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A MATHEMATICAL INTRODUCTION TO TRANSITIONAL
LOTTERIES

FRANCESCO STRATI

ABsTrRACT. When we face a decision matter we do not face a frozen-time
where all keep still while we are making a decision, but the time goes by and
the probability distribution keeps moving by new available information. In
this paper I want to build up the mathematical framework of a special kind
of lottery: the transitional lotteries. This theory could be helpful to give to
the decision theory a new key so as to define a more accurate mental path.
In orther to do that we will need a mathematical framework based upon the
Kolmogorov operator which will be our transitional object, the core of this
kind of lottery.

1. LOTTERIES AND THE FOKKER-PLANCK EQUATION

In this paper I shall describe the mathematical framework so as to rich a very
powerful method in computing lotteries. It would be difficult to study a truthful
decision’s path without consider some intuitions with regard to stochastic processes.
Rather, we shall do that because of the randomness soakes up everything concerns
decisions. We have to talk about the possible outcomes to which a decision could
lead to and thus the risky alternatives; I am talking about the lotteries. A simple
lottery & is defined as 2 = (py...p,) with p > 0 and ¥, p, = 1 where p is a
probability that something happens.

We can treat the lotteries in this fashion: given a probability space (Q,.%,P),
a random variable (lottery) 2 :Q — R* and the measure u; we define the measure
on a density f (v=f.u) with respect to u

()= [ f@)dpa),

if v, are o-finite and v < p (absolutely continuos) there exist the density f
(Radon-Nikodym). We can assert that the probability density remains unchanged,
but it could be difficult to state it in many cases. In decision theory it would be
very likely to have a trasformation in processes, therefore it is of utmost importance
to treat this subject in changing “probability”. But, what does it mean “change”?
An intuitive way to think about the meaning of transitional lotteries is this: If we
have some information about a guy A and his utility function Us. We know that
two objects (¢, b) lie on the same indifference curve, but the budget constraint of
A allows him to buy either ¢ or b. Thus, A at time ¢y is in the place g, but he
wants b that is in the place x1. He will be in the place z; at time ¢y, hence if we
know that he is already going to x1 so as to take b it is pretty sure that he will
satisfies his b-wish. But while is walking he see a store where it is selling ¢, thus A
change his wish and goes toward that store so as to buy c¢. He changed his mind
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A MATHEMATICAL INTRODUCTION TO TRANSITIONAL LOTTERIES 2

path because ¢ was closer than b and we know they lie on the same indifference
curve. The probability at time t; was right, for he really wanted to buy b at tg,
the probability distribution had changed when he sow the store of ¢ ~ b. We had
to observe the change in probability distribution from (o,z9) — (¢1,21) and not
at the point A has changed his mind, but as a flow in the time span [t1,dt,d3]. Of
course dt is not a derivative, it means that we do not have to observe a point in the
midst of the time span, but we have to be careful to the flow throughout that span.
We have to use a method which admits a change, and in decision theory I rekon it
would be of utmost importance to foresee a movement in probability distribution
when a decision maker has to decide.

In what follows we shall see the mathematical framework which will admit a
change in probability distribution, and in the last section we shall see the transi-
tional lotteries made up that framework. In [§1.1] and [§1.2] we shall see the fun-
damental theory underpins every rational decision path. Through [§1.3] to [§1.6]
we shall define the mathematical framework of the [§1.7] wherein there will be a
definition of transitional lotteries.

1.1. Orders and preorders'. This section is by no means a complete treatment
of the order theory, what follows is to indent so as to give a hint about this topic.
We have to rationalize the decision maker’s action, that is to say, we have to give
some rules in order to have a benchmaker by which one can study how a decision
maker should act.
A relation satisfying these property

Py x <z, Reflexivity

Py: <y and y <z imply x =y, Antisymmetry

P;: x <y and y <z imply x < z, Transitivity
is called an ordering and a non-empty set which holds such a relations is called
an order. We call relation R from a set A to a set B a subset R ¢ A x B. Given
a €A and b € B, we write aRb (a is related to b) iff (a,b) eR. If A= B, we write
A? = A x A, then a binary relation R on A is a subset of A2, If R satisfies the
properties (Py, P2, P3), then, R is an ordering and we can denote it by <. If a < b
we say that a is majorized by b or that b majorizes a [8], thus

1. a < b means that b<a
2. a < b means that a <b and a+b
3. a > b means b < a.

If R satisfies transitivity, reflexivity and symmetry? (rather than antisymmetry) we
have an equivalence relation R¢, denoted a = b(modR¢) as well. If R is transitive
and reflexive, we named such relations preorders. If R is a preordering on A, we
can define R on A: if (a,b)(b,a)e R |8].

An (A,R) is an ordered space and, in decision theory, we can define A a non-
empty strategy set and R a preorders on A. A preorder allows us to compare
several strategies rationally (under a constraint S), so we say that a preorder is the
decision maker’s rationality by which he can face a problem. We define (A, R,S)
the decision matter where A is the matter-strategic set, R the rationality and S
the feasible set.

LThis section is based upon [2]
%if aRb — bRa.
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We have (A,<) with a,be A, if a ~ b then a is indifferent to b and satisfies both
a<bandb<a. If we have a < b then a is strictly less than b or for a > b we say that
a is strictly dominant on b if a > b (is weakly dominant) but it is not indifferent.

There are subjective and objective preorders, of course the meaning is that one
cannot use the subjective one in lieu of the objective preorder, but that the former
has to be a refinemet of the latter. For instance, if we have a p e R™ — Jz,y € (p, <
JR™) » 2 <, y < pix; <piy; Vi, it is reflexive and transitive and the <,=<, where
s; = sgn(p;). In decision theory we can say that (R, +) means that 3 good-choices,
bad-choices and unimportant-choices (p; = 0), furthermore if —p; in p;z; < piy;
means z; > y; it would be a bad-choice whereas a +p; — x; < y; means that it
would be a good-choice. The weak preference <, of the y-quality means that it is
not less than the z-quality, and the y-bad quality must be not greater than the
z-bad quality. Now we have to know an important propery. Given two lattices
2 =(X,<) and # = (Y, <) we say that they are isomorphic (£ 2%) and the map
¢: X — % is an isomorphism, if ¢ is a bijection and a <be 2" < ¢(a) < Pp(b) e ¥
. We call homomorphism of a semilattice (Aj,o) into (Ag,0) if ¢ : Ay > Ay —
Y(aob) = ¢(a)ogp(b). In the decision theory, if a funcition f has an isomorphism, we
say that x <7 y, then y is weakly preferred to by means of the function f: X — R.
It is worth to notice that the preorder induced by the function is still a preorder in
its domain.

Given X; and X5 two non-empty sets and Ry Ro on X7 X5, the binary relation
R defined on X7 x XoVx,ye Xi x Xo, 2Ry < x1R1y1, T2 Roy2; we call it the
product relation of R; Ro. The preorder < defined on the cartesian product is
called product-preorder of <1,<5. The preordered space (X7 x X5, <) is called the
product-preordered space of (X1,<1),(X2,<2). Given the product, an z < y is a
strong preference (of minorizing) induced by the product-preorder of the preferences
<1,<9o.

Given X #@ and R1 R on X. Thus 2Ry < 2Ry and 2Ray V x,ye X, it is
called the conjoined relation of R; Ro. We say that the preorder < defined on X
by x <y is a conjoined preorder < z <1 y and x <y y whereas the space (X, <) is
called the conjoined preorered space of (X7,<;) and (X, <2).

1.2. Optimal boundaries for decision®. In this section I want to discuss the
optimal boundaries in the field of preordered spaces. Remember that in (X, <) if
xo < y and the relation zy > y does not hold we say that y is strictly prefererred
to xg. Bearing this in mind, let (X,<) be a preordered space and S a part of
X, xp € S. The element xg is called Pareto mazimum of S (or maximal) with
respect to the preorder <, if Ay € S :y > xo. We call Pareto maxima of S, those
points xg € S : 3y < zp and we define them by max?(S) meanwhile the set of
Pareto minima of S is denoted by minE(S). These two sets are called maximal
Pareto-boundary of .S and minimal Pareto boundary of S respectively. It is as plain
as day that zge (X, <) is a maximal element of the space iff Vy; > ¢ — y; ~ 0.

Now we have to state that the maximal elements are not comparable among
them, therefore let S be a part of a preordered set (X, <). Then

1. if mazl'(S) + maxl?(8) . -/ <*

3This section is based on [3].
4In this section A has the logic meaning of “and” rather than “minimum” as above section and
by — / < I mean “not comparable”.
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2. if (X,<)Amazf(S)+maz?(S). . -/«

3. if (X, <) is a totally preordered space then every Pareto maximum is a
maximum of S

4. if (X,<) is a totally preordered space a Pareto maximum of S, if it

exists, is unique and it is the (unique) maximum of S.

Every maximum of S is a maximal element of S and it is that iff it is a maxima of
S, thus two maximal elements are ~ among them and 3! Pareto maximum.

We have to introduce another important concept, a subset C' of a preordered set
X is said to be cofinal (resp. coinitial) in X if VeeX JyeC :x <y (resp. y < z). To
say that an ordered set X has the greatest (resp. least) element, therefore, means
that X has a cofinal (resp. coinitial) subset consisting of single element[1]. We
could say that a cofinal part “the smaller is the more is good”, hence a preordered
space has a maximum iff 3 a cofinal part whose elements are in the same class of
indifference. We call C' the smallest cofinal of X w.r.t. < if it is cofinal and it is
contained in each cofinal part of the space therefore it coincides with the intersection
of all cofinal parts of the space.

Given the notion of cofinal, it is obvious that each cofinal part of an ordered
space contains the maximal boundary of the space and it is the infimum of the set
of cofinal parts of the ordered space w.r.t. the set inclusion in the power-set P(x),
thus the intersection of cofinal parts has to be non-empty (even if it could be). It
is trivial to say that if 3 the smallest cofinal part of <, then it is coincides with
the maximal boundary of the space. Moreover, an ordered space has the smallest
cofinal part iff the maximal boundary of the space is cofinal.

There is an important concept that we have to use when we face preordered
spaces which are not ordered “the saturated part w.r.t. an equivalence relation”. We
already know that every relation which satisfies reflexivity, symmetry and trasitivity
is called an equivalence relation on X [1]. The partition 3 ¢ X is called the quotient
space X by the relation R(z), we denoted by X /R its equivalence classes w.r.t. R
(the notation = = y(modR) is sometimes a synonym for R{z,y}) [1]. The mapping
x~ H(z) of X onto X /R is called the canonical map. Thus, let R be an equivalence
relation on X, and A ¢ X. Then z = y(modR) € A is called the relation induced
by R on A (Ra). An A c X is said to be saturated w.r.t. the equivalence relation
R if for each x € A the equivalence class of x w.r.t. R is contained in A, thus are
the unions of equivalence classes w.r.t. R. If f is the canonical mapping of X onto
X /R then a set is saturated if it is of the form f~!(X) where X c X/R [1]. Given
that we say that the maximal boundary of a preordered space is saturated, for if
x ~ xo where xg is the maximal element and by contradiction 3y :y >z - y > xg,
but it is impossible by definition. So x belongs to the maximal boundary. Now we
can state that all NnS? (intersection of saturated cofinal parts) coincides with the
maximal boundary of the space, hence, if there is a maximal element of the space,
such intersection is non-empty.

If 3 a strictly increasing real functional on R™, then if K is a compact part of R™,
the maximal boundary of K # @ and cofinal for K w.r.t. (R",<)..3 the smallest
part of K.

A triple (X,<,7) is said topological preorder space with X non-void set, < a
preorder on X and 7 a topology on X. If the sets of upper (lower) bounds of each
element of X w.r.t. <, are closed in 7, the < is said upper (lower) compatible with
the topology 7. So that assume 3 on X at least a real upper semicontinuos strictly
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increasing functional, then the maximal boundary of a compact S is S #+ @ and
cofinal for S. Let (X,<,7), if every point of X € 7-closure of the set of its own
strict upper (lower) bounds, then the maximal (minimal) boundary of a S c X is
contained in the 7-boundary of S.

1.3. A mathematical introduction®. We are given a real separable Hilbert space
H (with norm |-| and inner product (-,-)) [7]. We denote by L(H) the set of all
bounded linear operator T': H - H endowed with the operator norm ||-||. The set
of all symmetric and nonnegative operators of L(H) is denoted by L*(H) and we
denote by B(H) the o-algebra of all Borel subsets of H [7]. We have already seen
the measure p, thus given the set of all probability measures .# (H) on (H,B(H)),
if ue.# (H) then its Fourier transform is defined by

(1) i) = [0 ), e

obviously i is the characteristic function of y, furthermore [ uniquely identifies
7
Given ceR, we define the Gaussian measure on R

(1.2) Neo(dz) = 6.(dx)

where §. is the Dirac measure at c¢. If v>0

1 (z=0)®
1.3 N, (dz) = T da.
( ) ,’Y( ‘r) \/me T
The Fourier transform of N .
(1.4) Noo(de) = [ "N, . (dz) = e peR.
R

Now we set LT (H) = L*(H) n Ly (H) where Li(H) is the set of all operators of
L(H) of trace class [7]. Thus, given @ € LT(H) in an arbitrary separable Hilbert
space, then 3 a unique measure N, g such that

—_—

(1.5) NC,Q(dx):fe“h“NC,Q(dx):ei<hz>*%Qh’h,heR.
R

Thus given ce H and Q € L7 (H) 3 a unique measure p on (H,B(H)) such that
[7]

(1.6) fei“m)u(dx) = eileh =5 (QhR) p R
R
 is a Gaussian measure p = N . Now we define the mean ¢ and the covariance
Q
(1.7 (k)= [ (o hhu(de). heH
(L8) [ (= eo=c.2)Neo(dn) = (Qy.2), y,zeH.

We set L?(H, N..q) = L*(H,B(H), N..¢), following [6] we say that for any h € H,
the exponential function Ej,, defined as

(1.9) Ep(z)=eP™ zeH,

5This section is based on [4] and [5]
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belongs to LP(H, N.g), p > 1, and
(1.10) / ei(h,w)Nc’Q(dx) = olah) o 3Qh.h
H

Furthermore the subspace of L?(H, N..q) spanned by all Ej, he H, is dense on
L*(H,N.q) [7]- Now, given Q € L (H), we denote by (e;) a complete orthonormal
system in H and by (\;) a sequence of positive numbers (eigenvalues) such that
Qey = \peg, Yk € N [7]. We define the subspace Q%(H) the reproducing kernel of
the measure Ng, and if Ker@ = {0} then Q2 (H) is dense on H. We define the
operator Q% as

(1.11) Q%x: Z\/)\k(x,ek)ek, reH.
k=1

Its range Q% (H) is the reproducing kernel (as we have just seen) of the measure

Ng [6]. We have said that Q%(H) is a proper subspace of H and that it is dense
in H
(1.12) Q2 (H) :{yeH: Sy <+oo}.
k=1

An interesting feature of Q2 (H) is that p(Q=(H)) = 0. Thus given f € Q2 (H)
we could consider the function Wy € L?(H, ;1) defined as [6]
(1.13) Wi(x) =(Q* f,x), xeH.

Following [6] it would be important to define W,V f € H, but we have to be
careful because of its zero measure. Thus given [6]
(1.14) W:QH(H) < H~L*(H.p), f > Wy,

where Wy (x) = (2,Q2 f),z € H. Then we can extend W to all H since it is an
isomorphism. We have in fact for any f, g€ Q? (H)

_1 1
(115) [ Wi@Wy@nd) =1QQ 4 £,Q ) = (£.9)
The function W is very important, it is the white noise function.

1.4. The Brownian motion and the Wiener integral. We can define a Brow-
nian motion 4 considering the probability space (H,B(H), ;)% Let %(t) =W
t > 0, where g is the characteristic function of the interval [0,¢]. Then % is a
real Brownian motion on (H,B(H), u) [7].

We can define an H-valued Brownian motion as a pair of (eg), (Wy(¢) where the
latter is a sequence of mutually independent real Brownian motion on (2, #, (%) ts0, P).
Thus we define

(1.16) AW (1) = 3 Wi (1) Aep, t 3 0,
=1

that is convergent in L?(Q; H) YA € Ly(H) (Hilbert-Schmidt operators) and so
we define the expectation

(1.17) E|AW (1)|? = tT[AA*] = t]| A% s

6H = L2(0, +00), 1 = Ng where Q € L : KerQ = {0}.
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given that, we shall consider Wiener integrals of real functions with values in
Lo(H). Let F e L*([0,T]; Lo(H)) and T >0

(1.18) [0 F(s)dW(s):k;/O F(s)endWi(s),
thus
T 2 T
(1.19) E‘ [ F@aw )| = [P Esds:
H

and the series is convergent in L?(Q; H).

1.5. Spaces of continuos function. We define C,(H) the Banach space consist-
ing of all mappings ¢ : H - R which are continuous and bounded, endowed with
the norm
su

(1.20) I6llo = gerr (@), @ € Co(H).

We denote by UCy(H) the mappings ¢ : H — R that are uniformly continuos
and bounded.; it is not a separable space albeit H = R. Following [6] we define
some important subspaces.

(7) C} (resp.UC}(H)) is the space of all continuos (resp. uniformly contin-
uos) and bounded functions ¢ : H - R which are Fréchet differentiable
on H with a continuous (resp.uniformly continuous) and bounded de-
rivative D,,.

(1.21) [l = setr IDo(@)]. Nl =llello + [olr. Y e Gy (H),
if pe C}(H) and x € H, we identify D, (z) with the unique element h
of H: D (x)y=(h,y), Vye H.

(i) In general, for any k e N, CF(H) (resp.UCF(H)) cUCy(H) of p: H -
R which are k-times Fréchet differentiable on H with continuous (resp.
uniformly) and bounded derivatives Df}, with h < k.

(1.22) [01k = oepr 1Do(@)], llolli = llello + llelle, Yoo € CE(H).
Furthermore
(1.23) G =N CE(H)
=1

1.6. Toward the Fokker-Planck equation. There would be a lot of things about
this fascinating subject, but for the sake of brevity we have to do a sort of summary.
We donote by K (t) the Kolmogorov operator

(1.24) K(t)p(x) = %TY[AA*DQQE@(SE)] + (2, 5" Do) + (f(£), Daip(x))-

This stems from the finite-dimensional Ornstein-Uhlenbeck process

dX = SXdt + AdW (t)
(1.25) { X(0) =z eRY :
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where S : D(S) ¢ H - H generates a Cy semigroup e : |[e]| < e, w > 0,
AeL(H) and we consider a H-valued brownian motion ((eg), (W%)). The unique
solution of the process is
(1.26) X(t,x)=eSz+Ws(t), t>0,

where the stochastic convolution Wg(t) is
t
(1.27) W(t) = f =08 Aqw (1),
0

Now (in order to extend the X (¢,x)) we do have to give a meaning to the
stochastic convolution as a Wiener integral for each fixed ¢

(1.28) [0,t] » L(H), 1~etD54
this mapping must belong to L?(0,t; Ly(H)), so that

(1.29) /OtTr[elSAA*elS*]dl < oo.
By it for any ¢ > 0 the operator @, is of trace class

(1.30) Qi = '/: elSAA*elS*xdl7 reH,
if it is fulfilled, setting

s t
(1.31) We(t) =3 f DS ey dWi (1),
h=10

we have a convergent series in L?(Q,.%;,P; H) and E[|Ws(t)]*] = TrQ;, fur-
thermore Wy (t) is a Gaussian random variable with values in H with mean 0 and
covariance @, (that is to say of Ng law). Thus by the X (¢,z) and the Wg(¢) we find
the corresponding transition semigroup, called the Ornstein-Uhlenbeck semigroup

(1.32) Rtap(x):/Hcp(etsx-ry)NQt(dy), >0, zeH, YoeBy(H),

where B, (H) is the space of all mappings H — R bounded and Borel, so it is
a semigroup of linear bounded operators on UCy(H ), and it is strongly continuos
only if S = 0. Now (without proof) we state that the space of exponential functions
O(H) is stable for R;.

We know (2.1) that Ej,(z) = eX®" Vhe H, z € H, we have just said that ©(H)
is the linear span of all real parts of Ej for h € H. Albeit ©(H) is not dense in
Cy(H), any function can be pointwise approximated from it by functions of ©(H).
We have to notice that, in several cases, the strong continuity fails to hold in Cy,(H)
and that is the case of Ornestein-Uhlenbeck semigroup. Thus, the semigroup R;
belongs to a special class of semigroups on UC,(H ), the so called m—semigroups. A
sequence (p,,) ¢ Cy(H) is said to be m—convergent to a map ¢ and we write @, — ¢
as n — oo if the following conditions hold [9]

(4) peCy(H), 1 lleullo < oo;

(44) limg oo on () = (), wxe€H.

A subset Z is called m-dense if for any ¢ € UCy(H) 3 (pn) € Z: ¢n — .
Following [7], for any ¢ € UCy(H) 3 a multi-sequence (¢g ;) in ©g(H) such

that

(7) limy s oo imy, oo im0 0, (2) = (), Yo e H

(44) ok mjllo < llello + =, ¥n,k,j eN.
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If p e ©(H) then u(t,z) := Ry, fulfills the Kolmogorov equation

DX (t,z) = 3Tr[AA* D2u(t,z)] + (x,S* Dyu(t, x)),
R I e

given that , the operator
1
(1.34) Hop(x) = iTr[AA*Diu(t,x)] +(x,S*"Dyu(t,x)), v € H,

is the Kolmogorov operator corresponding to O.U (1.25).
We need that the Kolmogorov operator (1.34) becomes contingent on a time
dependent Ornstein-Uhlenbeck process in this form

(1.35) X(y==z, 1€[0,T) ’

{ dX = (SXdt+ f(t)) + AdW (¢)

where f e C([0,T]; H). Now we have X (¢,1,x) and R o(z) = E[p(X(t,1,2))],
xeHand 0<l<t<T. So adapting what we have done above to the this new
form, we obtain

]‘ * *
(1.36) K(#)¢(x) = ST AA DI p(2)] + (@, 5" Dap(2)) + {f(2), Dap(x)),
which we have seen in the beginning
(1.37) DRy p(x) = R K(t)p(z), 0<I<t<T VepeOg(H).

Following [5] we denote by &, (H ), k € N the set of all Borel probability measures
win H and by 2, ([0,T] x H) the set of all probability kernels such that

(1.38) s fH l2]* e (diz) < oo.

Thus, given i € &1 (H) we are looking for a probability kernel p € 22, ([0, T]xH) :
o =n and

d
(1.39) &/Hgadut:/HK(t)cpdut, te[0,T], VoeOg(H).

This is the Fokker-Planck (from now on F-P) equation and if (gt )¢eo,r) exists
it is the F-P solution.

The F-P equation (1.39) describes the dynamics of stochastic systems, it models
the time evolution of the probability distribution in a system under uncertainty by
describing generic drift-diffusion processes. The F-P equation (1.39) is also known
as Kolmogorov forward equation. This can give us a hint on the meaning of this
equation, thus we could say, informally, that given a certain information about the
state x of the system A, at time s, we have a probability disrtibution (as we have
seen above) Z,(x). Thus, we look for the change in probability distribution at
time t > s, so that, the initial condition is integrated forward in time.

Given simple (or not) lotteries it would be intresting to study their in changing,
in order to manage the decision theory in a more formal fashion. Hence, by the
F-P equation (1.39) we can study the motion of the probability distribution and
thus we could name this kind of lottery the “transitional-lotteries”.
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1.7. Transitional lotteries: an intuitive introduction. Given the definition
of preordered space [§1.1] by [<; Py, P3], we define y-preorder, a preorder where

Py fr<yandy<z - -yv-z

Py If z < & <y, where & is a lack of knowledge we have a [X]l? such that
given z < [x]$ <y, f: [x]C = R we define [x]$ as the measure of the
rectangle x < x <y given by f.

Corollary 1. If in an ordered space there exist at least one undefined x at a point-
function g — R, then it has to be approximated by the rectangle measure given from
the difference ||{y}eci — {x}cfl|l- The xcs is the smallest cofinal part of v and ye; is
the smallest coinitial part of y.

Thus, given Py, the {y}. (resp. {z}.s) is made up of one and only one element.
This statment is true for if we have yo ~y € {y}¢; , then the -y v —y.

We have to use the Corollary 1 because of the lack of knowledge that sometimes
occurs, rather if we use the rectangle measure onto R we can obtain a geometric
zone wherein the probability density function (p.d.f) surely passes through. For the
sake of brevity, we say that given a set X of all elements, we have a o-algebra, £, of
subsets of X. Thus, we say that (X,£) is a measurable space and p: & > [0,+00)
is a o-additive function, hence u is a measure on (X,¢) and (X, &, ) is a measure
space.

We are given a probability space (2, F,P) and a measurable space (X,£). We
already know that F are the events, therefore we have a map U : 2 - X such that
ITe&—>UI)eF. We call it a random variable on (X, &) with law UxP". We
know that Fyr:= {U (1) : 1 €}, thus Fy is the smallest o-algebra in F such that
U is measurable. We have to consider the (R, B(R)) rather than (X&) for justify
the independence of the random variables

k
(1.40) Uyl = X(U;) 4P
i=1

We define a x-lottery (xr), a lottery embedded a y-preorder and one can define
it on (R,B(R)) by (2, F,P) with UgP.

Of course we have several xr,, so we denote them x7 — (R",B"(R)) embedded
with the gaussian measure N, . We can set zj, = (z,ep), h € N and Pz =
Sh.j Trek,x € Hyn e N. Thus, the ¥ have an isomorphism v, H — ¢?, furthermore
we have to notice that &2,z, Y x € 2. We have to state that Q is of trace class and
det@ > 0; these statements are needed for the independence and strongly continuity
properties of the gaussian measure respectively.

We have built a x7 within a gaussian measure is embedded, so that we define
X, the gaussian lotteries. We have to say another definition, a I c h where
I={zeH:(x1,...,2,) € B}, B eB(R), is called cylindrical. Now, we have defined
(albeit in general) the x}-;, hence we have to understand (in an intuitive way)
the link between x;; and its transition. We have seen the Ornstein-Uhlenbeck
semigroup, we have defined [§1.6]

t *
(1.41) th:f e AA S
0

"The image measure of P through U.
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where €' is a strongly continuous semigroup on H, AA* the self-adjoint and

nonegative bounded operator on H, Q, a trace class operator and e® " the adjoint
semigroup of €', thus by a Ng law the O-U semigroup

(142) Rup(@) = [ o(eSa+y)No(dy).

We have said [§1.6] that unless ' = I (identy matrix) for any t > 0, R; is not
a strongly continuos semigroup on UCy,(H), thus we have introduced [§1.6] the
m-semigroup so as to define R; in it. There is something to say, following [7], we
call the infinitesimal generator (of the m-semigroup),

{ D(Ly) ={oeUC,(H): 3 e UC,(H) : App =, h — 0},
Lare) =,

where Ay, = %(Rh—I) with h > 0. Thus, D(L,) is dense in UC},(H ), hence if ¢ €
D(L;) then Ryp e D(L;) Yt >0. An important thing is given that ¢ € D(L,) then
Ryp(x) is differentiable V¢ > 0. Thus, the resolvent p(L,) = Ry(2,Ly) = (2~ L))"
contains (0, +oc0), by Hille-Yosida theorem

(1.43)

(1.44) R(z, L) é(x) = fo " e R G(x)dt, e UC,(H), 250, a ¢ H.

This is the integral representation of the resolvent, and we have to keep in mind
that every strongly continuos semigroup can be rescaled to becomes bounded. We
find that if @5, = ¢, hence R(z, Lz)pr — R(z, Lyi)g, ¥z > 0.

The definition of the Cy-semigroup is of utmost importance so as to give a strong
framework for the transition process. Given an O-U process (1.35) 3 a unique
solution X (-,1,2) on [0,T] given by

t t
(1.45) X(t,1,x) =D+ f IS f(r)dr + f S AdW (1),
l l

with mean and covariance e(*"95z + my+ and @y respectively. Thus, V¢,1:0 <
[<t<T and ¢ € By1(H) we gain the transition evolution operator®

(1.46) Ripp(x) =E[p(X(t,1,2))], z € H.
Given the law of Gaussian measure
(1.47) Buio@) = [ o@Noev im0 (@),

We can define the transition, thus through the forward Kolmogorov equation
we can observe the distribution in changing from | — ¢t. We have understood the
transition semigroup importance, and how a change can happen. But, I have passed
over some topics that are beyond the aim of this introduction, for example the
definition of the probability kernel and its smoothness and the study of semigroup
in a deep fashion that I rekon it is needed in order to define the x%;; . These and
other sujects will be developed in another paper that goes in for this topic.

For now we know that so as to handle with decision matter, we have to study
not only the photograph of the distribution at a moment in time, but also the pos-
sibly evolution from ¢ to ¢;. In the microeconomic theory we obtain a “transitional

8Bbyl(H) is the space of all Borel functions with linear growth, ¢ € By 1 (H) iff [|¢|lp,1 =

o(x
SUPgeH ‘15‘;“ < oo,
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expected utility function” where (by the e.u.f. theorem) the decision maker’s pref-
erences over lotteries have to satisfy the independence axioms and the continuity.
Our lottery satisfies these property so we can extend the reasoning of y-lotteries to
the yg-utility function.

1.8. Conclusions. In this paper we have seen the mathematical foundation of the
transitional lotteries’ theory. We have used a Brownian-approach and by several
objects we have built an integral equation by which the transition is well-defined.
This kind of lottery has to be seen as a ground upon which the decision theory may
lie, each decision is embedded with uncertainty and the transitional lotteries admit
a stochastic world, but they also admit a change in a probability distribution as
time goes by. The aim of this paper is to define the technical refinements of the
theory, thus it is not need a deep knowledge about transitional lotteries application,
a hint about it is enough. For now we want to aks: what are the bricks by which the
transitional lotteries’ theory is made of? This paper is intended to give an answer
to this question.

REFERENCES

[1] Bourbaki, Nicolas (1968) Theory of sets, Hermann

[2] Carfi, David (2012) Fondamenti di teoria delle decisioni: Teoria dei preordini e ap-
plicazioni, Volume I, Antipodes.

[3] Carfi, David (2008) Optimal boundaries for decisions, MPRA Paper No. 29243.

[4] Da Prato, Giuseppe (2011) An Introduction to Kolmogorov equations in Hilbert
spaces, Lecture notes Scuola Normale Superiore (Pisa).

[5] Da Prato, Giuseppe (2012) Fokker-Planck equations in Hilbert spaces, Lecture notes
Scuola Normale Superiore (Pisa).

[6] Da Prato, Giuseppe (2004) Functional Analytic Methods for Evolution Equations,
Springer.

[7] Da Prato, Giuseppe Zabczyk, Jerzy (2004) Second Order Partial Differential Equa-
tions in Hilbert Spaces, Cambridge University Press.

[8] Gratzer, George (2011) Lattice Theory: Foundation, Springer Basel 2011.

[9] Priola, Enrico (1999) On a class of Markov type semigroups in spaces of uniformly
continuousand bounded functions, Studia Math., 136, 271-295.

UNIVERSITY OF MESSINA, DEPARTMENT OF STATISTICS
E-mail address: strati.francesco@gmail.com



