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Abstract

This paper re-examines the relationship between radiative forcing and tem-

peratures from a structural time series modelling perspective. The results con-

firm that cointegration between radiative forcing and temperatures are consis-

tent with the data. However, we produce results for which the cointegration

between forcing and temperature data finds less support than previously. A

Bayesian approach is used to obtain estimates that better represents the uncer-

tainty regarding this relationship. We show that while a cointegrating relation-

ship represents an acceptable characterisation of the relationship between these

variables, another equally acceptable model exists in which there is no cointe-

gration, and the relationship between forcing and temperature is insignificant.
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1. Introduction

There is an emerging consensus that statistical evidence supports the re-

lationship between radiative forcing measures (e.g. carbon dioxide, sulphur

oxides, methane, solar radiation) and temperatures. Most recently Mills (2009)

presented statistical evidence that there is a ‘long-run equilibrium’ between ra-

diative forcing measures and temperature using data from 1850-2000. Mills

(2009) builds upon work by Brohan et al. (2006), Stern and Kaufmann (2000),

Kaufmann and Stern (2002), Kaufmann et al. (2006) that broadly supports the

contention that forcing measures have a quantitative impact on global temper-

atures. The particular statistical framework used by Mills (2009), Kaufmann

and Stern (2002) and Kaufmann et al. (2006) is that of cointegration. Cointe-

gration between two variables implies that the variables have stochastic trends,

but a linear combination between the variables exists that has no stochastic

trend. Equivalently, the existence of cointegration between two variables im-

plies that they share a common stochastic trend. Where one of the variables

is weakly exogenous, this variable may be causally responsible for the trend

in the other. Thus, the implication that radiative forcing is cointegrated with

temperature provides evidence consistent with some scientific models that im-

ply forcing measures play a possible positive causal role in relation to warming

trends.

While the earlier work of Stern and Kaufmann (2000) employed structural

time series models, more recent research has employed conventional tests for

cointegration, within an autoregressive framework. Our aim is to re-examine

whether forcing measures are cointegrated with global temperatures using the

structural time series approach. We do not dispute the methodological rigour

or specific findings of the studies above. On the contrary, the previous finding

of cointegration between temperatures and global warming are easily replicated.

However, we believe it is worth investigating how robust previous findings are

to alternative model specifications. We do this in three ways.

First, we conduct cointegration tests introduced by Shin (1994) which adopt

cointegration as the null hypothesis rather than the alternative hypothesis as

is the case on other empirical work carried our so far. Tests that adopt a the

presence of a unit root or no-cointegration as the null hypothesis have commonly

been found to obtain different findings to tests that have a null hypothesis of

stationarity or cointegration respectively (see Maddala and Kim, 1998 Chap 4).

Therefore, we believe it would be useful to investigate whether Shin’s (1994)
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approach supports previous findings concerning cointegration.

Second, by explicitly estimating a structural time series model, alternative

model specifications (i.e. cointegrated and non-cointegrated) can be consistently

compared by evaluating model performance. Structural time series models are

particularly useful for this purpose as they can nest both cointegrated and non-

cointegrated models as special cases.

Third, we estimate structural time series models using Classical and Bayesian

methods. This dual approach to estimating the structural time series model

is revealing. Whereas the Classical approach to estimation will be based on

only one mode of the likelihood, the Bayesian approach to inference can reflect

multiple high density points. As we will explain, there is strong evidence that

the posterior density has a number of high density points. This requires us to

place important qualifications on the results we report.

The results of our study make a contribution to the literature by provid-

ing a better motivated theoretical framework in which a number of plausible

alternatives are considered in detail, as opposed to simply employing a basic

cointegration framework. Our approach helps provide an important backdrop

to studies in related areas such as decomposition of carbon dioxide emissions

(Sun, 1999), studies of non-CO2 greenhouse gas emissions (e.g. Shukla et al,

2006) and studies outlining policies aimed at reducing CO2 emissions such as

Gerlagh and Zwaan (2006), especially in developing countries facing issues such

as poverty alleviation and growth promotion (Heerden et al, 2006).

Our paper proceeds by outlining the statistical models we employ in Section

2. Section 3 describes our approach to model estimation. In Section 4 we briefly

discuss the data and present our empirical results. Finally, in Section 5 we offer

conclusions.

2. Econometric Models

We mainly limit our discussion below to the structural time series approach.

We also employ a standard vector autoregressive (VAR) approach, where coin-

tegration is treated as the alternative hypothesis so as to ensure that, should our

results radically differ from previous findings, this would be due to the modelling

approach adopted and not driven by slight differences in the data employed in

the analysis. For details on the VAR approach readers are referred to Johansen

(1995).
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The model introduced in Shin (1994) is of the structural time series form:

yt = µt + βt+ xtα+ et (1)

µt = µt−1 + vt

where yt is temperature at time t, xt is a m×1 vector of covariates (in this case

radiative forcing) and et and vt are stationary innovations that can be serially

correlated. The model in equation (1) above contains a time trend (t), but this

can be removed from the regression if there is no deterministic trend in the data

generating process. If yt and xt are integrated of order 1 (see Johansen, 1995,

p35), cointegration between yt and xt implies the variance of vt is zero.

The tests outlined in Shin (1994) do not require explicit estimation of the

variance components within equation (1). A test for cointegration can be con-

structed by obtaining estimates of the long run variance of et (ie, ωe) and then

constructing the following test statistic

C = T−2
T
∑

t=1

S2
t /ωe (2)

where St is the estimate of the partial sum process St=
∑t

i=1 ei. The distribution

of this test statistic has been tabulated in Shin (1994), but it can be simulated

using Monte Carlo methods.

The model in equation (1) can be generalised to allow for autoregressive

components with a local linear trend intercept as follows:

yt = µt +

p
∑

i=1

γiyt−i + x′

tα+ et (3)

µt = µt−1 + βt + vt

βt = βt−1 + wt

where yt and x′

t are as defined above. Because the autoregressive components

are assumed to ”soak up” any serial correlation, et, vt and wt are assumed to

be independent normal innovations.1 The intercept in this model µt is able to

evolve in a stochastic manner if either vt or wt have non-zero variances. The

trend in the intercept at time t is βt. Cointegration between yt and xt requires

that both are non-stationary and that

1We also initially incorporated errors of a moving average nature, but found no significant
correlation of this form, having allowed for lagged dependents in our covariates.
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The unknowns within model (1) are of two types:

i) the ‘latents’ Γ = ({µt} , {βt} , {γi} , α) (along with the errors that can be

constructed given knowledge of these quantities); and

ii) the ‘hyper parameters’ Ψ =
(

σ2
e , σ

2
v , σ

2
w

)

.

Additionally, there are initial conditions (priors) for the latents Γ0 which are

the prior mean and covariance for the value of the latents at t = 0.

3. Model Estimation

3.1. Classical Estimation

The test introduced by Shin (1994) only requires a standard ordinary least

squares regression to estimate the null (cointegrated) model. Alternatively, an

estimator that allows for serial correlation in the error and exogeneity can be

employed, such as the Fully Modified (FM) estimator outlined in Phillips and

Hansen (1991). The FM estimator is employed here, since it may yield less

biased and more efficient estimates, and it also requires the component ωe to

be estimated. Therefore, the test statistic described in Section 2 only needs the

additional construction of the partial sum component.

Classical estimation of the general model described by equation (3) can pro-

ceed in a number of ways. Harvey (1989) outlines Classical approaches in detail.

For example, the ‘time domain’ approach outlined in Harvey (1989) employs the

Kalman Filter, that enables the likelihood to be calculated using the prediction

error decomposition. Using this approach, the likelihood is expressed as a func-

tion of the hyper parameters and the priors for the latent components only .2

This likelihood is denoted here as L ({yt} ,Γ0,Ψ).

Classical estimation usually proceeds by finding the estimated value of Ψ̂ that

maximises the likelihood. Subject to regularity conditions, inference about the

parameters Ψ can then be performed using likelihood ratio, Wald or Lagrange

Multiplier tests. Likelihood ratio and Wald tests have distributions that are

non-standard (see Harvey, 1989, p.234). The estimates of the latents (along

with their (co)variances) can be obtained (at Ψ̂) by the Kalman Smoother.

2The latents have been integrated out of the likelihood function as opposed to the ‘con-
centrated’ or ‘profile’ likelihood. See Harvey (1989) for details.
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3.2. Bayesian Estimation

Bayesian inference uses the posterior distribution of the parameters. Unlike

the Classical approach all the parameters are treated as random variables. The

likelihood is therefore viewed as the density of the data conditional on these pa-

rameters. For example, the likelihood above, can be denoted as a marginalised

likelihood f ({yt} |Ψ;Γ0) . Consequently, using the Bayes theorem implies that

the prior distribution for Ψ is f (Ψ) . It then follows that the posterior distri-

bution is f (Ψ| {yt} ; Γ0) ∝ f ({yt} |Ψ;Γ0) f (Ψ) . Providing this posterior can be

mapped, Bayesians will report the mean and variance of the posterior distribu-

tion as point estimates.

Bayesian estimation with ‘flat’ priors, delivers a posterior density that is,

over a certain range, approximately proportional to the likelihood. Therefore,

Bayesian inference can often give results that are similar to those derived using

maximum likelihood. However, in some situations, Bayesian and Classical esti-

mates may diverge. For example, if there are two distinct local maximums for

the likelihood, then there may be two distinct parameterisations of the model

that equally well represent the sample information. Unlike Classical procedures,

Bayesian inference is not based on the behaviour of the likelihood function lo-

cally around a single point where it has been maximised. From a Bayesian

perspective, the values of the parameters at the maximum of the likelihood,

and the curvature of the likelihood at that point, do not fully reflect the sam-

ple information. Should the likelihood be multimodel all high density points

are reflected in the final estimates (the mean and variance of the posterior dis-

tribution). Just as importantly, however, we can examine the entire posterior

distribution of key parameters to learn about the data generating process.

An introduction to a Bayesian approach to estimating structural time series

models is presented in Koop (2003). Unlike the approach outlined in Koop,

we map the posterior distribution for the parameters of the hyper parameters

Ψ using a random walk Metropolis-Hastings algorithm (see Koop 2003, p.92).

This is a simple and efficient computational tool for the posterior distribution

given that that the number of hyper parameters are few. Given draws of Ψ

from the posterior distribution of the hyper parameters, the smoothed estimates

of the latents can then be generated using the Kalman Smoother along with

an estimate of the covariance matrix for the latents. This could be done by

simply plugging in a point estimate Ψ̂ and obtaining conditional estimates of

the latents at that value. However, using the Kalman Smoother to generate the
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latents in this way is not fully Bayesian, because a fully Bayesian estimate of the

latents would embody the parameter the posterior uncertainty (variability) in

the estimates of the latents (Ψ). A fully Bayesian approach requires a draw for

each of the latents which needs to be made for every posterior draw of Ψ within

the sampler. While we follow this latter approach, we note that it yields similar

results in most cases in comparison to where the former approach is followed.

3.3 Bayesian Model Comparison

By employing Bayesian methods we are also able to compare model pefor-

mance very easily. Working directly with the marginalised likelihood f ({yt} : Ψ,Γ0)

has the advantage that the values of f ({yt} : Ψg,Γ0) can, for posterior draws of

Ψg (where g=1,,.....G), be recorded directly within the estimation process facil-

itating model comparison. In order to compare models we use the increasingly

popular Deviance Information Critera (DIC) of Spiegelhalter et al. (2002).

The DIC provides a measure of model performanc in terms of the balance

between goodness of fit and model complexity. In the literature, a model with

the smallest DIC is considered the preferred model according the DIC criteria.

The DIC is a Bayesian analog of Classical information criteria (e.g. Akaike).

Numerically it computes a value of K, which is an estimate of the ‘effective

number of parameters’. The DIC rewards a high average log likelihood, but

penalises each model according the effective number of parameters.

3.4. Priors

As discussed above, the use of the Kalman Filter requires priors to be speci-

fied for the latents (Γ0). These need to be specified in both a Bayesian or Classi-

cal context. While, in principle, these can be specified using prior information,

an alternative, ‘non informative’ approach is to use the first few observations

of the explanatory variables in order to construct a proper prior, after which

we exclude these observations in estimation. This can be done more easily, but

equivalently, by setting the mean of the latents to zero and the covariance of

the latents can be set to be equal to a very large value (e.g. I×108 where I

is an identity matrix). The predictive error likelihood (Harvey, 1989, p126) is

then summed from t=n+d+1, where n+d is equal to the number of regressors

in the model and d is equal to the number of non-stationary components in

the transition equation. Within the classical approach no further priors are

required.
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However, if a Bayesian approach is used, then priors are also required for

the hyper parameters Ψ. These can be set in a reasonably non-informative way

by reparameterising the model as Ψ∗ =
(

lnσ2
e , , lnσ

2
v , lnσ

2
w

)

and then adopting

a flat (improper) prior

p (Ψ∗) = I[−u,∞]

(

lnσ2
e

)

× I[−u,∞]

(

lnσ2
w

)

× I[−u,∞]

(

lnσ2
w

)

(5)

where I[−u,∞] (x) denotes an indicator function which is equal to one if x ∈[−u,∞]

and zero otherwise. The finite bottom bound is required because as the variance

goes to zero, then the logged variance becomes near unidentified (which means

that the likelihood become invariant to smaller values) below a small value -u.

Here we set u =25 (results are negligibly different to those we present if we set

u=10 or 50).

4. Empirical Section

4.1. Data

The temperature data that we employ in this Section are obtained from

the CRU website. These are global temperature anomalies from 1850 to 20093.

The forcing measures are those used in Mills (2009) available on David Stern’s

website4 from 1850 to 2000. Therefore, our estimated models are over this

shorter time period, 1850 to 2000. The construction of this data has been

discussed in a number of places and therefore we do not repeat this here.

In this paper, as in Mills (2009), we employ the aggregate forcing measure

that is a linear sum of the greenhouse gases, sulphur dioxides, and solar compo-

nents. The use of aggregative or total forcing can be justified from a theoretical

view since they are constructed in such a way that the measures should be

summable. Moreover, previous work using total forcing has suggested that this

measure is cointegrated with temperature anomalies, and Mills (2009) also finds

that a test for equality of the forcing measures accepts this restriction. These

data are plotted in Figure 1. As can be seen from this plot, there is an evident

rise in both radiative forcing and temperatures over most of the later part of

last century.

3The series we use is Hadcrut3gl. We note that the variance adjusted version of the
series available from the Website http://www.cru.uea.ac.uk/cru/data/temperature/ gives
very similar results in the models we estimated.

4http://www.sterndavidi.com/datasite.html
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Figure 1: Temperature Anomalies and Forcing

4.2 Tests for Integration.

Since the unit root behaviour and tests under the null of no cointegration

have been presented in the preceding literature we will not repeat this analysis

herein. However, briefly, as in previous work (e.g. Mills, 2009) unit root tests

indicated that both temperature and radiative forcing series are non-stationary.

Both series (temperature and radiative forcing) are consistent with being in-

tegrated of order one according to Augmented Dickey Fuller tests along with

other tests including those that adopt a unit root as the alternative hypothesis.

The results of these tests are available from the authors on request.

4.3 Null Hypothesis of No Cointegration

Tests for cointegration (Johansen rank test) allowing for a restricted trend

and intercept in the long run relationship, indicate that forcing and temperature

series are cointegrated. The VAR analysis suggests that, using a model with

an intercept and a time trend, two lags are appropriate (on the basis of an F

test of the significance of a third lag, and according to both Akaike and Bayes

information criteria), and that the hypothesis of no cointegration is rejected

at below the 1% level of significance. This was also supported by Bayesian

estimation of the VAR with and without rank restrictions. Regardless of lag
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length, the DIC criteria supported cointegrated models over a fully differenced

VAR or VAR without rank restrictions. Again due to length constraints these

are not reported here.

4.4 Null Hypothesis of Cointegration

The tests for cointegration, adopting cointegration as the null rather than the

alternative, is less definitive. The critical values for the tests of no cointegration

Cµ and Cτ are given in Shin (1994). However, we simulated the p-values for our

sample size (151) using 10,000 Monte Carlo trials5. These results are presented

in Table 2.

Table 2. Null of (Cointegration)

No Trend Trend

Cµ=0.218

P value (0.133)

Cτ=0.219

P value (0.005)

As can be seen from Table 2, we cannot reject the cointegration hypothesis

at the 10% level of significance if a trend is not included in the regression, but

if a trend is included, we would reject the cointegration hypothesis at a very

low level of significance. The trend in the FM regression is not significant,

therefore we may as well conclude that the No Trend result is reliable (i.e.

preferred). Nonetheless, the rejection of the cointegration hypothesis when a

trend is included needs to be given some weight. Therefore, it is not completely

clear that the null of cointegration between the two variables cannot be rejected

using these tests.

4.5 Structural Time Series Results

Moving on to an analysis of the structural time series model represented by

equation (3) under alternative restrictions, we first discuss the Classical Maxi-

mum Likelihood results, before assessing the results from the Bayesian analysis.

In all models (containing a random trend βt), the estimate for the parameter σ2
w

was indistinguishable from zero and a p-value for this restriction based on an

5Our simulated critical values are very similar to those produced in Shin, (1994), therefore,
we believe that our p-values should be accurate.
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adjusted likelihood ratio test was close to one. Therefore, for subsequent anal-

ysis we imposed the restriction that σ2
w = 0 (the trend term βt in the equation

is time invariant) for all models.

Therefore, we have three models:

• M1: σ2
e and σ2

v (unrestricted model)

• M2: σ2
v = 0 (cointegrated model)

• M3: σ2
e = 0 (random walk error model)

M1 contains both a stochastic intercept and a random error and nests both

models M2 and M3 as special cases. M2 is equivalent to a standard regression

with a stationary error (a cointegrated model). M3 has a non-stationary error,

with only a random walk intercept.

4.6 Classical Results

The results presented in this paper include up to three lags of the tempera-

ture variable as explanatory variables in equation (3). A fourth lag is insignif-

icant in all models that we estimated. The significance of the lags depended

on the restrictions that were placed on the variance terms. For models that

have the restriction σ2
e = 0 imposed, all three lags are highly significant. For

models that imposed :σ2
v = 0 only the first lag is highly significant. Therefore,

we present results for one, two and three lags.

Due to failure of detectablility and stabilisability conditions (see Harvey,

1989 for details) if σ2
w = 0, then a formal test of σ2

v = 0 cannot be constructed

using likelihood ratio, Lagrange Multiplier or Wald statistics. Thus, for per-

forming a formal Classical test of the cointegration hypothesis, we rely on the

Shin tests statistics presented in Table 2.

A valid test can be constructed for σ2
e = 0 using a likelihood ratio test

provided the significance is adjusted to take account that it is on the edge of

the parameter space. The p-values results for testing restrictions σ2
e = 0 are

presented in Table 3 for M3 containing one, two and three lags.

Table 3. Likelihood Ratio Tests and Likelihood Comparisons

1 lag 2 lags 3 lags

Null Model= M3∗ 1E-5 0.0005 0.1529

ln(LM2)-ln(LM3) 8.468 3.25 -0.450
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*The alternative model is M1. Values represent P-Values for the null hypothesis

As we noted above, the significance of the lags implies that three lags are

definitely required for a valid test of M3. As we can see from Table 2 when

the model contains one or two lags only, σ2
e = 0 is rejected. However, where

there are three lags in the model we cannot reject the null at the 10% level.

In other words, provided three lags are included in the model (all of which are

significant), a model with a pure random walk cannot be rejected.

The importance of the number of lags to include is also apparent when

comparing models M1, M2 and M3. Comparing the log-likelihoods for each

of the models, the likelihood function M2 is higher than for M3 for one and

two lags, but if three lags are included then the likelihood function for the

pure random walk error model (M3) is in fact slightly higher than for M2. In

summary, if three lags are included, then a model which has a random walk

error cannot be rejected and, this model has a higher likelihood function than

the cointegrated model.

Henceforth, we only report the results for models with three lags. The reason

for this is that for the Classical results the coefficients of explanatory variables

are almost identical for models M1 and M2 regardless of whether one, two or

three lags are included. However, as we have outlined above for M3, the third

lag is highly significant. Therefore, results for M3 would be biased unless three

lags are included.

We now present, in Table 4, our Classical estimates for the structural time

series models.
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Table 4. Classical Estimates of Coefficients

M1 M2 M3

tempt−1
.424

(.0829)

0.541

(0.082)

-.338

(.083)

tempt−2
-.1466

(.089)

-0.105

(0.093)

-.361

(.079)

tempt−3
.0253

(.0829)

.111

(.081)

-.2603

(.080)

forcing
.2548

(.0963)

.2434

(.063)

.164

(.226)

trend
.0011

(.0017)

.0001

(.004)

.0082

(.0091)

σe .0958 .1021

σv .0170 . .1073

-2LogL -642.818 -640.87 -641.77

Prediction error variance .011795 .011862 .011656

AIC -4.3209 -4.3152 -4.3327

BIC -4.1411 -4.1354 -4.1529

Normality P-Values∗ 0.3829 0.3026 0.6075

Numbers in parentheses are standard errors
∗From Bowman Shenton Statistic (Harvey, p.260)

Considering the Classical results in Table 3, the coefficients for the explana-

tory variables are presented along with estimates of the variances of innova-

tions that drive the irregular and random walk components plus other summary

statistics. All models appear to have normal errors, and according to both the

information criteria used, M3 is the preferred model. In M1 it is evident that

the variances σ2
e is estimated to be considerably larger than for σ2

v . However,

this change in M2 and M3 whereby setting one of the variances to zero, yields

a variance estimate of a similar magnitude for the other. This may seem sur-

prising, given that the effects of innovations of vt are cumulative and would

generally therefore be expected to have smaller variance. However, examination

of the coefficients for the lagged temperatures in the models reveal that coef-

ficients are very different in models M1 and M2 compared with M3. The lag

coefficients in M3 are all negative and sum to around -0.96. This means that

the apparently irregular component in the series is being captured by negative

correlations from period to period, even though each shock is treated as hav-
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ing a permanent impact. Notably, the estimates from unrestricted model M1

are much more similar to M2 than M3. Importantly, both M1 and M2 have a

highly significant positive coefficient on the forcing variable (0.2548 and 0.2434

respectively).

Given the magnitudes of the lag coefficients, the long-run multipliers, which

are defined as α

1−
∑

3

i=1
γi

for the impact of forcing on temperatures, are approx-

imately 0.34 and 0.54 for M1 and M2 respectively. This is in contrast to the

smaller and insignificant coefficient from M3 (0.1649) and a corresponding long

run multiplier at just over half that value. Therefore, the findings with regard

to the impact of radiative forcing are substantively different if we use M3 rather

than M1 or M2. Furthermore, as discussed above, the restriction of M1 to M2

cannot be rejected on the basis of a Likelihood Ratio test, and M3 has a slightly

higher likelihood (providing 3 lags are included in the model).

These results may seem confusing since the unrestricted model M1 yields

rather similar results to the restricted cointegrated model M2, yet M3 which

yields very different estimates seems to be marginally preferred to M2 (if three

lags are included). The reason for this outcome is that there is a global maximum

likelihood which has a relatively small variance in the random walk component

and a larger variance in the irregular component. However, the evidence here

suggests another local maximum with a small irregular component and larger

random walk component. Maximum likelihood estimation reflects only the for-

mer (global maximum). However, from a Bayesian perspective, point estimates

should be derived from the full posterior density, not just a single mode. For

this reason we now consider Bayesian estimation.

4.7 Bayesian Results

The Bayesian estimates of all three models above are presented in Table 5.

These are presented along with the DIC for each model, which should be at a

minimum for the best performing model.

First, it is evident that the two restricted models (M2 and M3) yield virtually

identical estimates to the Classical results reported in Table 3. This is because

by restricting either of the variances the values of σe or σv derived from the mean

of the posterior are almost the same as their maximum likelihood components

and we have only a very small standard deviation.

Second, the unrestricted model, when estimated using a Bayesian approach,

yields quite different results from the Classical approach. Examining the coef-
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ficients of M1 it becomes clear that the estimates sit in between M2 and M3.

This is because, in effect, it averages over M2 and M3, since both these models

have reasonably high posterior densities. This can best be seen by the contour

plots of the joint posterior densities for σe and σv displayed in Figure 2. There

are two clear posterior modes, one where σe is very small and σv is around 0.10

and one where σv is very small and σe is around 0.10. Between these two modes

there is a ridge of a lower density region that highlights the negative covariance

between σe and σv. The point estimates obtained by taking the mean poste-

rior values are 0.0614 and 0.0575, but neither of these points are high density

points as such. Rather they sit somewhere in the middle between the two pos-

terior modes. The rest of these coefficients also reflect this tendency to average

between these two highly competing models.

Third, according the DIC, the models are ranked M3 (top) followed by M1

and then M2 which concurs with the Classical information criteria. Thus, the

cointegrated model is less preferred as compared to the unrestricted model of

random walk errors. Radiative forcing retains its positive coefficient estimate,

but the standard deviations for this coefficient are as large or larger for both M1

and M3. Thus a (Bayesian) credible interval would contain considerable mass

below zero. Interpreting this in Classical terms would suggest that the forcing

variable is insignificant.
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Table 5. Bayesian Coefficient Estimates

M1 M2 M3

tempt−1
.053

(.351)

0.541

(.082)

-.338

(.089)

tempt−2
-.251

(.128)

-.1056

(.093)

-0.3609

(.0801 )

tempt−3
-0.115

(.159)

.1109

(.082)

-0.2603

(.0811)

forcing
.194

(.180)

0.253

(.063)

0.1649

(.229)

trend
.0047

(0.007)
.

.0001

(.0004)

.0082

(.009)

σe .0614 .1027 .

σv .0575 .1080

DIC -206.8472 -206.727 -207.60

Numbers in Parentheses are standard deviations
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Figure 2: Joint Distribution of Standard Deviation Parameters
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5. Summary

In this paper we have presented further empirical investigatation of the re-

lationship between radiative forcing and global temperature anomalies. Unlike

other recent work exploring this relationship, we used a structural time series

approach comparing alternative models as well as adopting cointegration as the

null hypothesis. Our findings suggest that previous findings of cointegration be-

tween forcing measures and temperatures should be treated tentatively. While

the data is consistent with a positive impact of radiative forcing on tempera-

tures, the significance of the impact of forcing was model dependent. While a

model that assumes cointegration between forcing temperatures performs rea-

sonably well, a non-cointegrated model performs just as well, or on the basis

of the tests conducted here, even better. This was particularly evident when

examining the posterior density of the standard deviations in the irregular and

random walk errors.

The reason for this finding has been explained using Bayesian methods.

Specifically, a contour plot of the posterior densities showed two peaks, one in a

cointegrated region and another in a cointegrated region. In additon, the DIC

model selection criteria also suggested that restricting the model to one with

only a random walk error improved the performance of the model. Finally, in

models where temperatures and total forcing are not treated as being cointe-

grated, then the evidence that total forcing has an impact on temperatures is

greatly weakened.
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