–wage elasticity is not in general
equal to one.  2000 Elsevier Science S.A. All rights reserved.
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1. Introduction

The efficiency wage literature (Akerlof and Yellen, 1986) stipulates that there is a direct and
increasing relation between the wage paid by firms and the effort provided by workers: the greater the
wage, the larger the effort. The model is in general static and maximizing profit firms set an efficiency
wage such that the effort–wage elasticity is equal to unity. This is referred to as the Solow condition
(see Solow, 1979).

It has been argued, however, that this condition does not hold in general. In their introduction,
Akerlof and Yellen (1986) stipulate that the effort–wage elasticity is less than one. Different reasons
have been given in the literature. Schmidt-Sørensen (1990) has introduced fixed employment costs per
worker (such as for example employer-provided health insurance) in the profit function; Pisauro
(1991) has taken into account specific taxes on labor; Rasmaswamy and Rowthorn (1991) have
dropped the assumption of the labor augmenting production function and have used a general one; Lin
and Lai (1994) have proposed a dynamic model with (external) turnover costs; and Jellal and Zenou
(1999) have focused on the role of uncertain job matching on workers’ effort. They have all shown
that the Solow condition does not hold and in general the effort–wage elasticity is less than one.
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In this paper, we develop a dynamic model of efficiency wage where firms take into account both
static and dynamic gains of high wages. We assume that there is some learning by doing so that
workers accumulate a stock of knowledge which allows them to increase their effort. This is in the
same spirit as in Arrow (1962), since learning by doing is here the steady improvement engendered by
the experience of producing.

We show that our dynamic efficiency wage can be greater, lower or equal to the static one (for
which the elasticity of effort with respect to wage is unitary) depending on a trade off between
productivity and static and dynamic gains. We believe that the work relation is a long run one so that
firms must induce workers’ effort at each period of time.

The remainder of the paper is as follows. The next section describes the basic model. In Section 3,
we develop the dynamic analysis and focus on the steady-state solution. Section 4 concludes.

2. The basic model and notations

Consider an infinitely lived representative firm and N homogeneous workers. As it is standard in
the efficiency wage literature, the firm takes into account the role of the wage offer as an incentive to
increase labor efficiency. Let us denote by e(w) the effort function and w the wage offer, with e9(w)
. 0 and e0(w), 0. In this context, the production function can be written as:

Y 5F X(A ,e(w )),N (1)s dt t t t

where Y is the output at time t, N is the number of workers hired at time t, X(.) corresponds to thet t

efficiency function per worker which depends on the knowledge (specific or not) A accumulated att
1time t and on the flow of effort e(w ). We assume that the production function is such that:t

9 9 9 9F (.). 0, F (.). 0, X (.). 0, X (.). 0X N A e

99 99 99 99F (.), 0, F (.), 0, X (.), 0, X (.), 0X N A e
2 2 2 2

≠ F ≠ F ≠ FS D]]]] ]].2 2 ≠w≠N≠w ≠N

2so that F(.) is both increasing and concave in w and N. It is important to observe that this production
function is quite different than the one used in general in the efficiency wage model (see Solow, 1979)
in which: Y 5F e(w)N . Indeed, in the standard static approach, wages have a direct and instantaneouss d
effect on effort, and thus on the output. Here, we want to emphasize the fact that effort can vary from
one period to another so that the control variable w used by the firm must induce workers at eacht

1 9In terms of notation, F 5≠F /≠X. We use the same notation for all partial derivatives.X
2We have:

≠F ≠F ≠X
] ]]5 e9(w). 0
≠w ≠X ≠e

2 2 22≠ F ≠ F ≠X ≠ X ≠F ≠F ≠F
] ] ] ]] ]]5 e9(w) S D 1 1 e0(w), 0.F G2 2 2≠e ≠X ≠X ≠X≠w ≠X ≠e
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period of time. We also want to put forward the fact that there is some learning by doing in the
efficiency function and thus in the output: the more knowledge is accumulated, the greater is the
efficiency and the output. Indeed, knowledge is growing in time, and learning is the product of
experience. In order to be more precise, we assume that productivity (or knowledge) per worker is
given by the following evolution equation:

~A 5G e(w ) 2dA (2)s dt t t

where d . 0 is the rate of depreciation of the stock of knowledge. We assume that:

9 99G . 0, G , 0e e

3so that G(.) is increasing and concave in w. Eq. (2) means that there are two aspects that affect the
evolution of the stock of knowledge. On one hand, the wage policy at each period induces workers to
be more efficient and thus to learn more. On the other, and independently of the wage policy, the
stock of knowledge depreciates over time because workers forget a part of what they have learned.
Thus, Eq. (2) implies that change in the stock of knowledge of the worker in the immediate future
depends partially on his effort and on the rate of depreciation of the stock of knowledge.

3. The steady-state equilibrium

In this context, the wage rate has an impact on current effort and thus on productivity through the
function F(.) as well as on the intertemporal efficiency through G(.). Therefore, a firm would like to
set a wage policy that incorporates both static and dynamic gains. For that, the firm solves the
following problem:

1`

2r tmax E F X(A ,e(w )),N 2w N e dtf s d gt t t t t
w ,Nt t

0 (3)
~A 5G e(w ) 2dAs dt t ts.t. HA(0)5 A $ 00

where r is the subjective discount rate. We have typically here an optimal control problem where the
control variables are w and N and the state variable is A . If we denote by l the costate variablet t t t

associated with A , the Hamiltonian function H can be expressed as:t

H 5F X(A ,e(w )),N 2w N 1l G(e(w ))2dA (4)s d s dt t t t t t t t

3Indeed, we have:

≠G ≠G
] ]5 e9(w). 0
≠w ≠e

2 2
≠ G ≠ G ≠G

2] ] ]5 e9(w) 1 e0(w), 0f g2 2 ≠e≠w ≠e
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The first two terms of the RHS of (4) correspond to the immediate profit from the choice of w andt

N while the last term is the value of the ‘investments’ that are affected by w and N . According to thet t t

maximum principle of optimal control theory, the control variables w and N must be chosen so as tot t

maximize H at each date, given the current values of the state and costate variables, A and l . If onet t

assumes continuous differentiability of the Hamiltonian, this implies that:

≠H ≠F ≠X
]] ]]5 e9(w )2N 1 l G9(.)e9(w )5 0 (5)t t t t≠w ≠X ≠et

≠H ≠F
] ]5 2w 5 0 (6)t≠N ≠Nt t

Furthermore, the optimal control theory (see, e.g., Kamien and Schwartz, 1981) imposes two
necessary conditions (that are also sufficient since H is concave in A , w and N ) that the costatet t t

variable l must satisfy. The first one is the Euler equation which states that:

≠F ≠X
~ ]]]l 5 (r 1d )l 2 (7)t t ≠X ≠A t

and the second one consists of the following transversality condition:

2r tlim e l A 5 0 (8)t tt→1`

In this paper, we are interested in the steady-state solution of this problem. The stationary state to
this growth model is when both A (the state variable) and the shadow value l (costate variable) aret t

~ ~constant, i.e., A 5 0 and l5 0. It is important to observe that there is a unique (steady-state) solution
~ ~to this dynamic system which is the saddle point (A*,l*) solution of the system A50 and l5 0.

Indeed, from (5) and (6), we get w and N as a function of A and l. By inserting these two values in
(2) and (7), we obtain a two-dimensional system of differential equation in A and l. By using the
initial condition A(0)5 A $ 0 and the transversality condition (8) which determines a terminal0

condition, there are just enough boundary conditions to determine a unique solution to the dynamic
4system; it will be the one that converges asymptotically to the stationary state (A*,l*).

At the steady-state solution, we have (drop the time index):

~A 5G e(w) 2dA5 0 (9)s d

≠F ≠X
~ ]]l5 (r 1d )l2 5 0 (10)

≠X ≠A

Thus, by using (10), we can rewrite (5) as:

≠F ≠X 1 ≠F ≠X
]] ]] ]]e9(w)1 G9(.)e9(w)5N (11)S D≠X ≠e r 1d ≠X ≠A

4It can further be shown that this steady-state equilibrium (A*,l*) is locally stable. Indeed, by linearizing the two
~ ~equations A50 and l50 around (A*,l*), we can write down the Jacobian matrix evaluated at (A*,l*) and show that its

determinant is negative.
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Eq. (11) has the following intuitive interpretation. The first term of the LHS is the static marginal
gain of raising wages and the second term is the intertemporal marginal gain. The RHS of (11), N, is
of course the marginal cost of a wage increase. Thus, when the firm has to decide its wage policy, it
faces a trade off between its marginal gain (both today and tomorrow) and its marginal cost. The
interesting feature here is that the firm must take into account that the flow of effort varies over time.
Now, by using (6) and (9), and after some manipulations, (11) becomes:

e(w) e9(w) e(w)G9(e) e9(w)X ≠F ≠X d X ≠F A ≠X N ≠F
]]]]]]] ]] ]]]]]]]]] ]]1 w 5 (12)S DF ≠X ≠e X r 1d F ≠X X ≠A F ≠Ne(w) G(e) e(w)

Let us define the following elasticities:

e(w)≠X A ≠X
]] ]]]h 5 . 0, h 5 . 0A e≠A X ≠e X
≠F X ≠F N
]] ]]h 5 . 0, h 5 . 0X N≠X F ≠N F

e(w)≠G ≠e w
]]] ]]]u 5 . 0, ´ 5 . 0G w≠e ≠wG(e) e(w)

where h and h are the elasticity of efficiency with respect to knowledge and to effort, respectively;A e

h and h represent the elasticity of the production with respect to efficiency and to employment,X N

respectively; u is the elasticity of knowledge accumulation with respect to effort and finally, ´ is theG w

(standard) elasticity of effort with respect to wage. By using these definitions, we can rewrite (12) as:

d
]]´ h .h 1 h ?h ?u 5h (13)S Dw e X A X G Nd 1 r

Proposition 1. The long run optimal efficiency wage w* is given by:

he9(w*)w* N
]]] ]]]]]]]]´ 5 5 (14)w de(w*)

]]h h 1u hS S D DX e G Ad 1 r

We are now in position to discuss whether the Solow condition (i.e., ´ 5 1) is valid.w

Proposition 2. From Proposition 1, we have the following equivalence:

h dN
] ]]´ _ 1⇔ _h 1u h (15)S Dw e G Ah d 1 rX

9 9The interpretation of (15) is quite easy. The LHS of the inequality, h /h 5 (F ) /(F ) (N) /(X), isN X N X

the ratio of the elasticity of productivity of output while the RHS is the global gain of incentive (h ise

the static gain emanating from the flow of effort and

d
]]u h ,S DG Ad 1 r

the discounted dynamic gain). If the gain of productivity is greater than the global gain of incentive
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then firms have no interest to set high wages (´ . 1), whereas wages are naturally high (´ , 1) if wew w

have the reverse inequality.
Another interesting implication of Proposition 2 is that the dynamic efficiency wage (14) can be

greater, equal or lower than the static one (in which ´ 5 1). This result contradicts that of Barnerjiw

and Gupta (1997) where the dynamic efficiency wage is always greater than the static one or stated
differently where ´ , 1 (see their Proposition 1). This is due to the fact that they focus on a differentw

issue, namely the problem of health accumulation in LDCs. In their paper, the efficiency function is
h(t)5 h[w(t),e(t),a ], where a is a parameter and effort e(.) is identified with health, and the1 1

~evolution equation is e 5 g[w(t),a ]2de where a is another parameter. Therefore, in Barnerji and2 2

Gupta (1997) a dynamic high wage is needed since health accumulation depends drastically on it.
We have, therefore, obtained a general result that formalizes in a dynamic context the statement of

Stiglitz (1987). He indeed argues that many of the results in the efficiency wage theory depend
crucially on the existence of some region(s) where an increase in the wage leads to more than
proportionate increases in the work effort. We show that there are also some regions where a wage
raise generates an effort lower or equal to the initial wage increase (a wage for which the elasticity of
effort with respect to wage is greater than 1 is obviously lower than a wage characterized by an
elasticity less or equal to 1).

It is now interesting to discuss the following special cases. If h 5 0, which means that productionA

requires simple tasks of routine without requiring qualification and accumulation of knowledge, and
h 5 h 5 h 5 1, we are back to the Solow case with ´ 5 1. If h 5 0 and h 5 1, we obtaine N X w A X

exactly the result of Rasmaswamy and Rowthorn (1991) in which:

hN
]´ _ 1⇔ _ 1w he

This shows that our analysis is quite general so that it can encompass other papers as special cases.

4. Conclusion

The aim of this paper is to highlight the fact that the work relation is a long run one so that firms
must induce workers’ effort at each period of time. In a dynamic framework with a learning by doing
process, we generalize the Solow condition (static efficiency wage) in which the wage elasticity is
equal to one and show that our dynamic efficiency wage can be greater, equal or lower than the static
one.
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