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Preface

Modeling financial time series is a complex problem. This complexity is not

only due to the variety of the series in use (stocks, exchange rates, interest

rates, etc.), or to the importance of the frequency of the observations (second,

minute, hour, day, etc.). It is mainly due to the existence of statistical regu-

larities (stylized facts) which are common to a large number of financial time

series, but are difficult to reproduce artificially using stochastic models. Most

of these stylized facts were put forward in a seminal paper by Mandelbrot

(1963)[29]; since then, they have been documented, and completed, by many

empirical studies.

Let Pt denote the price of an asset at time t and let rt = ln(Pt/Pt−1) be the

corresponding (log-)return. It is well-established, in the financial literature,

that returns series generally display small linear autocorrelations, making it

close to a white noise and reducing the possibility to correctly forecast their ex-

pected value (and thus, the profit opportunities). On the other hand, squared

returns (or absolute returns) are generally strongly autocorrelated and they

tend to appear in clusters, meaning that highly risky time subperiods are typ-

ically followed by highly risky ones and vice versa. These phenomena suggest

that forecasting squared returns, i.e. - assuming absence of autocorrelation -

forecasting the variance of returns (volatility) is easier than forecasting returns

themselves.

The most extensively studied models of time-varying (conditional) volatil-

ity are the autoregressive conditional heteroskedastic (ARCH) models, intro-

duced by Engle (1982)[11]. Since the introduction of the generalized ARCH

(GARCH) models (Bollerslev, 1986 [5]), such a framework has become ex-

tremely popular among both academics and practitioners, being simple enough



to be used in practice, but also rich in theoretical problems (some of them

unsolved). In fact, GARCH models led to a fundamental change to the ap-

proaches used in finance, through an efficient modeling and forecasting of the

volatility of financial asset returns1.

The GARCH class of models assumes that returns are mean zero, serially

uncorrelated but not serially independent, with nonconstant variances condi-

tionally on the past. Namely, rt ≡ ǫt = zt
√

σ2t , where the innovations zt are

standard normal distributed and the conditional variances σ2t depend on past

information, σ2t = σ2t (It−1). An important assumption of GARCH-type mod-

els is that the conditional distribution of the process has finite second moment,

imposing limits on the heaviness of the tails of its unconditional distribution.

Given that a wide range of financial data exhibits remarkably fat tails, this

assumption represents a major shortcoming of GARCH models in handling

financial time series. This observation has led to the use of the Student’s

t in place of the normal as conditional distribution (for instance, Fiorentini

et al., 2003 [13]). The Student-t distribution allows for heavier-than-normal

tails, but, in contrast with the normal, lacks the desirable stability property.

Stability is desirable because stable distributions have domains of attraction,

and thus provide very good approximations for large class of distributions.

It is therefore difficult to find theoretical reasons for which the innovations

should be Student-t distributed. Moreover, some empirical studies (e.g. Yang

& Brorsen, 1993 [44]) indicate that the tail behavior of GARCH models re-

mains too short even with Student-t innovations.

For what claimed so far, the family of α-stable distributions, which in-

cludes the normal as a special case, seems a natural candidate for the con-

ditional distribution of GARCH-type models2. The use of models based on

α-stable distributions is encouraged by the generalized central limit theorem

(Gnedenko and Kolmogorov, 1954), according to which α-stable distributions

1In 2003, the Nobel Prize for Economics was jointly awarded to Robert F. Engle and Clive

W.J. Granger “for methods of analyzing economic time series with time-varying volatility

(ARCH)“.
2GARCH models with (symmetric) stable innovations have been first proposed by Mc-

Culloch (1985)[30].
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are the limiting law of standardized sums of independent random variables in

a wider range of cases than the normal3. Mandelbrot (1963) first proposed to

use the other members of the stable class rather than the normal for fitting

data in which extreme values are frequent. In fact, this class of distributions

has four parameters, two of which deal with, respectively, tail-thickness and

asymmetry. Hence, it manages to accommodate heavy-tailed financial series -

producing more reliable measure of risk - and, in addition, it is able to capture

skewness in distribution, another characteristic feature of financial time series

unaccounted for by GARCH models.

In the light of these considerations, it may sound strange that α-stable distri-

butions have not enjoyed a better fortune in applied fields. This is probably

due to the associated estimation difficulties, since, in most cases, the density

function of α-stable laws cannot be expressed in closed form. Such estima-

tion difficulties have somehow dampened also the academic interest in α-stable

models. A notable exception was an interesting analysis of the relation between

GARCHmodels and α-stable distributions proposed by de Vries (1991)[10] and

Ghose & Kroner(1993) [19], which also highlight the main source of difficulties

that will be encountered in this work.

To estimate the parameters of the proposed GARCH models with α-stable

innovations, we use the indirect inference methods introduced by Gouriéroux

et al. (1993)[21] and Gallant & Tauchen (1996)[16]. These methods can be

applied in situations in which the likelihood function cannot be expressed in

closed form or it is difficult to compute, while it is simple to produce simulated

observations from the model of interest. Since pseudo-random numbers from

α-stable distributions can be readily generated - by means of the algorithm

by Chambers et al. (1976) [9] - the indirect inference approach could prove

useful to overcome the estimation difficulties arising from stable models.

Indirect inference involves the use of an auxiliary model (easier to handle than

the model of interest), whose parameters are recovered through the maximiza-

tion of its pseudo-likelihood function. In this work, we use as auxiliary model

3Asset returns are commonly thought of as the result of the aggregation of the asset

allocation decisions of market partecipants. Therefore, the resulting distributions should

arise, in the limit, from a central limit theorem.
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a GARCH with skewed Student’s t innovations. The skew-t distribution4 ap-

pears as a good candidate for our purpose since it has four parameters, with

a sort of one-to-one correspondence with those of the α-stable distribution.

This work is structured as follows. In the first chapter, the traditional

ARCH and GARCH models are presented, with a particular focus on the

weaknesses of (Gaussian) GARCH processes. The second chapter introduces to

α-stable family of distributions and its main properties; the algorithm to sim-

ulate α-stable pseudo-random numbers is then reported. Chapter 3 presents

the indirect inference methods and their asymptotic properties, whose proofs

are sketched in Appendix A. The first three chapters are autonomously read-

able; their content is then linked and exploited in chapter 4. Here, after briefly

introducing the skew-t distribution, we describe in detail the model we propose

to estimate and the chosen auxiliary model. Then, we address the estimation

difficulties encountered and how they have been overcome. Simulation studies

- conducted using the GAUSS matrix programming language - are displayed

and commented; finally, the proposed models are used to estimate the IBM

weekly returns series, as an illustration of how they perform on real data.

A part of the GAUSS code used for the simulation studies can be found in

Appendix B, to see how stable GARCH models have been simulated.

4Some alternative versions are available in the literature; we use the one by Azzalini &

Capitanio (2003)[2].
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Chapter 1

GARCH Processes

Volatility is by far the most used measure of risk in financial applications.

Consequently, volatility measuring, modeling and forecasting is of central im-

portance in financial econometrics. Typically computed as the standard devi-

ation of the underlying asset return, the concept of volatility has a long history

in finance and has become a key ingredient in many theoretical frameworks

such as risk management, portfolio management, CAPM, option pricing etc.

The practical implementation of these frameworks requires estimate of the

unobserved volatility. In fact, a particular feature of stock volatility is that

it is not directly observable and this makes it difficult also to evaluate the

forecasting performance of volatility models.

Initially, the volatility was considered to be constant in time and was com-

puted as the sample standard deviation over a given time window (historical

volatility). Its accuracy clearly depends on the historical window size. Since

it gives the same weight to all past and recent observations, the historical

volatility might not be a relevant measure of today’s risk if computed on very

large windows. Additionally, it becomes very noisy when computed on a short

window. However, it is widely accepted that the volatility is time varying, i.e.

it evolves over time in a continuous manner. Moreover, there are some other

features commonly seen in asset returns that play an important role in the de-

velopment of dynamic volatility models. First, as noted by Mandelbrot in his

study on speculative prices (1963) [29], there exists volatility clustering, that is

”large changes tend to be followed by large changes, of either sign, and small
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changes tend to be followed by small changes”. Second, volatility does not

diverge to infinity, or statistically stated, volatility is often stationary. Third,

volatility seems to react differently to a big price increase or a big price drop,

referred to as the leverage effect. These empirical properties make it easier to

forecast conditional variance of asset returns than returns themselves.

The most extensively studied models of time-varying conditional volatility

are the autoregressive conditional heteroskedastic (ARCH) models, first in-

troduced by Engle (1982)[11] and then modified by Bollerslev (1986)[5], who

proposed the generalized autoregressive conditional heteroskedastic (GARCH)

models.

1.1 General setting

Let us observe that any time series yt can be decomposed into a predictable

part and an unpredictable part:

yt = E(yt|It−1) + ǫt (1.1)

where It−1 denotes the information set consisting of all the relevant informa-

tion up to and including time t − 1. The process {ǫt} is a weak white noise:

E(ǫt|It−1) = 0, cov(ǫt, ǫt+h) = 0 ∀h 6= 0. For instance, a reasonable model

for the log-price process is of the form lnPt = c + lnPt−1 + ǫt, so that the

corresponding log-return process is given by

rt := lnPt − lnPt−1 = c+ ǫt

with E(rt|It−1) = c (the notation “:=” is used to mean “defined as”). In this

case the predictable part of the return process is simply a constant (the so

called drift parameter).

In the following we are interested in focusing on the conditional variance of

the unpredictable part. For the conditional mean any meaningful specification

(e.g. an ARMA(p, q) model) can be introduced. However, it is worthy to recall

that serial dependence of a stock return series is generally weak, if it exists at

all.
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1.2 ARCH Models

1.2 ARCH Models

In an ARMA framework the error term ǫt is assumed to be both conditionally

and unconditionally homoskedastic, i.e.

V(ǫt) = V(ǫt|It−1) ≡ σ2ǫ ∀ t.

To generalize this implausible setting, the ARCH-type models relax the con-

ditionally homoskedastic assumption and assume the following decomposition

for the unpredictable part:

ǫt = zt

√

σ2t (1.2)

where zt, conditional upon the information available at t − 1, is an indepen-

dent identically distributed (iid) error term with zero expectation and unit

variance. The assumption of unit variance can be introduced without any

loss of generality. The function σ2t is assumed to depend on past information:

σ2t = σ2t (It−1). The conditional variance becomes

V(ǫt|It−1) = σ2t V(zt|It−1) = σ2t V(zt) = σ2t = σ2t (It−1) (1.3)

Therefore, V(ǫt|It−1) depends on past values of the conditioning variables,

i.e. ǫt is conditionally heteroskedastic. An important property of the class of

ARCH models is that the volatility is a It−1-measurable function or, simply

stated, it is deterministic given the information set in It−1.

For the unconditional variance we have

σ2ǫ ≡ V(ǫt) = E[V(ǫt|It−1)] + V[E(ǫt|It−1)] = E(σ2t ).

It follows that the unconditional variance is constant as long as σ2t (It−1) is

mean-stationary.

The basic idea of ARCH models is to describe the dependence of ǫt with

a simple quadratic function of its lagged values. Specifically, an ARCH(1)

model assumes that

σ2t = ω + α1ǫ
2
t−1 (1.4)

where, in order to guarantee the positivity of the conditional variance, ω > 0

and α1 ≥ 0. The distribution of the iid innovations is often assumed to be

3



CHAPTER 1. GARCH Processes

standard normal or standard Student-t.

The name ARCH results from the fact that the conditional variance is autore-

gressive in the error term:

V(ǫt|It−1) = E(ǫ2t |It−1)− E(ǫt|It−1)
2 = E(z2t σ

2
t |It−1)

= σ2t (It−1) = ω + α1ǫ
2
t−1

From the structure of the model, it is seen that a large past squared shock ǫ2t−1

implies a large conditional variance σ2t for the innovation ǫt. Consequently, ǫt

tends to assume a large value in modulus1. Moreover, the influence of positive

and negative shocks is equal, i.e. the model is symmetric.

1.2.1 Properties of the ARCH Process

The proposition below shows the main properties of the ARCH(1) model. Not

all the proofs are reported (interested readers can refer, for instance, to Tsay

2010)[41].

Proposition 1.1 (Properties of the ARCH(1) process).

(i) ǫ2t = ω + α1ǫ
2
t−1 + νt with νt := ǫ2t − σ2t = σ2t (z

2
t − 1)

(ii) ǫ2t is covariance-stationary if |α1| < 1

(iii) E(ǫt) = 0, V(ǫt) ≡ σ2ǫ =
ω

1−α1

(iv) ǫ2t = σ2ǫ + α1(ǫ
2
t−1 − σ2ǫ ) + νt ⇔ σ2t = σ2ǫ + α1(ǫ

2
t−1 − σ2ǫ )

(v) E(ǫ4t ) = E(z4t )E[(σ
2
t )

2] ≥ E(z4t )E[(σ
2
t )]

2 = E(z4t )E[(ǫ
2
t )]

2

(vi) K(ǫt) :=
E(ǫ4t )

E(ǫ2t )
2 = 3

1−α2
1

1−3α2
1
> 3 for zt

iid∼ N(0, 1) and α2
1 ∈ [0, 13).

From property (i) we see that the ARCH(1) process can be written as an

AR(1) process in the squared innovations, where νt is a martingale difference

sequence, i.e. E(νt) = 0 and cov(νt, νt−h) = 0 ∀h > 0. Hence, the dynamics

1Note that the word tend is used because a large variance does not necessarily produce

a large realization. It only says that the probability of obtaining a large variate is greater

than that of a smaller variance.

4



1.2 ARCH Models

of the second moment of the series yt follow directly from the properties of

the AR(1) model, which lead to property (ii) that states that the squared

innovations are covariance-stationary whenever |α1| < 1. It is clear that the

process {ǫt} is not an independent identically distributed process. However, its

unconditional mean remains zero because E(ǫt) = E[E(ǫt|It−1)] = E[σtE(zt)] =

0 and its unconditional variance follows from V(ǫt) = E(ǫ2t ) = ω + α1E(ǫ
2
t−1)

and E(ǫ2t ) = E(ǫ2t−1) = σ2ǫ given the stationarity of ǫ2t . Property (iv) depicts

how the ARCH(1) model is able to capture the volatility clustering: when

0 ≤ α1 < 1, if ǫ2t−1 is larger (smaller) than its unconditional mean σ2ǫ , ǫ
2
t is

expected to be larger (smaller) than σ2ǫ as well. In other words, high volatility

is more likely to be followed by high volatility and vice versa. Besides capturing

the volatility clustering effect, the ARCH(1) approach also depicts the fat tails

typical of financial returns. In fact, property (v) shows2 that the kurtosis of

ǫt always exceeds the kurtosis of zt, and property (vi) illustrates that, if zt is

standard normal distributed, the unconditional kurtosis of ǫt is finite as long as

α2
1 ∈ [0, 13) and larger than that of a normal distribution. Thus, the ARCH(1)

model manages to produce a larger number of extremes than expected from

an iid sequence of normal random variables, in agreement with the empirical

features of most financial time series.

The ARCH(1) process can naturally be extended to an ARCH(p) process

to allow for a richer dynamic structure:

σ2t = ω + α1ǫ
2
t−1 + α2ǫ

2
t−2 + · · ·+ αpǫ

2
t−p (1.5)

Sufficient conditions to ensure the positivity of σ2t are ω > 0 and αi ≥ 0 ∀ i =
1, . . . , p, while

∑p
i=1 αi < 1 implies that the unconditional variance of ǫt is

finite.

Proposition 1.2 (Properties of the ARCH(p) process).

(i) ǫ2t = ω + α1ǫ
2
t−1 + α2ǫ

2
t−2 + · · ·+ αpǫ

2
t−p + νt

(ii) ǫ2t is covariance-stationary if all the roots of 1−α1z−α2z
2−· · ·−αpzp = 0

lie outside the unit circle
2It follows from Jensen’s inequality, which states that, for any convenx function φ,

E[φ(X)] ≥ φ[E(X)].

5



CHAPTER 1. GARCH Processes

(iii) E(ǫt) = 0, V(ǫt) ≡ σ2ǫ =
ω

1−
∑p

i=1 αi

(iv) σ2t = σ2ǫ + α1(ǫ
2
t−1 − σ2ǫ ) + · · ·+ αp(ǫ

2
t−p − σ2ǫ )

(v) K(ǫt) > 3 for zt
iid∼ N(0, 1) and certain parameter constraints to ensure

the existence of the fourth moment of ǫt.

1.3 GARCH Models

Although the ARCH model is simple, it often requires a lot of lags to ade-

quately describe the volatility process of an asset return. One thus needs to

estimate a high number of parameters and to impose complicated paramet-

ric conditions in order to guarantee the stationarity and the positivity of σ2t .

Bollerslev (1986)[5] proposed a useful and more parsimonious extension known

as generalized ARCH (GARCH) model. It provides more flexible dependence

patterns and, even in its simplest form, it has proven surprisingly successful

in predicting conditional variances.

For a (log-)return series yt, let ǫt = yt − µt be the innovation at time t. The

(Gaussian) GARCH(1,1) process is then given by

ǫt|It−1
iid∼ N(0, σ2t ), σ2t = ω + α1ǫ

2
t−1 + β1σ

2
t−1 (1.6)

with ω > 0, α1 ≥ 0, β1 ≥ 0 and (α1 + β1) < 1.

Clearly, equation in (1.6) reduces to an ARCH(1) if β1 = 0. The α1 and β1

parameters are referred to as ARCH and GARCH parameters, respectively.

In the GARCH specification the conditional variance is a weighted average of

the constant (long-run) variance, lagged variances and lagged squared shocks

which represent the new information not captured in the lagged variances.

This corresponds to a sort of adaptive learning mechanism and can be thought

of as Bayesian updating. The model allows the data to determine how fast

the variance adapts to new information and how fast it reverts to its long run

mean. Similar to the ARCH approach, the impact of positive and negative

shocks is equal.

6



1.3 GARCH Models

1.3.1 Properties of the GARCH Process

Proposition 1.3 (Properties of the GARCH(1,1) process).

(i) ǫ2t = ω + (α1 + β1)ǫ
2
t−1 − β1νt−1 + νt, νt := ǫ2t − σ2t = σ2t (z

2
t − 1)

(ii) ǫ2t is covariance-stationary if |α1 + β1| < 1

(iii) E(ǫt) = 0, V(ǫt) ≡ σ2ǫ =
ω

1−α1−β1

(iv) σ2t = σ2ǫ + α1(ǫ
2
t−1 − σ2ǫ ) + β1(σ

2
t−1 − σ2ǫ )

(v) K(ǫt) = 3 (1−(α1−β1)2)
1−2α2

1−(α1−β1)2
> 3 for zt

iid∼ N(0, 1) and 2α2
1 + (α1 − β1)

2 < 1

(vi) σ2t = ω
∑∞

i=1 β
i−1
1 + α1

∑∞
i=1 β

i−1
1 ǫ2t−i, if β1 < 1

(vii) Assuming stationarity and if 2α2
1+(α1−β1)2 < 1, the autocorrelations

of ǫ2t are given by:

corr(ǫ2t , ǫ
2
t−1) = α1 +

α2
1β1

1−2α1β1−β2
1
,

corr(ǫ2t , ǫ
2
t−h) = (α1 + β1)

h−1 corr(ǫ2t , ǫ
2
t−1) for h = 2, 3, ...

Otherwise, if 2α2
1 + (α1 − β1)

2 ≥ 1, one can derive the following approx-

imations:

corr(ǫ2t , ǫ
2
t−1) ≈ α1 +

β1
3 ,

corr(ǫ2t , ǫ
2
t−h) ≈ (α1 + β1)

h−1 corr(ǫ2t , ǫ
2
t−1) for h = 2, 3, ...

(viii) cov(ǫt, σ
2
t+1|It−1) = α1(ω + α1ǫ

2
t−1 + β1σ

2
t−1)

3/2
E(z3t ).

From property (i) we see how a GARCH model can be regarded as an ap-

plication of the ARMA idea to the squared series ǫ2t . Such a formulation is

convenient to derive both conditions for stationarity, stated in property (ii),

and the unconditional mean of ǫ2t (i.e. the unconditional variance of ǫt), in

property (iii). However, formulation (1.6) is easier to work with and it is the

one commonly used in practice. From property (iv) one can see that a large

ǫ2t−1 or σ2t−1 gives rise to a large σ2t , generating again the well-known volatil-

ity cluster effect. Property (v) confirms that the tails of GARCH models are

thicker than those of the Gaussian distribution; moreover, given stationarity,

7



CHAPTER 1. GARCH Processes

the GARCH process reveals larger excess of kurtosis than the ARCH, i.e.,

adding an autoregressive term σ2t in the specification of the ARCH process,

the tails become heavier and deviate more from the normal distribution3. The

ability of the GARCH model to capture more complex and large dependence

patterns in conditional volatility is illustrated in property (vi). It is shown

that, for β1 < 1, any GARCH(1,1) may be seen as an ARCH(∞) process with

the parameters being restricted to be functions of α1 and β1.

Figure 1.1: Line graph of time series with GARCH(1,1) conditional variance char-

acterized by α1 = 0.01, β1 = 0.8 (left panel) and by α1 = 0.08, β1 = 0.9 (right panel).

Figure 1.1 plots time series with a GARCH(1,1) conditional variance for differ-

ent values of (α1+β1). We deduce that a larger (α1+β1) describes series with

more volatility clustering and more and larger extreme values. Also, conform

to property (vii), a larger value for (α1 + β1) depicts a slower decay of the au-

tocorrelation function of the squared series than for a small value of (α1+β1),

which is referred to as persistence of the GARCH4 (see Figure 1.2). Finally,

property (viii) shows that as long as zt has a symmetric distribution, GARCH

models cannot capture the leverage effect, since cov(ǫt, σ
2
t+1|It−1) = 0.

3However, from the kurtosis function given in property (v) it is easy to see that if α1 = 0,

then K(ǫt) = 3, meaning that the corresponding model does not have heavy tails.
4In empirical applications on daily returns series, it is generally observed 0 < α1 < 0.1

and 0.75 < β1 < 0.9 (Gallo & Pacini, 2002 [17]).

8



1.3 GARCH Models

Figure 1.2: Autocorrelation function of squared time series with GARCH(1,1)

conditional variance characterized by α1 = 0.01, β1 = 0.8 (left panel) and by

α1 = 0.08, β1 = 0.9 (right panel).

A natural extension of the GARCH(1,1) model is the GARCH(p, q), where

the conditional variance is defined as

σ2t = ω +

p
∑

i=1

αiǫ
2
t−i +

q
∑

j=1

βjσ
2
t−j (1.7)

with, as usual, ω > 0, αi ≥ 0, βj ≥ 0 and
∑m

i=1(αi + βi) < 1. Here it is un-

derstood that m = max(p, q) and αi = 0 for i > p, βi = 0 for i > q. Equation

(1.7) reduces to a pure ARCH(p) if q = 0.

Proposition 1.4 (Properties of the GARCH(p, q) process).

(i) ǫ2t = ω +
∑m

i=1(αi + βi)ǫ
2
t−i −

∑q
j=1 βjνt−j + νt

(ii) ǫ2t is covariance-stationary if all the roots of 1−α1z−α2z
2−· · ·−αmzm−

β1z − β2z
2 − · · · − βmz

m = 0 lie outside the unit circle

(iii) E(ǫt) = 0, V(ǫt) =
ω

1−
∑p

i=1 αi−
∑q

j=1 βj

(iv) σ2t = σ2ǫ +
∑p

i=1 αi(ǫ
2
t−i − σ2ǫ ) +

∑q
j=1 βj(σ

2
t−j − σ2ǫ )

(v) K(ǫt) > 3 for zt
iid∼ N(0, 1) and some parameter constraints to ensure the

existence of the fourth moment of ǫt

(vi) σ2t =
ω

(1−
∑q

j=1 βj)
+
∑∞

i=1 δiǫ
2
t−i, where δi are functions of αi and βj .

9



CHAPTER 1. GARCH Processes

1.3.2 Drawbacks of (G)ARCH models

The advantages of the (G)ARCH class of models include the properties dis-

cussed in the previous subsection. However, it has also some weaknesses:

• The (G)ARCH models describe the conditional variance as a function

of lagged squared shocks and lagged variances. While this structure is

valuable for forecasting, it does not provide any new insight for under-

standing the source of variations of financial markets. It is notewor-

thy that, if the true causes were included in the model (e.g. macroe-

conomic announcements, other market volatility, company specific an-

nouncements or other exogenous variables), then the lags would generally

not be needed.

• It is a well-known feature of financial markets that past shocks have a

high persistence on conditional volatility. However, even in the GARCH

specification, that has a higher persistence than the ARCH one, the

impact of large past shocks decays very fast. In fact, the GARCH rep-

resentation provides an exponential declining of the autocorrelation for

ǫ2t , albeit the empirical evidence suggests that it declines at a hyperbolic

rate. The appropriate high persistence can sometimes be achieved via

highly parameterization (at the cost of a higher estimation effort) or by

means of other specifications such as the Fractional Integrated GARCH.

• To study the tail behavior of the innovations ǫt we have to ensure the

finiteness of the fourth moment. The very restrictive conditions needed,

in practice, limit the ability of (Gaussian) (G)ARCH processes to capture

the excess of kurtosis of financial time series.

• In the (G)ARCH models, positive and negative shocks have the same

effect on conditional volatility since it depends on the squared of the

previous shocks. In practice, we observe that a falling stock price gives

rise to a greater uncertainty and hence to a greater volatility. On the

contrary, the reaction to positive shocks is generally lower. To circum-

vent this difficulty nonlinear GARCH models have been developed. In

10



1.4 The Threshold GARCH (TGARCH) Model

the next section the Threshold GARCH specification will be briefly il-

lustrated.

1.4 The Threshold GARCH (TGARCH) Model

The models described so far have ignored the information on the direction

of returns; only magnitude matters. However, as stated before, there is very

convincing evidence that the direction does affect volatility. To take into

account this phenomenon, the so called threshold GARCHmodel was proposed

independently by Glosten, Jagannathan & Runkle in 1993 and Zakoian in

1994. The general TGARCH(p, q) assumes the form

σ2t = ω +

p
∑

i=1

(αiǫ
2
t−i + γiǫ

2
t−i1I[ǫt−i<0]) +

q
∑

j=1

βjσ
2
t−j (1.8)

where 1I[·] is the indicator function, αi, γi and βj are nonnegative parameters

satisfying conditions similar to those of classic GARCH models. By intro-

ducing an interaction term of the lagged squared shocks with a dummy for

the sign of the shock, the TGARCH specification manages to account for the

leverage effect. In particular, if γi > 0, then the impact of a negative shock

in t− i on the conditional variance in t is larger if compared to the impact of

a positive shock. Clearly, the slope from a positive to a negative shock is not

smooth, but discrete.

1.5 Estimation, Forecasting and Model Diagnostic

The simplest way to estimate Gaussian GARCH models is to use maximum

likelihood by substituting sigma2t for σ2 in the normal likelihood and then

maximizing with respect to the parameters. For any set of parameters ω, αi, βj

and initial values for the variances and the error terms of the first m observa-

tions, it is easy to calculate the estimated variance for the m+ 1 observation,

by using the updating formula (1.5) or (1.7). The starting values for the vari-

ances and for the squared lagged error terms are typically set equal to the

unconditional (sample) variance of the time series. The maximum likelihood

method provides a systematic way to adjust the parameters to give the best

11



CHAPTER 1. GARCH Processes

fit. Unfortunately, the likelihood function of GARCH models is not globally

concave, and so, its maximization is often problematic, relying crucially on

the choice of starting values of the parameters to be estimated.

As we saw deriving the properties of (G)ARCH models, even if zt is normal

distributed, the unconditional distribution of ǫt is non-Gaussian, with heavier-

than-normal tails. Nevertheless, there is a fair amount of evidence that the

conditional distribution of ǫt is often non-Gaussian as well. However, the same

maximum likelihood approach can be used with distribution different from the

normal, such as a standardized Student-t distribution (as proposed by Boller-

slev, 1987 [6]; see also Fiorentini et al., 2003 [13]) or a skew-t distribution to

account also for the asymmetry of asset returns.

1.5.1 Forecast of GARCH Models

Consider the GARCH(1,1) in (1.6) and assume that the forecast origin is t.

For the 1-step-ahead forecast we have

σ2t+1|t = ω + α1ǫ
2
t + β1σ

2
t

where ǫt and σ
2
t are known at time t. The 2-step-ahead forecast is given by

σ2t+2|t = ω + α1ǫ
2
t+1|t + β1σ

2
t+1|t = ω + (α1 + β1)σ

2
t+1|t

where we use the fact that ǫ2t+1|t = z2t+1|t · σ2t+1|t = σ2t+1|t, because

V(zt+1|It) = V(zt+1) = E(z2t+1) = z2t+1|t = 1

In general, we have

σ2t+h|t = ω + (α1 + β1)σ
2
t+h−1|t (1.9)

and, by repeated substitutions in (1.9), we obtain that the h-step-ahead fore-

cast for the conditional variance can be written as

σ2t+h|t = ω
h−2
∑

i=0

(α1 + β1)
i + (α1 + β1)

h−1σ2t+1 (1.10)

which allows the h-step-ahead forecast to be computed directly from σ2t+1.

Note that σ2t+1 is contained in the information set It, as it can be computed

12



1.5 Estimation, Forecasting and Model Diagnostic

from observations yt, yt−1, ... (given the knowledge of the parameters of the

model).

Provided that the GARCH(1,1) is stationary (i.e. |α1 + β1| < 1), and using
∑n

i=0 r
i = (1− rn+1)/(1− r) for all r with |r| < 1, equation (1.10) becomes

σ2t+h|t =
ω[1− (α1 + β1)

h−1]

1− α1 − β1
+ (α1 + β1)

h−1σ2t+1 (1.11)

which can be written as

σ2t+h|t = σ2ǫ + (α1 + β1)
h−1(σ2t+1 − σ2ǫ ) (1.12)

with σ2ǫ =
ω

1−α1−β1
. Therefore,

σ2t+h|t −→ σ2ǫ , as h −→ ∞.

Consequently, the multistep-ahead forecast of a GARCH(1,1) converges to

the unconditional variance of ǫt when the forecast horizon increases to infinity

(and σ2ǫ exists).

In the TGARCH case, the presence of the asymmetry parameter slightly

changes the forecast. Consider a TGARCH(1,1) and assume that ǫt has a

conditional distribution symmetric around zero. The 1-step-ahead forecast is

given by

σ2t+1|t = ω + α1ǫ
2
t + β1σ

2
t + γ1ǫ

2
t 1I[ǫt<0]

where ǫt, σ
2
t and 1I[ǫt<0] are known at time t.

From the 2-step-ahead forecast, the sign of the innovation is not known. How-

ever, given the symmetry of the distribution of ǫt, we have

σ2t = ω + α1ǫ
2
t+1|t + β1σ

2
t+1|t + γ1E(ǫ

2
t+11I[ǫt+1<0]|It)

= ω + α1σ
2
t+1|t + β1σ

2
t+1|t + γ1E(ǫ

2
t+1 · 1|It)P(ǫt+1 < 0|It)

+ γ1E(ǫ
2
t+1 · 0|It)P(ǫt+1 ≥ 0|It)

= ω + α1σ
2
t+1|t + β1σ

2
t+1|t +

γ1
2
E(ǫ2t+1|It)

= ω + (α1 + β1 +
γ1
2
)σ2t+1|t

(1.13)
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CHAPTER 1. GARCH Processes

Since the volatility of an asset return is not directly observable, comparing the

forecasting performance of different volatility models is a challenge to econo-

metricians. In the literature, some researchers use out-of-sample forecasts and

compare the volatility forecast σ2t+h|t with the shock ǫ2t+h to assess the fore-

casting performance of a model. This approach often finds a low correlation

coefficient between σ2t+h|t and ǫ
2
t+h, that is, low R2. However, such a finding is

not surprising because ǫ2t+h alone is not an adequate measure of the volatility

at time index t+h. Consider the 1-step-ahead forecast: from a statistical point

of view, E(ǫ2t+1|It) = σ2t+1|t so that ǫ2t+1 is a consistent estimate of σ2t+1|t. Yet,

it is not an accurate estimate of σ2t+1|t because a single observation of a random

variable cannot provide an accurate estimate of its variance. As a proxy for

the latent volatility one can alternatively use the historical volatility, simply

computed as the standard deviation of the returns in the given time period5.

The existent literature shows that it is much less noisy and more precise than

the estimator based on only one daily observation, and it provides more robust

forecast results regardless of the loss function considered in the comparison.

1.5.2 Model building and diagnostic

The process to build a volatility model for an asset return series consists of

four steps:

1. Specify a mean equation by testing for serial dependence in the data and,

if necessary, build an econometric model for the returns series to remove

any linear dependence.

2. Use the residuals of the mean equation (it is often enough to remove the

sample mean from the data, if significantly different from zero) and test

for conditionally heteroskedasticity of ǫ2t .

3. Specify a volatility model and find the most appropriate specification

checking the significance of the ARCH and GARCH effects.

4. Check the fitted model and refine it, if necessary.

5Some references about realized volatility can prove useful to investigate this problem;

see, for instance, Halbleib (Chiriac) & Voev (2011)[22].
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1.5 Estimation, Forecasting and Model Diagnostic

Let ǫ̂t = yt − µ̂t be the estimated residuals of the mean equation. The

squared series ǫ̂2t is typically used to test for conditional heteroskedasticity,

which is also known as the ARCH effect. The test one can use is the Lagrange

multiplier (LM) test of Engle (1982). It consists of regressing the squared

series ǫ̂2t on a constant and m of its own lagged values:

ǫ̂2t = ζ + α1ǫ̂
2
t−1 + α2ǫ̂

2
t−2 + · · ·+ αmǫ̂

2
t−m + et (1.14)

where et denotes the error term and t = m + 1, ..., T . The null hypothesis

is the absence of ARCH effects, namely H0 : α1 = α2 = · · · = αm = 0.

The sample size T times the R2 from the auxiliary regression (1.14) converges

in distribution to a χ2 variable with m degrees of freedom when the null

hypothesis is true and the underlying process is standard normal.

Alternatively, one can use the usual F statistic to test for the joint significance

of the m coefficients in (1.14):

F̂ =
R2/m

(1−R2)/(T −m)

H0∼ F (m,T −m).

Note that to employ the LM test, it is not necessary to specify any GARCH

model. Only if some coefficient is found significant, one will proceed to specify

an appropriate volatility model.

The same test can be applied on the squared standardized residuals to

check whether the fitted model is correctly specified or there is some remaining

dynamic structure which is still unaccounted for. The squared standardized

residuals are constructed as

ẑ2t =
ǫ̂2t
σ̂2t

where σ̂2t is the estimated conditional variance from the chosen GARCHmodel.

Hence, if one has estimated a GARCH(1,1), say, (s)he can run the auxiliary

regression (1.14) with ẑ2t in place of ǫ̂2t and check if there are any residual

ARCH effects not captured by the GARCH(1,1).

An alternative approach one can employ is to investigate directly the autocor-

relation of ẑ2t by using the Ljung-Box statistics, defined as

Q(m) = T (T + 2)
m
∑

l=1

ρ̂2l
T − l
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where ρ̂l is the lag-sample autocorrelation. Here, the null hypothesis is H0 :

ρ1 = · · · = ρm = 0 against H1 : ρi = 0 for some i ∈ {1, ...,m}. When the

null hypothesis is true, Q(m) is asymptotically distributed as a χ2
m. Under

the correct GARCH specification, the squared standardized residuals should

not exhibit any autocorrelation. The Ljung-Box test is typically used with 15

lagged autocorrelations.

Finally, if we have assumed that zt is standard normal, we can use the distri-

butional test to check how well ẑt conforms to the normality assumption. One

possibility is to use the Jarque and Bera (JB) test, defined as

JB =
Ŝ2(x)

6/T
+

[K̂(x)− 3]2

24/T

where Ŝ(x) and K̂(x) are the sample skewness and the sample kurtosis. Under

the normality assumption, Ŝ(x) and K̂(x)− 3 are distributed asymptotically

as a normal with zero mean and variance 6/T and 24/T respectively, so that

JB
H0∼ χ2

2.
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Chapter 2

Stable Distributions

The stable family of distributions constitutes a generalization of the Gaussian

distribution that has intriguing theoretical and practical properties, allowing

for asymmetry and heavy tails. This class of distributions was characterized

by Paul Lévy in his study of independent identically distributed terms1.

From a theoretical point of view, the use of models based on stable distribu-

tions is justified by the generalized version of the central limit theorem2, in

which the condition of finite variance is replaced by a much less restricting

one concerning a regular behavior of the tails. It turns out that stable distri-

butions are the only possible limiting laws for normalized sums of iid random

variables3.

There are also empirical reasons for modeling with stable distributions: many

large data sets exhibit skewness and heavy tails and therefore they are poorly

described by a Gaussian model. Since stable distributions have four param-

eters, two of which deal with, respectively, asymmetry and heavy-taildness,

they are more adequate to model a wide range of phenomena possessing these

empirical features. Examples of such data sets may be found in fields as di-

verse as economics, finance (see, for instance, Mandelbrot, 1963 [29]), natural

sciences and engineering.

The lack of closed formulas for density and distribution functions (except for

1Calcul des probabilités, 1925.
2Due to Gnedenko and Kolmogorov, 1954.
3An excellent reference for this theory is Feller (1966)[14].
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few particular cases) has been a major drawback to the use of stable distribu-

tions in applied fields. Most of these difficulties have been overcome by reliable

computer programs4 which can now compute stable pdfs, cdfs and quantiles.

These programs include the algorithm proposed by Chambers et al. (1976)[9],

thanks to which stable pseudo-random numbers can be straightforwardly sim-

ulated.

In the following, the main characteristics and properties of α-stable distribu-

tions will be described. No proof is reported; interested readers can find them,

for instance, in Zolotarev (1986)[45], Samorodnitsky & Taquu (1994)[38] and

Nolan (2003)[33].

2.1 Definitions of stable

Definition 2.1 (Stability, Samorodnitsky & Taquu). A random variable

X is said to have a stable distribution if and only if for any positive numbers

c1 and c2 there exist a positive number c and a real number d such that

cX + d
d
= c1X1 + c2X2 (2.1)

where the X1 and X2 are independent and have the same distribution of X.

If d = 0, X is said to be strictly stable.

The symbol
d
= here means equality in distribution. The term stable is used

because the shape of the distribution is preserved (up to scale and shift) under

sums of the type (2.1). An equivalent definition of stability that can be easily

derived from (2.1) is the following:

Definition 2.2 (Stability). A random variable X is said to have a stable

distribution if and only if for any natural number n ≥ 2 there exist a positive

number Cn and a real number Dn such that

X
d
=
X1 +X2 + · · ·+Xn

Cn
−Dn (2.2)

where the Xi’s are independent copies of X. If Dn = 0 ∀n, X is said to be

strictly stable.

4For example the program STABLE by Nolan, available at academic2.american.edu/ jp-

nolan/stable/stable.html.
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2.2 Characteristic function

Example 2.1. The normal distribution is stable. Let us consider a random

variable X ∼ N(µ, σ2). The sum of n independent copies of X is N(nµ, nσ2)

distributed, so setting Cn =
√
n and Dn = (n − 1)µ one can obtain X

d
=

[X1 +X2 + · · ·+Xn]/Cn −Dn.

2.2 Characteristic function

The most concrete way to describe all possible stable distributions is by means

of their characteristic function (cf), whose expression will be derived in the

following theorem. It is the case to note that, since the theorem works in both

directions, it also provides an alternative way of defining stable distributions.

Theorem 2.1 (Lévy-Khintchine). The characteristic function of a stable

random variable5 X ∼ S1(α, β, γ, δ1) is of the form

φ1(t) := E(eitX) =







exp
{

iδ1t− γα|t|α
[

1− iβ sgn (t) tan πα
2

]}

α 6= 1

exp
{

iδ1t− γ|t|
[

1− iβ 2
π sgn (t) ln |t|

]}

α = 1
(2.3)

where θ = (α, β, γ, δ1) ∈ Θ ⊆ ]0, 2] × [−1, 1] × R
+ × R; sgn (t) = t/|t| for

t 6= 0 (and 0 for t=0). Conversely, if a random variable X has characteristic

function of the form (2.3), it is stable.

Remark 2.1. Note that, when α = 1, φ1(t) contains the term ln |t| and there-

fore it is not continuous with respect to the parameters, having discontinuities

at all points of the form α = 1, β 6= 0. This is a source of problems for what

concerns estimation and inferential purposes6.

5Subscripts will be used to distinguish between different parameterizations that will be

presented later.
6The main practical disadvantage of S1(α, β, γ, δ1) is that the location of the mode is

unbounded in any neighborhood of α = 1, β 6= 0.
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Alternative parameterization

An alternative way7 to write the cf that overcomes the problem of discontinuity

is the following:

φ0(t) =







exp
{

iδ0t− γα|t|α
[

1 + iβ sgn (t) tan πα
2 (|γt|1−α − 1)

]}

α 6= 1

exp
{

iδ0t− γ|t|
[

1 + iβ 2
π sgn (t) ln(γ|t|)

]}

α = 1

(2.4)

In this case, the distribution will be denoted by S0(α, β, γ, δ0). Expression (2.4)

is quite more cumbersome, and the analytic properties, as it will be shown

below, have less intuitive meaning. Despite that, this formulation is much

more useful for what concerns statistical applications and, unless otherwise

stated, we will refer to it in what follows.

The correspondence between δ0 in S0 and δ1 in S1 is given by:

δ0 =







δ1 + βγ tan πα
2 if α 6= 1

δ1 + β 2
πγ ln γ if α = 1

(2.5)

On the basis of the above relationship, a S0(α, β, 1, 0) corresponds to a

S1(α, β, 1,−β tan πα
2 ), provided that α 6= 1.

2.3 Meaning and properties of the parameters

The characteristic functions presented in the previous subsection show that a

general stable distribution depends on four parameters: an index of stability

or characteristic exponent α ∈ ]0, 2], an asymmetry parameter β ∈ [−1, 1], a

scale parameter γ ∈ R
+ and a location parameter δ ∈ R.

The notation X ∼ Sk(α, β, γ, δ) will be shorthand for X ∼ S0(α, β, γ, δ0) and

X ∼ S1(α, β, γ, δ1) simultaneously. In what follows, the properties of α-stable

distributions will be described analyzing the exact meaning of each parameter.

Recall that the difference between parameterization 0 and 1 lies only in the

parameter δ, so that the properties that concern the other parameters hold

for both cases.

7Introduced by Zolotarev (1986)[45].
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Property 2.1 (Reflection). Let X1 ∼ Sk(α, β, 1, 0) and X2 ∼ Sk(α,−β, 1, 0);
it then follows that X2

d
= −X1, i.e. f2(x) = f1(−x) and F2(x) = 1− F1(x).

Hence, when β = 0, the distribution is symmetric; on the other hand, when

β > 0 the distribution turns out to be rightward skewed, i.e. P (X > x) >

P (X < −x) for large |x|. By the reflection property, the behavior of the

β < 0 cases are reflections of the β > 0 ones, with left tail being thicker. The

case β = +1 corresponds to a perfect positive skewness: the distribution has

density zero on the negative semi-axis and positive values on the positive one.

Conversely, when β = −1 the distribution is totally skewed to the left.

Note also that when β = 0, the immaginary term (the asymmetry factor)

disappears, thus the two parameterization (2.3) and (2.4) coincide.

By the following result, we will identify α as the tail thickness parameter:

as it decreases, tails tend to get thicker.

Property 2.2 (Tail behavior). Let X ∼ S0(α, β, γ, δ0), α < 2 and −1 <

β ≤ 1. Then:

lim
x→∞

P(X > x) = γα
Γ(α)

π
sin πα

2 (1 + β)x−α (2.6)

lim
x→∞

f(x;α, β) = αγα
Γ(α)

π
sin πα

2 (1 + β)x−(α+1) (2.7)

Similar results for the left tail behavior follow straightforwardly from the re-

flection property.

From the above property, we can observe that:

1. in the limit, the tails behave as a power (Pareto) law8; when β = ±1 the

left (right) tail decays faster than any power;

2. according to (2.6), as α increases the tails get thinner;

3. the density of the right tail is greater than the one of the left tail as

β > 0, which is consistent with Property 2.1.

8Pareto distributions are a class of distributions with upper tail probabilities given exactly

by the right hand side of (2.6); the term stable Paretian laws is sometimes used to distinguish

between the fast decay of the Gaussian law (α = 2) and the α < 2 cases.
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CHAPTER 2. Stable Distributions

The point at which the tail approximation becomes useful is a complicated

issue and depends on both the parameterization and the parameters.

The shape of a α-stable distribution is determined by α and β, which are in-

deed considered shape parameters. Figure 2.19 shows the shape of S0(α, β, 1, 0)

random variables for various choices of α and β.

The γ and δ parameters determine respectively scale and location, according

to the following property:

Property 2.3 (Standardization). Let Z ∼ S0(α, β, 1, 0); then:

X =







γ(Z − β tan πα
2 ) + δ0 if α 6= 1

γZ + δ0 if α = 1
(2.8)

has S0(α, β, γ, δ0) distribution.

If, on the other hand, Z ∼ S1(α, β, 1, 0), then:

X =







γZ + δ1 if α 6= 1

γ(Z + β 2
π ln γ) + δ1 if α = 1

(2.9)

has S1(α, β, γ, δ1) distribution.

Z is thus a sort of standardized version of X. In the sequel, a standardized

α-stable distribution Sk(α, β, 1, 0) will be denoted by Sk(α, β).

Remark 2.2. The characteristic function of a standardized α-stable distribu-

tion, symmetric around zero, reduces to

φk(t) = e−|t|α

for both k = 0, 1.

9From Nolan (2003)[33].
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2.3 Meaning and properties of the parameters

Figure 2.1: S0(α, β) densities for different α and β.
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2.4 Moments and moment properties

From the previous section it is clear that the four parameters of α-stable dis-

tributions are closely related to location, scale, asymmetry and tail thickness:

one may thus argue that there is a close relationship between them and the

theoretical moments. Unfortunately, one consequence of heavy tails is that

not all the moments exist10.

Let us introduce the so called fractional absolute moments :

E(|X|r) =
∫ ∞

−∞
|x|rf(x)dx (2.10)

where r is a real number. It may be easily shown that fractional moments of

order greater than α do not exist when 0 < α < 2.

Property 2.4 (Moments). Let X ∼ Sk(α, β, γ, δ). Then for 0 < α < 2,

E(|X|r) <∞ if and only if 0 < r < α.

It then follows that, except for the Gaussian case (α = 2), the variance and

the higher moments never exist, while the mean does only when α > 1. There

is, in fact, a close relationship between the mean and the location parameter,

as the following property shows.

Property 2.5 (Mean). Let X ∼ S0(α, β, γ, δ0) with α > 1. Then

E(X) = δ0 − βγ tan πα
2 (2.11)

If, on the other hand, X ∼ S1(α, β, γ, δ1) with α > 1. Then

E(X) = δ1 (2.12)

We thus observe that, under parameterization 1, the location parameter coin-

cides with the mean. On the other hand, consider what happens to the mean

of X ∼ S0(α, β), as α → 1+. When β = 0, the distribution is symmetric and

the mean is always 0; when β > 0, the mean tends to +∞ because while both

tails are getting heavier, the right tail is heavier than the left11. By reflection,

10This is not an issue restricted to stable laws: any distribution with power law decay will

not have certain moments.
11In fact, limα→1+ tan πα

2
= −∞.
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2.5 Particular cases

when β < 0 the mean tends to −∞. Finally, if α = 1, the tails are too heavy

for the integral (2.10) to converge.

Recall that this is a population moment: in contrast, sample moments of all

orders will exist. One can always compute, for instance, the variance of a

sample. The problem is that it is not informative about stable laws because

the sample variance does not converge to a well-defined population moment

(unless α = 2).

2.5 Particular cases

As claimed above, α-stable density functions admit closed form only in very

few special cases: it can be easily shown, by handling the characteristic func-

tion, that the Gaussian, the Cauchy and the Lévy distributions are particular

cases of the α-stable distribution.

Example 2.2 (Gaussian distribution). When α = 2, the stable distribution

coincides with a normal with mean δ and variance 2γ2. Since tan πα
2 = 0, the

cf is real and hence the distribution is always symmetric, no matter what the

value of β which becomes unidentified12; one can thus write Sk(2, 0, γ, δ) =

N(δ, 2γ2), ∀ k = 0, 1.

Example 2.3 (Cauchy distribution). When α = 1 and β = 0, the stable

distribution coincides with a Cauchy distribution with position δ and scale γ:

Sk(1, 0, γ, δ) = Cauchy(δ, γ), ∀ k = 0, 1.

Example 2.4 (Lévy distribution). When α = 1/2 and β = ±1, the stable

distribution coincides with a Lévy distribution with location δ and scale γ:

Sk(1/2,±1, γ, δ) = Lévy(δ, γ), ∀ k = 0, 1.

Figure 2.2 shows a plot of these three densities. Both normal and Cauchy

distribution are symmetric and bell-shaped; the main qualitative distinction

between them is that the Cauchy density has much heavier tails (α = 1). Table

(2.1) gives a numerical idea of this tail heaviness: for example, in a sample of

12In general, as α approaches 2, all stable distributions get closer and closer to be sym-

metric and β becomes less meaningful in applications (and harder to estimate accurately).
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CHAPTER 2. Stable Distributions

data from a normal and a Cauchy, there will be, on average, more than 100

times as many values above 3 in the Cauchy case than in the normal case. In

contrast, the Lévy distribution is totally skewed to the right (β = 1) and it is

even more leptokurtic than the Cauchy (α = 1/2).

Figure 2.2: Standardized normal, Cauchy and Lévy densities.

Unfortunately, there are no more known cases in which the pdf takes a closed

form. This may seem to doom the use of stable models in practice, but recall

that there is no closed formula for the normal cdf as well. Furthermore, now

computer programs to compute quantities of interest for α-stable distributions

are available, so it is possible to use them in practical problems.

2.6 Analytic properties

Even if there are no explicit formulas for general stable densities, a few very

important analytic properties concerning the probability density function have

been derived.

Property 2.6 (Continuity). Each stable distribution has continuous and

infinitely differentiable probability density function.
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2.6 Analytic properties

P (X > c)

c Std normal Cauchy Lévy

0 0.5000 0.5000 1.0000

1 0.1587 0.2500 0.6827

2 0.0228 0.1476 0.5205

3 0.001347 0.1024 0.4363

4 0.00003167 0.0780 0.3829

5 0.0000002866 0.0628 0.3453

Table 2.1: Comparison of tail probabilities for standard normal, Cauchy, Lévy dis-

tributions.

Property 2.7 (Support). The support of stable distributions is the real line

when |β| 6= 1 or α ≥ 1; otherwise it depends on the parameterization choice:

support f0(x;α, β, γ, δ0) =



















[δ0 − γ tan πα
2 ,+∞) α < 1, β = 1

(−∞, δ0 + γ tan πα
2 ] α < 1, β = −1

(−∞,+∞) otherwise

(2.13)

support f1(x;α, β, γ, δ1) =



















[δ1,+∞) α < 1, β = 1

(−∞, δ1] α < 1, β = −1

(−∞,+∞) otherwise

(2.14)

The notation fk(·) has been used to indicate the pdf of Sk(α, β, γ, δ).

Property 2.8 (Mode). Stable distributions are unimodal. For symmetric

stable distributions with 1 < α ≤ 2, the mode coincides with the mean (2.11)

or (2.12); in the other cases it takes no closed form and needs to be numerically

computed.

Linear transformations and combinations

Let us introduce a useful result concerning linear transformations of stable

distributions.
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Property 2.9 (Linear transformations). If X ∼ S0(α, β, γ, δ0), then for

any a 6= 0, b ∈ R,

aX + b ∼ S0(α, β sgn (a), |a|γ, aδ0 + b) (2.15)

If instead X ∼ S1(α, β, γ, δ1), then

aX + b ∼







S1(α, β sgn (a), |a|γ, aδ1 + b) if α 6= 1

S1(α, β sgn (a), |a|γ, aδ1 + b− βγ 2
πa ln |a|) if α = 1

(2.16)

The above property shows that γ and δ are standard scale and location pa-

rameters in the k = 0 parameterization, but not in the k = 1 parameterization

when α = 1.

As stated before, a basic property of stable laws is that sums of α-stable

random variables are α-stable. The exact parameters are given below. In

these results, it is essential that the summands all have the same α, otherwise

the sum would not be stable. When the summands are dependent the precise

statement is more complicated, but the sum is still stable.

Property 2.10 (Linear combinations). Let X1 ∼ S0(α, β1, γ1, δ1) and

X2 ∼ S0(α, β2, γ2, δ2) and let X1 ⊥ X2. Then, X1 + X2 ∼ S0(α, β, γ, δ)

with

β =
β1γ

α
1 + β2γ

α
2

γα1 + γα2
, γα = γα1 + γα2 ,

δ =







δ1 + δ2 + tan πα
2 (βγ − β1γ1 − β2γ2) α 6= 1

δ1 + δ2 +
2
π (βγ ln γ − β1γ1 ln γ1 − β2γ2 ln γ2) α = 1

If, on the other hand, X1 ∼ S1(α, β1, γ1, δ1) and X2 ∼ S1(α, β2, γ2, δ2), X1 ⊥
X2, then X1 +X2 ∼ S1(α, β, γ, δ) with

β =
β1γ

α
1 + β2γ

α
2

γα1 + γα2
, γα = γα1 + γα2 , δ = δ1 + δ2

Note that γα = γα1 +γα2 is a generalized version of the additive rule for the

variances of independent random variables: σ2 = σ21 + σ22.
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2.7 Simulation

By induction, one can get formulas for sums of n independent stable vari-

ables: for Xj ∼ Sk(α, βj , γj , δj), j = 1, 2, ..., n and arbitrary w1, ..., wn, the

sum

w1X1 + w2X2 + ...+ wnXn ∼ Sk(α, β, γ, δ) (2.17)

where

β =

∑n
j=1 βj sgn (wj)|wjγj |α

γα
, γα =

n
∑

j=1

|wjγj |α ,

δ =































∑

j wjδj + tan πα
2 (βγ −

∑

j βjwjγj) k = 0, α 6= 1
∑

j wjδj +
2
π (βγ ln γ −

∑

j βjwjγj ln |wjγj |) k = 0, α = 1
∑

j wjδj k = 1, α 6= 1
∑

j wjδj − 2
π

∑

j βjwjγj ln |wj | k = 1, α = 1

This is a generalization of (2.1): it allows different skewness, scales and loca-

tions in the terms. Note that if βj = 0 for all j, then β = 0 and δ =
∑

j wjδj .

An important case is the scaling property for stable random variables: when

the terms are independent and identically distributed, say Xj ∼ Sk(α, β, γ, δ),

then

X1 + ...+Xn ∼ Sk(α, β, n
1/αγ, δn) (2.18)

where

δn =



















nδ + γβ tan πα
2 (n1/α − n) k = 0, α 6= 1

nδ + γβ 2
πn lnn k = 0, α = 1

nδ k = 1

It turns out that the shape of the sum of n iid terms is the same as the original

shape. Note that no other distribution has this property.

2.7 Simulation

For the three special cases introduced above, there are simple ways to generate

stable random variables. For the normal case, if U1, U2 denote independent

Uniform(0, 1) random variables, then

X1 = µ+ σ
√

−2 lnU1 cos 2πU2

X2 = µ+ σ
√

−2 lnU1 sin 2πU2
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give two independent N(µ, σ2) random variables13.

For the Cauchy case, denoting with U a Uniform(0,1),

X = γ tan
(

π(U − 1
2)
)

+ δ

is Cauchy(γ, δ).

For the Lévy case,

X = γ
1

Z2
+ δ

is Lévy(γ, δ) as long as Z ∼ N(0, 1).

In the general case, the following result gives a method for simulating any

stable random variate.

Theorem 2.2 (Chambers, Mallows & Stuck). Let V and W be indepen-

dent with V uniformly distributed on (−π
2 ,

π
2 ),W exponentially distributed with

mean 1, and 0 < α ≤ 2.

(a) The symmetric random variable

Z =







sinαV
(cosV )1/α

[

cos((α−1)V )
W

](1−α)/α
if α 6= 1

tanW if α = 1
(2.19)

has a S0(α, 0) = S1(α, 0) distribution.

(b) In the nonsymmetric case, for any −1 ≤ β ≤ 1, define ζ = arctan(β tan πα
2 )/α,

then

Z =







sinα(ζ+V )

(cosαζ cosV )1/α

[

cos(αζ+(α−1)V )
W

](1−α)/α
if α 6= 1

2
π

[

(π2 + βV ) tanV − β ln
( π

2
W cosV
π
2
+βV

)]

if α = 1
(2.20)

has a S0(α, β) distribution
14.

It is easy to get V and W from two independent Uniform(0,1) random vari-

ables U1 and U2: set V = π(U1 − 1
2) and W = − lnU2.

Pseudo-random numbers for the general case containing also the position

and the scale parameters δ and γ may be straightforwardly obtained using

13This is known as the Box-Muller algorithm.
14Despite Weron (1996)[42] reports a slightly different formula for α = 1 in (2.20), the

correct version is the one given in Chambers et al. (1976)[9]; for details, see Weron (1996)[43].
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2.7 Simulation

the standardization Property 2.3. Similarly, pseudo-random numbers with

S1(α, β, γ, δ1) distribution can be obtained exploiting (2.5).

Figure 2.3 gives the pattern, the histogram and the summary statistics of two

different simulated random vectors15.

Figure 2.3: Pattern, histogram and summary statistics for a S0(1.8, 0.9) and a

S0(1.2, 0) random vectors.

15These results have been obtained by means of the statistical package R.
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Chapter 3

Indirect Inference

Indirect inference1 (Gouriéroux, Monfort & Renault, 1993 [21]) is an inferential

approach based on simulation which is suitable for many situation in which

the estimation of the model of interest is too difficult to be performed directly.

Econometric models often lead to complex formulations for the conditional

distributions of the endogenous variables; these formulations may even be such

that it is impossible to efficiently estimate the parameters of interest because

of the analytical intractability of the likelihood function. In such cases one

can replace the model of interest with an approximated one which is easier

to handle (auxiliary model). The first requirement is that it be possible to

simulate data from the initial model.

The idea of indirect inference is to “calibrate” the parameters of the model of

interest so that the parameters of the auxiliary model, estimated using either

the observed and the simulated data, turn out to be as close as possible.

3.1 Framework and notation

Let yt, t = 1, ..., T be the endogenous variables, i.e. the variables whose

values have to be explained by the econometric model. Let us denote by

zt, t = 1, ..., T a set of exogenous variables, in the sense that we are inter-

ested in the conditional distribution of yt given zt and initial conditions y0:

1This chapter was mainly inspired by Gouriéroux & Monfort (1996)[20].
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f0(y1, ..., yT |z1, ..., zT ,y0). This probability density function may be decom-

posed into

f0(y1, ..., yT |z1, ..., zT ,y0)

=
T
∏

t=1

f0(yt|z1, ..., zT ,y0, y1, ..., yt−1)

=
T
∏

t=1

f0(yt|z1, ..., zT ,yt−1), with yt = (y0, y1, ..., yt).

Assuming that there is no Granger causality2 of zt on yt, one can write

f0(y1, ..., yT |z1, ..., zT ,yt−1) = f0(y1, ..., yT |z1, ..., zt,yt−1) ∀ t.

In other words, the zt are strongly exogenous variables3. Under this condition,

f0(y1, ..., yT |z1, ..., zT ,y0) =

T
∏

t=1

f0(yt|xt) (3.1)

where xt = (zt,yt−1).

Note that we have implicitly assumed that the conditional pdf f0(yt|xt) does
not depend on t: more precisely we assume that the process {yt, zt} is strongly

stationary.

In order to make inference about f0(yt|xt) we introduce a conditional para-

metric model (M). This model is a family of conditional distributions indexed

by a p-dimensional parameter θ:

M = {f(yt|xt; θ), θ ∈ Θ}

where Θ ⊂ R
p. This model is assumed to be well-specified, that is f0(yt|xt)

belongs to M , and identifiable, i.e. there exists a unique (unknown) value θ0

such that f0(yt|xt) = f(yt|xt; θ0); θ0 is the “true” value of the parameter.

This set of general assumption is denoted by (A1).

2zt fails to “Granger cause” yt if in a regression of yt on lagged yt’s and lagged zt’s, the

coefficients of the latter are not significantly different from zero. Simply stated, the term

“Granger causality” means “precedence” (see, for instance, Maddala, 2001 [28]).
3Note that models in which non strongly-exogenous variables appear are not simulable

(Gouriéroux et al., 1993, Section 2.1).

34



3.2 The Principle

3.2 The Principle

3.2.1 The econometric model

We consider an econometric model defined by the following reduced form:

yt = f(yt−1, zt, ǫt; θ) (3.2)

where f is a known function and ǫt is a white noise whose distribution is known.

Thus, it is possible to generate independent random draws4 of ǫt and to obtain

artificial values ys1, ..., y
s
T conditional on a given value of the parameter θ, an

observed path of the exogenous variables zt, and on initial values. Obviously,

for the lagged endogenous variables, one can use either observed (conditional

simulations) or simulated values (path simulations).

3.2.2 The auxiliary model

The estimation of the econometric model (3.2) may be so complex and dis-

couraging that econometricians replace it with an approximation, easier to

handle, like

yt = fa(yt−1, zt, ηt;β) (3.3)

where fa has a convenient analytical expression, ηt are random terms, and

β ∈ B ⊂ R
q is assumed to be easily estimable. Its estimation may be, for

instance, based on an approximation of the exact likelihood, or on an exact

likelihood of an approximated model. Since this model is misspecified, a simple

estimator of β that uses the observed data, given by

β̂ = argmax
β

T
∑

t=1

ln fa(yt|yt−1, zt;β) (3.4)

is generally an inconsistent estimator of θ: the idea of indirect inference is

to exploit simulations performed under the original model to correct for the

asymptotic bias of β̂.

4Recall that the term “random number generation” is an oxymoron: these generators use

deterministic devices to produce chains of numbers that mimic the properties of a realization

from the target distribution. Therefore, a more accurate term is pseudo-random numbers.
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3.2.3 Indirect estimation

The first step consists of computing the pseudo-maximum likelihood estimate

(PML) of β, denoted as β̂, using the observed endogenous yt.

In the second step, one simulates a set of S vectors of size T from the initial

model on the basis of a tentative value for the true vector of parameters, θ̃,

say5. It will be used as a starting point for the iterative calibration procedure.

Then one estimates the parameter β of the auxiliary model from the pseudo-

random series yst (θ̃):

β̂(θ̃) = argmax
β

S
∑

s=1

T
∑

t=1

ln fa(yst (θ̃)|ys

t−1
(θ̃), zt;β) (3.5)

Finally (third step), an indirect inference estimator of θ is defined by choosing

a value of θ̂ for which β̂ and β̂(θ̃) are as close as possible:

θ̂(Ω) = argmin
θ

[β̂ − β̂(θ)]′ Ω [β̂ − β̂(θ)] (3.6)

where Ω is a symmetric nonnegative definite matrix, which defines the metric.

The estimation step is performed with a numerical algorithm, which computes

θ̂(Ω) as:

θ̂(Ω) = lim
p→∞

θ̃(p)

where

θ̃(p+1) = h
(

θ̃(p), β̂(θ̃(p))
)

and h(·) is the updating function of the algorithm. In practical terms, the two

vectors of parameters β̂ and β̂(θ̃) are compared. If they are “very close”, the

procedure has come to its end, otherwise the tentative values θ̃ are modified

(calibrated) and the procedure starts again from the second step. The itera-

tions continue until the quadric form (3.6) is minimized.

A very important point is that the pseudo-random errors ǫt, generated and

plugged into equation (3.2) in order to obtain the yst (θ̃), must not be re-

generated. The values of the series yst (θ̃) change across iterations only as an

effect of changing θ̃.

5As initial value of θ̃ one can use θ̃(0) = β̂.
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3.2.4 Estimation based on the score

An alternative approach, introduced by Gallant & Tauchen (1996)[16], con-

siders directly the score of the auxiliary model:

T
∑

t=1

∂ ln fa

∂β
(yt|yt−1, zt;β) (3.7)

which is clearly equal to zero for the PML estimator of β. For the sake of

simplicity,
∑T

t=1 ln f
a(yt|yt−1, zt;β) will be denoted hereafter as La(yt;β).

The idea is to choose θ such that the score, computed on the simulated obser-

vations, results as close as possible to zero. Namely,

θ̌(Σ) = argmin
θ

{

S
∑

s=1

∂La
∂β

[

yst (θ); β̂
]

}′
Σ
{

S
∑

s=1

∂La
∂β

[

yst (θ); β̂
]

}

(3.8)

where Σ is a symmetric nonnegative definite matrix. As usual, the estimate

is obtained minimizing (3.8) by means of a numerical algorithm.

Provided that a closed form for the gradient of the auxiliary model is avail-

able, this approach has an important computational advantage: it allows one

to avoid the numerical optimization for the estimation of β̂(θ̃), for different

tentatives of the parameter of interest.

3.3 Properties of the I.I. estimators

3.3.1 The dimension of the auxiliary parameter

First, one should note that the dimension of the auxiliary parameter β must

be greater than or equal to the dimension of the parameter of interest θ, in

order to get a unique solution θ̂ (or θ̌). It is a kind of order identifiability

condition.

Second, when the problem is just identified, i.e. the dimension of the param-

eter vectors agree, the estimator enjoys three nice properties.

Proposition 3.1 (Identification). If dimβ = dim θ and T is sufficiently

large:

1. θ̂(Ω) = θ̂
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2. θ̌(Σ) = θ̌

3. θ̂ = θ̌

In other words, when the number of parameters of the econometric model and

of the auxiliary one is the same (p = q), the results are independent of the

choice of the matrices that define the metrics. Minimization of the quadratic

forms (3.6) and (3.8) is in fact clearly obtained when β̂(θ̃) = β̂ (for a complete

proof of the proposition, see Appendix A). On the contrary, when q > p it is

necessary to choose a metric to measure the distance between β̂ and β̂(θ̃).

Furthermore, in the just identified case, the two different approaches yield

identical results, so that we can choose the one that suits the best for the

practical problem to be analyzed.

3.3.2 The binding function

In order to assess the asymptotic properties of indirect inference estimators,

it is worth introducing a concept that will be very useful.

Let us consider the asymptotic behavior of the log-likelihood function of the

auxiliary model:

lim
t→∞

1

T
La(yt;β) = Eθ

[

La(yt;β)
]

The solution of the optimization problem in this asymptotic setting is then:

b(θ) := argmax
β∈B

Eθ

[

La(yt;β)
]

(3.9)

It thus turns out that, ∀ θ ∈ Θ, β̂(θ) is a consistent estimator of b(θ).

The function b : Θ → B, b(·) = argmaxβ∈B E(·)

[

La(yt;β)
]

, called binding

function, maps the parameter (sub-)space of the model of interest onto the

parameter space of the auxiliary model.

The indirect inference estimator of θ is based on the pseudo-true value of β, i.e.

the value of the binding function evaluated at the true value of the parameter

of interest: b(θ0). Indeed, under the assumption that the observed data are

generated by the econometric model (whose parameter’s true value is θ0), β̂,

estimated in the observed data, converges to the pseudo-true value b(θ0).

To sum up, the indirect inference based on auxiliary PML estimator, consist

in:
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3.3 Properties of the I.I. estimators

• determining β̂, a direct consistent estimator of b(θ0)

• determining β̂(θ̃), a direct consistent estimator of the function b(·) (when
T → ∞, S fixed)

• solving approximately b(θ0) = b(θ) to get an estimator of θ0

In the finite sample, the calibration procedure aims at solving the system of

equation

β̂(θ̃) = β̂ (3.10)

These equations are only implicitly defined and usually cannot be expressed

in closed form. It is usually possible to solve the system (3.10) only in the

just identified case, where the number of unknowns (θ̃) equals the number of

equations (dimβ).

Note that the maximization of Eθ
[

La(yt;β)
]

with respect to β is equivalent to

the minimization of the Kullback-Leibler information criterion:

KLIC := Eθ
f(yt|yt−1, zt; θ)

fa(yt|yt−1, zt;β)

that underlines the importance of the proximity of the auxiliary model to the

econometric one. fa(yt|yt−1, zt; b(θ)) corresponds to the conditional distribu-

tion of the approximated model that is the closest to f(yt|yt−1, zt; θ).

3.3.3 Asymptotic Properties

The asymptotic properties of the I.I. estimators are given below for a general

criterion function (like, for instance, the log-likelihood)

ψT (y
s
t (θ);β)

Let us add some regularity conditions that will be needed in proving such

properties (proofs are reported in Appendix A).

(A2) The criterion function ψT (y
s
t (θ);β) tends almost surely, as T → ∞, to

a deterministic limit function ψ∞(θ, β)

(A3) ψT and ψ∞ are differentiable with respect to β, and ψ∞ has a unique

maximum (w.r.t. β): b(θ) = argmaxβ ψ∞(θ, β)

39



CHAPTER 3. Indirect Inference

(A4) The only solution of the asymptotic first order conditions is b(θ) :
∂ψ∞

∂β (θ, β) = 0 ⇒ β = b(θ)

(A5) The binding function is injective and its first derivative with respect

to θ is of full column rank.

Proposition 3.2 (Consistency). Under condition (A1)-(A5), the indirect

inference estimator θ̂(Ω) is consistent for S fixed and T → ∞.

In order to prove the asymptotic normality, it is necessary to add three

more conditions about the behavior of the auxiliary model’s criterion function:

(A6) The Hessian matrix of the criterion function converges to a non-stochastic

limit:

plimT→∞ − ∂2ψT
∂β∂β′

[yst (θ); b(θ)] = − ∂2ψ∞

∂β∂β′
[θ0; b(θ0)] := J0

(A7) The gradient of the criterion function converges, in distribution, to a

normal law: √
T
∂ψT
∂β

[yst (θ0); b(θ0)]
d−−−−→

T→∞
N(0, I0)

I0 := plimT→∞ V
{√

T
∂ψT
∂β

[yst (θ); b(θ)]
}

(A8) The asymptotic covariance between the gradients of two units, s1 and

s2, of the simulated sample is costant:

lim
T→∞

cov0

{√
T
∂ψT
∂β

[ys1t (θ0); b(θ0)],
√
T
∂ψT
∂β

[ys2t (θ0); b(θ0)]
}

:= K0, ∀ s1 6= s2.

Proposition 3.3 (Asymptotic normality). Under assumptions (A1)-(A8)

and the usual regularity conditions, the indirect inference estimator θ̂(Ω) is

asymptotically normal, for S fixed and T → ∞:

√
T (θ̂(Ω)− θ0)

d−−→ N
(

0,W (S,Ω)
)

W (S,Ω) =
(

1 +
1

S

)[∂b′

∂θ
(θ0) Ω

∂b

∂θ′
(θ0)

]−1∂b′

∂θ
(θ0)

× Ω J−1
0 (I0 −K0)J

−1
0 Ω

∂b

∂θ′
(θ0)

[∂b′

∂θ
(θ0) Ω

∂b

∂θ′
(θ0)

]−1
.
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3.3 Properties of the I.I. estimators

The indirect inference estimator θ̂(Ω) forms a class of estimators indexed

by the matrix Ω. In fact, the asymptotic variance-covariance matrix depends

on the metric Ω and, as usual, there is an optimal choice of this matrix.

Proposition 3.4 (Optimality). The optimal choice of the Ω matrix, assum-

ing that (I0 −K0) is invertible, is

Ω∗ = J0 (I0 −K0)
−1 J0 ,

i.e. W ∗
S :=W (S,Ω∗) = minΩW (S,Ω), and

W ∗
S =

(

1 +
1

S

)[∂b′

∂θ
(θ0) J0 (I0 −K0)

−1 J0
∂b

∂θ′
(θ0)

]−1
.

The optimal estimator thus obtained is denoted by θ̂∗.

Note that in the exact identified case (dimβ = dim θ) the estimator and, there-

fore, its asymptotic precision, are independent of Ω. Hence, being the Jacobian
∂b
∂θ′ (θ0) invertible (from (A5)), the variance-covariance matrix reduces to

W (S,Ω) =
(

1 +
1

S

)[∂b′

∂θ
(θ0) J0 (I0 −K0)

−1 J0
∂b

∂θ′
(θ0)

]−1
(3.11)

Therefore, we have W (S,Ω) =W ∗
S ∀ Ω.

Similar results may be derived for the estimator (3.8) based on the score.

They are direct consequence of the following proposition.

Proposition 3.5 (Asymptotic equivalence of estimators). The estima-

tors θ̌(Σ) and θ̂(J0ΣJ0) are asymptotically equivalent:

√
T
[

θ̌(Σ)− θ̂(J0ΣJ0)
]

≈ 0.

It is straightforward to derive the optimal choice of Σ for estimators based

on the score: since Ω = J0ΣJ0, it has to be Σ∗ = (I0 −K0)
−1.

For what concerns the efficiency of the I.I. estimators, expression (3.11)

clearly puts in evidence the components that contribute to the precision. The

term in square brackets depends on the auxiliary model adopted and on the
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CHAPTER 3. Indirect Inference

estimation method used for the auxiliary parameter: to reduce this term one

should obviously estimate β in the most efficient way and should have the Ja-

cobian as close as possible to the identity (i.e. to choose an auxiliary model as

close as possible to the econometric model). The component in round brackets

summarizes the effect of simulations, which appears in a multiplicative factor,

since

W (S,Ω) =
(

1 +
1

S

)

W (∞,Ω).

This term can be made arbitrarily close to one, at the cost of a large compu-

tational effort.

Note6 finally that if there were no exogenous variables, the term (I0 − K0)

would become I0, and the variance-covariance matrix would be generally

greater. In other words, the accuracy of the indirect estimators is improved

by the observation of the zt’s (which have not to be simulated).

3.3.4 Estimation of W ∗
S

The expressions of the asymptotic variance-covariance matrix of indirect in-

ference estimators contains the derivative of the binding function at the true

value of the parameter. This expression cannot directly be computed because

explicitating and differentiating the binding function is in general a very diffi-

cult task. Luckily, it is possible to consistently estimate this quantity without

determining the binding function and its derivative. Indeed, b(θ) is the solu-

tion of:

b(θ) = argmax
β

plimψT (y
s
t (θ);β) = argmax

β
ψ∞(θ;β)

It therefore satisfies the first order conditions:

∂ψ∞

∂β
[θ, b(θ)] = 0, ∀ θ ∈ Θ.

Deriving this relation with respect to θ gives:

∂2ψ∞

∂β∂θ′
[θ, b(θ)] +

∂2ψ∞

∂β∂β′
[θ, b(θ)]

∂b

∂θ′
(θ) = 0

6Gouriéroux et al. (1993)[21], Section 3.
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3.4 A simple example

Then, in θ = θ0,

∂b

∂θ′
(θ0) =

{

∂2ψ∞

∂β∂β′
[θ0, b(θ0)]

}−1
∂2ψ∞

∂β∂θ′
[θ0, b(θ0)]

= J−1
0

∂2ψ∞

∂β∂θ′
[θ0, b(θ0)]

(3.12)

We can thus derive an alternative expression of the asymptotic variance-

covariance matrix of the optimal I.I. estimator θ̂∗ which may be directly com-

puted from the criterion function:

W ∗
S =

(

1 +
1

S

)(∂2ψ∞

∂θ∂β′
(I0 −K0)

−1 ∂
2ψ∞

∂β∂θ′

)−1
(3.13)

As far as an estimation of W ∗
S is concerned, a consistent estimator of ψ∞

is needed. Such an estimator can be obtained by a numerical derivation of
∂ψT
∂β′ [yst (θ); β̂] with respect to θ, evaluated at θ̂∗. For the derivation of a con-

sistent estimator of (I0 −K0), see Gouriéroux et al. (1993), Appendix 2.

3.4 A simple example

To fix ideas, it might be useful to consider a simple example7 involving a

nonlinear data generating process (dgp) like

yt = exp{zt′θ}+ ǫt, ǫt ∼ N(0, σ2) (3.14)

Let the auxiliary model be

yt = zt
′β + ηt, ηt ∼ N(0, σ2η) (3.15)

Note that:
∂E[yt|zt]
∂zt

= β (under the auxiliary model)

∂ lnE[yt|zt]
∂zt

=
∂E[yt|zt]
∂zt

· 1

E[yt|zt]
= θ (under the model of interest)

One can thus deduce that the binding function is

β = θE[yt|zt], or
7From Cameron & Trivedi (2005)[8], Section 12.6.
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CHAPTER 3. Indirect Inference

θ =
(

E[yt|zt]
)−1

β (3.16)

Note that dim(θ) = dim(β).

A naive estimation of the auxiliary parameter, drawn on the observed data

yt, zt, t = 1, ..., T , can be easily obtained (e.g. by least squares). Let us denote

such an (inconsistent) estimate by β̂. Now, given a T -dimensional pseudo-

random draw, denoted by ǫ(0), and chosen θ̃(0) = β̂, say, it is easy to generate

y
(1)
t , t = 1, ..., T using

y
(1)
t = exp{zt′θ̃(0)}+ ǫ

(0)
t

and obtain a revised estimator β̂(1) = (
∑

t ztzt
′)−1

∑

t zty
(1)
t , which in turn is

used to derive θ(p) from (3.16) and to generate a new set of pseudo-random

observation from (3.14). The entire simulation cycle is repeated, holding ǫ(0)

fixed, until [β̂ − β̂(θ̃(p))]′[β̂ − β̂(θ̃(p))] is minimized, i.e. until the calibration

procedure has corrected for the bias of the naive estimator. The resulting

estimate of θ is the indirect inference estimate.
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Chapter 4

Indirect Estimation of Stable

GARCH Processes

Several studies have highlighted the fact that heavy-tailedness of asset re-

turns can be the consequence of conditional heteroskedasticity. ARCH and

GARCH models have thus become very popular, given their ability to account

for volatility clustering and, implicitly, heavy tails. However, as outlined in

chapter 1, these models encounter some difficulties in handling financial time

series, as they respond equally to positive and negative shocks; in addition,

some empirical studies (for instance, Yang & Brorsen, 1993 [44]) indicate that

the tail behavior of GARCH models remains too short even with Student-t

error terms1. To overcome these weaknesses we apply GARCH models with

α-stable innovations2. Since simulated values from α-stable distributions can

be straightforwardly obtained (see section 2.7), the indirect inference approach

(described in chapter 3) is particularly suited to the situation at hand. Here we

provide a description of how to implement such a method by using a GARCH

with skewed Student’s t innovations as auxiliary model. This distribution has

four parameters which have a clear and interpretable matching with those of

1Furthermore, the Student-t distribution lacks the stability-under-addition property. Sta-

bility is desirable because stable distributions, having domains of attraction, provide a very

good approximation for large classes of distributions.
2GARCH models with symmetric stable innovations have been first proposed by McCul-

loch (1985)[30].
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the α-stable distribution. Among the many proposals of skew-t density func-

tions appeared in the literature, we have adopted the one recently introduced

by Azzalini & Capitanio (2003)[2], which is briefly reviewed in the following

section3. In section 4.2 the models implemented are presented and the simu-

lations results are shown in section 4.3. Finally, the proposed models are used

to estimate the IBM weekly returns series, to see how they perform on real

data.

4.1 The skew-t distribution

To be better informed about the four stable parameters (α, β, γ, δ), it is in-

tuitively to go through a quasi-likelihood function which entails similar pa-

rameters with similar interpretations. Therefore, the family of skew-Student’s

t distributions introduced by Azzalini & Capitanio (2003)[2] seems to be a

natural choice.

The idea follows from an extension of the skew-normal distribution (Azza-

lini, 1985 [1]), in which the symmetry of the density is perturbated by means

of the distribution function evaluated at a certain point. More formally, the

univariate skew-normal density function is defined as:

f(x; β̃, µ, σ) = 2φ(z) Φ(β̃z) (4.1)

where φ(·) and Φ(·) denote, respectively, the density and the distribution

function of the standard normal distribution and z = x−µ
σ . The parameter4

β̃ ∈ R plays the role of shape parameter dealing with the degree of skewness;

when β̃ = 0 we recover the regular normal density and we write SN(µ, σ, 0) =

N(µ, σ). Among the many formal properties shared with the normal class, a

noteworthy fact is that if X ∼ SN(µ, σ, β̃), then
(X−µ

σ

)2 ∼ χ2
1.

The usual construction of the t distribution is by means of the ratio of a normal

variate and an appropriate transformation of a chi-square. Hence, replacing

3A widely used alternative, adopted for instance in Garcia et al. (2011)[18] is the version

introduced by Fernàndez & Steel in 1998.
4In the original paper, β̃ is denoted by α; this different notation is adopted here to avoid

confusion with the stable distribution’s tail parameter.
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4.1 The skew-t distribution

the normal variate above by a skew one, leads to an asymmetric variant of the

t distribution, whose density is given by

f(x; ν, β̃, σ, µ) =
2

σ
ft(z; ν)Ft

(

β̃z

√

ν + 1

z2 + ν
; ν + 1

)

=
2

σ

Γ(ν+1
2 )

Γ(ν2 )
√
πν

[

1 +
z2

ν

]− ν+1
2
Ft

(

β̃z

√

ν + 1

z2 + ν
; ν + 1

)

(4.2)

where z is defined as before, ft(·) and Ft(·) denote density and distribution

function of a Student-t variable with ν degrees of freedom. Distribution (4.2)

is called skew-t and we write X ∼ St(ν, β̃, σ, µ). Figure 4.1 shows the pdf of a

SN(0, 1, 8) (left panel) and of a St(2, 3.5, 1, 0) (right panel).

Figure 4.1: Probability density function of a skew-normal with µ = 0, σ = 1, β̃ = 8

(left) and a skew-t with ν = 2, β̃ = 3.5, σ = 1, µ = 0 (right).

The four parameters of the skew-t distribution all have a clear interpretation:

µ ∈ R and σ ∈ R
+ model location and dispersion, respectively; the additional

parameter β̃ ∈ R influences the asymmetry; ν ∈ R
+ captures the thickness

of the tails5. In an indirect inference framework, one can thus expect the

skew-t auxiliary parameters to be very informative about the stable ones.

In fact, Garcia et al. (2011)[18] prove four analytical results that show the

correspondence between these two set of auxiliary and structural parameters,

as summarized by Table 4.1.

5The first four moments of a skew-t distribution with ν degrees of freedom are defined

only for ν larger than the corresponding order of the moment. Note the similarity with the

moments of α-stable distributions (Property 2.4).
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Characteristic Structural Auxiliary

Tail thickness α ν

Asymmetry β β̃

Scale γ σ

Location δ µ

Table 4.1: Relation between structural and auxiliary parameters.

For skew-t-based models, maximum likelihood (ML) is a feasible estimator.

The log-likelihood function for a skew-t sample of n observation is:

lnL(ν, β̃, σ, µ|x) = n
[

ln 2
σ + lnΓ(ν+1

2 )− ln Γ(ν2 )− 1
2 ln(πν)

]

+

n
∑

i=1

lnFt

(

β̃zi

√

ν + 1

z2i + ν
; ν + 1

)

− ν + 1

2

n
∑

i=1

ln
(

1 +
z2i
ν

)

(4.3)

The log-likelihood of the auxiliary models presented in the following section

have been computed exploiting the skew GAUSS library6 implemented by

Roncalli & Lagache (2004)[37].

4.2 Structural and auxiliary models

The model of interest we wish to estimate to describe the volatility of an

asset return is a GARCH(1,1) with α-stable innovations. Let rt be the return

series. It is well-known that dependence in the second moment of the returns’

density function is much stronger than dependence in the first moment; thus,

we assume rt to be serially uncorrelated, but not serially independent, namely

rt = c+ ǫt, where

ǫt = zt

√

σ2t , zt|It−1
iid∼ S0(α, β, 1, 0) (4.4)

i.e. zt, given the information set in t − 1, is a sequence of iid α-stable error

terms with location zero and unit scale parameter. The conditional variance

6Downloadable at www.thierry-roncalli.com.
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4.2 Structural and auxiliary models

is

σ2t ≡ V [rt|It−1] = V [ǫt|It−1] = ω + α1ǫ
2
t−1 + β1σ

2
t−1 (4.5)

and, exploiting the linear transformation property of α-stable distributions

(Property 2.9), one can write

ǫt|It−1
iid∼ S0(α, β, σt, 0) (4.6)

As a natural auxiliary model one can entertain the skew-t analog of the “true”

model, i.e. a GARCH(1,1) model with innovations zat |It−1
iid∼ St(ν, β̃, 1, 0).

4.2.1 Estimation

Dealing with the indirect estimation of the model, as given in the previous sub-

section, we have encountered several difficulties. The main problem has arisen

from the heavier-than-normal tails that both GARCH models and stable noise

capture. In fact, de Vries (1991)[10] shows that the stable and GARCH-like

processes are observationally equivalent from the view point of the uncondi-

tional distribution. In particular, both models share the fact that the uncon-

ditional distribution has fat tails (Ghose and Kroner, 1995 [19]).

From the tail behavior property of stable distributions (Property 2.2), one can

see how the asymmetry parameter affects the tails: if the α-stable innovations

are skewed (i.e. β 6= 0), the heavy-taildness increases considerably.

As an illustration of how these considerations affect the indirect estimation

of the proposed model, Table 4.2 shows a simulated return series under a

GARCH(1,1) dgp with skewed stable innovations. In this example α is set to

1.99 and β to -0.1, but even with a tail parameter “close to the normal” the

simulation can rapidly explode; this is mainly due to the high kurtosis of the

skewed stable sampled shocks and the GARCH term in (4.5). In fact, from

the kurtosis of a (Gaussian) GARCH model (Proposition 1.3), it is easy to

verify that ∂K[ǫt]/∂β1 > ∂K[ǫt]/∂α1 > 0; in other words, β1 plays the main

role in determining the tail behavior of GARCH models. Therefore, a naive

way to decrease the heaviness of the tails could be to constraint β1 to zero,

i.e. to reduce the GARCH(1,1) to an ARCH(1). By means of this solution

one can manage to make the procedure converge, but as ARCH models are

seldom suitable for empirical applications, simulations results concerning this
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t rt = zt
√

σ2t

1 1.1496

2 0.0334

3 -2.9761
...

...

50 -1211.8399

51 9707.3895
...

...

500 6.2405e+028

501 2.54367e+028

502 -7.4799e+029

Table 4.2: Simulation of a return series under model (4.4) with ω = 0.1, α1 =

0.05, β1 = 0.8, α = 1.99, β = −0.1, γ = 1, δ = 0.

model will not be reported.

Alternatively, the idea one can pursue is to constraint the asymmetry param-

eter of the α-stable distribution to zero. This leads to a GARCH(1,1) model

with symmetric (standard) stable shocks, with the tail parameter to be esti-

mated7. We thus have four parameters in the model of interest and five in the

auxiliary model (over-identified approach); numerical results concerning this

model are displayed in section 4.3. However, we remark that, to make sure

that the simulated dgps do not explode, some constraints on the parameters

are still needed. In particular, we choose to bound α to 1.98 ≤ α ≤ 2 8 and

β1 to 0 ≤ β1 ≤ 0.82. In the simulation experiment the true values of β1 is set

to 0.75, which is low if compared with most empirical findings. Yet, as noted

in de Vries (1991), a justification for the relative low β1 one can find in sta-

ble GARCH-type models may be that stable models are intrinsically “robust”

against outliers.

Although this approach performs quite well, this structural model is still

7Note that also in Panorska et al. (1995)[35], to show the existence and uniqueness of

strictly stationary solutions for a stable GARCH process, β is restricted to zero.
8To give an idea of the tail behavior of α-stable densities, simulating 10000 samples of

size 2000 with α = 1.98, one obtains, on average, a kurtosis about equal to 22.

50



4.3 Simulation results

not able to capture the leverage effect since we have constrained the innova-

tions. One can thus think to replace the GARCH(1,1) structural model with a

TGARCH(1,1), using the same skew-t GARCH(1,1) as auxiliary model. This

enable one to employ a just-identified procedure, with a true model which is

more flexible and suitable to financial applications. Simulation results, pre-

sented in the following section, seem to be promising.

4.3 Simulation results

The results have been obtained by means of the Efficient Method of Moments

(EMM) of Gallant & Tauchen (1996)[16] outlined in section 1.3, based on a

numerical computation of the auxiliary model’s score.

The first simulations carried out concern the estimation of the two models

presented before with random samples of two different size, namely T = 1000

and T = 3000; the experiments are based on a set of R = 500 replications

with S = 2 simulations.

Recall that in both the GARCH(1,1) and the TGARCH(1,1), whose results are

shown in Table 4.3 and 4.4 respectively, the shocks are held symmetric (β = 0);

also, the auxiliary model is a skew-t GARCH(1,1) for both the true models, so

that in the former case the quadratic form (3.8) has been weighted by means

of Σ∗ (that is the inverse of the auxiliary model’s outer product matrix), in

the latter case the procedure is exactly identified and no weighting matrix is

needed. The quadratic forms have been minimized by the Broyden-Fletcher-

Goldfarb-Shanno (BFGS) quasi-Newton algorithm, while for the estimation

of the auxiliary model the cml GAUSS routine (“constrained maximum like-

lihood”) has been used. In fact, as noted by Garcia, et al. (2011)[18], the

relation between α and ν is exponential, in the sense that as α → 2 we get

closer to the Gaussian distribution and therefore ν̂ → ∞. Having set the true

value of α to 1.985, we need to constraint ν̂ as ν̂ ≤ 120, say; indeed, without

bounds, if a random sample with very thin tails is drawn, the estimate of ν is

attracted towards +∞ giving rise to problems in the EMM step9.

9In Fiorentini et al. (2003)[13] the reciprocal of the Student’s t degrees of freedom is used

as parameter; thus its constraints become more manageable.
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Table 4.3: Monte Carlo means and standard errors (in parentheses) for the parame-

ters of the true model GARCH(1,1) with shocks zt
iid∼ Sk(1.985, 0, 1, 0), for T = 1000

and T = 3000 (S = 2, R = 500).

GARCH(1,1) β = 0

ω = 0.1 α1 = 0.05 β1 = 0.75 α = 1.985

T = 1000
0.0848 0.0686 0.7327 1.9894

(0.0430) (0.0228) (0.0712) (0.0065)

T = 3000
0.0804 0.0615 0.7595 1.9898

(0.0283) (0.0.0145) (0.0336) (0.0054)

Table 4.4: Monte Carlo means and standard errors (in parentheses) for the parame-

ters of the true model TGARCH(1,1) with shocks zt
iid∼ Sk(1.985, 0, 1, 0), for T = 1000

and T = 3000 (S = 2, R = 500).

TGARCH(1,1) β = 0

ω = 0.02 α1 = 0.05 β1 = 0.75 γ1 = 0.05 α = 1.985

T = 1000
0.0285 0.0454 0.7040 0.0549 1.9899

(0.0199) (0.0237) (0.0994) (0.0247) (0.0058)

T = 3000
0.0206 0.0559 0.7458 0.0460 1.9895

(0.0122) (0.0185) (0.0466) (0.0198) (0.0050)

For these first simulation experiments the starting values supplied to the op-

timization routine have been set to the true values (the effect of the choice of

θ̃(0) will be examined in what follows). The results suggest that the estimators

converge asymptotically to the true values.

The next simulation studies have been conducted to explore the effect of the

number of simulations S on the performance of the estimators. These exper-

iments are based on a set of 100 replications10 with T = 2000. As one could

expect, increasing the number of simulations the estimated standard errors

10Unfortunately it has not been possible to employ a higher number of replications due to

the computational slowness and the short time available.
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decrease considerably. The Monte Carlo means do not seem to improve, but

this could be due to the low number of replications utilized.

Table 4.5: Monte Carlo means and standard errors for the parameters of the true

model GARCH(1,1) for various S (T = 2000, R = 100).

GARCH(1,1) β = 0

ω = 0.1 α1 = 0.05 β1 = 0.75 α = 1.985

S = 1
0.0821 0.0642 0.7471 1.9914

(0.0479) (0.0244) (0.0654) (0.0065)

S = 2
0.0771 0.0681 0.7503 1.9911

(0.0470) (0.0198) (0.0510) (0.0063)

S = 5
0.0672 0.0676 0.7673 1.9897

(0.0324) (0.0170) (0.0302) (0.0061)

Table 4.6: Monte Carlo means and standard errors for the parameters of the true

model TGARCH(1,1) for various S (T = 2000, R = 100).

TGARCH(1,1) β = 0

ω = 0.02 α1 = 0.05 β1 = 0.75 γ1 = 0.05 α = 1.985

S = 1
0.0292 0.0456 0.7067 0.0574 1.9899

(0.0202) (0.0257) (0.0867) (0.0264) (0.0061)

S = 2
0.0225 0.0463 0.7331 0.0542 1.9912

(0.0144) (0.0236) (0.0631) (0.0236) (0.0057)

S = 5
0.0236 0.0497 0.7327 0.0524 1.9889

(0.0143) (0.0206) (0.0580) (0.0231) (0.0051)

The last simulation experiments aim at assessing how the starting values sup-

plied to the optimization algorithm affect the estimates. It is known, although

seldom discussed in literature11, that estimation in a GARCH framework of-

ten proved troublesome and highly sensitive to initial values. Furthermore, in

11A good reference on this issue is Belsley & Kontoghiorghes (2009)[3], Section 2.2.

53



CHAPTER 4. Indirect Estimation of Stable GARCH Processes

finite samples, different initializations for ǫ̂0 and σ̂0, providing different con-

ditional likelihood, lead naturally to different parameter estimates12. Readers

can glance at Appendix B to see how GARCH dgps have been simulated. The

starting values θ̃(0) have thus been set to a value “not too far” from the true

one. Results, displayed in Tab 4.7 and 4.8, suggest that as long as one manages

to achieve the convergence, the initial guesses do not affect the consistency of

the estimators. This finding, however, deserves a more detailed simulation

study.

Table 4.7: Monte Carlo means and standard errors for the parameters of the true

model GARCH(1,1) for starting values different from the true ones (T = 3000, S =

2, R = 100).

GARCH(1,1) β = 0

ω = 0.1 α1 = 0.05 β1 = 0.75 α = 1.985

θ̃(0) 6= θ0
0.0815 0.0673 0.7502 1.9875

(0.0252) (0.0141) (0.0320) (0.0049)

Table 4.8: Monte Carlo means and standard errors for the parameters of the true

model TGARCH(1,1) for starting values different from the true ones (T = 3000, S =

2, R = 100).

TGARCH(1,1) β = 0

ω = 0.02 α1 = 0.05 β1 = 0.75 γ1 = 0.05 α = 1.985

θ̃(0) 6= θ0
0.0184 0.0583 0.7507 0.0456 1.9885

(0.0110) (0.0175) (0.0437) (0.0188) (0.0049)

Finally, to give an idea of the estimation of the auxiliary model’s parameters,

12Inspite of the GARCH benchmark developed by Fiorentini, Calzolari & Panattoni in

1996, McCullough and Renfro (1998)[31] analyze seven widely used econometric packages

and four of which are found to provide different answers to the same non linear estimation

problem; in most cases this is because the developer does not indicate which conditional

likelihood is being maximized.
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some results from the PML step are reported in Table 4.9. The first line

shows the parameter estimates of a GARCH(1,1) with skew-t innovations,

when the data are generated under a stable GARCH(1,1). In the second

line, the true data generating process is a stable TGARCH(1,1). The true

parameters are set to the usual values, namely ω = 0.1, α1 = 0.05, β1 = 0.75 for

the GARCH, and ω = 0.02, α1 = 0.05, β1 = 0.75, γ1 = 0.05 for the TGARCH,

with zt
iid∼ Sk(1.985, 0). Here, the sample size is T = 2000 with R = 500 Monte

Carlo replications.

Table 4.9: Monte Carlo means and standard errors for the parameters of the auxiliary

model when the dgps is a stable GARCH(1,1) and a stable TGARCH(1,1) (T =

2000, R = 500).

Skew-t GARCH(1,1)

ω̂ α̂1 β̂1
ˆ̃
β ν̂

Stable-GARCH dgp
0.2064 0.0959 0.7335 -0.0004 47.3543

(0.086) (0.0219) (0.0787) (0.0283) (39.631)

Stable-TGARCH dgp
0.0876 0.1006 0.7358 -0.0017 39.0235

(0.0272) (0.0220) (0.0602) (0.02797) (35.295)
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4.4 An empirical application

In this section we apply the two models described in the previous section on

real data. The set of data considered is the historical series of the IBM stock’s

weekly prices in Figure 4.2; this data set is composed of 1973 observations,

from 2nd January 1973 to 25th October 201013. Figure 4.3 presents the returns

computed as ln(Pt/Pt−1) × 100 (left panel), and the squared returns (right

panel).

Figure 4.2: IBM weekly prices, 2 January 1973 - 25 October 2010.

Figure 4.3: IBM weekly returns (left) and squared returns (right).

13Free stock quotes are available, for instance, at finance.yahoo.com.

56



4.4 An empirical application

Summary statistics of the series outlined in Table 4.10 depict a clear depar-

ture from normality, albeit the skewness is nearly zero. While Ljung-Box test

on returns suggests that no ARMA term is needed, the squared returns se-

ries shows at least a lag-1 autocorrelation. However, if one estimate a classic

Gaussian GARCH(1,1), (s)he finds standardized residuals far from normality

(see Figure 4.4).

Estimation results for both the Gaussian and the symmetric stable GARCH(1,1)

models are reported in Table 4.11. As one could expect, the persistence of the

stable model is smaller than the Gaussian one. This is a direct consequence

of the tail parameter of the stable distribution, which plays an important role

in capturing the heavy tailed features of the noise.

Table 4.10: Descriptive analysis of IBM weekly returns data set.

Mean 0.0972

Minimum -19.5759

Maximum 19.9765

Std. dev. 3.5808

Skewness -0.0010

Kurtosis excess 3.2321

JB (p-value) 0.0000

LB(1) rt (p-value) 0.1759

LB(1) r2t (p-value) 0.0000

Table 4.11: Estimates and standard errors of a Gaussian and a symmetric stable

GARCH(1,1) model for the IBM weekly returns.

Stable Gaussian

ω̂ α̂1 β̂1 α̂ ω̂ α̂1 β̂1

Mean 0.1420 0.0203 0.9183 1.9904 0.2567 0.0600 0.9213

Sd 0.0424 0.0122 0.0150 0.0060 0.0730 0.0109 0.0134
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Figure 4.4: Estimated standardized residuals of a Gaussian GARCH(1,1) model for

the IBM return series.

Finally we try to estimate the TGARCH(1,1) with symmetric α-stable

shocks. Results are displayed in Table 4.12. The decrease in the ARCH term

is due to the asymmetric effect of negative and positive innovations. In fact,

the estimated impact of the negative shocks is α̂+ γ̂ = 0.0779 while the impact

of positive shocks is estimated to be α̂ = 0.0182.

Stable TGARCH

ω̂ α̂1 β̂1 γ̂1 α̂

Mean 0.1385 0.0182 0.9183 0.0597 1.9934

Sd 0.0488 0.0124 0.0167 0.0245 0.0041

Table 4.12: Estimates and standard errors of a symmetric stable TGARCH(1,1)

model for the IBM weekly returns.
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4.5 Conclusions

The goal of this work was to estimate GARCH-type models with α-stable

shocks by means of the indirect inference approach. The main motivation of

such an effort was to introduce a time-varying volatility model capable to ac-

count for the excess of kurtosis and the skewness typical of financial data sets,

features not captured by traditional GARCH models.

The characteristics and the analytical properties of α-stable distributions are

especially appreciated in the financial field: the possibility of accommodating

for asymmetry and heavy-tails allows appropriate risk measurement, and the

presence of a central limit theorem constitutes a theoretical basis which leads

to preferring the α-stable family over other heavy-tailed alternatives. Since

α-stable models do not have a closed-form likelihood function, but it is easy

to simulate α-stable pseudo-random numbers, indirect inference constitutes

the ideal estimation method for this framework. Indeed, such an inferencial

approach is particularly suited to situations where the model of interest is too

difficult to estimate, but relatively easy to simulate. One can thus replace the

model of interest with an auxiliary one, estimate its parameters using either

the observed and the simulated data, and then calibrate the parameters of the

original model minimizing the distance between these two sets of estimates.

As auxiliary model we used a GARCH(1,1) with skew-t distributed innova-

tions. The chosen model of interest was, at first, a stable GARCH(1,1) (gen-

eralizable to a GARCH(p, q) by including additional lags). Unfortunately, the

heavier-than-normal tails that both GARCH and stable models capture forced

us to constraint some parameters in order to avoid the explosion of the series

simulated under the true model. In particular, one needs to constraint the

α-stable shocks to be symmetric, since the asymmetry parameter of α-stable

distributions affects considerably the tail-thickness. These findings also indi-

cate that the conditions needed for stationarity of stable GARCH models are

stricter than the Gaussian GARCH ones14.

However, the Monte Carlo studies employed suggest that the models we have

14Nelson (1990)[32] shows that the conditions for stationarity in a GARCH model are

stricter when the error term follows a Cauchy distribution (α = 1) than when the error

follows a normal distribution.
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entertained have good performances both with artificial and real data.

The simulation studies have been carried out using the econometric program-

ming language GAUSS. This sofware provided us with some advantages: for

instance, the skew library permits to readily compute the pseudo-likelihood

function of the auxiliary model. Furthermore, efficient optimization routines

are already written and allow one to incorporate the inequality restrictions on

the parameters. Unfortunately, there is a trade-off between these conveniences

and the computational time. For this reason, further researches will consist

in more extensive simulation experiments, to see wheter - using a more basic

programming language such as Fortran or C/C++ - the promising results will

be confirmed.
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Appendix A

Derivation of the asymptotic

results

The goal of this appendix is to hint why indirect inference estimators are con-

sistent, to get the form of their asymptotic variance-covariance matrices and

their asymptotic expansion, in order to study their asymptotic equivalence.

For more precise proofs, see Gouriéroux et al. (1993)[21].

Identification

(i) In the just identified case, θ̂(Ω) is the solution of the system

β̂ = β̂(θ)

since, for such a choice, the criterion function is equal to 0. It follows

that θ̂(Ω) does not depend of Ω.

(ii) Similarly, θ̌(Σ) is the solution of the system

S
∑

s=1

∂ψT
∂β

[yst (θ); β̂] = 0

and it is independent of Σ.

(iii) If
S
∑

s=1

∂ψT
∂β

[yst (θ̌);β] = 0
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has a unique solution, this solution has to be β̂(θ̌); from (ii) one can

deduce that this solution is equal to β̂, from (i) we know that β̂ = β̂(θ̂),

therefore θ̌ = θ̂.

�

Consistency

Let us first consider the two intermediate estimators β̂ and β̂(θ). We have:

β̂ = argmax
β

ψT (yt;β) → argmax
β

ψ∞(θ0;β) = b(θ0)

β̂(θ) = argmax
β

S
∑

s=1

ψT (y
s
t (θ);β) → argmax

β
Sψ∞(θ;β) = b(θ)

Therefore β̂ converges to b(θ0) and β̂(·) converges to the binding function b(·).
Then:

θ̂(Ω) = argmin
θ

[β̂ − β̂(θ)]′Ω [β̂ − β̂(θ)]

→ argmin
θ

[b(θ0)− b(θ)]′Ω [b(θ0)− b(θ)]

= {θ : b(θ) = b(θ0)} (being Ω positive definite)

= θ0 (from (A4)).

�

Asymptotic normality of θ̂(Ω)

Asymptotic expansion of β̂ and β̂(θ)

From the first order conditions for β̂(θ) we have:

√
T

S
∑

s=1

∂ψT
∂β

[yst (θ); β̂(θ)] = 0

By means of Taylor’s formula we get, around θ = θ0:

√
T

S
∑

s=1

∂ψT
∂β

[yst (θ0); b(θ0)] +

S
∑

s=1

∂2ψT
∂β∂β′

[yst (θ0); b(θ0)]
√
T
[

β̂(θ0)− b(θ0)
]

≈ 0
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√
T [β̂(θ0)− b(θ0)] ≈

{

−
S
∑

s=1

∂2ψT
∂β∂β′

[yst (θ0); b(θ0)]
}−1

×
√
T

S
∑

s=1

∂ψT
∂β

[yst (θ0); b(θ0)]

≈ 1

S

{

− ∂2ψ∞

∂β∂β′
[θ0; b(θ0)]

}−1√
T

S
∑

s=1

∂ψT
∂β

[yst (θ0); b(θ0)],

√
T
[

β̂(θ0)− b(θ0)
]

≈ J−1
0

S

√
T

S
∑

s=1

∂ψT
∂β

[yst (θ0); b(θ0)] (A.1)

Analogously, we get

√
T
[

β̂ − b(θ0)
]

≈ J−1
0

√
T

S
∑

s=1

∂ψT
∂β

[yt; b(θ0)] (A.2)

Asymptotic expansion of θ̂(Ω)

The first order conditions for θ̂(Ω) is ∂
∂θ [β̂ − β̂(θ̂)] Ω [β̂ − β̂(θ̂)] = 0, which can

be equivalently written as

∂β̂

∂θ
(θ̂) Ω

[

β̂ − β̂(θ̂)
]

= 0

An expansion around the limit value θ0 gives:

∂β̂

∂θ
(θ0) Ω

√
T [β̂ − β̂(θ0)]−

∂β̂′

∂θ
(θ0) Ω

∂β̂

∂θ′
(θ0)

√
T
[

θ̂(Ω)− θ0
]

≈ 0

√
T
[

θ̂(Ω)− θ0
]

≈
[∂b′

∂θ
(θ0) Ω

∂b

∂θ′
(θ0)

]−1∂b′

∂θ
(θ0) Ω

√
T
[

β̂ − β̂(θ0)
]

(A.3)

Asymptotic distribution of
√
T (β̂ − β̂(θ))

Using (A.1) and (A.2), one can obtain:

√
T
[

β̂ − β̂(θ0)
]

= J−1
0

√
T
{∂ψT
∂β

[yt; b(θ0)]−
1

S

S
∑

s=1

∂ψT
∂β

[yst (θ0); b(θ0)]
}
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Therefore under assumption (A7), (A8), this difference has an asymptotic zero

mean normal distribution, with variance-covariance matrix given by:

Vas
{
√
T [β̂ − β̂(θ0)]

}

= J−1
0 Vas

{√
T
{∂ψT
∂β

[yt; b(θ0)]−
1

S

S
∑

s=1

∂ψT
∂β

[yst (θ0); b(θ0)]
}

}

J−1
0

and, after some algebra, we get

Vas
{
√
T [β̂ − β̂(θ0)]

}

=
(

1 +
1

S

)

J−1
0 (I0 −K0)J

−1
0

Finally, one can use (A.3) to write

√
T
[

θ̂(Ω)− θ0
] d−−−−→
T→∞

N
(

0,W (S,Ω)
)

where W (S,Ω), given by Proposition 3.3, is easily obtained applying the “δ-

method“. �

The optimality of the matrix Ω = Ω∗ (Proposition 3.4), is a consequence

of Gauss-Markov theorem.

Asymptotic equivalence of the two estimators

Asymptotic expansion of θ̌(Σ)

The optimization problem defining θ̌(Σ) implies that

∂

∂θ

{

S
∑

s=1

∂ψT
∂β′

[(yst (θ̌); β̂]
}

Σ
{

S
∑

s=1

∂ψT
∂β

[(yst (θ̌); β̂]
}

=
{

S
∑

s=1

∂2ψT
∂θ∂β′

[(yst (θ̌); β̂]
}

Σ
{

S
∑

s=1

∂ψT
∂β

[(yst (θ̌); β̂]
}

= 0

An expansion around the values
(

θ0, b(θ0)
)

of the parameters provides:

{

S
∑

s=1

∂2ψT
∂θ∂β′

[(yst (θ0); b(θ0)]
}

Σ
{√

T

S
∑

s=1

∂ψT
∂β

[(yst (θ0); b(θ0)]

+S
∂2ψ∞

∂β∂β′
[θ0, b(θ0)]

√
T
[

β̂ − b(θ0)
]

+ S
∂2ψ∞

∂β∂θ′
[θ0, b(θ0)]

√
T
[

θ̌(Σ)− θ0
]

}

≈ 0
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Now, using (A.1) we get asymptotically

S
∂2ψ∞

∂θ∂β′
[θ0, b(θ0)] Σ

{

SJ0
√
T
[

β̂(θ0)− b(θ0)
]

+S
∂2ψ∞

∂β∂β′
[θ0, b(θ0)]

√
T
[

β̂ − b(θ0)
]

+ S
∂2ψ∞

∂β∂θ′
[θ0, b(θ0)]

√
T
[

θ̌(Σ)− θ0
]

}

≈ 0

and, remembering that ∂2ψ∞

∂β∂β′ [θ0; b(θ0)] = −J0,

∂2ψ∞

∂θ∂β′
[θ0, b(θ0)] Σ

{

J0
√
T
[

β̂(θ0)− β̂
]

+
∂2ψ∞

∂β∂θ′
[θ0, b(θ0)]

√
T
[

θ̌(Σ)− θ0
]

}

≈ 0

Finally, we obtain:

√
T
[

θ̌(Σ)− θ0
]

≈
{∂2ψ∞

∂θ∂β′
[θ0, b(θ0)] Σ

∂2ψ∞

∂β∂θ′
[θ0, b(θ0)]

}−1

× ∂2ψ∞

∂θ∂β′
[θ0, b(θ0)] Σ J0

√
T [β̂ − β̂(θ0)]

}

(A.4)

From (3.12) we know that:

∂b

∂θ′
(θ0) = J−1

0

∂2ψ∞

∂β∂θ′
[θ0, b(θ0)]

Therefore the asymptotic expansion of θ̌(Σ) given in (A.4) may also be written

as
√
T
[

θ̌(Σ)− θ0
]

≈
[∂b′

∂θ
(θ0)J0Σ J0

∂b

∂θ′
(θ0)

]−1∂b′

∂θ
(θ0)J0Σ J0

√
T
[

β̂ − β̂(θ0)
]

A comparison with expansion (A.3) directly gives Proposition 3.5:

√
T
[

θ̌(Σ)− θ̂(J0Σ J0)
]

≈ 0.

�
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Appendix B

GAUSS code for the simulation of a Stable GARCH(1,1)

/* Simulation of a GARCH(1,1) with standard stable shocks */

proc sim_StableGARCH(_theta,_T,_S);

local _w,_alpha1,_beta1,_a,_b,_z,_sigma2,_eps,_y;

_w = _theta[1];

_alpha1 = _theta[2];

_beta1 = _theta[3];

_a = _theta[4];

_b = _theta[5];

_sigma2 = ones(_T+1,_S)*_w/(1-_alpha1-_beta1);

_z = zeros(_T+1,_S);

_eps = zeros(_T+1,_S);

for j (1,_S,1);

_z[2:(_T+1),j] = rstab(_a|_b, _T);

endfor;

for j (1,_S,1);

for i (2,_T+1,1);

_sigma2[i,j] = _w +_alpha1*_eps[i-1,j]ˆ2 +

_beta1*_sigma2[i-1,j];

_eps[i,j] = _z[i,j]*sqrt(_sigma2[i,j]);

endfor;

endfor;

_y = _z[2:(_T+1),.].*sqrt(_sigma2[2:(_T+1),.]);
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retp(_y);

endp;

/* Pseudo-random generation from a S(_a,_b,1,0) */

proc rstab(_thetaStable,_n);

local _a,_b,_z,_csi,_U,_W;

_a = _thetaStable[1];

_b = _thetaStable[2];

_z = zeros(_n,1);

_csi = atan(_b*tan(pi*_a/2))/_a;

for i (1,_n,1);

_U = pi*(rndu(1,1)-0.5);

_W = -ln(rndu(1,1));

if (_b == 0);

if (_a == 1);

_z[i] = tan(_U);

else;

_z[i] = (sin(_a*_U)/((cos(_U))ˆ(1/_a)))*

((cos((_a-1)*_U)/_W)ˆ((1-_a)/_a));

endif;

else;

if(_a == 1);

_z[i] = (2/pi)*((pi/2+_b*_U)*tan(_U)-_b*

ln((2/pi)*_W*cos(_U)/(pi/2+_b*_U)));

else;

_z[i] = ((sin(_a)*(_csi+_U))/(cos(_a*_csi)*cos(_U))ˆ(1/_a))*

((cos(_a*_csi+_a*_U-_U)/_W)ˆ((1-_a)/_a));

endif;

endif;

endfor;

retp(_z);

endp;
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