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Abstract.  A recent study shows that industry-specific analysis has no incremental advantage over 
economy-wide analysis in forecasting firm profitability. This result seems puzzling because some 
earlier studies have documented the importance of industry effects in explaining firm profitability. 
We reconcile the apparent inconsistency by showing that industry effects on profitability forecasting 
exist at the more refined business segment level, but are obscured by aggregated reporting at the firm 
level. Using segment-level analysis as well as firm-level analysis that also utilizes segment-level 
information, we provide consistent evidence supporting that industry-specific analysis is more 
accurate than economy-wide analysis in predicting the profitability of business segments and the 
profitability of single-segment firms. (JEL L25, G17, M21, M41) 
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Industry Effects on Firm and Segment Profitability Forecasting:  

Do Aggregation and Diversity Matter? 

 

1. Introduction  

Economists and business researchers, especially in accounting and finance, are interested in 

predicting earnings or forecasting profitability.1 These tasks in practice are equivalent to each other 

because earnings often are deflated by total assets in regression analysis to mitigate the scale effect 

(Dechow, Ge, and Schrand 2010, p. 352). Consequently, predicting earnings is the same as 

forecasting return on assets (ROA), a frequently used measure for profitability.2   

Among the many models used to forecast profitability or earnings, the first-order autoregressive 

model is a parsimonious choice with the slope coefficient measuring the persistence of profitability 

or earnings. The model, sometimes referred to as the persistence model, is particularly useful when 

                                                   
1 Researchers from different fields have contributed to the literature on predicting earnings or 

forecasting profitability. Accounting and finance scholars have examined the time-series properties 

and predictability of earnings. These studies include Dichev and Tang (2009), Frankel and Litov 

(2009), Penman and Zhang (2002), Fama and French (2000), Baginski et al. (1999), Ali, Klein, and 

Rosenfeld (1992), Bar-Yosef, Callen, and Livnat (1987), Conroy and Harris (1987), Penman (1983), 

Brandon, Jarrett, and Khumawala (1983), Chant (1980), Albrecht, Lookabill, and McKeown (1977), 

and Watts and Leftwich (1977). Economists and strategic management researchers have studied the 

persistence and variability of profitability. Examples are Goddard et al. (2011), Bou and Satorra 

(2007), Glen, Lee, and Singh (2003), Ruefli and Wiggins (2003), McGahan and Porter (2002, 1999, 

1997), Waring (1996), Rumelt (1991), Cubbin and Geroski (1987), and Mueller (1977).  

2 Other common measures of profitability include return on net operating assets (RNOA) and 

return on equity (ROE). 
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non-earnings accounting variables are not available for use as predictors. For example, the limited 

availability of segment-level data prevents the use of sophisticated models to forecast profitability at 

the segment level. Unlike higher-order autoregressive models, the persistence model does not require 

long earnings histories and therefore minimizes the survivor bias.  

In estimating the persistence model for forecasting profitability or earnings, one can use either an 

industry-specific (IS) or an economy-wide (EW) formulation. 3  Prior studies in economics and 

strategic management have documented the importance of industry effects in explaining firm 

profitability (e.g., Bou and Satorra 2007 and McGahan and Porter 1997). In the light of these studies, 

one would expect an IS analysis to deliver more accurate profitability forecasts than its EW 

counterpart. Interestingly, Fairfield, Ramnath, and Yohn (2009) find no significant forecast 

improvement of IS over EW analysis in predicting firm profitability. The objective of this paper is to 

reconcile the apparent inconsistency between their no industry effect finding and the industry effects 

often observed in other contexts.  

Some studies find that when more disaggregated segment-level data are made available to the 

public, analysts, investors, and researchers are able to anticipate future earnings more accurately 

(e.g., Ettredge et al. 2005, Berger and Hann 2003, Baldwin 1984, and Collins 1976). In fact, it was 

analysts’ strong desire to have more detailed segment data, to supplement consolidated company 

data, for use in forecasting company performance that led to the change in the accounting standard on 

segment reporting in 1997 (Botosan and Stanford 2005). Disaggregated segment-level data are more 

useful in predicting firm performance because they allow better monitoring of agency problems such 

as overinvestment and cross-subsidization (Berger and Hann 2007 and Berger and Ofek 1995).  

                                                   
3 A firm-specific formulation is undesirable because of the survivor bias resulting from the long-

history data requirement. See Fama and French (2000), p. 162, for a discussion. 
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We conjecture that industry effects on profitability forecasting exist at the segment level but are 

obscured when data are aggregated to the firm level. To support the conjecture, we provide evidence 

in line with its implications for single- and multiple-segment firms and also for segments as the unit 

of analysis. In addition, we find that the observed effects at the segment level are weaker when a 

segment is larger and hence likely to be more diverse (less homogenous) in its activities. Finally, our 

difference in forecast improvement analysis to verify the implied difference between segment and 

firm profitability forecast improvements also supports the conjecture. Overall, we show that 

aggregation and diversity matter in revealing the industry effects on profitability forecasting.   

Our main analysis is based on data from 1978-1997 under the segment disclosure regulation 

SFAS 14. To validate the robustness of the findings, we expand the analysis to include post-1998 

years, up to 2010, under the more recent regulation SFAS 131.4 The additional results (reported in an 

appendix available upon request) are broadly consistent with the findings based on the pre-1998 

sample. Taken together, our results provide an explanation to Fairfield, Ramnath, and Yohn’s (2009) 

no industry effect finding. Thereby we reconcile the apparent inconsistency between their study and 

others that observe industry effects in various contexts. Besides this major contribution, our results 

may also be taken as evidence for the usefulness of more disaggregated accounting disclosure. 

The rest of the paper is organized as follows. In the next section, we explain the four hypotheses 

developed from our conjecture and give an overview of the persistence model used to test the 

                                                   
4 Superseding SFAS 14, the segment disclosure regulation SFAS 131 was aimed to increase the 

transparency of reported business segments. The regulation became effective for fiscal years 

beginning after December 15, 1997. Previously, firms were asked to disclose segments according to 

their industry classification. Following SFAS 131, firms have to report segment information 

consistent with the internal structure of the firm. This requirement led to an increase in the reported 

segments (Berger and Hann 2003).  



 

 4

hypotheses. Section 3 describes the data used and the sample construction procedure. Section 4 gives 

the details of the methodology, followed by the results of the firm- and segment-level analyses and 

the difference in forecast improvement analysis. Concluding remarks are given in section 5.  

2. Empirical Model and Hypotheses 

We use the standard persistence model (i.e., first-order autoregressive) to forecast profitability. 

The segment/firm profitability forecast improvement (of IS over EW analysis) is defined as the 

absolute forecast error from the EW analysis minus its IS counterpart. The forecast used to define the 

forecast error is computed using the following regression:  

xt = αt + βt xt–1 + εt, 

where xt and xt–1 denote the profitability of the current and the previous year, respectively. The model 

coefficients, αt and βt, are indexed by a year subscript t because they are re-estimated each year based 

on the most recent 10 years of data. The estimated coefficients from these in-sample regressions 

(Step 1) are used to compute the profitability forecasts and the forecast errors used for out-of-sample 

tests (Step 2). Further details of this two-step procedure are given in section 4.1.    

We focus on return on assets (ROA) as the profitability measure. Return on net operating assets 

(RNOA) and return on equity (ROE) are also used as alternative measures in the firm-level analysis 

to be comparable to Fairfield, Ramnath, and Yohn (2009). Due to data limitations, these measures 

cannot be constructed at the segment level. Table 1 summarizes the definitions of the three 

profitability measures and the variables used to compute the measures.  

Inspired by studies in the diversification and segment reporting literatures (e.g., Hund, Monk, and 

Tice 2010, Berger and Hann 2007, Campa and Kedia 2002, and Berger and Ofek 1995), we 

conjecture that industry effects on profitability forecasting exist but are obscured when segment-level 

data capturing the effects are aggregated to the firm level.  To verify the conjecture, we examine four 

implications of the conjecture elaborated below.   
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First, to the extent that single-segment firms on average are less diversified (more homogenous) 

than multiple-segment firms, we can find industry effects at the firm level for single-segment firms 

but not for multiple-segment firms. However, there is a competing hypothesis against this prediction. 

Prior studies suggest that some firms lump together several segments to report as one segment 

externally (e.g., Botosan and Stanford 2005). Therefore, a firm reporting to have a single segment 

cannot be taken literally as a firm with only one relatively homogeneous internal unit. If many firms 

lump together all segments to report as a single segment, such single-segment firms need not be on 

average less diversified than multiple-segment firms. In such circumstances, we may not be able to 

find significant industry effects at the firm level for single-segment firms. 

H1: The firm profitability forecast improvement is positive for single-segment firms but not for 

multiple-segment firms. 

In sum, this first hypothesis for testing is a joint test of our conjecture and the maintained 

assumption that not too many genuinely multiple-segment firms have reported as single-segment 

firms. Confirming the hypothesis is a strong support to our conjecture. Failing to confirm it could be 

due to the violation of the maintained assumption.  

By definition a segment of a firm is more homogeneous in activities than the firm itself. If as 

conjectured it is only because of aggregated reporting at the firm level that obscures the industry 

effects on profitability forecasting, then we should see the effects re-appearing at the segment level. 

This gives our second hypothesis for testing: 

H2: The segment profitability forecast improvement is positive. 

Understandably, an externally reported segment of a firm cannot be as refined as the most basic 

unit of the firm, which ideally is completely homogeneous in activities. Nonetheless, it is reasonable 

to expect that other things being equal, the smaller a segment, the more homogeneous it is likely to 
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be. We therefore predict that the industry effects on segment profitability forecasting are stronger the 

smaller the size of a segment.  

H3: The segment profitability forecast improvement is more positive for smaller segments than 

larger segments. 

Given that the segment of a single-segment firm cannot be too much different from the firm 

itself, there is no reason to believe that for single-segment firms, the segment profitability forecast 

improvement is significantly different from its firm profitability counterpart. In contrast, for a firm 

reporting to have multiple segments, while each of the segments may not be so refined to capture a 

homogeneous basic unit, a segment of the multiple-segment firm should be more homogeneous in 

activities than the multiple-segment firm itself. Therefore, we expect the segment profitability 

forecast improvement to be higher than its firm profitability counterpart for multiple-segment firms.  

The predictions above for the single- and multiple-segments firms are tested by examining the 

difference in forecast improvement (DFI) measure defined as the segment profitability forecast 

improvement minus its firm profitability counterpart (see section 4.4 for details on this measure). 

Below is the last hypothesis for testing: 

H4: The difference between segment and firm profitability forecast improvements is insignificant 

for single-segment firms but positive for multiple-segment firms.  

The key difference between examining the segment profitability forecast improvement and the 

DFI measure is that in the latter case, a significance result is established by comparing to the firm 

profitability forecast improvement as the benchmark. This benchmark choice is tougher than using 

zero as the benchmark, which is implicitly assumed when examining the segment profitability 

forecast improvement. Unlike zero, the firm profitability forecast improvement is itself subject to 

variation, making it harder to show a significantly positive DFI measure.  
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3. Data and Descriptive Statistics 

In this section, we give an overview of the data used and the sample constructed, followed by a 

discussion of the summary statistics.  

3.1 Data and Sample 

The firm and business segment data used in the analysis come from the Compustat annual 

fundamentals and Compustat segments databases of the Wharton Research Data Services (WRDS). 

Most of the analysis is based on segment data, which are available from as early as 1976. Because 

the data coverage in the initial years is not good, we use data from 1978 onward. Our in-sample 

regressions require 10 years of data to estimate the coefficients of the models. Therefore, the earliest 

forecasts for the out-of-sample tests are from 1988. Owing to significant changes in the business 

segment disclosure requirements following the implementation of SFAS 131, our main analysis uses 

data up to 1997 only. Additional analyses based on data until 2010 are reported in an appendix 

available upon request.  

We use the two-digit primary Standard Industry Classification (SIC) code to define the industry 

to which a firm or business segment belongs.5 Observations with missing SIC codes are excluded 

from the sample. To avoid distortions caused by regulated industries, we also exclude all firms and 

segments in the financial service and utilities sectors (i.e., with SIC between 6000 and 7000, or 

between 4900 and 4950).  

Although firms can be uniquely identified by the gvkey variable, Compustat does not provide a 

business segment identifier. We construct a unique identifier for segments using the reported 

segment name (snms). In many cases, the reported segment name changes slightly from year to year, 

                                                   
5 Some studies (e.g., Fairfield, Ramnath, and Yohn 2009) use the Global Industry Classification 

Standard (GICS) to classify industries. However, GICS codes are often unavailable for segment-level 

data. 
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despite that the business segment appears to remain the same. We therefore standardize the segment 

name as follows to reduce the chance of breaking a segment data series unnecessarily. 

First, all letters are converted to upper cases. Next, we omit all “AND” and punctuations in a 

segment name. Then we replace any recognized abbreviations (e.g., SOFTWR) by their full 

expressions (e.g., SOFTWARE). Finally, we remove all extra space characters to obtain the 

standardized segment name. The segment identifier is defined by assigning a unique number to each 

combination of the standardized segment name and the firm identifier (gvkey).  

In some of the analysis, we distinguish between single- and multiple-segment firms. Multiple-

segment firms are firms that report more than one segment; single-segment firms are those reporting 

only one segment. Following SFAS 131, some firms have changed the number of reported segments 

from one in 1997 to more than one by 1999, suggesting that they might not be genuinely single-

segment firms prior to 1997. Owing to the doubt in correctly classifying these firms, we exclude 

them from analyses that require a differentiation between single- and multiple-segment firms. 

Occasionally, some firm/segment has two observations per calendar year due to reasons like 

shortened fiscal years. Such observations are excluded from the sample.6 We also remove firm and 

segment observations with negative sales, which raise data quality concerns. To mitigate the impact 

of small denominators on firm profitability measures, we exclude firm observations with total assets 

or net operating assets below USD 10mn or book value of equity below USD 1mn in the analysis 

using the firm ROA, RNOA, or ROE measure, respectively. For segment data, we exclude 

observations with total identifiable assets below USD 1mn.  

To avoid the influence by outliers, observations with the absolute value of firm/segment 

profitability exceeding one are excluded. To reduce the influence by mergers and acquisitions, we 

                                                   
6 The deletion of double observations per calendar year reduces the sample size by 4 observations 

in the firm-level analysis and by 1,010 observations in the segment-level analysis. 
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remove observations with the growth in operating assets, net operating assets, or book value of equity 

above 100%. Recall that our analysis has an in-sample regression step and an out-of-sample test step. 

Before the in-sample regressions, we further exclude observations with the profitability measure in 

concern falling in the top or bottom one percentile. However, we do not apply such an extreme-value 

exclusion criterion again before the out-of-sample tests to avoid any look-ahead bias in the analysis.  

Panel A of table 2 summarizes the number of observations after applying each exclusion criterion 

described above. The exclusion criteria are similar to those in Fairfield, Ramnath, and Yohn (2009). 

For consistency, only observations with all three profitability measures available are used in the firm-

level analysis.  

3.2 Descriptive Statistics 

Panels B and C of table 3 give an overview of the firm and segment data used to compute the 

average forecast improvements reported in sections 4.2 and 4.3. Because profitability forecasts are 

constructed from the estimated coefficients of in-sample regressions based on the most recent 10 

years of data, forecasts are not available for out-of-sample tests until 1988 onward. The firm-level 

analysis uses 27,361 observations of 5,527 unique firms, whereas the segment-level analysis is based 

on 54,814 observations of 13,187 unique segments.  

For firms, the ROA on average is 8.28%, while the mean RNOA is considerably higher, reaching 

13.44%. In contrast, the average ROE is much lower: only 6.61%. These statistics are similar to those 

in prior studies, such as Fama and French (2000) and Fairfield, Ramnath, and Yohn (2009). Segment 

profitability is considerably lower, with the average ROA equal to 7.09%.  

Panel C reports the number of observations, as well as the average profitability, for each industry. 

In the firm sample, electronic & other electric equipment (SIC 36) constitutes the largest industry 

sector, with 2,231 firm-year observations. In the segment sample, the largest industry is industrial 

machinery & equipment (SIC 35), with 4,532 segment-year observations. Other large industries in 
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the samples are chemicals & allied products (SIC 28), instruments & related products (SIC 38) and 

oil & gas extraction (SIC 13).  

There is substantial variation in profitability across industries. For firms, chemicals & allied 

products is the sector with the highest ROA (10.8%), whereas the lowest ROA (1.48%) is from metal 

mining. For segments, the highest ROA (39.9%) from social services appears to be an outlier; the 

second highest (22.3%) is from personal services. The sector with the lowest segment ROA (–

18.25%) is services, other.  

4. Segment and Firm Profitability Forecast Improvements: IS versus EW Analysis 

In this section, we present the results of the analyses after explaining the details of the empirical 

methodology.  

4.1 Methodology 

Like Fairfield, Ramnath, and Yohn (2009), our tests are based on profitability forecast 

improvements (of IS over EW analysis). The procedure to construct forecast improvements involves 

two steps. 

First, we estimate an IS and a EW first-order autoregressive model of firm/segment profitability: 

IS model: xi,t = αj,t + βj,t xi,t–1 + εi,t, 

EW model: xi,t = αt + βt xi,t–1 + εi,t, 

where xi,t is the profitability of firm/segment i in year t, j is the industry of the firm/segment, and εi,t is 

the error term. The IS model estimates a regression for each industry j separately, whereas the EW 

model pools all observations into one regression. We estimate the year-indexed coefficients on a 

rolling basis using the most recent 10 years of data. For example, to estimate αt and βt, we use 

profitability data of all firms/segments from year t back to year t – 9 and their lagged values from 

year t – 1 back to year t – 10. To obtain reasonably reliable estimates, we require a minimum of 100 

observations for each rolling regression. Some industries are excluded from the analysis owing to too 



 

 11

few observations. For equal-footing comparisons, we estimate the EW model using only observations 

that are included to estimate the IS model.  

In the second step, we use the estimated coefficients of the in-sample regressions and the 

observed profitability of last year to forecast the firm/segment profitability of the current year: 

IS model: EIS[xi,t]= aj,t + bj,t xi,t–1, 

EW model: EEW[xi,t]= at + bt xi,t–1, 

where a and b denote the estimated coefficients. To perform an out-of-sample test on the relative 

accuracy of the two models, we first calculate for each observation the absolute forecast error (AFE) 

defined as the absolute difference between the profitability actually observed and the profitability 

forecast:  

AFEIS = | xi,t – EIS[xi,t] |, 

AFEEW = | xi,t – EEW[xi,t] |, 

where AFEIS and AFEEW are the absolute forecast errors for a firm/segment of a year based on the IS 

and EW models, respectively. Next, we calculate the forecast improvement (FI) of the IS over EW 

model by deducting AFEIS from AFEEW: 

FI= AFEEW – AFEIS. 

If IS analysis can improve the accuracy of profitability forecasting compared to EW analysis, the FI 

measure should be positive on average.  

To assess the average magnitude of the firm or segment profitability forecast improvement, we 

calculate the overall average across all firm or segment observations, respectively. This is referred to 

as the pooled mean in the result tables. Following Fairfield, Ramnath, and Yohn (2009), we also 

calculate another measure of average forecast improvement by taking the mean of the yearly average 

forecast improvements. This is referred to as the grand mean. Most of the results are robust to the 

two measures. In our view, the pooled mean uses information more efficiently than the grand mean. 

Thus, the latter is a more conservative measure for proving significant forecast improvements. The p-
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values reported in the result tables are obtained from t-tests based on robust standard errors (clustered 

by firm) following Rogers (1993). 

4.2 Firm-level Analysis 

To begin, the left column in panel A of table 3 replicates Fairfield, Ramnath, and Yohn’s (2009) 

no industry effect finding for our sample covering 1988-1997. As expected, the firm profitability 

forecast improvements (of IS over EW analysis) are not significantly different from zero for all three 

profitability measures. As a robustness check, we repeat the analysis for all years of data available 

from WRDS (i.e., 1979-2010). The results are reported in the right column of the panel. Again, none 

of the forecast improvements is significantly different from zero, regardless of the profitability 

measures or the way the mean forecast improvements are computed. In sum, panel A confirms that at 

the firm level, IS analysis has no significant advantage over the simpler EW analysis in forecasting 

profitability.7  

The result above suggests that firm profitability is mostly governed by economy-wide factors that 

affect each industry in a similar way. Industry-specific analysis does not seem to add much to the 

accuracy of firm profitability forecasts. Why? We conjecture that the lack of an industry effect at the 

firm level is due to aggregated reporting that obscures the relation between profitability and industry-

specific characteristics.  

Many firms do not operate in a single industry. Often they have different lines of business 

organized into units reported as business segments. When the segments of a multiple-segment firm 

are associated with different industries, there is no one single industry that can accurately represent 

                                                   
7 For simplicity, we use the most basic form of first-order autoregressive model without including 

any additional predictors such as the predicted sales growth and a dummy variable to account for the 

non-linearity in mean reversion of profitability that are used in Fairfield, Ramnath, and Yohn (2009). 

Including these variables does not qualitatively change the no industry effect benchmark results.  
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the whole firm. Describing a multiple-segment firm with a primary industry ignores the relation 

between its profitability and the other industries to which its segments belong. In contrast, for firms 

with a single segment, aggregated reporting at the firm level does not severely distort the truth. The 

only segment of a single-segment firm is very much like the whole firm. If industry effects on 

profitability forecasting exist at the segment level, they may also be observed at the firm level when 

confining to single-segment firms. However, for multiple-segment firms, the effects should still be 

insignificantly different from zero.  

To test this hypothesis (H1), we match the sample of firm profitability forecast improvements 

with the business segment data. This allows partitioning the forecast improvements into subsamples 

for single- and multiple-segment firms. The results are presented in panel B of table 3. The reduction 

in the total sample size to 16,301 in the panel is mainly due to the unavailability of segment data for 

matching. Moreover, we exclude observations with the firm sales deviated more than 1% from the 

aggregated segment sales to mitigate data quality concerns. Owing to the doubt in correctly 

classifying firms that might not be genuinely single-segment, as suggested by the increase in the 

reported number of segments to more than one immediately after SFAS 131, we also exclude such 

firms from the analysis.  

By partitioning the sample, we find that IS analysis is useful for profitability forecasting even at 

the firm level when confining to single-segment firms. Nearly all the forecast improvements for 

single-segment firms are significantly positive at the 5% level, with some at the 1% level, regardless 

of the three profitability measures. The magnitudes of the forecast improvements are all larger than 

their counterparts in the full sample in panel A. In contrast, EW analysis remains as good as IS 

analysis in predicting firm profitability for multiple-segment firms. None of the forecast 

improvements for such firms is significantly different from zero. Taken together, the findings 

consistently confirm H1.  

These results provide support for the conjecture that industry effects on profitability forecasting 
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are obscured by aggregated reporting at the firm level. To obtain more direct evidence to support the 

conjecture, we turn to the segment-level analysis in the next subsection.  

4.3 Segment-level Analysis 

If industry effects on profitability forecasting exist at the segment level, the segment profitability 

forecast improvement should be significantly positive, unlike its firm profitability counterpart. This 

hypothesis (H2) is confirmed by the results in panel A of table 4. Only ROA can be computed from 

segment data. The panel shows the segment profitability forecast improvements measured by the 

pooled mean and grand mean. Both indicate the same magnitude of mean forecast improvement at 

the segment level. The pooled mean is highly significant at less than 1% level, although the more 

conservative grand mean is significant only at the 5% level.  

Under the premise that business segments are themselves aggregated entities of more basic units, 

the incremental advantage of using IS analysis to forecast segment profitability should be greater for 

smaller segments that tend to be more homogenous in activities. However, for larger segments, they 

are likely to be more diverse in activities. So analogous to the argument that single-segment firms are 

less diverse (more homogenous) in activities than multiple-segment firms, we hypothesize that the 

smaller a business segment, the more homogenous its activities and therefore the stronger the 

industry effects on segment profitability forecasting (H3). Given that more accurate proxies for the 

homogeneity/diversity of segment activities are unavailable, we use the size of a segment measured 

by its segment sales as a crude proxy.   

To test H3, we partition the segment profitability forecast improvements into two subsamples 

based on the median of segment sales. Below- and above-median segments of a year are referred to 

as small and large segments of the year, respectively. The results in panel B of table 4 show that the 

segment profitability forecast improvement for small segments is significantly positive at the 1% 

level for both the pooled mean and the more conservative grand mean. In contrast, the forecast 

improvement for large segments is not significantly different from zero regardless of the measure in 
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concern. This sharp difference between small and large segments is consistent with the hypothesis. 

The disappeared forecast improvement for large segments suggests that their activities might be too 

diverse for them to be very closely tied to their primary industries.   

Besides this test of H3, we also run a linear regression of the forecast improvement on segment 

size and some control variables. This alternative test mitigates the confounding effects from the 

control variables. We are able to identify two relevant control variables, namely industry sales and 

industry concentration. We interpret industry sales as a proxy for the size of an industry and hence 

the likelihood of having more segments in the industry for use in IS analysis. Clearly, if the number 

of segments in an industry is small, it is not likely to give reliable estimates of the coefficients of the 

IS model. The incremental advantage of using IS analysis for profitability forecasting is small too. 

Therefore, we expect the segment profitability forecast improvement to increase with the industry 

sales.  

In more concentrated industries, competition is lower. Segment profitability is therefore more 

persistent and predictable. IS analysis takes industry characteristics (such as industry concentration) 

into consideration implicitly, whereas EW analysis completely ignores industry differences. 

Consequently, we expect the incremental advantage of using IS analysis for profitability forecasting 

to increase with industry concentration.  

We use the Herfindahl index (HI) to measure industry concentration. The HI of industry j is 

computed as follows, based on the sales of the firms reporting segments in the industry:  

HIj = ∑i sij, 

where sij is the share of firm i’s sales in the total sales of industry j. A low HI means a more 

concentrated industry; a high HI means less concentrated. The following is the linear regression used 

for the alterative test of H3:  

FIi,t = α + β1 log(SALESi,t) + β2 log(INDUSTRY SALESj,t) + β3 log(HIj,t) + εi,t. 

Log transformation is used to reduce the skewness of the explanatory variables. Like computing 
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the grand mean besides the pooled mean, we estimate the regression equation using two econometric 

approaches. First, we run a panel regression using all segment-year observations. Robust standard 

errors are used to account for heteroscedasticity and serial correlation (Rogers 1993). Second, we 

employ the Fama and MacBeth (1973) methodology to first estimate the regression equation cross-

sectionally for each year and then take an average of the estimated coefficients across years.  

Panel C of table 4 shows the estimation results. The control variables are significant and in the 

directions anticipated. As the control variables are added to the regression one after another, the 

estimated coefficients of the segment size variable continue to be significantly negative. That is to 

say, the segment profitability forecast improvement is greater, the smaller the segment size. This 

further confirms H3.   

4.4 Difference in Forecast Improvement Analysis 

We have shown that the segment profitability forecast improvement is significantly positive. 

Moreover, because single-segment firms cannot be too much different from the only segments they 

reported, we are able to show that even the firm profitability forecast improvement is significantly 

positive for such firms. If these findings fit together, we should also see little difference between the 

segment and firm profitability forecast improvements for single-segment firms. However, for 

multiple-segment firms, moving from the aggregated firm level to the more refined segment level 

should allow the industry effects on profitability forecasting to reappear clearly. We therefore expect 

the segment profitability forecast improvements for multiple-segment firms to be significantly above 

its firm profitability counterpart.  

These implications for the two types of firms, stated in H4, are tested using the difference in 

forecast improvement (DFI) measure. It is defined as the segment profitability forecast improvement 

minus its firm profitability counterpart:  

DFI = FISEGMENT – FIFIRM. 
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To construct the measure, we match the profitability forecast improvement of each segment of a firm 

to the firm-level profitability forecast improvement. This of course requires firm and segment data to 

be available at the same time. In addition, we require the firm sales to be within 1% from the 

aggregated segment sales. Finally, like testing H1, we exclude firms with the doubt in correctly 

classifying them as genuinely single-segment (see subsection 4.2).  

Table 5 shows the results for H4. For single-segment firms, there is little difference in the 

profitability forecast improvement when moving from the aggregated firm level to the more refined 

segment level. This is indicated by the insignificant pooled and grand means of the DFI measure. In 

contrast, both means of the measure are significantly positive for multiple-segment firms, showing 

that industry effects on profitability forecasting for such firms are significantly more noticeable at the 

segment level than at the firm level.  

The last column of table 5 shows the means of the DFI measure for the whole sample. They are 

significantly positive as well, suggesting that the difference in forecast improvement for multiple-

segment firms is quite substantial. Otherwise, the insignificance results for single-segment firms 

could have overshadowed the significantly positive DFI for multiple-segment firms. Overall, the 

results in table 5 support H4 unambiguously.  

5. Concluding Remarks 

Fairfield, Ramnath, and Yohn (2009) have shown that there is no incremental advantage of using 

IS analysis for predicting firm profitability, compared to EW analysis. Yet, several studies have 

presented evidence that firm profitability is at least partly governed by industry effects (e.g., Bou and 

Satorra 2007 and McGahan and Porter 1997). This paper proposes an intuitive reconciliation of these 

seemingly conflicting findings, based on the fact that many firms have multiple business segments 

operating in different industries. We argue that when segment-level data are aggregated to the firm 

level for external reporting, industry effects on forecasting profitability are obscured at the firm level.  

Our empirical analysis shows that IS models are indeed significantly more accurate than EW 
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models in predicting profitability at the segment level. We even find higher accuracy in predicting 

profitability at the firm level when confining to single-segment firms, which operate in one industry 

only. These findings underline that industry factors have an impact on profitability forecasting. It is 

merely because of the aggregated nature of firm-level data that prevents the industry effects from 

standing out in firm-level analysis. 

The results of this study are also relevant to the accounting disclosure literature. Since we find 

that segment-level data can provide more accurate information about a firm’s future profitability, this 

can be taken as evidence for the usefulness of more disaggregated accounting disclosure. 
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Table 1 

Variable definitions 

 

 

Variable name Description Computation 

Firm-level analysis 

(Compustat fundamentals annual) 

Computation 

Segment-level analysis 

(Compustat segments) 

 

NIt (in mn) Income before extraordinary items 

– available for common equity 

Compustat item 237  

WRDS mnemonic: IBCOM 

 

BVt (in mn) Common/ordinary shareholder’s 

equity 

Compustat item 60  

WRDS mnemonic: CEQ 

 

OPINCt (in mn) Operating income after 

depreciation  

Compustat item: 178 

WRDS mnemonic: OIADP 

Compustat item: XXX 

WRDS mnemonic: OPS 

TAt (in mn) Identifiable/total assets 

 

Compustat item 6 

WRDS mnemonic: AT 

Compustat item: XXX 

WRDS mnemonic: IAS 

SALESt (in mn) Total sales Compustat item: 12 

WRDS mnemonic: SALE 

Compustat item: XXX 

WRDS mnemonic: SALES 

NOAt (in mn) Net operating assets Common stock (60/CEQ) + preferred 

stock (130/PSTK) + long-term debt 

(9/DLTT) + debt in current liabilities 

(34/DLC) + minority interest (38/MIB) – 

cash and short-term investments (1/CHE) 

 

ROEt Return on equity NIt/(0.5*(BVt + BVt–1))  

RNOAt Return on net operating assets OPINCt/(0.5*(NOAt + NOAt–1))  

ROAt Return on assets OPINCt/(0.5*(TAt + TAt–1)) OPINCt/(0.5*(TAt + TAt–1)) 

 

 
NI (income before extraordinary items), BV (common shareholder’s equity), OPINC (operating income), TA (total assets), SALES (total sales), and NOA (net 

operating assets) are reported in USD million. If the data items preferred stock, long-term debt, debt in current liabilities, minority interest and cash and short-

term investments are not available, they are assumed to equal zero. 



Table 2 

Sample selection and descriptive statistics  

 

 

Panel A: Sample selection 

Adjustments to data sample Firm-level data 

(firm-year observations) 

Segment-level data 

(segment-year observations) 

 ROA RNOA  ROE ROA 

Total observations, excluding utilities and financial 

firms/segments 

114,505 114,319 114,362 151,583 

Less observations with negative sales 114,475 114,289 114,332 151,570 

Less observations with small denominators 87,588 76,366 99,085 144,125 

Less observations with an absolute value larger than 1 87,465 75,257 95,343 142,532 

Less observations with more than 100% growth 74,403 66,081 81,183 133,655 

Less upper and lower centiles observations 72,915 64,761 79,561 130,983 

Observations of absolute forecast errors 33,789 29,771 35,282 54,814 

Observations in out-of-sample prediction, out of which: 27,361 27,361 27,361 54,814 

    single-segment firms    25,691 

    multiple-segment firms    22,376 

 

 
Panel A summarizes the sample selection procedure and the number of observations available after each filter. For variable definitions, see table 1. Single-

segment firms are firms that report only one segment; multiple-segment firms are those reporting more than one segment. Following SFAS 131, some firms have 

changed the number of reported segments from one in 1997 to more than one in 1999, suggesting that they might not be genuinely single-segment firms prior to 

1997. Owing to the doubt in correctly classifying these firms, they are excluded from the sub-samples of single- and multiple-segment firms. 



Table 2 

Sample selection and descriptive statistics (Continued) 

 

Panel B: Summary statistics 

Variable Mean Std. Deviation First Quartile Median Third Quartile 

Firm-level: 5,527 firms (27,361 firm-year obs.) 

NI  82.500 361.000 0.589 6.663 36.682 

OPINC  178.260 676.781 3.436 16.682 80.748 

TA  2,212.168 9,349.131 70.242 229.034 958.801 

NOA  1,314.782 5,510.057 45.260 147.961 614.998 

BV 750.978 2,587.391 33.466 100.786 387.012 

ROA  0.0828 0.0799 0.0399 0.0847 0.1300 

RNOA 0.1344 0.1375 0.0600 0.1272 0.2052 

ROE 0.0661 0.1630 0.0162 0.0952 0.1587 

Segment-level: 13,187 segments (54,814 segment-year obs.) 

TA 847.513 3,878.513 18.439 86.324 400.634 

OPINC 82.821 375.263 0.186 5.627 37.101 

ROA 0.0709 0.1560 0.0119 0.0845 0.1527 

Explanatory variables of regression analysis (54,270 segment-year obs.) 

SALES  941.417 4,624.95 22.488 110.300 480.428 

INDUSTRY SALES 251,676 225,590 58,485 186,092 399,485 

HI 0.00062 0.00553 0.00008 0.00020 0.00062 

 

Panel B gives an overview of the firm and segment data used to compute the average forecast improvements in the out-of-sample tests. Because profitability 

forecasts are constructed from the estimated coefficients of in-sample regressions based on the most recent 10 years of data, forecasts are not available for out-of-

sample tests until 1988 onward. SALES is the segment sales used as a proxy for the segment size. INDUSTRY SALES is the total industry sales defined as the sum 

of all segment sales within a given industry. HI is the industry concentration measured by the Herfindahl index based on the sales of the companies that report 

segments within a given industry. A low Herfindahl index indicates a highly competitive industry; a high Herfindahl index indicates a highly concentrated 

industry. 



 

Table 2 

Sample selection and descriptive statistics (Continued) 

 

Panel C: Descriptive statistics by industry  

 Firm-level  Segment-level  Two-

digit 

SIC Description Obs. ROA RNOA ROE Obs. ROA 

01 Agricultural production-crops 0 - - - 187 0.0658 

02 Agricultural production-livestock 0 - - - 43 0.0345 

07 Agricultural services 0 -  - 2 -0.1343 

10 Metal mining 551 0.0148 0.0251 0.0003 974 -0.0474 

12 Coal mining 0 - - - 273 0.0727 

13 Oil & gas extraction 1,389 0.0426 0.0627 0.0203 2,936 0.0305 

14 Nonmetallic minerals 59 0.0407 0.0613 0.0179 328 0.0630 

15 General building  238 0.0454 0.0633 0.0105 584 0.0346 

16 Heavy construction 26 0.0640 0.1393 0.0549 235 0.0678 

17 Special trade contractors 0 - - - 195 0.0596 

20 Food & kindred products 1,050 0.1051 0.1682 0.1088 1,557 0.1130 

21 Tobacco products 0 - - - 1 -0.0058 

22 Textile mill products 385 0.0910 0.1253 0.0584 589 0.0891 

23 Apparel & other textile 336 0.0964 0.1420 0.0635 569 0.0837 

24 Lumber & wood 301 0.0768 0.1183 0.0649 605 0.1235 

25 Furniture & fixtures 255 0.1065 0.1623 0.0948 450 0.0895 

26 Paper & allied products 607 0.0976 0.1423 0.0897 1,034 0.1055 

27 Printing & publishing 602 0.1033 0.1638 0.0932 1,182 0.1304 

28 Chemicals & allied products 1,608 0.1082 0.1803 0.1128 3,694 0.0709 

29 Petroleum & coal  424 0.0673 0.1147 0.0740 556 0.0791 

30 Rubber & plastic products 464 0.1065 0.1597 0.0791 1,141 0.1246 

31 Leather 124 0.0926 0.1439 0.0511 238 0.0791 

32 Stone, clay & glass 323 0.0869 0.1300 0.0803 694 0.1036 

33 Primary metal products 790 0.0790 0.1205 0.0603 1,287 0.0982 

34 Fabricated metal products 726 0.0957 0.1506 0.0826 1,584 0.1144 

35 Industrial machinery & 

equipment 

1,865 0.0786 0.1354 0.0544 4,532 0.0636 

36 Electronic & other electric 

equipment 

2,231 0.0802 0.1367 0.0591 4,122 0.0696 

37 Transportation equipment 924 0.0820 0.1355 0.0786 1,729 0.1010 

38 Instruments & related products 1,500 0.0917 0.1517 0.0719 3,467 0.0532 

39 Misc. manufacturing industries 350 0.0841 0.1367 0.0512 683 0.0638 



40 Railroad transportation 234 0.0697 0.1181 0.0761 259 0.0678 

42 Trucking & warehouse 326 0.0903 0.1448 0.0721 532 0.0809 

44 Water transportation 170 0.0544 0.0818 0.0529 324 0.0620 

45 Transportation by air 239 0.0612 0.1157 0.0331 461 0.0409 

47 Transportation services 81 0.0901 0.1803 0.1170 197 0.0769 

48 Communications 1,437 0.1067 0.1589 0.1158 2,085 0.0848 

49 Electric, gas & sanitary services 244 0.0531 0.0807 0.0230 724 0.0364 

50 Wholesale trade-durable products 1,000 0.0788 0.1220 0.0598 1,906 0.0686 

51 Wholesale trade-nondurable 

goods 

596 0.0737 0.1259 0.0755 1,192 0.0784 

52 Building materials 115 0.0690 0.1052 0.0075 201 0.0603 

53 General merchandise stores 380 0.0775 0.1224 0.0631 569 0.0647 

54 Food stores 431 0.0908 0.1575 0.0821 472 0.0973 

55 Automotive dealers & services 58 0.0945 0.1372 0.0674 183 0.0553 

56 Apparel & accessory stores 352 0.0932 0.1670 0.0747 465 0.0987 

57 Furniture stores 249 0.0836 0.1567 0.0507 404 0.0564 

58 Eating & drinking places 512 0.0978 0.1356 0.0521 971 0.0667 

59 Miscellaneous retail 565 0.0808 0.1284 0.0506 915 0.0711 

70 Hotels & other lodging places 187 0.0550 0.0746 0.0162 392 0.0567 

72 Personal services 0 - - - 157 0.2233 

73 Business services 1,379 0.0841 0.1667 0.0591 3,473 0.0609 

75 Auto repair, services & parking 85 0.0716 0.0962 0.0773 166 0.0461 

76 Misc. repair services 0 - - - 4 0.1826 

78 Motion pictures 190 0.0486 0.0729 -0.0057 503 0.0128 

79 Amusement & recreation 

services 

293 0.0802 0.1176 0.0180 635 0.0623 

80 Health services 410 0.0946 0.1405 0.0601 1,039 0.0649 

82 Educational services 0 - - - 68 0.0704 

83 Social services 0 - - - 1 0.3991 

86 Membership organizations 0 - - - 1 0.1314 

87 Engineering & management 

services 

379 0.0729 0.1328 0.0456 1,130 0.0385 

89 Services, other 0 - - - 4 -0.1825 

99 Non-operating establishments 231 0.0438 0.0765 -0.0003 0 - 

Total  27,361 0.0828 0.1344 0.0661 54,814 0.0709 

 

Panel C reports the number of observations and the average firm and segment profitability in each industry classified 

by two-digit SIC. 



 

Table 3 

Firm profitability forecast improvements of industry-specific analysis over economy-wide analysis 

 

 

Panel A: Total sample 

Years 1988-1997 1979-2010 

Firm observations 27,361 88,743 

 mean p-value mean p-value 

ROA     

Pooled mean -0.00002 0.798 -0.00002 0.768 

Grand mean 0.00000 0.991 -0.00000 0.994 

RNOA     

Pooled mean 0.00011 0.385 0.00010 0.187 

Grand mean 0.00015 0.647 0.00010 0.544 

ROE     

Pooled mean 0.00026 0.227 0.00003 0.789 

Grand mean 0.00031 0.379 0.00005 0.803 

 



Table 3 

Firm profitability forecast improvements of industry-specific analysis over economy-wide analysis (Continued) 

 

 

Panel B: Sample partitioned in single and multiple segment firms 

Years 1988-1997 

Firm type Single-segment firms Multiple-segment firms 

Firm observations 10,432 5,869 

 mean p-value mean p-value 

ROA     

Pooled mean 0.00035 0.021 -0.00020 0.315 

Grand mean 0.00036 0.146 -0.00020 0.334 

RNOA     

Pooled mean 0.00071 0.001 -0.00001 0.977 

Grand mean 0.00072 0.041 0.00002 0.961 

ROE     

Pooled mean 0.00096 0.009 -0.00016 0.746 

Grand mean 0.00102 0.038 -0.00014 0.669 

 

 

The panels of this table report the average firm profitability forecast improvement of industry-specific analysis over economy-wide analysis. The firm 

profitability forecast is based on the fitted value from the first-order autoregressive model estimated on a rolling basis using the most recent 10 years of data (see 

section 4.1 for details). The pooled mean is the average forecast improvement when pooling the observations of all years together. The grand means is the mean 

of the yearly average forecast improvements. The p-values are based on t-tests with robust standard errors (clustered by firm) following Rogers (1993). Panel A is 

based on the total sample of firm profitability forecast improvements. Panel B is based on the single- and multiple-segment firm subsamples. To utilize segment-

level information to categorize single- and multiple-segment firms, firm-level data are matched to segment-level data to construct the subsamples. Observations 

with firm sales deviated from aggregated segment sales by more than 1% are excluded. In addition, firms that have changed the number of reported segments 

from one in 1997 to more than one in 1999 are also excluded from the single- and multiple-segment firm subsamples (see section 4.2 for details). 

 



Table 4 

Segment profitability forecast improvements of industry-specific analysis over economy-wide analysis 

 

 

Panel A: Total sample 

Years 1988-1997 

Segment observations 54,814 

 mean p-value 

ROA   

Pooled mean 0.00037 <0.001 

Grand mean 0.00038 0.042 

 

Panel B: Sample partitioned in small and large segments  

Years 1988-1997 

Segment size Small segments Large segments 

Segment observations 27,393 27,421 

 mean p-value mean p-value 

ROA     

Pooled mean 0.00057 <0.001 0.00017 0.200 

Grand mean 0.00058 0.001 0.00018 0.511 

 

 

These two panels report the average segment profitability forecast improvement of industry-specific analysis over economy-wide analysis. The segment 

profitability forecast is based on the fitted value from the first-order autoregressive model estimated on a rolling basis using the most recent 10 years of data (see 

section 4.1 for details). The pooled mean is the average forecast improvement when pooling the observations of all years together. The grand means is the mean 

of the yearly average forecast improvements. The p-values are based on t-tests with robust standard errors (clustered by firm) following Rogers (1993). Panel A is 

based on the total sample of segment profitability forecast improvements. Panel B is based on the small- and large-segment subsamples, where small and large 

segments are defined as segments with below- and above-median segments sales in a given year, respectively.  



Table 4 

Segment profitability forecast improvements of industry-specific analysis over economy-wide analysis (Continued) 

 

 

Panel C: Regression tests of segment profitability forecast improvements  

(based on 54,291 segment-year observations from 1988 to 1997) 

Dependent variable: Segment-level forecast improvement 

Explanatory variables: Panel regressions Fama-MacBeth regressions 

log(SALES) -0.00016 

(0.001) 

-0.00018 

(<0.001) 

-0.00024 

(<0.001) 

-0.00015 

(0.048) 

-0.00017 

(0.031) 

-0.00022 

(0.012) 

log(INDUSTRY SALES)  0.00027 

(<0.001) 

0.00058 

(<0.001) 

 0.00032 

(0.001) 

0.00062 

(0.001) 

log(HI)   0.00050 

(<0.001) 

  0.00046 

(0.031) 

Adjusted R-squared 0.1% 0.1% 0.2% 0.1% 0.2% 0.4% 

 

This panel presents the regression tests of the segment profitability forecast improvement (FI) of industry-specific analysis over economy-wide analysis using the 

model below 

FIi,t = α + β1 log(SALESi,t) + β2 log(INDUSTRY SALESj,t) + β3 log(HIj,t) + εi,t. 

SALES is the segment sales used as a proxy for the segment size. INDUSTRY SALES is the total industry sales defined as the sum of all segment sales within a 

given industry. HI is the industry concentration measured by the Herfindahl index based on the sales of the companies that report segments within a given 

industry. All variables are transformed by natural log to reduce the skewness of the variables. The panel regressions pool all segment-year observations together 

and estimate the coefficients in one regression step. Robust standard errors are used to account for the impacts of heteroscedasticity and serial correlation (Rogers 

1993). The Fama-MacBeth regressions first estimate the coefficients cross-sectionally for each year and then average the coefficients across years. The adjusted 

R-squared value for Fama-MacBeth regressions is the mean of the adjusted R-squared values for the yearly regressions. The p-values of the tests are reported in 

parentheses.  

 

 



Table 5 

Difference in forecast improvement analysis: segment versus firm profitability forecast improvement  

 

 

Years 1988-1997 

 Single-segment firms Multiple-segment firms Total sample 

Segment observations 11,478 10,655 25,533 

ROA mean p-value mean p-value mean p-value 

Pooled mean 0.00013 0.187 0.00053 0.019 0.00030 0.005 

Grand mean 0.00014 0.378 0.00054 0.002 0.00030 0.008 

 

This table presents the tests based on the difference in forecast improvement (DFI), i.e., the segment profitability forecast improvement minus its firm 

profitability counterpart. The pooled mean is the average difference in forecast improvement when pooling the observations of all years together. The grand 

means is the mean of the yearly average difference in forecast improvement. The p-values are based on t-tests with robust standard errors (clustered by firm) 

following Rogers (1993). To construct the difference in forecast improvement measure, segment-level observations are matched to firm-level observations before 

the in-sample regressions. Observations with firm sales deviated from aggregated segment sales by more than 1% are excluded. The single- and multiple-segment 

firm subsamples reported in the first and second columns also exclude firms that have changed the number of reported segments from one in 1997 to more than 

one in 1999 (see section 4.4 for details). 


