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mann and Kate Vermann provided research assistance. The views expressed herein do not reflect the official
positions of the Federal Reserve Bank of St. Louis or the Federal Reserve System.

†Research Division, Federal Reserve Bank of St. Louis, (Michael.T.Owyang@stls.frb.org)
‡Department of Economics, University of Oregon, (jpiger@uoregon.edu)
§Department of Economics, Lindenwood University, (hwall@lindenwood.edu)

1



1 Introduction

A traditional view of the U.S. business cycle is that of alternating phases of expansion

and recession, where expansions correspond to widespread, persistent growth in economic

activity, and recessions consist of widespread, relatively rapid, decline in economic activity.1

A large literature investigates different aspects of these business cycle phases and documents

asymmetries across them. Such work experienced a resurgence following Hamilton (1989),

who built a modern statistical model of the alternating phases characterization of the business

cycle by describing the latent business cycle phase as following a first-order Markov process

that influences the mean growth rate of output.

Of particular interest to academics, policymakers, and practitioners is the prediction of

business cycle phases. Hamilton’s Markov-switching model characterized phase transitions

as random events with fixed probabilities, and, therefore, was not particularly advantageous

for forecasting using conditioning variables. More recent work has investigated the notion

that business cycle phases can be predicted using a variety of economic and financial time

series. These studies typically take the NBER’s chronology of the dates of U.S. business

cycle phases as data and use discrete choice models (e.g., probit, logit, etc.) to attach

probabilities of expansion and recession to current and future periods. The broad conclusion

is that economic variables measuring aggregate real activity, such as employment or output

growth, provide valuable information about the business cycle phase at short horizons, while

only measures of the interest rate term structure are informative at longer horizons.2 For a

recent summary of this literature, see Katayama (2008).

The existing literature has focused primarily on the use of predictors measured at the

national level. However, there is reason to believe that variables measured at the subnational

level might be useful for predicting the national-level business cycle phase. In a recent

paper studying the propagation of state-level recessions, Hamilton and Owyang (2011) find

1See Mitchell (1927) and Burns and Mitchell (1946).
2See e.g., Estrella (1997), Estrella and Mishkin (1998), and Kauppi and Saikkonen (2008).
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that some states occasionally lead the nation into recession. Further, Hernandez-Murillo

and Owyang (2006) showed that adding regional employment data can assist in predicting

aggregate employment. This suggests that geographically-disaggregated economic indicators

may have some predictive power for aggregate business cycle phases. State-level data may be

a particularly useful indicator if we believe, as suggested by Temin (1998), that recessions can

have a number of root causes. In this case, different regions would enter and exit recessions

at different times relative to the average (or the nation).

In this paper, we investigate the predictive ability of state-level economic indicators for

business cycle phases. Using the NBER chronology to define business cycle phase dates, we

construct a monthly probit model of future business cycle phases. We include both national-

and state-level variables to generate forecasts of the national business cycle phase. The

national variables we use are those found (or expected) to be good predictors of national

business cycle phases by the existing literature. In particular, we focus on interest rates,

asset prices, aggregate employment, and aggregate industrial production. To these, we add

state-level employment growth to capture the predictive ability of subnational economic

activity measures.

For the purposes of forecasting, simply adding state-level data to a model is problematic.

It is likely that many states will not be informative about future national business cycle

phases at all, or perhaps any, forecast horizons. Further, there is significant collinearity in

employment growth across U.S. states. Put together, the naive use of all state-level data will

likely lead to an overparameterized model with a high level of estimation uncertainty, which

will not bode well for improved forecasting performance. One may reduce, though not solve,

these problems by aggregating across states to the regional level. However, this aggregation

would potentially average states that contain very different forecasting information.

In this paper, we take a Bayesian model averaging (BMA) approach to incorporate state-

level predictors in a forecasting model. In particular, we explicitly incorporate the selection

of predictors into the estimation of the model, and average forecasts across different models
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by constructing the posterior predictive distribution for the future business cycle phase. This

approach allows individual states with predictive content for the business cycle phase at a

particular horizon to be highlighted in producing forecasts, while pushing out those states

that are not informative. Notably, the Bayesian approach to constructing forecasts also

incorporates uncertainty regarding model parameters.

Based on a variety of forecast evaluation metrics, we find that including state-level em-

ployment growth significantly improves short-horizon forecasts of the NBER business cycle

phase over those produced by a model using only national-level data. We document the in-

cremental information content of the state-level data based on the model’s in-sample fit over

the past 50 years, and also on out-of-sample forecast performance over the past 30 years. We

also show that the forecasting improvement comes primarily from improved classification of

recession months. To give two examples, for one-month ahead forecasts, 88% of recession

months are correctly classified using the model that includes state-level data, as compared

to only 64% for a model based on national-level data only. Also, again based on one-month

ahead forecasts, the 2008-2009 recession would have been identified by late February 2008

when using state-level data, as opposed to late July 2008 when using only national-level

data. Posterior inclusion probabilities indicate significant uncertainty about whether or not

some states should be included in the model, which argues for the BMA approach we take

to construct forecasts.

The balance of the paper is as follows: Section 2 outlines the empirical model used for

forecasting recessions and describes the Bayesian approach to estimation and construction of

forecasts. Section 3 describes the national- and state-level data used to estimate the model

and evaluate forecasts. Section 4 presents the results for both in-sample model fit and the

performance of out-of-sample forecasts. Section 5 summarizes and concludes.
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2 The Empirical Approach

2.1 Model

Define St ∈ {0, 1} as a binary random variable that indicates whether month t belongs

to an expansion (0) or recession (1) phase. Our objective is to forecast the business cycle

phase, St, based on information available to a forecaster at the end of month t − h. This

information may include national-, state-, or regional-level variables in any combination and

is collected in the n× 1 vector Xt−h.

Following the bulk of the existing literature, we use a probit model to link St to Xt−h.

Here, the probability that St = 1 is given by:

Pr [St = 1|ργ] = Φ
(
α +X ′

t−hβ
)
, (1)

where the link function, Φ (.), is the standard normal cumulative density function, β is an

n × 1 vector of coefficients, and ρ = [α, β′]′ is the (n+ 1) × 1 vector collecting the model

parameters.

The number of potentially relevant forecasting variables available in Xt−h may be large.

This is especially true with the inclusion of subnational data, as variables are measured

repeatedly across regions or states. From a forecasting perspective, this is problematic as

it is well established that highly parameterized models tend to have poor out-of-sample

forecasting performance. Moreover, because the probit is nonlinear, the marginal change in

the predicitve probabilities are functions of the values of all of the included variables. This

means that including irrelevant variables could bias the forecasted probabilities. Here, we

focus on a modified version of (1), in which not all variables in Xt−h need be included in the

model. In particular, define γ as an n × 1 vector of zeros and ones, with a one indicating

that the corresponding variable in Xt−h should be included in the model. We rewrite (1) to

incorporate this variable selection as follows:
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Pr [St = 1|ργ, γ] = Φ
(
α +X ′

γ,t−hβγ

)
, (2)

where Xγ,t−h, ργ, and βγ contain the elements of Xt−h, ρ, and β relevant for the variables

selected by γ. As is described in the next subsection, we treat γ as unknown, and estimate

its value along with the parameters of the model using Bayesian techniques.

2.2 Estimation

To estimate the model in (2), we take a Bayesian approach, which has some key ad-

vantages for our purposes. For one, uncertainty about which variables should be included

in the model – that is uncertainty about γ – can be formally incorporated into Bayesian

estimation in a straightforward manner. Related to this, the Bayesian framework provides

a mechanism, through the posterior predictive density, to obtain forecasts that average over

different choices for variable inclusion and the values of unknown parameters.

Bayesian estimation requires priors be placed on the model parameters, ργ, as well as

the covariate selection vector, γ. We specify diffuse, i.i.d., mean-zero normal distributions

for the individual parameters collected in ργ:

p (ργ) = N
(
0kγ+1, σ

2Ikγ+1

)
; σ2 = 10, (3)

where kγ = γ′γ is the number of covariates selected by γ, 0kγ+1 is a kγ+1×1 vector of zeros,

and Ikγ+1 is the kγ +1× kγ +1 identity matrix. For γ, we specify a multinomial distribution

defined across the 2n different possible choices of γ. Let Ni =
(
n

i

)
be the number of choices

of γ for which kγ = i. The prior probability over γ is then:

Pr (γ) ∝
1

Nkγ

. (4)

This distribution is flat in two dimensions. First, it assigns equal probability to all choices
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of γ that have the same kγ. In other words, versions of (2) with the same number of

covariates will receive equal prior probability. Second, the prior assigns equal cumulative

probability to groups of choices for γ that imply different numbers of covariates. That is,

Pr (kγ = i) = Pr (kγ = j) , i, j = 0, 1, · · ·, n.3

To implement Bayesian estimation, we employ the Gibbs sampler to obtain draws from

the joint posterior distribution, π (ργ, γ|S), where S = [S1, · · ·, ST ]
′ represents the observed

data.4 The Gibbs sampler is facilitated by augmenting the system with a continuous variable

yt that is deterministically related to the observed state variable St (Tanner and Wong

(1987)). Define yt as:

yt = α +X ′
γ,t−hβγ + ut, (5)

where ut ∼ i.i.d.N (0, 1). Given (2), the relationship between yt and St is:

St = 1 if yt ≥ 0.

The Gibbs sampler is then implemented in two blocks. In the first, ργ and γ are sampled

conditional on S and the augmented data y = [y1, · · ·, yT ]
′, as a draw from the conditional

posterior distribution π (ργ, γ|y,S). As y and S are deterministically related, this distribu-

tion simplifies to π (ργ, γ|y). In the second, the augmented data y is sampled conditional

on ργ, γ, and S, from the conditional posterior distribution π (y|ργ, γ,S). We now describe

each of these blocks in detail:

3Note that this prior does not assign equal probability to all possible choices of γ. While seemingly attractive
as a “flat” prior, an equal weights prior would give substantially different prior weight to the number of
variables included. For example, if there are 50 possible variables, the cumulative prior probability of all
models with 3 variables would be 16 times the cumulative prior probability of all models with 2 variables.

4See, for example, Albert and Chib (1993), Gelfand and Smith (1990), Casella and George (1992), and Carter
and Kohn (1994).

7



Sampling π (ργ, γ|y)

As suggested by Holmes and Held (2006), we jointly sample ργ and γ from:

π (ργ, γ|y) = πρ (ργ|γ,y) Pr (γ|y) ,

by employing a Metropolis step. Given a previous draw of ργ and γ, denoted
[
ρ
[g]
γ , γ[g]

]
, we

obtain a candidate for the covariate selection vector, denoted γ∗, by sampling a proposal

distribution q
(
γ∗|γ[g]

)
. Conditional on γ∗, we then obtain a candidate for ργ, denoted ρ∗γ,

by sampling from the full conditional posterior density πρ (ργ|γ
∗,y).

The proposal distribution q
(
γ∗|γ[g]

)
is set as follows. Conditional on γ[g], the candidate

covariate selection vector γ∗ is drawn with equal probability from the set of vectors that

includes γ[g] and all other vectors that alter a single element of γ[g] (either from 0 to 1 or

1 to 0.) In other words, the candidate covariate selection vector will either select the same

covariates as γ[g], take away one covariate from γ[g], or add one covariate to γ[g]. One notable

property of this proposal distribution is that q(γ∗|γ[g]) will equal q(γ[g]|γ∗).

The full conditional distribution for ρ, πρ (ργ|γ,y), is derived as follows. Define Xγ,t−h =
[
1, X ′

γ,t−h

]
, t = 1, · · ·, T and let Xγ represent the T × kγ matrix of stacked Xγ,t−h. Then,

given the prior distribution in (3), the conditional posterior for ργ is:

πρ (ργ|γ,y) ∼ N (mγ,Mγ) ,

where

Mγ =

(
1

σ2
Ikγ +X′

γXγ

)−1

,

mγ = Mγ

(
X′

γy
)
.

The candidate, ρ∗γ can then be sampled from N (mγ∗ ,Mγ∗).
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The Metropolis step assigns an acceptance probability A to determine whether or not the

candidate will be accepted. Given the gth draw
[
ρ
[g]
γ , γ[g]

]
, the (g + 1)th draw is determined

by:

[
ρ[g+1]
γ , γ[g+1]

]
=





[
ρ∗γ, γ

∗
]

with probability A
[
ρ
[g]
γ , γ[g]

]
with probability 1− A

,

where,

A = min

{
1,

Pr(γ∗|y)πρ(ρ
∗
γ|γ

∗,y)q(γ[g]|γ∗)πρ(ρ
[g]
γ |γ[g],y)

Pr(γ[g]|y)πρ(ρ
[g]
γ |γ[g],y)q(γ∗|γ[g])πρ(ρ∗γ|γ

∗,y)

}
,

which, given the symmetry of q (·|·), simplifies to

A = min

{
1,

Pr(γ∗|y)

Pr(γ[g]|y)

}
.

From Bayes’ Rule:

Pr(γ|y) ∝ f(y|γ) Pr(γ),

where f(y|γ) is the marginal likelihood for the augmented data, y, conditional on the choice

of variables γ, and Pr(γ) is the prior distribution over γ. We can then rewrite the acceptance

probability as:

A = min

{
1,

f(y|γ∗) Pr (γ∗)

f(y|γ[g]) Pr (γ[g])

}
.

To compute A, we must compute f (y|γ). Given the prior distribution in (3), this is available

analytically, as:

f(y|γ) ∼ N(0,Σγ)
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where Σγ = IT + σ2XγX
′
γ. Using the equation for the multivariate normal we then have:

A = min

{
1,

∣∣Σγ[g]

∣∣0.5 exp(−0.5y′ (Σγ∗)−1
y) Pr (γ∗)

|Σγ∗ |0.5 exp(−0.5y′
(
Σγ[g]

)−1
y) Pr

(
γ[g]

)
}
. (6)

Sampling π (y|ργ, γ,S)

Conditional on ργ and γ, we can draw yt from a normal distribution with mean δγ,t and

unit variance, where

δγ,t = α +X ′
γ,t−hβγ.

However, the target distribution also conditions on S, which adds the requirement that the

sign of yt must match the realization of S. In this case, yt can be drawn from the truncated

normal density:

yt ∼





N (δγ,t, 1) I[yt≥0] if St = 1

N (δγ,t, 1) I[yt<0] if St = 0
,

where the indicator I[.] reflects the direction of the truncation. This can be repeated for

t = 1, · · ·, T to obtain a draw from y.

Given arbitrary starting values for ργ and γ, the above two sampling steps can be iterated

to obtain draws
[
ρ
[g]
γ , γ[g]

]
, for g = 1, ···, G. Following a suitably large number of initialization

samples, these draws will be from the joint posterior distribution of interest, π (ργ, γ|S). In

all estimations reported below, we sample 20,000 initialization draws to achieve convergence.

Results are then based on an additional set of G = 20, 000 draws. For all estimation results

presented, we verified the adequacy of the initialization period by running the Gibbs Sampler

for two dispersed sets of starting values.
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2.3 Construction of Forecasts and Forecast Evaluation

Denote an alternative realization of the phase indicator variable as S∗
t . This alternative

realization may be for a time period for which we already have an observation, that is from

t = 1, · · ·, T , or for a future period. To predict an alternative realization, we require the

posterior predictive distribution:

Pr [S∗
t = 1|S] . (7)

We can simulate from (7) as follows. The posterior predictive distribution is factored as:

Pr [S∗
t = 1|S] =

∫

ργ ,γ

Pr [S∗
t = 1|ργ, γ,S] π (ργ, γ|S) . (8)

Equation (8) suggests a Monte Carlo integration approach to calculate the posterior predic-

tive distribution. Specifically, given a draw
[
ρ
[g]
γ , γ[g]

]
from π (ργ, γ|S) we simulate a value of

S∗
t , denoted S∗

t
[g], from:

Pr [S∗
t = 1|ργ, γ,S] = Pr [S∗

t = 1|ργ, γ, ] = Φ
(
α +X ′

γ,t−hβγ

)
,

where the validity of the first equality sign comes from the fact that, given the model in

(2) and the model parameters, the observed data S are not informative for the distribution

of S∗
t . This simulated value of S∗

t
[g] is a draw from the posterior predictive distribution,

Pr [S∗
t |S], and it follows that:

lim
G→∞

1

G

G∑

g=1

(
S∗
t
[g]
)
= Pr[S∗

t = 1|S], t = 1, · · ·, T. (9)

Thus, we can construct a simulation consistent estimate of the posterior predictive density

Pr[S∗
t = 1|S], which will serve as our (point) forecast of St. In the following, we refer to this

forecast as Ŝt. It is worth emphasizing that Ŝt is not conditional on model parameters or the
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choice of which variables to include in the model. These sources of uncertainty have been

integrated, over their respective posterior distributions, out of the prediction. Note that the

integration over the posterior distribution for γ gives Ŝt the interpretation of a Bayesian

model averaged prediction.

To evaluate Ŝt, we consider several forecast evaluation metrics that are standard in the

existing literature for the evaluation of probability forecasts. The first is the correspondence,

defined as the proportion of months for which Ŝt correctly indicates the NBER business cycle

phase. We use 0.5 as the threshold between expansion and recession, and define I[Ŝt≥0.5] as an

indicator function denoting the predicted business cycle phase. The correspondence (CSP)

is then given by:

CSP =
1

τ2 − τ1

τ2∑

t=τ1+1

(
I[Ŝt≥0.5]St +

(
1− I[Ŝt≥0.5]

)
(1− St)

)
,

where τ1 and τ2 are chosen to cover the period over which Ŝt is being evaluated. Lower values

of the CSP indicate worse forecast performance. The second is the Brier (1950) quadratic

probability score (QPS), which is a probability analog of mean squared error:

QPS =
2

τ2 − τ1

τ2∑

t=τ1+1

(
Ŝt − St

)2

.

The QPS ranges from 0 to 2, with 0 indicating perfect forecast accuracy. Lastly, we compute

the log probability score (LPS):

LPS = −
1

τ2 − τ1

τ2∑

t=τ1+1

(
St ln

(
Ŝt

)
− (1− St) ln

(
1− Ŝt

))
.

The LPS ranges from 0 to ∞, with 0 indicating perfect forecast accuracy. The LPS penalizes

large errors more heavily than does the QPS.

Each of the above metrics assumes a symmetric loss function across errors made in

categorizing recessions as expansions (false negatives) vs. expansions as recessions (false

12



positives). However, it is reasonable to think that certain agents, such as policymakers, may

have a loss function that is asymmetric across these different types of errors. To evaluate

the performance of Ŝt in recessions vs. expansions, we also compute the CSP, QPS, and LPS

separately for the expansion and recession months in an evaluation period.

3 Data

Our predictor variables consist of both national- and state-level variables, all of which are

sampled at the monthly frequency. For the national-level variables, we include a measure of

the term spread, the federal funds rate, and the return on the S&P 500 stock market index.

Each of these variables have been shown to help predict recessions at various horizons in

the existing literature.5 We also include two direct measure of aggregate economic activity,

namely payroll employment growth and industrial production growth. Existing studies, such

as Estrella and Mishkin (1998), have shown that economic activity measures have some power

to forecast recessions at short horizons.

In addition to this standard set of national-level variables, we also include state-level

payroll employment growth to capture state-level economic activity. We choose payroll

employment growth as the measure of state-level economic activity for two reasons. First,

we are interested in relatively high frequency monitoring of business cycle phases. Payroll

employment is the broadest measure of state-level economic activity that is sampled at a

monthly frequency.6 Second, as compared to other monthly measures of state-level activity,

such as retail sales, payroll employment is released quickly, roughly three weeks following

the end of the month. This timeliness makes payroll employment attractive for forecasting.7

5See e.g., Estrella and Mishkin (1998), Wright (2006), and King et al. (2007).
6The most comprehensive measure of state-level economic activity, Gross State Product, is only released
annually.

7The term spread is measured as the difference between the monthly averages of the 10-year Treasury bond
and the 3-month Treasury bill. The Federal Funds rate is measured as its monthly average value. The S&P
500 return is the three month growth rate of the S&P 500 index. Industrial production and national- and
state-level payroll employment growth are the three month growth rates of the underlying levels of these
variables. In each case, the data were seasonally-adjusted.
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For the dependent variable in our estimation, St, we require a monthly measure of the

national business cycle phase. We follow the standard practice in the recession forecasting

literature of using the chronology of recessions and expansion dates provided by the NBER’s

Business Cycle Dating Committee.

All data series were collected over the period from January 1960 to June 2011. After

constructing growth rates and adjusting for the maximum forecast horizon considered, the

sample period for St covers from August 1960 to June 2011. Over this period there are eight

NBER defined recessions, and 15% of the monthly observations are recession months.

In our primary analysis, we use variables collected as of the July 2011 vintage. Thus,

for variables that are revised, which is the case for the economic activity measures in our

sample, we use ex-post revised data in our out-of-sample forecasting experiments rather than

the vintage of data that would have been available to a forecaster in real time. We make this

choice due to difficulties with obtaining long histories for state-level payroll employment at

a substantial number of vintages over our out-of-sample forecasting period. However, as a

robustness check, we additionally report results of an out-of-sample forecasting experiment

over a shorter time period for which we were able to obtain real-time data.

4 Results

4.1 In-Sample Predictions

We begin by presenting results for in-sample predictions over the full sample period,

where Ŝt is computed over the same sample period on which we perform estimation, August

1960 to June 2011. We consider four alternative forecast horizons, consisting of h = 0, 1, 2, 3

months ahead. In all cases, we assume that the information used to predict St consists of

the information available at the end of month t− h. For the financial variables in our data

set, this includes the values of these variables measured for month t − h. For each of the

real-activity measures in the data set, both at the national- and state-level, this includes the
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values of these variables measured for month t− h− 1. As an example, a one-month-ahead

forecast in our context refers to a prediction of St formed using financial variables measured

for month t − 1 and economic activity variables measured for month t − 2. It is worth

highlighting that the case of h = 0 corresponds to a prediction of the business cycle phase in

month t, formed using data available at the end of month t, some of which is data measured

for month t. Such “nowcasts” are of substantial interest, since definitive classification of

business cycle phases, particularly around turning points, are generally only available with

a substantial lag.8

Our primary interest is on forecasting improvements achieved through the addition of

state-level predictors. To assess these improvements, we set a baseline model in which

Xt−h includes only the national-level variables in our predictor set. We then compare the

performance of this model to an alternative model in which Xt−h contains both national-

and state-level data.

Table 1 reports the in-sample forecast evaluation metrics for the baseline model and the

model including state-level data for each of the various forecast horizons. These metrics tell

a consistent story: including state-level data substantially improves the in-sample fit of the

probit recession prediction model. The inclusion of state-level data lowers the QPS and LPS

by 25%-70% compared to the model with only national-level data. The CSP improvements

are from 0.02-0.05 percentage points, indicating that between 12-30 more months over the

sample were correctly classified by the model that includes state-level data. Looking across

forecast horizons, the improvements are largest at the h = 0 and h = 1 horizons, although

they remain substantial at longer horizons as well.

We next investigate whether the improvements generated by the inclusion of state-level

data are symmetric across expansion and recession months. Table 2 presents the in-sample

forecast evaluation metrics computed separately for expansion and recession months. Com-

8The NBER has historically announced turning points with a lag of between 5-19 months. Statistical models
using only coincident data improve on the NBER’s timeliness considerably, but still identify turning points
only after several months have passed, in part due to data reporting lags (see, e.g. Chauvet and Piger
(2008).)
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paring across phases, it is apparent from both the baseline and extended model that the QPS

and LPS are substantially lower, and the CSP substantially higher, for expansion months

vs. recession months. This suggests that correct classification using the probit model is less

difficult for expansion months than recession months.9 For expansion months, the inclusion

of state-level data lowers the QPS and LPS by 20%-70%. The improvements in the CSP

statistic are less impressive, ranging from 0 (h = 3) to 2 (h = 0) percentage points, which

correspond to between 0-10 more months, out of the 521 expansion months in the sample,

being correctly classified through the use of state-level data. For recession months, the QPS

and LPS reductions are again large, ranging between 30% and 70%. The CSP improvements

are more striking for recession months, ranging from 12 (h = 2) to 22 (h = 1) percentage

points. This corresponds to 11-20 of the 90 recession months in the sample.

Figure 1 shows plots of Ŝt over the estimation sample period, along with recession shading

determined by the NBER recession chronology. These figures visually confirm the results

of the evaluation metrics. For all forecast horizons, and particularly for h = 0 and h = 1,

conditioning on both national- and state-level data improves the delineation of the NBER

expansion and recession phases over the model that conditions on national-level data alone.

Given the improvements in the in-sample fit generated by including state-level data, we

next ask which states provide this improvement. Table 3 reports the posterior inclusion

probabilities for the model that includes both national- and state-level data. These inclusion

probabilities measure the posterior probability that a particular variable is included in the

true model, and are computed as the proportion of the G samples from the Gibbs sampler

for which γ[g] includes that variable. The table reports these inclusion probabilities for each

of the national-level variables, and for all state-level variables that achieved at least 50%

9This is not surprising given that expansion months make up a much larger portion of the sample then
recession months. For example, suppose a sample period is made up of 90% expansion months and 10%
expansion months. Then a simple probit model with no covariates would predict expansion with probability
0.9 and recession with probability 0.1. Conditional on being in an expansion month, the probit model would
then have a 90% successful prediction rate, but only a 10% successful prediction rate conditional on being
in a recession month. Expansion months are also more persistent than recession months, which generates
additional predictability during periods of expansion.
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inclusion probability for one or more forecast horizons.

Beginning with the national-level variables, both the federal funds rate and S&P 500

return have inclusion probabilities of 100% for all forecast horizons considered. Consistent

with the existing literature, the term spread variable becomes generally more important as

the forecast horizon increases, obtaining 100% inclusion probability by the h = 3 month hori-

zon. Also consistent with the existing literature, industrial production has some predictive

ability at short horizons, but has a very low inclusion probability by h = 3 months. Finally,

aggregate employment growth has a posterior inclusion probability that is above 50% in only

one case, that of h = 0. For the baseline model with only national-level predictors, both

aggregate industrial production and employment growth are assigned very high inclusion

probabilities across all horizons considered (not reported). Thus, the inclusion of state-level

variables in the information set diminishes the importance of these aggregate variables.

Turning to the state-level variables, there are six states with high inclusion probabilities

across a majority of forecast horizons, namely California, Florida, Illinois, Nebraska, Penn-

sylvania and Washington. These states tend to cluster by population, with four being in

the top six most populous states as measured by the 2010 U.S. Census. However, there are

also a number of high population states, notably Texas, New York, and Michigan that never

receive high inclusion probabilities at any forecast horizon. This demonstrates the value

added of considering subnational data along with variable selection, in that it allows those

portions of the national employment data that are less predictive of the future business cycle

phase to be be downweighted in a formal statistical way.

Variation in the importance of states for forecasting national recessions is not surprising.

Owyang et al. (2005) and Hamilton and Owyang (2011) show that state-level business cycles

are often out of phase with each other and with the national-level cycle. Also, as argued by

Temin (1998), different national recession experiences likely arose from different root causes.

For example, some recessions may begin because of weakness in the manufacturing sector

while others may begin due to uncertainty in financial markets. If true, it is then reasonable
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to assume that which states will be leading indicators of a national recession will depend

on the type of recession. Further, the timing of recessions with different causes may vary

depending on how long the shocks take to propagate across the country. In this sense, we find

it intuitive that different states would have more explanatory power at different horizons.

The bottom panel of Table 3 shows the mean of the posterior distribution for kγ, the

number of variables selected by covariate selection vector γ. This is equivalent to the average

number of variables included in the model in (2) across the G draws from the Gibbs sampler.

Note that this average is substantially higher than would be obtained by simply summing

up the number of individual states with high inclusion probabilities for a particular forecast

horizon. This suggests the presence of a substantial amount of uncertainty about which state-

level employment growth variables belong in the model, and argues for the BMA approach

used here vs. simply conditioning on a particular model.

4.2 Out-of-Sample Predictions

The previous section presented evidence that including state-level data in addition to

national-level data substantially improves the in-sample fit of a probit model for predicting

U.S. business cycle phases, particularly during recession months. Of course, it is well ap-

preciated that improved in-sample fit does not guarantee improved out-of-sample forecast

performance. Thus, in this section we evaluate the out-of-sample forecast performance of

the probit model augmented with state-level data.

To assess out-of-sample performance, we construct a series of out-of-sample forecasts

computed recursively. Beginning with an initial estimation period of August 1960 to Decem-

ber 1978, we form forecasts at horizons h = 0, 1, 2, 3 over the period January 1979 to June

2011.10 After each out-of-sample forecast is produced, the estimation sample is extended

by one month, and the model re-estimated. In terms of business cycle episodes, the out-of-

sample period includes 5 NBER-defined recessions, accounting for approximately 15% of the

10The first out-of-sample forecast for h = 0 and h = 1 is January 1979, for h = 2 is February 1979, and for
h = 3 is March 1979. The last out-of-sample forecast for all horizons is June 2011.

18



390 months over this period.

Table 4 presents the forecast evaluation metrics for both the baseline model that uses only

national-level predictors, and the extended model that uses both national- and state-level

predictors. These metrics suggest that the out-of-sample forecast performance of the model

that includes state-level data is better than the baseline model for short horizon forecasts,

namely h = 0 and h = 1. At these horizons, the CSP is higher, and the QPS lower for the

model including state-level data for all forecast horizons, while the LPS is lower for h = 0.

The forecast improvements as measured by several metrics are substantial. As one example,

the CSP is 4 percentage points higher for the model including state-level data when h = 1,

meaning that approximately 16 more months were correctly classified by the model that

includes state-level data. For longer horizons, the inclusion of state-level data appears less

helpful. For h = 2 and h = 3, the forecast metrics generally show a deterioration for the

model that includes state-level data.

Table 5 presents the forecast evaluation metrics computed separately for expansion vs.

recession months in the out-of-sample period. These results demonstrate that the forecast

improvements generated by the inclusion of state-level data in the out-of-sample period are

concentrated in recession months. In particular, the forecast evaluation metrics computed

for expansions are generally similar for the baseline model and the model that includes state-

level data, with which model has better performance differing across horizon and forecast

evaluation metric. However, when we focus on recession months, there is a clear benefit

from incorporating state-level data for short-horizon forecasts. For h = 0 and h = 1, the

QPS are reduced by 50% to 60% and the LPS by 12% to 60% during recession months. The

CSP improvements are approximately 25 percentage points at these horizons, meaning that

a quarter of the recession months over the sample period are correctly classified by the model

that includes state-level data, but not by the model that includes only national-level data.

In terms of absolute performance, the CSP suggests that the model including state-level data

correctly classifies recession months over the out-of-sample period around 90% of the time
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at the h = 0 and h = 1 horizons. There are again no clear improvements from the addition

of state-level data at longer horizons.

To provide an example from a specific recession, Table 6 presents the out-of-sample

forecasts, Ŝt, for the h = 1 case around the 2008-2009 recession. Beginning with the model

that includes only national-level variables, Ŝt does not cross 50% probability of recession

until August 2008, eight months following the beginning of the NBER-defined recession. For

the h = 1 horizon, this forecast would have been available at the end of July 2008. This

is consistent with the considerable uncertainty that persisted well into 2008 about whether

the economy had entered a recession phase. For example, the NBER did not announce

the December 2007 peak until December 1, 2008. Also, as discussed in Hamilton (2011),

statistical models designed to track business cycle turning points using national-level data

did not send a definitive signal that the recession had begun until mid-to-late 2008. However,

Table 6 also reveals that incorporating state-level data would have provided a much quicker

signal of the beginning of this recession. Specifically, Ŝt moved above 50% probability of

recession for March 2008, where this forecast would have been available as of the end of

February 2008, an impressive five month improvement over the model using only national-

level data. Notably, both models produce accurate one-month ahead forecasts of the end of

the 2008-2009 recession.

We next evaluate which state-level variables are providing the out-of-sample forecast im-

provements. Table 7 reports the posterior inclusion probabilities for the model that includes

both national- and state-level data, averaged over the recursive estimations conducted to

construct the out-of-sample forecasts. The table provides these inclusion probabilities for

all of the national-level variables, and for all state-level variables that achieved greater than

50% inclusion probability for at least one forecast horizon. For the national-level variables,

the S&P 500 return is a robust predictor across all forecast horizons, with average inclusion

probabilities close to 100%. The Federal Funds rate also has average inclusion probabilities

above 50% for several forecast horizons, but these inclusion probabilities are significantly
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lower than they were over the full sample period, and are not above 50% for the h = 3

horizon. As was the case in the full sample period, the term spread becomes a more robust

predictor as the forecast horizon lengthens. Finally, neither aggregate employment or aggre-

gate industrial production growth have average inclusion probabilities above 50% for most

forecast horizons, the single exception being industrial production growth when h = 0. These

variables have very high inclusion probabilities when state-level data is not included (not re-

ported), implying the importance of the aggregate level variables is substantially diminished

by the inclusion of state-level data.

For the state-level variables, we focus on the h = 0 and h = 1 forecast horizons, where

the forecast improvements from the addition of state level data were concentrated. There

are five states with average inclusion probabilities above 50% for the h = 0 horizon, namely

California, Florida, Illinois, Iowa and Pennsylvania. For the h = 1 horizon there are also

five such states, in this case California, Connecticut, Illinois, Nebraska and Pennsylvania.

There are also a large number of state-level variables that, while not breaking the 50%

inclusion probability barrier, have inclusion probabilities substantially greater than 0%. This

is demonstrated by the average number of variables included in the forecasting model, which

at roughly 17 and 16 for the h = 0 and h = 1 horizons, is significantly above the sum of

only those variables with inclusion probabilities above 50%. This can also be seen in the

maps provided in Figure 2, which groups states by ranges of inclusion probability. The

maps show that while there are few states with very high average inclusion probabilities

(darker shading), there are many states with average inclusion probabilities in the 20%-60%

range, meaning a large number of states influence the BMA forecast. These probabilities

also indicate significant uncertainty regarding exactly which state-level variables should be

included in the model. This highlights the potential importance of the BMA approach we

take to select predictors and incorporate uncertainty about this selection.

Given this potential importance, we next present results meant to evaluate whether the

BMA predictor selection algorithm is a significant factor for the out-of-sample forecast im-
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provements generated with the addition of state-level data. Specifically, Table 8 reports the

forecast evaluation metrics for out-of-sample forecasts produced from a model in which all

national- and state-level variables are always included. As the forecasting improvements from

adding state-level data were concentrated in short-horizon forecasts of recession months, we

focus on the forecast evaluation metrics computed for nowcasts (h = 0) and one-month-ahead

forecasts (h = 1) of recession months over the out-of-sample period. By comparing Table 8

to the bottom panel of Table 5, we can gauge the value added of using the BMA predictor

selection algorithm to construct forecasts, vs. simply including all possible variables. Indeed,

this comparison shows a deterioration in the out-of-sample forecast performance from con-

ditioning on a model that includes all possible variables rather than using BMA. However,

with the exception of the LPS for h = 1, it is also the case that the model with all variables

included is still preferred to the model that doesn’t include state-level data.

Finally, as was discussed above, our out-of-sample forecasts are constructed using ex-post

revised data for the predictors taken from the July 2011 vintage for each series. In Table

9 we evaluate the robustness of the out-of-sample forecasting results when we instead use

“real-time” data of vintages that would have been available to a forecaster in real time. Due

to difficulties with obtaining long histories for state-level payroll employment at a substantial

number of vintages, we are able to construct out-of-sample forecasts with real-time data over

a shorter out-of-sample period running from July 2007 to June 2011, a period that includes

the most recent NBER-defined recession. As forecast improvements from the addition of

state-level data were primarily at short horizons, we focus on one month ahead forecasts.

Table 9 demonstrates that our primary conclusions from the longer out-of-sample period

using ex-post data are confirmed for the shorter out-of-sample period using real-time data.

In particular, there is a general improvement in the forecast evaluation metrics computed

for recession months from the addition of state-level data.11 As an example, the CSP is

11The log probability score does indicate a deterioration in the one-month ahead forecast performance of
recession months from adding state-level data. This is due to a single recessionary month, January 2008,
where the model including state-level data assigns a probability of recession very close to zero. The log
probability score severely penalizes such extreme forecast misses, as it will include the logarithm of an
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17 percentage points higher when state-level data is included, which corresponds to roughly

3 more recession months during the 2008-2009 recession being correctly classified. Also, as

before, there is no apparent improvement from the addition of state-level data for one-month

ahead predictions of expansion phases.

5 Conclusion

A large literature has investigated the predictive content of variables measured at the na-

tional level, such as aggregate employment and output growth, for forecasting U.S. business

cycle phases (expansions and recessions.) Motivated by recent studies showing differences in

the timing of business cycle phases in nationally aggregated data from those for geographi-

cally disaggregated data, we investigate the information contained in state-level employment

growth for forecasting national business cycle phases. We use as a baseline a probit model

to explain NBER-defined business cycle phases, where the conditioning information con-

sists of national-level economic activity and financial variables. We then add to this model

state-level employment growth. To avoid issues associated with overparameterization of

forecasting models, we use a Bayesian model averaging procedure to construct forecasts.

Using a variety of forecast evaluation metrics, we find that adding state-level employment

growth improves short-horizon forecasts of the NBER business cycle phase over a model that

uses data measured at the national-level only. The gains in forecasting accuracy are con-

centrated during months of recession, and are substantial. Posterior inclusion probabilities

indicate substantial uncertainty regarding which states belong in the model, highlighting the

importance of the Bayesian model averaging approach.

argument close to zero. However, as the baseline model only assigns a probability of recession for January
2008 of 8%, it is questionable whether this severe relative penalty is reflective of significant differences in
forecast performance.
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Figure 1

In-Sample Recession Predictions

National-Level Predictors National- and State-Level Predictors

h=0 h=0

h=1 h=1

h=2 h=2

h=3 h=3
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Figure 2

Average Predictor Inclusion Probabilities for Recursive Estimations

h=0

h=1

Notes: These maps indicate the average posterior probability that state-level employment
variables are included in the model given by (2), where averaging is across the multiple
recursive estimations beginning over the period August 1960-December 1978, and ending
with the period August 1960-mid 2011, with the exact ending month dependent on the
forecasting horizon.
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Table 1

In-Sample Forecast Evaluation Metrics

National-Level National and State-

Predictors Level Predictors

Forecast Horizon CSP QPS LPS CSP QPS LPS

h = 0 0.94 0.09 0.15 0.98 0.03 0.05

h = 1 0.92 0.11 0.17 0.97 0.04 0.07

h = 2 0.92 0.12 0.18 0.94 0.08 0.14

h = 3 0.91 0.13 0.20 0.94 0.09 0.15

Notes: This table holds the forecast evaluation metrics defined in Section 2.3 constructed
for in-sample predictions of the business cycle phase (expansion or recession) produced over
the period August 1960 to June 2011. The in-sample predictions are constructed from the
posterior predictive density of two versions of the model in (2), which differ on the inclusion
of state-level predictors.
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Table 2

In-Sample Forecast Evaluation Metrics - Expansion vs. Recession Months

National-Level National and State-

Predictors Level Predictors

Forecast Horizon CSP QPS LPS CSP QPS LPS

Expansion Months

h = 0 0.97 0.04 0.08 0.99 0.02 0.03

h = 1 0.97 0.06 0.12 0.98 0.02 0.04

h = 2 0.97 0.05 0.09 0.98 0.04 0.07

h = 3 0.97 0.06 0.10 0.97 0.04 0.08

Recession Months

h = 0 0.73 0.37 0.55 0.91 0.12 0.19

h = 1 0.68 0.44 0.66 0.90 0.15 0.28

h = 2 0.63 0.49 0.72 0.75 0.34 0.52

h = 3 0.59 0.54 0.79 0.73 0.37 0.57

Notes: This table holds the forecast evaluation metrics defined in Section 2.3 constructed
for in-sample predictions of the business cycle phase (expansion or recession) produced sep-
arately for NBER defined expansion and recession months over the period August 1960 to
June 2011. The in-sample predictions are constructed from the posterior predictive density
of two versions of the model in (2), which differ on the inclusion of state-level predictors.
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Table 3

Full Sample Predictor Inclusion Probabilities

h = 0 h = 1 h = 2 h = 3
National-Level Predictors

Federal Funds Rate 1.00 1.00 1.00 1.00
S&P 500 Return 1.00 1.00 1.00 1.00
Term Spread 0.11 0.43 0.33 1.00
Employment Growth 0.59 0.14 0.05 0.08
Industrial Production Growth 1.00 1.00 0.55 0.04
State-Level Employment Growth

California 0.46 1.00 0.76 1.00
Connecticut 0.26 1.00 0.12 0.29
Florida 1.00 1.00 1.00 1.00
Illinois 0.46 1.00 0.52 0.87
Iowa 1.00 0.19 0.15 0.04
Kentucky 0.25 0.76 0.13 0.34
Minnesota 0.87 0.2 0.01 0.08
Nebraska 0.02 1.0 1.0 1.0
New Jersey 0.93 0.12 0.06 0.02
Ohio 1.00 0.13 0.07 0.11
Oregon 1.00 0.04 0.03 0.02
Pennsylvania 0.98 1.00 0.62 0.86
Virginia 1.00 0.47 0.21 0.01
Washington 0.21 0.90 0.60 0.89
West Virginia 0.58 0.92 0.00 0.01

Number of Variables 17.7 17.5 9.4 11.1

Notes: This table holds the posterior probability that specific variables are included in the
model given by (2), based on estimation over the period from August 1960 to June 2011.
For state-level variables, only those states with inclusion probabilities above 50% for at least
one forecast horizon are reported.
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Table 4

Out-of-Sample Forecast Evaluation Metrics

National-Level National and State-

Predictors Level Predictors

Forecast Horizon CSP QPS LPS CSP QPS LPS

h = 0 0.92 0.11 0.18 0.94 0.08 0.15

h = 1 0.91 0.13 0.20 0.95 0.09 0.26

h = 2 0.90 0.14 0.22 0.90 0.15 0.30

h = 3 0.90 0.15 0.24 0.89 0.18 0.39

Notes: This table holds the forecast evaluation metrics defined in Section 2.3 constructed
for out-of-sample forecasts of the business cycle phase (expansion or recession) produced
over the period January 1979 to June 2011. The out-of-sample predictions are constructed
from the posterior predictive density of two versions of the model in (2), which differ on the
inclusion of state-level predictors.
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Table 5

Out-of-Sample Forecast Evaluation Metrics - Expansion vs. Recession Months

National-Level National and State-

Predictors Level Predictors

Forecast Horizon CSP QPS LPS CSP QPS LPS

Expansion Months

h = 0 0.96 0.06 0.10 0.95 0.07 0.13

h = 1 0.95 0.07 0.12 0.96 0.07 0.20

h = 2 0.95 0.07 0.12 0.95 0.09 0.19

h = 3 0.97 0.07 0.12 0.95 0.09 0.25

Recession Months

h = 0 0.68 0.41 0.60 0.91 0.15 0.24

h = 1 0.64 0.47 0.69 0.88 0.23 0.61

h = 2 0.61 0.55 0.81 0.61 0.51 0.94

h = 3 0.54 0.64 0.98 0.52 0.71 1.19

Notes: This table holds the forecast evaluation metrics defined in Section 2.3 constructed
for out-of-sample forecasts of the business cycle phase (expansion or recession) produced
separately for NBER defined expansion and recession months over the period January 1979
to June 2011. The out-of-sample predictions are constructed from the posterior predictive
density of two versions of the model in (2), which differ on the inclusion of state-level pre-
dictors.
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Table 6

One-Month Ahead Forecasts: 2008-2009 Recession

Date NBER Recession National-Level National and State-

Indicator Predictors Level Predictors

November 2007 0 0.08 0.05
December 2007 0 0.08 0.02
January 2008 1 0.06 0.00
February 2008 1 0.36 0.38
March 2008 1 0.19 0.61

April 2008 1 0.42 0.90

May 2008 1 0.16 0.66

June 2008 1 0.15 0.10
July 2008 1 0.30 0.92

August 2008 1 0.80 1.00

September 2008 1 0.76 1.00

October 2008 1 0.88 1.00

November 2008 1 1.00 1.00

December 2008 1 1.00 1.00

January 2009 1 1.00 1.00

February 2009 1 1.00 1.00

March 2009 1 1.00 1.00

April 2009 1 1.00 1.00

May 2009 1 1.00 1.00

June 2009 1 0.66 0.90

July 2009 0 0.17 0.20
August 2009 0 0.35 0.26

Notes: This table holds the one-month ahead, out-of-sample forecasts of the business cycle
phase (expansion and recession) around the 2008-2009 NBER-defined recession. The fore-
casts are constructed from two versions of the model in (2), which differ on the inclusion of
state-level predictors.
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Table 7

Average Predictor Inclusion Probabilities for Recursive Estimations

h = 0 h = 1 h = 2 h = 3
National-Level Predictors

Federal Funds Rate 0.69 0.62 0.61 0.19
S&P 500 Return 0.97 1.00 0.99 0.99
Term Spread 0.39 0.64 0.74 0.99
Employment Growth 0.25 0.39 0.15 0.08
Industrial Production Growth 0.64 0.39 0.08 0.03
State-Level Employment Growth

Alaska 0.05 0.09 0.15 0.51
California 0.63 0.89 0.82 0.99
Connecticut 0.15 0.79 0.17 0.38
Florida 0.63 0.36 0.18 0.10
Illinois 0.71 0.78 0.43 0.65
Iowa 0.77 0.24 0.33 0.05
Nebraska 0.26 0.80 0.74 0.46
Pennsylvania 0.85 0.53 0.68 0.97

Number of Variables 17.02 15.94 10.98 9.55

Notes: This table holds the average posterior probability that specific variables are included
in the model given by (2), where averaging is across the multiple recursive estimations
beginning over the period August 1960-December 1978, and ending with the period August
1960-mid 2011, with the exact ending month dependent on the forecasting horizon. For
state-level variables, only those states with average inclusion probabilities above 50% for at
least one forecast horizon are reported.
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Table 8

Out-of-Sample Forecast Evaluation Metrics - Recession Months

All National- and State-Level Predictors Included

Forecast Horizon CSP QPS LPS

h = 0 0.82 0.23 0.43

h = 1 0.86 0.20 3.25

h = 2 0.70 0.47 2.26

h = 3 0.48 0.83 3.94

Notes: This table holds the forecast evaluation metrics defined in Section 2.3 constructed
for out-of-sample forecasts of the business cycle phase (expansion or recession) computed
separately for NBER defined recession months over the period January 1979 to June 2011.
The out-of-sample predictions are constructed from the posterior predictive density of two
versions of the model in (2), where all possible covariates, both national- and state-level, are
included.
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Table 9

Out-of-Sample Forecast Evaluation Metrics with “Real-Time” Data

National-Level National and State-

Predictors Level Predictors

Forecast Horizon CSP QPS LPS CSP QPS LPS

All Months

h = 1 0.81 0.24 0.35 0.85 0.24 0.47

Expansion Months

h = 1 1.00 0.01 0.03 0.97 0.04 0.06

Recession Months

h = 1 0.50 0.64 0.89 0.67 0.57 1.15

Notes: This table holds the forecast evaluation metrics defined in Section 2.3 constructed
for out-of-sample forecasts of the business cycle phase (expansion or recession) produced over
the period January 1979 to June 2011. Forecasts are constructed using “real-time” data as it
appeared at the time the forecast would have been produced. The out-of-sample predictions
are constructed from the posterior predictive density of two versions of the model in (2),
which differ on the inclusion of state-level predictors.
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