Aouad Hadjer, Soumia and Taouli, Mustapha Kamel and Benbouziane, Mohamed (2012): Modélisation du Comportement du Taux de Change du Dinar Algérien: Une Investigation Empirique par la Méthode ARFIMA. Published in: International Research Journal of Finance and Economics , Vol. Issue, No. Issue 87 (2012) (2012): pp. 117-133.
Preview |
PDF
MPRA_paper_38605.pdf Download (297kB) | Preview |
Abstract
This paper deals with a very important topic and assiduously renewed, mainly ‘’The determination of exchange rates,'', we propose to study this issue for the case of Algeria where we try to model the behavior of the exchange rate of the dinar against major currencies in the foreign exchange market, the U.S. dollar, euro, pound sterling and Japanese yen using a series of daily quotations over the period (2000-2007) using ARFIMA models. These latters are characterized by their ability to model both long term and short term behavior. . Using the method of maximum likelihood, the study reveals the existence of long memory phenomenon for two sets out of the four studied, and finally, in the wake of Meese and Rogoff [1983], Sarno and Taylor [2002], Nelson, West and Kenneth [2007], Mignon and Sardic [1999] and many others we consider the beating of the random walk in forecasting exchange rate as a major criterion for accepting an exchange rates model.
Item Type: | MPRA Paper |
---|---|
Original Title: | Modélisation du Comportement du Taux de Change du Dinar Algérien: Une Investigation Empirique par la Méthode ARFIMA |
English Title: | Modeling of the Algerian Dinar Exchange Rate: An empirical investigation using the ARFIMA techniques |
Language: | French |
Keywords: | Exchange rates - long memory - persistence- anti-persistence - ARFIMA- |
Subjects: | F - International Economics > F3 - International Finance > F37 - International Finance Forecasting and Simulation: Models and Applications F - International Economics > F3 - International Finance > F31 - Foreign Exchange |
Item ID: | 38605 |
Depositing User: | Mohamed BENBOUZIANE |
Date Deposited: | 15 Mar 2021 15:09 |
Last Modified: | 15 Mar 2021 15:09 |
References: | [1] Andrew W. Lo ‘’ Long-term memory in stick market prices ‘’ Working Paper No. 3014-89- EFA , May 1989 [2] Asma Grira ,Chaker Aloui’’ Efficience informationnelle, dynamique des rendements Boursiers et apport des processus de mémoire longue : fondements théoriques et validations internationales’’ Document de travail de l’Institut Supérieur de Gestion de Tunis. [3] Ata Assaf ‘’ An examination of the long memory in the Canadian/us dollar exchange rate returns and volatility ‘’working paper of the Odette School of Business Windsor university 2002 [4] Bank of Sweden, 2003, Time-Series Econometrics: Cointegration and Autoregressive ConditionalHeteroskedasticity, Advanced Information on the Bank of Sweden Prize in Economic Sciences in Memory of Alfred Nobel, the Royal Swedish Academy of Sciences [5] Barkoulas, John T, Baum, Christopher F ‘’ Fractional Differencing Modeling and Forecasting of Eurocurrency Deposit Rates’’ Boston college working papers in economics 317 , 1996. [6] Barkoulas and all ‘’Persistent dependence in foreign exchange rates ?a reexamination’’ Boston College Working Papers in Economics with number 377.2000 [7] Claudio Morana, Andrea Beltratti ‘’ Structural change and long-range dependence in volatility of exchange rates: either, neither or both?’’ Journal of Empirical Finance 11 (2004) 629–658 [8] Edgar E. Peters ‘’ Fractal market analysis, Applying Chaos Theory to Investment and Economics’ ’,1994 by John Wiley & Sons, Inc [9] G.NFouskitakis ,S.D.Fassois “A pseudo-linear methor for fractionally integrated ARMA (ARFIMA) model estimation’’ , Working paper of university of Patras ,greece .1996. [10] Geetesh Bhardwaj , Norman R. Swanson ’’An Empirical Investigation of the Usefulness of ARFIMA Models for Predicting Macroeconomic and Financial Time Series ’’ working paper of Rutgers University, November 2003 [11] Houmann Frederiksen ,Morten Ørregaard Nielsen ‘’ Finite Sample Comparison of Parametric, Semiparametric, and Wavelet Estimators of Fractional Integration’’ Econometric Reviews Volume 24, Number 4/2005 pp 405 - 443 [12] Hyun J. Jin, John Elder, Won W. Koo, ‘’ A Reexamination of Fractional Integrating Dynamics in Foreign Currency Markets’’ Paper prepared for presentation at the American Agricultural Economics Association Annual Meeting, Denver, Colorado, August 1-4, 2004 [13] James Davidson, Philipp Sibbertsen ‘’Tests of Bias in Log-Periodogram Regression’’ working paper of Hannover university, Germany. [14] Jean-Marc Bardet, Pierre, R. Bertrand. Véronique Billat ‘’ Estimation non-paramétrique de la densité spectrale d'un processus gaussien observé à des instants aléatoires’’ Document de travail non publié de l’Université Panthéon Sorbonne [15] John W. Galbraith, Victoria Zinde-Walsh’’ Autoregression-Based Estimators for ARFIMA Models,’’ CIRANO Scientific Series, Février 2001 pp 04-14. [16] Jurgen A. Doornik_ Marius Ooms ‘’ Inference and Forecasting for ARFIMA Models With an Application to US and UK Inflation’’ Studies in Nonlinear Dynamics & Econometrics’’ Vol. 8, No. 2, Article14 .2004 [17] Jussi Tolvi ‘’Long memory in a small stock market’’ Economics Bulletin, Vol. 7, No. 3 pp. 1−13 , 2003 [18] Lorenc Ekonomi, Argjir Butka” Jackknife and bootstrap with cycling blocks for the estimation of fractional parameter in ARFIMA model”, Turk J Math 34 (2010) , 1 – 8 [19] Luis Martins, Vasco J. Gabriely ‘’ Integer and Fractional Cointegration of Exchange Rates – The Portuguese Case’’ working paper of University of Minho 1999 [20] Mehdi Mahjoub ‘’ Une semaine sur le ″Reuters″ : Essai de modélisation de la dynamique de change 133 International Research Journal of Finance and Economics - Issue 87 (2012) [21] intra-quotidienne de très haute fréquence (parité TND/USD)’’, mémoire de fin d’étude approfondies en finance , mai 2004 [22] Michel Beine, Sébastien Laurent ‘’Structural change and long memory in volatility ; new evidence from daily exchange rate ‘’ working paper of liege university Belgium , January 2000 [23] Michael Dueker , Patrick.K.Asea ‘ ’Non-Monotonic Long Memory Dynamics in Black-Market Exchange Rates’’ Working Paper 1995-003A of Federal Reserve Bank of St. Louis, 1995 [24] Michael K. Anderssony , Mikael P. Gredenhoff ’’Bootstrap Testing for Fractional Integration’’, Working Paper Series in Economics and Finance No. 188, August 1997 [25] Olanrewaju. I. Shittu , Olaoluwa Simon Yaya ‘’ Measuring Forecast Performance of ARMA and ARFIMA Models: An Application to US Dollar/UK Pound Foreign Exchange Rate’’ European Journal of Scientific Research Vol.32 No.2 (2009), pp.167-176 [26] Peter Winker, Vahidin Jeleskovic “Dependence of – and Long Memory in – Exchange Rate Returns: Statistics, Robustness, Time Aggregation” Working PaperSeries, WP011-07 of the Centre for Computational Finance and Economic, Agents, university of Essex .January 2007 [27] Raphael N. Markellos, Terence C. Mills’’ The Econometric Modelling of Financial Time Series’’ Third edition, Cambridge university press ,2008 [28] Régis Bourbonnais, Michel Terraza ‘’ Analyse des séries temporelles, applications à l’économie et à la gestion ‘’ edition dunod 2004 [29] Richard .T.Baillie, Tim Bollersev ‘’the long memory of the forward premium ‘’, journal of international money and finance 13 (5) 565-571.1994. [30] Rolf Tschernig ‘’ Long memory in foreign exchange rates revisited ‘’, Institute of statistics and econometrics, university of berlan 1994. [31] Rueys Tsay ‘’ Analysis of Financial Time Series ‘’ Third Edition, Published by John Wiley & Sons2010 [32] Ruipeng Liu and Thomas Lux ‘’ Long Memory in Financial Time Series: Estimation of the Bivariate Multi-Fractal ModelAnd Its Application For Value-at-Risk” working paper of University of Kiel, Germany [33] Sandrine Lardic , Valérie Mignon ‘’ Les tests de mémoire longue appartiennent-ils au camp du démon ?’’ Revue économique vol 47 N°3 pp 531-540 ,1996 [34] Soosung Hwang , Stephen E. Satchell ‘’ Implied volatility forecasting: a comparison of different procedures including fractionally integrated models with applications to UK equity options’’ in Forecasting Volatility in the Financial Markets Third edition Edited by John Knight , Stephen Satchell , 2007 Elsevier finance Ltd [35] Terence C. Mills, Raphael N. Markellos ‘’ The Econometric Modelling of FinancialTime Series’’ Third edition, Cambridge University Press.2008 [36] Tsung-wu Ho , Shu-Ing Liu ‘’ Thershold ARFIMA-GARCH Model and the real exchange rate forcasting ,a Bayesian analysis’’ , working paper of shih hsin university , taiwan 2005 [37] Valérie Mignon, Sandrine Lardic ‘’Prévision ARFIMA des taux de change : les modélisateurs doivent-ils encore exhorterà la naïveté des prévisions ?’’, annales d’économie et de statistique – N° 54 – 1999. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/38605 |