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ABSTRACT

Econometric techniques to estimate output supply systems, factor demand systems and consumer
demand systems have often required estimating a nonlinear system of equations that have an additive
error structure when written in reduced form. To calculate the ML estimate’s covariance matrix of
this nonlinear system one can either invert the Hessian of the concentrated log likelihood function,
or invert the matrix calculated by pre-multiplying and post-multiplying the inverted MLE of the
disturbance covariance matrix by the Jacobian of the reduced form model. Malinvaud has shown
that the latter of these methods is the actual limiting distribution’s covariance matrix, while Barnett
has shown that the former is only an approximation.

In this paper, we use a Monte Carlo simulation study to determine how these two covariance
matrices differ with respect to the nonlinearity of the model, the number of observations in the data
set, and the residual process. We find that the covariance matrix calculated fram the Hessian of the
concentrated likelihood function produces Wald statistics that are distributed above those calculated
with the other covariance matrix. This difference becomes insignificant as the sample size increases

to one-hundred or more observations, suggesting that the asymptotics of the two covariance matrices

are quickly reached.

*The author has greatly benefited from discussions with Prof. William Barnett and Prof. Robert Parks
and especially thank them for the encouragement and guidance.
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The two Wald statistic’s empirical size and range of values were found to be unacceptably

large when the data set consisted of sixty or less observations. These small sample properties
reinforce those previously found by others that the standard errors for this class of models are overly
optimistic and underestimate the parameter’s true variance. The small sample results suggest that
an alternative method of calculating the parameter estimates’ covariance is needed in order for

stronger statistical inference to be made with this class of models.

1 Introduction

Econometric techniques employing neoclassical theory to estimate output supply, fac-
tor demand, or consumer demand systems have often required the empirical economist to
estimate a nonlinear system of equations that is additive in its error structure when writ-
ten in reduced form. With the advancements in computers, economist can easily estimate
such nonlinear systems with many statistical computer packages. Most of these packages
provide the user with the facilities to compute a list of various parameter estimates of these
nonlinear systems. Often this list includes the maximum-likelihood estimator (MLE) of the
model’s parameters and its residual covariance matrix.! However, even though the calcula-
tion of the MLE is provided by the statistical package the method by which the MLE and
the estimates’ covariance matrix is computed often differs from software to software.

Many statistical packages use a Gauss-Newton procedure to calculate the MLE of a non-
linear system. These packages often estimate the MLE’s covariance matrix with the inverse
of the inverted residual covariance matrix, pre- and post-multiplied by a matrix containing
the gradients of the nonlinear system of equations, i.e. by the system’s Jacobian.? Since
this method of calculating the MLE’s asymptotic covariance matrix involves the gradient
of each equation in the nonlinear system, we refer to it as the Gradient approach.

Other statistical packages use a form of one of the following Newton-like algorithms to

calculate the MLE for a nonlinear system of equations:
¢ Newton-Raphson
e DFP (Davidon (1959)-Fletcher-Powell (1963))
e BHHH (Brendt, Hall, Hall, and Hausman (1974)).

Each of these algorithms use an iterative procedure where the estimate of the system’s

parameters are updated and improved on through a function of the log likelihood function’s

1GAS, TSP, and SHAZAM have procedures in there PC versions that calculate the MLE of a nonlinear
system.

2PROC MODEL in SAS with the FIT option [TSUR uses this method to calculate the MLE’s covariance
matrix.
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Hessian matrix. The only difference between these Newton-like methods is the manner in
which the Hessian is calculated.

With a Newton-like procedure, a consistent estimate of the MLE'’s asymptotic covari-
ance matrix is calculated from the inverted Hessian of the likelihood function. We call
this method of calculating the MLE’s asymptotic covariance matrix the Hessian approach.
However, because each of the above algorithms calculates the Hessian matrix differently
each method may obtain a different estimate of the covariance matrix. Fortunately, Belsley
(1980) has shown that there is little difference in the Hessian approach due to the different
Newton-like methods.

To date, the Gradient and Hessian methods have not been compared. Such a comparison
is this paper’s objective with the intent of shedding some light on the properties of the two
covariance matrices. By comparing these two methods under different models, sample sizes,
and additive error structures we are able to draw some conclusions about the strengths and
weaknesses of the statistical inference made with each covariance matrix. For instance,
we find that the asymptotic properties of the two covariance matrices are reached with
relatively modest data sets containing 120 or more observations, and that these covariance
matrices preform poorly in describing the variability of the parameter estimates with sixty
or less observations.

In this paper we construct a Monte Carlo simulation study of two systems of equations.
For each model, sample size, and error structure both the Gradient and the Hessian MLE'’s
covariance matrices are used to compute the estimated model’s Wald statistic. We then
plot the two Wald statistic’s box-plots and compare their empirical size. In Section II we
present the class of models that we are interested in and review the asymptotic properties of
their MLE. The results of Section II are based on the work of Malinvaud (1970) and Barnett
(1976). Section III presents the Monte Carlo simulations and their results for the MLE’s
covariance matrix from a absolute price version Rotterdam model and a linear expenditure

system. Section IV summarizes our findings.

2 Asymptotic Properties and Results

We are concerned with the following class of models
Ye=gxuv)+e t=1,23,...,T (1)

where the unobservable ¢; ~ 1.i.d. A/(0, £2g), and a matrix or vector subscripted by 0 denotes
its true value. The m x 1 vector y; is comprised of the observable endogenous variables at
time ?, whereas x, is a p x 1 vector of the model’s observable exogenous variables. g is an

m X 1 vector of known functions where each function is continuous in its arguments x; and

7o-
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Gallant (1975) refers to this class of models as a seemingly unrelated nonlinear equation

after Zellner’s (1962) seminal article. In addit
class of models also includes those nonlinear structural system of equations with a reduced

form additive error structure. The above class of models also represent those systems of

ion to the above additive error structure, this

equations which are linear in their parameters, but have explicit analytic constraints. For
example, a linear consumer demand system with the theoretical parameter restrictions of
symmetry and homogeneity belongs to this class of models.

Let ST be a positive definite m X m matrix for any positive integer T. The GLS estimator
of v in Eq. (1) is

T

¥(ST) —argmm{z g(xe, 7)]'Stlye - g(xh'}')]}

for any T and any S7. The GLS estimate of the residual’s covariance matrix is the matrix
Qr = %E:Tﬂ &), where & = y¢ — g:(y(St)). With QF' the economist can obtain the
finite-step GLS estimator, 4, by calculating 7((1}1).

Repeating the above steps until convergence, and assuming they converge uniformly
in T, results in the iterated GLS estimator, IGLS, 4.3 Barnett (1976) has shown that as
‘T — o0, ¥ tends in probability to its true value. Barnett also provided the important result
that the IGLS estimator of the residual’s covariance matrix, €, also tends to its true value
as T — oo.

Under certain regularity conditions (see pp. 331-332 of Malinvaud), Malinvaud shows
that 7 is consistent, is asy mptotlcaﬂy efficient in the class of all consmtent regular estimators,
and has an asymptotic distribution of VT(¥ — 7o) — N(0, [MT(QT )171) as T — o0, where
QT =7 i Téi, and & =y ~ g:(1(27h).

The inverted covariance matrix of the asymptotic distribution is defined by

T
Ly
M1(8) = 53 ZiSZ (2)
t=1

where Z; = 9g(x(,v)/87', and S is any positive definite symmetric matrix. Malinvaud
shows that the finite-step GLS’s QTl tends in probability to 25, and that T Mr(Qgh)is
equal to Fischer's information matrix. Hence, the matrix [T - MT(QT )71 is a consistent
estimate of the lower bound for the covariance matrix of a consistent regular estimate of
vo. This is the Gradient method of calculating the MLE’s asymptotic covariance matrix.
Barnett {(1976) extends Malinvaud’s finite-step GLS asymptotic results to include the
IGLS estimator and hence, the MLE for this class of models. Let § be a p+m(m +1)/2x 1

vector that contains the IGLS estimators 4 and the nonredundant elements of the covariance

3The limit of this procedure is a critical point of the likelihood function.
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matrix (. Barnett’s Theorem 1 establishes that the consistency of § is sufficient for the
negative Hessian of the log likelihood function to be a consistent estimator of the limiting
information matrix

1 |0*(In L(ly,x)
T 0606’

=0

where y = (y1,...,¥7), x = (x{,...,x7)" and L is the likelihood function. Furthermore,
Barnett establishes that the inverted limiting information matrix evaluated at 6 is the
lower bound covariance matrix of any consistent asymptotic estimator of 6. Hence, the
asymptotic covariance matrix may be estimated by

_[o*n Ly, x)] ™
9696’

=4

Because the asymptotic covariance matrix of Q7 is rarely desired and the computations
required to invert the entire Hessian is large and burdensome, Barnett provides a simpli-
fication to calculating the asymptotic covariance matrix of 4. One of the many properties
established by Malinvaud is the block diagonal matrix pattern of Eq. (1)’s information ma-
trix. Barnett shows that the upper left diagonal block of the asymptotic covariance matrix
associated with the elements of v can be calculated by inverting the Hessian of the con-
centrated log likelihood function. Hence, the asymptotic covariance matrix of ¥ is equal

to

3)

[0 L0y, k(rly, 0y, )]
0v'07

=¥

where L(y, k(7]y,x)|y,x)is the concentrated likelihood function and &(7|y,x)is an m(m+
1)/2x 1 vector of the nonredundant individual elements of Q¢ that maximizes the likelihood
function conditional on «.

When a statistical package uses a Newton-like method to solve for the MLE it is
d*In L(v, k(7)y,x)]y,x)/ 8707 or an approximation of it, that is used to determine which
direction the estimated parameters should move for convergence. Because this matrix is
asymptotically equivalent to the limiting information matrix and is computed with each it-
eration in a Newton-like algorithm, in the final iteration the negative inverse of this matrix
is readily available as an estimate of the MLE covariance matrix. This method of calculating

the MLE covariance matrix is the Hessian approach.

3 Monte Carlo Simulation

The details of our Monte Carlo study are as follows. We replicate the following systems

of equations
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4
yit = Ppiei + 5 {mz - ijta,} +ea  1=123,4 (4)
i=1
4
we = wi|Dmo— Y wiDpie| + 37 (Dpe— Dpe) + & i=1234  (5)
j=1 j€S
where t = 1,2,...,T and ¢ = [e1s, €21, €3¢, €ar) ~ 4.3.d.N(0,%0) is a multivariate error

process, for different values of T and €.

Eq. (4) is the linear expenditure system derived from the Klein-Rubin utility function
U(ques Gaes @30, Gat) = 5oy BiIn(gie — o), where yit = pigit- In order for the utility function
to remain consistent with theory, the parameters of Eq. (4) are restricted to 0 < 8; < 1,
and 0 < o; < ¢;¢ for i = 1,2,3,4 and V1. However, as a result of these restrictions Eq. (4)
will be over-identified and g singular.* This problem is overcome by eliminating any one
of the four equations of Eq. (4) and using the constraint 37, 8; = 1 to estimate the g; of
the deleted equation.

In our Monte Carlo experiment we have chosen to eliminate the fourth equation of Eq.

(4). Hence, the true parameter vector of Eq. (4) is

Yo = [al,a2,a3va4sﬂ1;ﬁ2)ﬂ3]l

(6.5, 3.0, 1.5, 6.0, 0.366, 0.069, 0.121)".

The other system of equations, Eq. (5), represents the absolute price version of the
Rotterdam model, where wj; = (wj—1 + wit)/2 is the average expenditure share of good
i in time ¢, and D is the finite natural log change operator, i.e. Dpy = Inp; — lnpg-1-
In the second term of Eq. (5)'s righthand side the Dp;’s are normalized by Dpy; for an
arbitrarily chosen good k. These terms are summed over the set § = {1,2,3,4} — {k}. In
our simulation study we have chosen k = 4, hence, S = {1,2,3}.

In order for the absolute price version of the Rotterdam model to agree with economic
demand theory its parameters are restricted so that the model is homogeneous and its
Slutsky matrix symmetrical and negative semidefinite. This is accomplished by letting

fimio= 1, m; = 7y for i,5 = 1,2,3,4 and Sioym = 0for j = 1,2,3,4. As with
the restricted linear expellditure system, these parameter constraints cause the Rotterdam

model to be over- identified, and requires one of the system’s equations to be removed. To

be consistent with the linear expenditure system we remove the fourth equation from Eq.

(8)-

See Barten (1969).
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With these parameter restrictions and eliminations Eq. (5)’s true parameter vector is

1
Yo = [p1,ne, 43, T11, 712, T13, T22, T23, T33]

(0.292, 0.056, 0.098, —0.039, 0.01, 0.008, —0.028, —0.003, -0.023)

for our simulation study.>
To calculate the y;'s of Eq. (4) and (5) we use Citibase consumer price index (1982-84
base) and consumer expenditure (1982 dollars) data. The data set contains 240 monthly
observations from January, 1967 to January, 1987 of service goods, perishable goods, semi-
durable goods, and durable goods. We respectively set these prices and expenditure levels
equal to pir and ¢ for i = 1,2,3,4. The exogenous variable m; are set equal to the
corresponding Citibase monthly personal income data (1982 dollars).
Eq. (4) and (5) are simulated 500 times for T = 30,60, 120,240 and the two error
processes with covariance matrices
[ 1.00 0.75 0.66 ]

Q= | 075 1.00 0.25
| 0.66 0.25 1.00 |

[ 1.00 0.00 0.00 ]
Q,= {000 1.00 0.00 |.
[ 0.00 0.00 1.00 j

We then estimated Eq. (4) and (5)’s MLEs for the 500 samples and used these estimates to
calculate the Wald statistics [§ — 7o)’ B[ — vo] and [§ — 7o' M ~1[§ — 70] where

-1
B = = [0%In L(y, k(vly, x)ly,x)/8101]|

y=5

is the covariance matrix calculated with the Hessian approach, and M = [T - Mp(£271))!
_is the covariance matrix from the Gradient approach. Asymptotically, the Wald statistics
should be distributed x(27) for Eq. (4) and X'("g) for Eq. (5).

In Figure 1 through Figure 4 the Wald statistics from the Monte Carlo experiments are
arranged as box-plots. The box-plots show the Gradient approach being distributed lower
than the Hessian, regardless of the model, sample size, or residual’s covariance matrix. The
difference, however, is negligible when T > 120.

In Section II the negative Hessian of the concentrated likelihood function was shown to
be a consistent estimator of the limiting information matrix, while the matrix (T Mr(Qzh))

equaled the limiting information matrix. This, coupled with the similarity of the Gradients

*Simulations with different parameter values for both Eq. (4) and (5) did not obtain different results.
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Table 1: Size 5%-Level of the Wald Statistics

Ql 92
T aum ap oM ap

Klein 30 | 0.634 0.622 | 0.764  0.778

60 | 0.174 0.178 | 0.398  0.404

120 | 0.054 0.058 | 0.064  0.068

240 | 0.048 0.052 | 0.064  0.066

Rotter 30 | 0.130 0.180 | 0.132  0.188
60 | 0.074 0.088 | 0.076  0.088 .

120 | 0.064 0.064 | 0.070 0.072

240 | 0.056 0.056 | 0.040 0.046
The standard error of the empirical size is 9.75E-3.

and Hessian’s box-plots, suggests that the asymptotic properties of the two covariance
matrices are available at relatively small sample sizes, i.e. T' >'120.

The empirical size of the Wald statistiés in Table 1 also lends credence to this conclusion.
In both of the cases, T = 120,240, the Gradient’s size is never significantly different from
the Hessians. When T = 120 the size of the two Wald statistics are insignificantly larger
than the nominal 5% level, and when T = 240 three of the eight cases have empirical
sizes that are insignificantly smaller than 5%. Hence, the empirical size and box-plots for
T > 120 suggest that an econometrician need not worry whether the Hessian or Gradient
method is being used to calculate the MLE’s covariance matrix when her data set contains
approximately one-hundred and twenty observations.

A number of the empirical tests for homogeneity of demand and Slutsky symmetry have
been conducted on data sets with 7' < 60, and in most of these studies the null hypothesis of
demand theory have been rejected.® The results from our Monte Carlo experiment provide
one reason for the poor statistical inference with systems of demand equations: inadequate
sample size. Qur finding suggest that a data set with T > 120 would enable stronger
statistical inference to be made about the neoclassical hypothesis of demand theory.

Because a smaller standard error, on average, causes the Wald statistic to increase, the
a (T = 30) and b (T = 60) box-plots in Figures 1 through 4 support Rosalsky et. al. (1984)
and Theil and Rosalsky’s (1985) argument that the small sample properties of the MLE’s
asymptotic standard errors are overly optimistic and under estimate the true variability of
the parameter estimate. In the extreme case of Figure la the Hessian’s Wald statistic has a
minimum of -7.71 and a maximum of 5893.83, as opposed to 0.081 and 25.53 in Figure 1d.
The small sample box-plots also allows Gallant’s (1975) findings that the finite-step GLS

®See Theil and Clements (1987), Chapter 3 for a survey of these empirical demand studies.
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asymptotic standard errors underestimate the actual asymptotic standard errors to include
the Hessians and Gradient’s ML standard errors.”

An important observation concerning the relationship between the Hessian and Gradient
approaches can be shown in the mathematical expression of the log likelihood’s Hessian

matrix. Malinvaud (1970) derived the property
—d* InL(bly,x) = g—tr[(ﬂ'ldﬂ)Q(fZQ"lN('y)—I)]
~Ttr[Q1dQ " 1dN] + %tr(ﬂ"ldzN) (6)

where diN is the ith differential of the function N(y) = (1/T) S, [y: — g:(7)ly: - g(7)]-
Our concern is with the v’s MLE covariance matrix, hence we set df2 = 0, eliminating the
first and second terms of Eq. (6). Malinvaud has shown that the remaining term is equal

to 8

T p ’
Itr(ﬂ“ldzN) = Ztr o1l 3 (232&)3?(7)
2 t=1 j k=1 RE] Tk
- € dvid 7
€t 07£07; 37k67J TE4Y; . (7

Algebraically manipulating Eq. (7) we rewrite it as

T, o B 9ge(1) ,-198:(7)
—Q-tr(ﬂ 1PN = {22{1,2( cll ot at% )dww}

e Ok
P 1 ( g, )
- = Qe | dyidy;
k;l l:T = \ 070 !

> [TZ( ﬂ“ )dvkdw}} 8)

k=1

From the definition of Mr(S) in Eq. (2), the first righthand side term of Eq. (8) is equal to
the k, jth element of the matrix Mr(£27!). Hence,

%tr(ﬂ"dzN) = T{ ij [MT(Q’I)]k'jd'ykd'y,-

k=1

-7 Z[ZZwama v ]dndv,} ®)

k=1 t 1 Lh=11=1

TGallant (1975) noted that this reduction in the standard error only occurs when the functions of g differ
or when cross-equation restrictions are imposed. In our Monte Carlo study, the functions of Eq. (4) and (5)
do not differ, but cross-equations restrictions have been imposed through the symmetry and homogeneity
conditions.

8Eq. (7) corrects for two of Malinvaud’s original sign errors.



JENSEN
328
where wy; is the h,ith element of Q-1. Thus, the Hessian of the log likelihood function
is equal to the inverse of the Gradient approaches’ covariance mairix minus an additional
term.

To derive the consistency of the log likelihood function as an estimate of the limiting
information matrix, Barnett (1976) showed that for a consistent estimate of 7 and € the
additional term in Eq. (9) tended in probability to zero as T — co. This result equates
the Gradient and Hessian’s asymptotic covariance matrices for sufficiently large T', which
our simulations have shown to be close to T = 120. If T is small the Hessian approach will
differ from the Gradient approach by the magnitude of the additional term. Fortunately,
even for small T the biasness caused by the additional term will be zero if the model is
linear in its parameters, i.e. 82g;/8v,07; =0fork,j=1,2,...,p.

Since Eq. (5) is linear in its parameters the difference between the Hessian and Gradient
approach should be insignificant. Most of the box-plots in Figure 3 and 4 show this to be
the case, but in Figure 3a the Hessian’s Wald statistics are significantly higher than the
Gradients, This pattern is also found for the empirical sizes listed in Table 1 when T' = 30.
However, from previous studies we believe that this behavior is attributed to the small
sample shortcomings of the £2’s MLE [Leitinen (1978) and Meisner (1979)].

Because Eq. (4) is a nonlinear model the difference between the Hessian and Gradient
covariance matrices is dependant on T, the estimator of €2, and the severity of model’s
nonlinearity. The box-plots in Figure 1a and Figure 2a shows the Hessian’s Wald statistics
to be distributed significantly greater than the Gradients. Furthermore, Eq. (4)’s empirical
size in Table 1 points out that in most of the small sample cases the Hessian methods Wald
statistics are greater than the Gradients.

Although the Gradient approach seems to produce smaller Wald statistics, regardless
of the model or the residual’s covariance matrix, the magnitude of its size when T < 60
suggests that an alternative method is needed to calculate the MLE’s covariance matrix
when T is small. Perhaps bootstrapping or jackknifing would allow stronger statistical
inference to be made with nonlinear systems. How much these alternative methods would

improve on those approaches discussed in this paper is not known, but would be interesting

research.

4 Conclusion

In this paper we have constructed a Monte Carlo experiment of two systems of equations
with additive error terms and subjected the true models to two types of disturbances for
T = 30,60,120,240. After repﬁcating the models 500 times we calculated the MLE’s

asymptotic covariance matrix with the Hessian and Gradient method and their respective
Wald statistics.
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From these simulations we found that for either model, disturbance, or sample size
the Gradient approach produced Wald statistics that were distributed below that of the
Hessian. This difference became insignificant for the two models and error structures as
the sample size increased to T = 120, and suggést that for relatively small data sets the
econometrician does not have to worry about which method is used to calculate the MLE
covariance matrix.

The simulation results when T < 60 showed that both types of covariance matrices
produced standard errors that were overly optimistic and under estimated the variance of
the parameter estimates. The two covariances poor small sample properties also provided a
strong reason for why a large number of empirical demand studies reject neoclassical theory.
The data sets have been to small. It was also the small sample experiments with the linear
system that displayed a significant difference between the Hessian and Gradient covariance
even though in theory they should be the same.

Overall the small sample properties of the two approaches suggested that strong statis-
tical inference could not be made with either method when T' < 60. Thus, an alternative
method to the Hessian and Gradient approach is needed when calculating the MLE’s covari-
ance matrix with a small data set. Two possibilities are the bootstrapping and jackknifing

methods, who’s statistical properties have yet to be tested.
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