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Abstract 
This study uses a sample of 71 countries and nonparametric quantile and partial 
regressions to model a number of threatened species (reptiles, mammals, fish, birds, 
trees, plants) in relation to various economic and environmental variables (GDPc, CO2 
emissions, agricultural production, energy intensity, protected areas, population and 
income inequality). From the analysis and due to high asymmetric distribution of the 
dependent variables it seems that a linear regression is not adequate and cannot 
capture properly the dimension of the threatened species. We find that using OLS 
instead of non-parametric techniques over- or under-estimates the parameters which 
may have serious policy implications.  
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1. Introduction 

The biological diversity (biodiversity) is a concept entailed in the modern 

scientific and political terminology and in daily life with various social and economic 

dimensions. After the signing of the Convention on Biological Diversity (CBD) by a 

considerable number of countries (168 signatures in the 191 parties to the CBD)1 in 

Rio de Janeiro in 1992, the term was recognized globally. Although there is no 

common definition accepted, the term biodiversity encompasses everything from the 

level of genes to species to the level of ecosystems. To be more specific, we may 

distinguish four level of biodiversity in genes, species, ecosystems and functional 

diversity (Turner et al. 1999).  

Biodiversity and ecosystems provide us with a number of direct and indirect 

social and economic benefits. The significance of biodiversity lies in its role to 

preserve ecosystem resilience by guaranteeing the provision of basic ecosystem 

functions under a variety of environmental situations (Perrings et al. 1995, p. 4). The 

preservation of biodiversity is crucial due to the services provided by its use. These 

services may be aesthetic and ecological as they are related to the normal operation 

and conservation of ecosystems. They are also related to the reduction of poverty 

globally as well as to medical and pharmaceutical curative methods that rely on 

biological substances offered by the environment.  Costanza et al. (2007) showed the 

complex relationships between biodiversity and ecosystem functioning. The latter 

supports ecosystem services that increase directly or indirectly human welfare. 

Biodiversity is in danger due mainly to human activities. In the second half of 

the 20th century, human population was doubled from 2.5 billion in 1950 to more than 

6 billion in 2000. At the same time the value of economic activity increased by more 

                                                
1 For more details see http://www.cbd.int/convention/parties/list/. 
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than 400% over the second half of last century (Delong, 2003). The area of natural 

habitat has been reduced for a number of reasons such as conversion of lands to 

agriculture, over-harvesting of fish, air and water pollution, climate change, urban 

development, increasing sequence of fires in forests, etc. For these reasons the current 

rates of species extinction have been dramatically increased. 

Habitat loss and degradation may be considered as the main danger for 

biodiversity leading to the need of finding ways of preserving natural habitats. 

Governments could set biodiversity targets attempting to achieve them at minimum 

cost. This would still incorporate economic realities but avoid the (controversial) 

valuation of species. Alternatively governments may create protected areas like 

national parks where biodiversity may be protected. Globally it is estimated that 6.4% 

of the earth (with the exception of Greenland and Antarctica) is in some form of 

protected area (UNDP, 2000). 

Threats to the natural habitat are in general lower in the developed countries 

compared to the tropical developing countries where much of the biodiversity resides. 

These threats vary according to the ecosystem type. Given the threat of extinction in a 

number of species and the limited capital budgets, the decision makers have to set 

priorities in order to make sure that conservation of biodiversity is ensured. Thus a 

complete and well-planned environmental policy requires the use of some form of 

economic valuation inevitable. The economic valuation of biodiversity consists of the 

effort to quantify in monetary terms the human preferences concerning the efforts to 

preserve the various species.  

In this study a sample of 71 countries and a number of economic and 

environmental variables are used. Specifically, apart from variables like the gross 

domestic product per capita and the population that can be met as explanatory 



 4 

variables in other studies, a number of other variables are used for the first time like 

the CO2 emissions per capita, agricultural production, energy intensity, protected 

areas in every country and the GINI index of income inequality. In the same way, 

variables like the number of species endangered are used for reptiles, mammals, fish, 

birds, trees and plants as dependent variables. 

The results are interesting as we are not relying on simple statistical and 

econometric modelling methods like ordinary least squares (hereafter OLS), but we 

use, for the first time to our knowledge, quantile regression with reference not to the 

mean influence of the regressors on the mean of the conditional distribution of the 

dependent variable but on its entire conditional distribution. Quantile regressions rely 

on a number of different quantiles and estimate functional relationships between 

variables for all portions of a probability distribution. It is even more useful in cases 

with heterogeneous variances where OLS has serious problems (heteroskedastic error 

terms). In such cases focusing only on changes in the means may underestimate or 

overestimate or even fail to distinguish real nonzero changes in heterogeneous 

distributions (Terrell et al. 1996; Cade et al. 1999). At the same time using quantile 

regressions to model heterogeneous variances does not require any specification of 

how variances changes are related to the mean.  Finally, in a specific case partial 

regression was used among the explanatory variables and not one but more than one 

dependent variables in the same model were simultaneously considered.  

 The structure of this study is the following. Section 2 reviews the problem in 

terms of exploring the research efforts carried out in evaluating economically 

biodiversity. Section 3 presents the data used, while section 4 discusses analytically 

the proposed econometric methodologies. Section 5 refers to the empirical results 

derived and the last section concludes the paper.  
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2. Literature review   

Biodiversity comprises the variety of types, forms, spatial arrangement, 

interactions and processes from genes to species and ecosystems (Noss, 1990) 

together with the evolutionary history that led to their existence (Faith, 2002). 

Commonly used measures like the number of species present are fully scale-

dependent and only show a change when species have disappeared. At the same time 

indices incorporating several proxy signals are quite sensitive while integrated 

measures (Scholes and Biggs 2005; Hui et al. 2008) are sensitive and achievable but 

they require more research in order to construct the globally robust relationships 

between population data, the variation in genetics and the required ecosystem 

conditions (Scholes et al. 2008). Genetically distinct populations are an important 

component of biodiversity for any species (Hughes et al. 1997).  

One of the main concerns of the environmental social sciences is the deep 

understanding of the social and economic forces that change the environment.  

Scholars have contributed to global biodiversity loss research by paying attention to 

the relevance and context of species in threat to the interdisciplinary community 

(Hoffman, 2004; Naidoo and Adamowicz, 2001). Due to data limitations and 

reliability cross national comparisons have tackled basically the loss of land-based 

species like birds and mammals. The studies mentioned only partially capture the 

cumulative effects of human activity on global diversity. The proximate causes of 

losses in biodiversity are probably well understood in cases of habitat destruction, 

resource extraction, climate change and pollution.  

But socioeconomic forces have poorly explored in biophysical phenomena. 

Mikkelson et al. (2007) using OLS tested how strongly economic inequality is related 

to biodiversity losses and found that among countries (and the USA) the number of 
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threatened species increases significantly with the GINI ratio of inequalities in 

income. O’Connor et al. (2003) using a combination of biological and sociological 

variables (among others GDP/c, population density, percentage of unprotected land 

area and governance) in the context of a return on investment framework try to 

explore the establishment of conservation priorities. They find that only a few 

countries emerged as high priorities regardless of which factors were examined. On 

the other hand, some countries ranked highly as priorities for conservation when 

focusing solely on biological metrics, did not reach a high rank when governance, 

population pressure, economic costs and conservation needs were considered. 

Nunes and van den Bergh (2001) present a literature review of the economic 

valuation of biodiversity according to the various available methods. Most of these 

studies have been carried out in the USA and show the existence of positive social 

value of biodiversity but they show simultaneously that the economic literature is 

incomplete and unable to cover the full range of benefits from biodiversity. 

Brody (2003) using regression analysis examines how existing biodiversity 

levels affect ecosystem capabilities at the local level. On the other hand, Costanza et 

al. (2007) using stepwise regression (OLS) found that biodiversity and primary 

productivity are positively related in certain temperature regimes showing that a 

change in biodiversity is correlated with a change in net primary production. It is 

worth mentioning that the authors find nonlinear relationships for a number of 

predictors which were recalculated and transformed. Similarly, Groeneveld et al. 

(2005) present a spatially explicit trade-off analysis of species preservation in 

agricultural areas calculating the production possibility frontiers of net monetary 

benefits from agriculture and preservation of three species with different habitats.  
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In these lines, Clausen and York (2008) employ cross sectional data for 

different fish species in threat and in more than 140 countries. By using a negative 

binomial regression model test the environmental Kuznets curve hypothesis regarding 

both the scale of economic production and urbanization. Dietz and Adger (2003), with 

the use of panel and cross-sectional data, examined economic growth and biodiversity 

in the EKC framework. Specifically they investigate the relationship between 

economic growth, loss of biodiversity and policies to conserve biodiversity. The 

authors base their effort on the idea that if economic growth causes biodiversity loss 

by transforming habitat and other means, then an inverse relationship should be 

expected.  

 

3. Data used 

One of the most commonly used methods of describing biodiversity of an area 

is the count of species that reside in this area. Obviously a complete enumeration of 

all species even in a simple square metre is impossible, as the vast majority of species 

remains unknown. At the same time there are cases of existence of different 

definitions for species creating different estimates of their richness. Additional 

problems arise in the analysis of the geographical distribution of the various species, 

the change of these distributions in time etc. The huge variety of living creatures is 

ranked in multiple levels (from genes to ecosystems) making their complete 

enumeration extremely difficult and in many cases infeasible. 

As mentioned in this study we use economic and environmental data. 

Specifically a number of variables are used as explanatory such as the Gross Domestic 

Product (GDP in million $) and the per capita Gross Domestic Product (GDPc), per 

capita CO2 emissions (in tons CO2 per million $), total agricultural production index 
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(1999-2001=100), energy intensity in all economics sectors (toe per million $), 

national protected areas (total number) in every country2, population (in thousands) 

and the GINI index of income inequality (0= perfect equality and 100= perfect 

inequality). The GINI index was calculated by the compilation of income distribution 

data to extract a single number that represents the extent of income inequality within a 

country.  

The numbers of species endangered like reptiles, mammals, fish, birds, trees 

and plants are used as dependent variables. These numbers of threatened species 

include full species that are critically endangered, endangered or vulnerable but 

exclude introduced species, species whose status is not sufficiently known 

(characterized by IUCN as “data deficient”), those known to be extinct and those 

whose status is not sufficiently known (characterized by IUCN as “not evaluated”).  

The source of the data is the World Resources Database and the data refer to the year 

2004 for existing species and 2006 for endangered species3. Our sample consists of 71 

countries4. 

                                                
2 It is worth mentioning that protected areas serve as a crucial function in protecting the earth’s 

resources. However they have to cope with a number of challenges like external threats from climate 

change and pollution, irresponsible tourism, water resources extraction, increasing demand for land and 

infrastructure developments. 

 
3  World Resources Institute (2008). EarthTrends: The Environmental Information Portal Archived 

Data Tables (by Topic Area).   

 
4 The countries used are the one with full record (no missing values). Namely, Armenia, Azerbaijan, 

Bangladesh, Indonesia, Japan, Korea Rep, Kyrgyzstan, Malaysia, Nepal, Pakistan, Philippines, 

Tajikistan, Thailand, Uzbekistan, Vietnam, Bulgaria, Denmark, France, Germany, Greece, Ireland, 

Italy, Poland, Portugal, Romania, Russian Federation, Slovakia, Spain, Switzerland, Ukraine, United 

Kingdom, Algeria, Egypt, Israel, Jordan, Morocco, Tunisia, Turkey, Cameroon, Cote d'Ivoire, Ghana, 

Kenya, Mozambique, Nigeria, Senegal, South Africa, Tanzania, Zambia, Zimbabwe, Canada, United 

States, Costa Rica, Dominican Rep, El Salvador, Guatemala, Honduras, Jamaica, Mexico, Nicaragua, 
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Table 1 presents the descriptive statistics of the dependent variables into 

consideration. It can be seen that there are large differences between the mean and the 

median (first indication of asymmetry) and differences also in standard deviations, 

skewness and kurtosis. In all cases we have a positive value of skewness and the size 

of kurtosis is higher than 3, which implies huge mass at high levels and short tails at 

small amounts; this indicates highly asymmetric distributions. Thus the high mean 

values are due to a number of observations with high percentages of species in threat 

justifying the use of quantile regression. The kurtosis shows a leptokurtic type of 

distribution for the threatened species5.  

 

Table 1: Descriptive statistics of the species in threat 

 
 

Figure 1 presents the probability plots of all the species in threat assuming 

normality. In all cases normality is rejected as the P-values of the Anderson-Darling 

test are less than the usual statistical levels leading to the rejection of the null 

hypothesis that the data follow the normal distribution. 

 
 

                                                                                                                                       
Panama, Trinidad and Tobago, Bolivia, Brazil, Chile, Colombia, Ecuador, Paraguay, Peru, Uruguay, 

Venezuela, Australia. 
 
5  According to the Box-Cox test the variables were used in levels (in most of the cases) and were not 

transformed in logs. 

 BIRDS FISH MAMMAL PLANTS REPTI TREES 
 Mean  20.32394  10.64789  23.33803  70.19718  6.873239  73.08451 
 Median  11.00000  3.000000  14.00000  12.00000  5.000000  11.00000 
 Maximum  114.0000  130.0000  147.0000  681.0000  38.00000  737.0000 
 Minimum  0.000000  0.000000  1.000000  0.000000  0.000000  0.000000 
 Std. Dev.  23.85299  20.72066  22.51282  116.8225  7.868435  124.6703 
 Skewness  2.262963  3.843948  2.844754  2.759809  1.787826  2.859591 
 Kurtosis  8.347132  19.77271  14.48832  12.71648  6.067239  13.46692 
JB Prob  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000 
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Figure 1: Probability graphical presentations of species in threat (assuming 
normality) 
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4. Τhe proposed models 

OLS estimates the effect of the explanatory variables on the mean of the 

conditional distribution of the dependent variable. This is obviously a strong 

simplification as regressors may not only determine the mean but may also influence 

other parameters of the conditional distribution of the dependent variable. Quantile 

regressions allow the examination of the entire conditional distribution of the 

dependent variable. At the same time it is less restrictive compared to the OLS (mean) 

regression as it allows the estimated parameters (slopes) to differ at different points of 

the conditional distribution of the dependent variable. As a nonparametric method, 
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quantile regression imposes no functional form on the species endangered relationship 

and it is not sensitive to the presence of extreme values (outliers), a common problem 

when analysing data for developing countries. This may be justified as in quantile 

regressions we minimize the residuals and not their squares as in OLS.  

Quantile regressions allow the estimation of various quantile functions of a 

conditional distribution where each quantile characterizes a particular (center or tail) 

point of the conditional distribution. Putting together a number of different quantile 

regressions gives us a more complete description of the underlying conditional 

distribution.  

In simple words, in the OLS application the estimated parameters represent the 

change in the dependent variable caused from a unit change in the independents. The 

parameters of the quantile regression estimate the change in a specific quantile of the 

dependent variable due to a unitary change in the independent variable. This allows 

comparisons among the quantiles in terms of how much they are influenced from 

specific characteristics in relation to the other quantiles. This can be seen in the 

change in the magnitude of the coefficients. Quantile regressions are extremely useful 

when we face heteroskedasticity and/or no normality in the disturbance term 

(Buchinsky 1998). 

Let us consider the quantile regression analytically. Assume a random variable 

Y with a probability distribution function given as 

)Pr()( yYyF             (1) 

such as  0 < λ < 1 when the i quantile can be defined as the lowest y that satisfies the 

condition )(yF  

 iyFyQ  )(:inf)(         (2) 

For a number of i observations for Y we have 
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 
k

ii yYlyF )()(          (3) 

Where l(z) takes the value 1 if Ζ true and 0 otherwise. 

The corresponding empirical quantile is given as 

})(:inf{)(   yFnyQi       (4) 

The quantile regression extents the simple model including the explanatory variables 

X assuming linear specification for the conditional quantile of the independent 

variable Y given the values of the matrix P of the independent variables  X. 

Specifically, , 

)())(|(  jiQ          (5) 

where   ))(({arg)( )(   j
j

jmm       (6) 

The coefficients of the quantile regression are normally distributed for large 

samples (Koenker, 2005). Koenker and Bassett (1978) derive asymptotical results for 

normality for the quantile regression estimates in an independently and identically 

distributed (hereafter i.i.d.) formulation, showing that  

 

      (7) 

where    lim( / ) lim( / )j ji nj
J X X i X X i

 

       (8) 

1
1

1( ) ( )
( ( ))

S F
f F

 





       (9) 

Where S(λ) is the quantile density function. We can calculate  S  with the use of the 

Kernel density estimator (Powell 1986, Buchinsky 1995, Jones 1992). Specifically,  

   
1

1

1ˆ( )
ˆ ( )(1/ )

i
j

i
ij

S
i c L c


 




  
  

  


                         (10) 

2 1ˆ( ( )) ( )) ~ (0, (1 ) ( ) )i S J         
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where ˆ j the residuals of the quantile regression. 

The kernel estimation of the density function requires the specification of the 

bandwidth (Ci). If we define the coefficient vector of this procedure as  

1 2( ( ) , ( ) , , ( ) )                         (11) 

then     ˆ( ) ~ (0, )i                    (12) 

where    1 1min , ( ) ( )ij i j i j i iimum H JH                        (13) 

In the case of i.i.d. Ω becomes J 0  where 0 as representative element has  

))((())((
),min(

11
ji

jiji
ij FfFf 




 


              (14) 

Estimation of Ω may be done using the bootstrap method. 

The test of slope equality was suggested by Koenker and Bassett (1982) and it 

is a robust heteroskedasticity test 

)()()(: 2211    oH   

Where we have )1)(1(  kp  restrictions in the coefficients. The corresponding Wald 

test is distributed as 2
)1(),1(  kp . 

Similarly, the symmetry test was proposed by Newey and Powell (1987) and 

relies on the idea that if  

)21(
2

)1()( 


               (15)6 

then we may estimate this restriction using the Wald test with H0 having 2/)1( kp  

restrictions and the Wald test is distributed as 2
2/)1( kp . This test compares the 

estimates of the first and third quantile with the median specification. 

                                                
6 As there is no clear positive relationship between the values of the quantiles and the estimated 
coefficients we may say that the conditional quantiles are i.i.d. 
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Another suggested method in cases of highly correlated independent variables 

or in the case of analysing fewer observations than variables or highly correlated 

dependent variables is the partial regression (PLS). This regression estimates models 

with more than one dependent variable in the same model formulation. This is 

achieved by reducing the number of explanatory variables and regressing the 

extracted components on the dependent variables and not on the original data. We 

include more that one dependent variable when the dependent variables are correlated 

between them. 

 

5. Empirical results 

Tables 2-4 present the OLS and the quantile regression estimates for the 10th, 

30th, 50th, 70th, 90th quantiles. The OLS (mean) regression estimates are presented for 

reasons of comparison with the quantile regression estimates. From Table 2 and 

comparing the quantile (median) with the OLS (mean) estimates there are significant 

differences in magnitudes. Specifically the number of endangered trees increase by 

(first quantiles and then OLS estimates in parentheses) 1.72 (2.02), 2.9 (3.88), 0.03 

(0.019) and 0.09 (0.007) per unit increase in agricultural production, higher income 

inequality, higher level of CO2 emissions and higher population respectively. 

Similarly and from table 3 it can be seen that the number of plants in threat increases 

by 1.653 (2.01), 2.52 (3.92), 0.022 (0.016) and 0.0065 (0.005) per unit increase in 

agricultural production, higher income inequality, higher level of CO2 emissions and 

higher population.  

Finally, from Table 4 we may see that the number of mammals in danger rises 

by 0.09 (0.23), 0.54 (0.46), 0.025 and 0.001 (0.0009) per unit increase in agricultural 

production, higher income inequality, higher level of CO2 emissions and higher 



 15 

population. These comparison are more different is we compare the OLS (mean) with 

the other quantilies and especially the upper ant the lower ones asa shown in Figure 3. 

As a general comment we may say that the influence of the explanatory variables is 

higher in the case of plants and trees endangered followed by the mammals in threat. 

OLS overestimates the estimated parameters in the case of agricultural production and 

income inequality and underestimates in the case of population and CO2 when we 

consider trees and plants threatened with a mixture with significant differences in 

magnitudes in the case of mammals endangered.  

In Tables 2 and 3 the quantile regression shows that the influence of the 

agricultural production on the trees and plants in threat increases as we move from the 

10th to the 90th quantile with exception in the case of the 70th quantile. It is obvious 

that comparing the quantile estimates with those of OLS only the 90th is comparable. 

Similar conclusions can be extracted for the other variables. For the GINI index we 

see an increase from the 10th till the 90th quantile. The OLS result is not comparable 

with those of the quantile regression with a similarity only in the 70th quantile. In the 

same table there is a negligible change in the case of the other two variables 

(emissions and population) as we move across the quantiles.  

In Table 4 and concerning the mammals in threat the picture is slightly 

different. Income inequality is the only variable increasing as we move from the 10th 

to 90th quantile. For the rest of the variables there is an unstable behaviour with 

increases and decreases in the quantiles as we move across them. 
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  Table 2: Regression results with the trees endangered as dependent variable 
 

Non-parametric quantile regression  
Explanatory 

variables 

 
 

OLS 
10th 

quantile 
30th 

quantile 
50th 

quantile 
70th 

quantile 
90th 

quantile 
Constant -293.884 

(-3.404) 
[0.0011] 

-54.08 
(-0.76) 
[0.4481] 

-96.93 
(-1.21) 
[0.2315] 

-257.54 
(-3.1) 
[0.0029] 

-264.5 
(-3.9) 
[0.0003] 

-259.6 
(-5.3) 
[0.0000] 

Agricultural  
Production/c 

2.016 
(2.85) 
[0.0059] 

0.254 
(0.454) 
[0.6514] 

0.467 
(0.65) 
[0.5194] 

1.72 
(2.94) 
[0.0045] 

1.61 
(2.95) 
[0.0044] 

2.145 
(2.33) 
[0.0231] 

GINI 3.878 
(2.76) 
[0.0075] 

0.766 
(1.01) 
[0.3173] 

1.41 
(0.92) 
[0.1316] 

2.9 
(2.5) 
[0.0164] 

3.98 
(2.86) 
[0.0056] 

5.02 
(1.96) 
[0.0545] 

CO2 0.01923 
(0.999) 
[0.3212] 

0.0007 
(0.012) 
[0.9904] 

0.024 
(1.57) 
[0.1216] 

0.03 
(3.46) 
[0.0010] 

0.023 
(3.5) 
[0.0008] 

0.004 
(0.61) 
[0.5431] 

Population 0.00684 
(2.339) 
[0.0224] 

0.00013 
(0.017) 
[0.9868] 

0.003 
(0.266) 
[0.7912] 

0.009 
(7.1) 
[0.0000] 

0.0082 
(8.2) 
[0.0000] 

0.006 
(7.3) 
[0.0000] 

Quasi-LR statistic  
Wald slope equality test  
Wald symmetric test 

                                 27.21   [0.000] 
                                 58.94   [0.002] 16 d.f. 
                                 30.17   [0.067] 10 d.f. 

t-statistics in parentheses; P-values in [ ] 
 

Table 3: Regression results with the plants endangered as dependent variable 
 

Non-parametric quantile regression  
Explanatory 

variables 

 
 

OLS 
10th  

quantile 
30th 

quantile 
50th 

quantile 
70th 

quantile 
90th 

Quantile 
Constant -294.94 

(-3.67) 
[0.0005] 

-32.96 
(-0.46) 
[0.6453] 

-101.28 
(-1.374) 
[0.1742] 

-234.1 
(-3.009) 
[0.0037] 

-246.56 
(-4.011) 
[0.0002] 

-260.78 
(-4.74) 
[0.0000] 

Agricultural  
Production/c 

2.009 
(3.044) 
[0.0033] 

0.154 
(0.274) 
[0.7849] 

0.536 
(0.804) 
[0.4243] 

1.653 
(3.04) 
[0.0034] 

1.485 
(3.008) 
[0.0037] 

2.131 
(2.51) 
[0.0145] 

GINI 3.92 
(2.99) 
[0.0039] 

0.504 
(0.65) 
[0.5195] 

1.4 
(1.64) 
[0.1052] 

2.521 
(2.32) 
[0.0234] 

3.872 
(2.6) 
[0.0117] 

4.824 
(2.025) 
[0.0470] 

CO2 0.016 
(0.882) 
[0.3811] 

0.0031 
(0.0574) 
[0.9544] 

0.026 
(3.143) 
[0.0025] 

0.022 
(2.92) 
[0.0048] 

0.018 
(2.9) 
[0.0050] 

0.0007 
(0.11) 
[0.9148] 

Population 0.0049 
(1.81) 
[0.0761] 

-0.00008 
(-0.009) 
[0.9925] 

0.003 
(0.272) 
[0.7866] 

0.0065 
(5.5) 
[0.0000] 

0.0058 
(6.3) 
[0.0000] 

0.004 
(4.51) 
[0.0000] 

Quasi-LR statistic  
Wald slope equality test  
Wald symmetric test 

                             26.43   [0.000] 
                             38.72   [0.001] 16 d.f. 
                             19.88   [0.030] 10 d.f. 

t-statistics in parentheses; P-values in [ ] 
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Table 4: Regression results with the mammals endangered as dependent variable 
 

Non-parametric quantile regression  
Explanatory 

variables 

 
 

OLS 
10th 

quantile 
30th 

quantile 
50th 

quantile 
70th 

quantile 
90th 

quantile 
Constant -43.802 

(-2.742) 
[0.0079] 

-20.83 
(-1.27) 
[0.2081] 

-25.22 
(-1.544) 
[0.1274] 

-28.404 
(-1.97) 
[0.0531] 

-48.1715 
(-2.8055) 
[[0.0066] 

-45.703 
(-4.391) 
[0.0000] 

Agricultural  
Production/c 

0.2255 
(2.483) 
[0.0156] 

0.1146 
(1.8) 
[0.076] 

0.08123 
(1.073) 
[0.2872] 

0.0896 
(1.164) 
[0.2488] 

0.2279 
(2.532) 
[0.0137] 

0.2903 
(1.7077) 
[0.0924] 

GINI 0.4619 
(1.685) 
[0.097] 

0.1156 
(0.474) 
[0.6374] 

0.3504 
(1.212) 
[0.2297] 

0.5433 
(1.919) 
[0.0594] 

0.7351 
(2.073) 
[0.0421] 

0.848 
(1.514) 
[0.1347] 

Log CO2 5.6243 
(4.0914) 
[0.0001] 

2.6928 
(1.77) 
[0.0821] 

3.554 
(2.34) 
[0.0224] 

3.722 
(2.99) 
[0.0040] 

5.14 
(2.9544) 
[0.0043] 

5.0151 
(2.894) 
[0.0051] 

Population 0.000898 
(1.6715) 
[0.0994] 

0.00086 
(2.53) 
[0.0139] 

0.001135 
(3.9953) 
[0.0002] 

0.00099 
(3.136) 
[0.0026] 

0.000871 
(2.765) 
[0.0074] 

0.000496 
(2.011) 
[0.0484] 

Quasi-LR statistic  
Wald slope equality test  
Wald symmetric test 

                          15.613     [0.0036] 
                          30.153     [0.0170]  16 d.f. 
                          16.138     [0.0950]  10 d.f. 

t-statistics in parentheses; P-values in [ ] 

 

Standard errors of the quantile regressions are extracted by bootstrapping with 

1000 replications. F values from Wald tests of equality of coefficients of specific 

independent variables across quantiles are also presented. These Wald tests of slope 

equality equal to 58.94, 38.72 and 30.153 for trees, plants and mammals in threat with 

P-values equal to 0.002, 0.001 and 0.017 respectively. We may conclude that the 

coefficients differ statistically across the values of the quantiles and the conditional 

quantiles are not similar. At the same time, the Wald test of quantile symmetry gives 

30.167, 19.88 and 16.138 with P-values equal to 0.067, 0.03 and 0.8153 respectively. 

Closed related to the previous test we see that there is indication of deviation from 

symmetry. As already mentioned, these results may be justified as moving from the 

10th to the 90th quantile, increasing influences can be observed for the agricultural 

production and income inequality in the case of trees and plants in threat but not for 
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the pollution emissions and the population. The picture is different in the case of 

mammals in threat where except in the case of income inequality with an increasing 

behaviour the rest of the variables present a mixture of changes.  

In Figure 2, the graphs of the quantile regression are done for the constant and 

the explanatory variables. The OLS estimate and its 95% confidence interval are 

plotted as horizontal lines. In each graph the regression coefficients show the 

influence of a unit change in the independent variable (holding constant the rest of the 

explanatory variables) on the specific levels of the quantiles of the dependent variable 

with a 95% probability level for the confidence intervals. The constant term can be 

interpreted as the estimated conditional quantile function of the endangered species 

with no influence of the explanatory variables. These graphs help us to see how 

changeable are those influences and show that a linear regression may be inadequate 

in terms of approaching these relationships. Thus using OLS provides less 

information compared to the use of quantile regressions.  

Looking at figure 2 we can say that the variables agricultural production and 

income inequality (with the exception of the 90th quantile) show an increasing 

influence as we move from the 10th to the 90th quantile. It is interesting to mention 

that in the cases of the GINI index OLS overestimates the estimated parameters till 

the 70th quantile and then it underestimates the parameters. For the agricultural 

production underestimation takes place till the upper quantilies (80th). In the case of 

population and CO2 the picture is mixed. First OLS estimates underestimate (till the 

35th) then overestimate (till the 80th) and then underestimate again. For the constant 

term there is a complete underestimation. A similar picture of behaviour is observed 
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in the case of plants and mammals endangered7.  The above imply that in this kind of 

environmental research we have to be careful because even if the average picture of 

behaviour seems reasonable the complete separation of countries (strata) may result to 

quite different results.  

 
Figure 2:  Graphical presentations of quantile process estimates  

for trees   endangered   (95% confidence interval) 

      

                   

  
 

 

Table 5 presents the correlation coefficients among the dependent variables 

(birds, fish and reptiles in danger). All the coefficients are relatively high showing 

linearity among the variables. In Table 6 we may see the results of the partial 

                                                
7 Due to space limitations the graphs in the cases of plants and mammals in threat are not presented but 

they are available on request. 
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regression among the 3 dependent variables and the 6 independent (agricultural 

production, CO2 emissions, income inequality, population, GDP/c, energy intensity)8. 

 
Table 5: Correlation coefficients of the dependent variables in the partial regression 
 
Correlations: Birds in Threat, Reptiles in Threat, Fish in Threat             
                    Birds in Threat   Fish in Threat 
Fish in Threat          0.670 
                        0.000 
 
Reptiles in Threat      0.634              0.628 
                        0.000              0.000 
 
Cell Contents: Pearson correlation 
               P-Value 

 

First in the results of Table 6 it can be observed that the number of 

components of the optimal model (relying on the highest predicted R2) equals to three.  

The table presents the analysis of variance per dependent variable and according to 

the optimal model. The P-values are zero and in every case less than the usual 

significance levels. In all cases there is sufficient evidence that the models are 

statistically significant. The coefficient of determination is low and equals to 0.261, 

0.22 and 0.51 for the birds, reptiles and fish in danger respectively.  

The column X-variance shows the percentage of variance of the independent 

variables which is explained by the model. In our case, the three components explain 

68.11% of the variance of the independent variables.  

 
Table 6: Partial regression results 
 
Number of components selected by cross-validation: 3 
Number of components cross-validated: 6 
 

 SSR SSE F P R-sq X variance  
Explained 

Birds in threat 10389.1 29438.5   7.88 0.000 0.27 
Reptiles in threat 944.04  3389.82   7.22 0.000 0.23 
Fish in threat 15340.6  14713.6   23.29 0.000 0.52 

 
0.6811 

     

                                                
8 It is interesting that the addition of the variable protected areas reduces the percentage of the variance 

of the independent variables which is explained by the model from 68% to less than 40%. 
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The graphs in Figure 3 show the effect of each independent variable on the 

dependent variable. Specifically the graph on the top left corner shows that all the 

explanatory variables have a positive influence on the dependent variable fish in 

threat with the variable CO2 emissions to have the most significant effect, with the 

variable income inequality to follow and the variable energy intensity to have the 

lowest effect.  

 
Figure 3: Individual effects of independent variables on the dependent variable 
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Variable 1: Energy intensity                           Variable 4: Population 
Variable 2: GINI index                                   Variable 5: Agricultural production /c 
Variable 3: GDP/c                                           Variable 6: CO2 emissions 

 

Similarly the graph on the top right corner and in the case of reptiles in threat 

the variables energy intensity and GDP/c have a very low negative influence. On the 

contrary the variables CO2 emissions, agricultural production and income inequality 
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as expressed by the GINI index  have significant positive influence while population 

has a small positive effect.  

The graph on the bottom left corner refers to the birds endangered and shows 

the same picture as in the case of birds but with higher negative effects for the 

variables energy intensity and GDP/c and almost equal positive influence for the 

variables income inequality, agricultural production and CO2 emissions.  

Finally in the graph on the bottom right corner we can see that the variables 

population and energy intensity have the smallest effect compared to the other 

variables.  

 

6. Conclusions and policy implications 

Relying on a sample of 71 countries and a number of economic and 

environmental variables we modelled and interpreted functionally the protection of 

various species in threat like reptiles, mammals, fish, birds, trees and plants. Due to 

the high asymmetric distribution of the dependent variables the mean regression 

cannot capture adequately the dimension of the species in threat. Comparing to the 

parametric estimates lead us to conclude that in such cases there exists a nonlinear 

relationship. The quantile regression is more preferable to the linear one as it enables 

us to look at the changes in the dependent variable in reaction to changes in the 

independent variables at different points of the distribution.  

Specifically, as explained the quantile regression refers not to the mean 

influence of the independent variables on the mean value of the dependent variable 

but on a number of different quantiles. It also seems that explanatory variables have a 

substantial influence on species in threat either at the bottom or at the top of the 

distribution. In the case of trees and plants in threat the effect of the variables 
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agricultural production (with an exception in the 70th quantile) and income inequality 

increases as we move from the 10th to the 90th quantile. On the contrary a stable 

influence can be observed for CO2 emissions and population as we move along the 

quantiles. A mixture of changes is observed in the case of mammals in threat.  

We have found that in the cases of the GINI index OLS overestimates the 

estimated parameters till the 70th quantile and then underestimates parameters while 

for the agricultural production underestimation takes place till the upper quantilies 

(80th). In the cases of population and CO2 OLS first underestimates (till the 35th) then 

overestimates (till the 80th) and then it underestimates again the estimated coefficients. 

For the constant term there is a complete underestimation. 

On the other hand, all the explanatory variables have a positive effect in the 

case of fish in threat with the variable emissions to have the most significant 

influence, the income inequality the second significant effect and the energy intensity 

the lowest power. In the case of reptiles endangered the variables energy intensity and 

GDP/c have a low negative effect. On the contrary, the variables emissions, income 

inequality and agricultural production have the most significant positive influence and 

the population to have a low positive effect. In terms of income inequality our results 

come in line and extend those of Mikkelson et al. (2007). Finally, the threatened birds 

show the same picture as the reptiles but with higher negative effects for the variables 

energy intensity and GDP/c and almost equal influence in the case of income 

inequality, agricultural production and emissions. It worth mentioning that population 

and energy intensity variables have the lowest effect compared to the others.  

The policy implications are interesting. The vast population increase, 

urbanisation and extension of economic activities make the preservation of natural 

habitat and the solution of the problem really difficult in the near future. Given the 
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limited capital for the environment and facing the great threat of extinction of some 

species, the decision makers have to put priorities making sure that the efforts of 

preserving biodiversity move to the right directions.  

Quantile regression can be used effectively by ecologists. Due to complex 

interactions among organisms statistical distributions of ecological data have usually 

unequal variation. These interactions are not easily taken into consideration by 

statistical models. At the same time this unequal variation implies that there is not 

only a single rate of change (slope) that describes the relationship between a 

dependent and an explanatory variable measured on a subset of these factors. A 

solution to this limitation is the quantile regression, which estimates multiple slopes 

from the minimum to the maximum response and allows for a full picture of the 

relationships between response variable and regressors (Cade and Noon, 2003).   

These slopes cannot be equal for all quantilies in cases where we have 

heterogeneous error distributions. This is the case in our analysis but it is expected to 

be the case in a range of ecological applications. Specifically complex forms of 

heterogeneous response distributions are expected in cases where important processes 

are not included in the model. In such cases we expect rates of changes of greater 

magnitude in the extreme quantiles (<30% or >70%) compared to the central 

estimates (50%). Using quantile regressions in models with unequal variances allow 

us to explore the associated effects with variables that may have been omitted as 

statistically insignificant on mean estimates. Our task is to tackle the large variation 

usually met in cases of detecting the relationship between ecological variables and the 

hypothesised casual factors not ascribed to random sampling variation.  

The valuation of ecosystem services requires the integration of ecological 

knowledge with economics and the associated cooperation between ecologists and 
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economists (Perrings and Walker, 1995). A number of  actions with the formation of 

national policy for the preservation of every country’s biodiversity, the establishment 

and operation of protected areas, the effective protection of species in threat, the 

conservation of genetic material of endemic plants and animals and the sensitiveness  

and the notification of the problem to all citizens and countries.  

Biodiversity does not remain stable and for this reason a simple enumeration 

and recording is not sufficient. At the same time the scale of locality together with the 

global dimension of the problem make the formation of adequate policies difficult. 

This implies that the decision maker must take into consideration both the local and 

the national (global) scale and dimension of the problem in scheduling policies for the 

preservation of the environment.  
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