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Abstract

Experimental evidence suggest that people only use 1-3 iterations of strategic reasoning, and that
some people systematically use less iterations than others. In this paper, we present a novel evo-
lutionary foundation for these stylized facts. In our model, agents interact in finitely repeated
Prisoner’s Dilemma, and each agent is characterized by the number of steps he thinks ahead. When
two agents interact, each of them has an independent probability to observe the opponent’s type.
We show that if this probability is not too close to 0 or 1, then the evolutionary process admits a
unique stable outcome, in which the population includes a mixture of “naive” agents who think 1

step ahead, and “sophisticated” agents who think 2-3 steps ahead.

Keywords: Indirect evolution, cognitive hierarchy, bounded forward-looking, Prisoner’s Dilemma,
Cooperation. JEL Classification: C73, D03.

1 Introduction

Experimental evidence suggest that in new strategic interactions most people only use 1-3
iterations of strategic reasoning. This stylized fact is observed in different forms in various
contexts. First, when playing long finite games, people only look a few stages ahead and
use backward induction reasoning to a limited extent. For example, players usually defect
only at the last couple of stages when playing finitely-repeated Prisoner’s Dilemma, (Sel-

ten and Stoecker (1986) and the other references discussed at the of the introduction) and

*I would also like to express my deep gratitude to Itai Arieli, Vince Crawford, Peyton Young, and seminar
participants at University of Birmingham, University of Oxford and University College London, for many
useful comments, discussions and ideas.
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“Centipede” games (McKelvey and Palfrey (1995); Nagel and Tang (1998)), and when inter-
acting in sequential bargaining, players ignore future bargaining opportunities that are more
than 1-2 steps ahead (Johnson, Camerer, Sen, and Rymon (2002)). Second, when facing
serially dominated strategies, almost everyone make the first iteration (not playing a dom-
inated action), many do the second iteration - assume that their opponent would not play
dominated strategies, a few make the third iteration, and further iterations are rare (Beard
and Beil Jr (1994); Rapoport and Amaldoss (2004)). Third, according to the models of cog-
nitive hierarchy (or level-k), most players best respond to a belief that others use only at
most two iterations of strategic reasoning (see, e.g., Stahl and Wilson (1994); Nagel (1995);
Ho, Camerer, and Weigelt (1998); Bosch-Domenech, Montalvo, Nagel, and Satorra (2002);
Crawford (2003); Camerer, Ho, and Chong (2004); Crawford and Iriberri (2007)).

A second stylized fact is the heterogeneity of the population: some people systemically use
less iterations than others (see, e.g., Chong, Camerer, and Ho (2005) and Hyndman, Terracol,
and Vaksmann (2012)). These stylized facts raise two related evolutionary puzzles. The first
puzzle is why people only use 1-3 steps. Experimental evidence suggest that using more
iterations is only unintuitive but not computationally complex (at-least in simple games):
with appropriate guidance and feedback players can learn to use many iterations in a given
game; however, when facing a new game people immediately return to use only 1-3 iterations
(Johnson, Camerer, Sen, and Rymon (2002), Camerer (2003, Section 5.3.5)). In many games,
being able to do one more step than the opponent gives a substantial advantage. As the
cognitive cost of an additional level is moderate, it is puzzling why there hasn’t been an
“arms race” (“red queen effect”, see Robson (2003)) that caused people to use more strategic
iterations throughout the evolutionary process.

The second puzzle is how the “naive people, who systematically use less iterations than
the more “sophisticated” agents, survived the evolutionary process. At first glance, it seems
that naive people would fare substantially less than sophisticated agents who enjoy the benefit
of thinking one level ahead. In this paper we present an evolutionary model that explains both
puzzles and yields a unique sharp prediction: an heterogeneous population which only uses
1-3 strategic iterations. Our model focuses on limited forward-looking in repeated Prisoner’s
Dilemma, but we believe that it can also shed light on other forms of bounded iterative
reasoning.

Following the “indirect evolutionary approach” (Giith and Yaari (1992)) we present a
reduced-form static analysis for a dynamic process that describes the evolution of types

in a large population of agents.! Each agent has a type (level) in the set {Li,..., Las}

! The indirect approach was mainly used to study evolution of preferences. Following, Stahl Dale (1993);
Stennek (2000); Frenkel, Heller, and Teper (2012), we apply it to analyze evolution of cognitive biases.
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Tab. 1: Payoff at the symmetric stage game Prisoner’s Dilemma (A > 1).

that determines how many steps he looks ahead (as described in the next paragraph). At
each generation the players are randomly matched and each couple plays M times (without
rematching) the symmetric stage game of the Prisoner’s Dilemma with the payoffs given in
Table 1:> mutual cooperation (both players play C) yields both players A > 2+ /2, mutual
defection (both players play D) gives 1, and if a single player defects, he obtains A+1 and his
opponent gets 0. Observe that the parameter A is the ratio between what can be gained by
mutual cooperation to the additional payoff that is obtained by defecting.? The total payoff
from the repeated interaction is the undiscounted sum of payoffs. We assume that types are
partially observable in the following way (similar to Dekel, Ely, and Yilankaya (2007)): before
the interaction begins, each agent has an independent probability p to observe his opponent’s
type. Informally, this can be interpreted as an opportunity to observe your opponent’s past
behavior, or to observe a trait that is correlated with cognitive level (such as 1.QQ. level, see
Gill and Prowse (2012)).

An agent of type Ly looks k steps ahead in his strategic reasoning. When the horizon
(the number of remaining stages) is larger than k the agent must follow a simple heuristic -
“erim™ he cooperates if and only if is opponent never defected before.* When the horizon
is equal to k, the agent begins to play strategically and he may choose any action. We
interpret L;’s behavior to stem from bounded forward-looking: when the horizon is larger
than £, he subjectively perceives it to be infinite, and he does not take into account the fact
that the interaction has a well-defined final period, and that this final period has strategic
implications. One can also consider our model as a reduced-form for an interaction with a
random unknown long length, in which each type L, gets a signal about the interaction’s
realized length k periods before the end (see Section 6). Observe that the set of strategies
of type Lj is a strict subset of the set of strategies of type Li.i, and that type L, is

fully-rational and has an unlimited set of strategies.

2 All our results are independent of the value of M for every M > 4.

3 We assume that defection yields the same additional payoff (relative to cooperation) regardless of the
opponent’s strategy to simplify the presentation of the result (but the results remain qualitatively similar
also without this assumption). Given this assumption we normalize, without loss of generality, the payoff of
being a single cooperator to be 0, and the additional payoff of defecting to be 1.

4 In Section 6 we discuss the extension of our model to a setup in which a player may choose his heuristic
for long horizons, and the relation to the notion of analogy-based expectation equilibrium (Jehiel (2005)).
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In common with much of the evolutionary literature, we use a static solution concept to
tractably capture the stable points of a dynamic evolutionary process with the following three
properties: (1) the frequency of types changes slowly according to their success: types that
have yielded higher payoffs increase at the expense of those that yielded lower payoffs, and
(2) given a distribution of types, players learn to best-respond to each other (i.e, they learn
to play a Bayesian-Nash equilibrium, given their forward-looking constraints), and (3) rarely
a few mutants with arbitrary type and behavior enter the population; if these mutants have
a completely new type (which has not existed among the incumbents), then it is assumed
that the incumbents learn to best reply to the mutants. This evolutionary process can be
interpreted in two different ways: (1) biological process - types are genetically determined,
and the payoff is the expected number of offspring, and (2) learning and imitation process
- an agent’s type describes the way he perceives strategic interactions; once in a while an
agent may decide to change his strategic framework and imitate another person’s type, if the
other person is more successful.

The configuration of the population is a pair consisting of a distribution of types and the
strategy that each type L uses in the repeated game (which must be grim as long as the
horizon is larger than k). A configuration is stable (a variant of Dekel, Ely, and Yilankaya
(2007)’s definition) if it satisfies 3 conditions: (1) balance - each type in the population
has the same expected payoff; (2) equilibrium - each type uses a best reply strategy; and
(3) resistance - a small group of mutants that enters the population fares worse than the
incumbents.®

Our main result shows that if p is distanced enough from both 0 and 1, then there
exists a unique stable configuration which includes two kind of players: (1) naive agents of
type L; who only begin defecting at the last stage, (2) sophisticated agents who look 2-3
steps ahead: usually they begin defecting two stages before the end, unless they observe
that their opponent is sophisticated, and in this case, they begin defecting one stage earlier.
The stability relies on the balance between the direct disadvantage of naive agents - they
defect too late, and the indirect advantage - when nativity is being observed, it induces
sophisticated opponents to postpone their defection, and this allows an additional round of

mutual cooperation.®

5 Our solution concept extends the notion of neutral stable strategy (NSS, Maynard Smith (1982)) from
direct evolution, in which types completely determine the actions, to indirect evolution. In Appendix B we
present a few alternative variants to the resistance condition (including Dekel, Ely, and Yilankaya (2007)’s
definition), and we demonstrate that our results are robust to its exact properties.

6 The proportion of sophisticated players is equal to m. The types of the sophisticated agents are not
uniquely determined. The sophisticated players may have any type of L3 or higher (but all types play as if
they were type L3). If one adds to the model an arbitrarily small cost of having an higher cognitive level,

then all the sophisticated players must have type L3z (see Corollary 1).
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It is interesting to note that stable configurations are very different when p is close to
0 or 1. In both cases, stable configurations must include fully-rational players who, when
facing other fully-rational agents, defect at all stages. When p is close to 0, types are too
rarely observed, and the indirect advantage of naive agents is too weak. When p is close to
1, there is an “arms-race” between sophisticated agents who observe each other: each such
agent wishes to defect one stage before his opponent. The result of this “race” is that there
must be some fully-rational agents in the population.

Existing evolutionary models that studied bounded strategic reasoning (Stahl Dale (1993);
Stennek (2000)) focused on the case where types are unobservable (p = 0), and showed that:
(1) the highest type always survives, and (2) other types may also survive if they do not
play serially dominated strategies. Recently, Mohlin (2012) also dealt also with the case of
fully-observable types (p = 1), and characterized conditions under which other types beside
the highest may survive. This paper is the first to study partial observability in such a setup,
which, perhaps surprisingly, leads to a much sharper prediction: a unique stable state in
which everyone thinks 1-3 steps ahead.

Existing experimental results verify the plausibility of both our assumption of using “grim”
strategy for large horizons, and of our main prediction. Selten and Stoecker (1986) study
the behavior of players in iterated Prisoner Dilemma games of 10 rounds (similar results
are presented in Andreoni and Miller (1993); Cooper, DeJong, Forsythe, and Ross (1996);
Bruttel, Giith, and Kamecke (2012)). They show that: (1) if any player defected, then
almost always both players defect at all remaining stages (a “grim”-like behavior), (2) usually
there is mutual cooperation in the first 6 rounds, and (3) players begin defecting at the last
1-4 rounds.” Such behavior has two main explanations in the literature: (1) some players
are altruistic, and (2) players have limited forward-looking.® Johnson, Camerer, Sen, and
Rymon (2002) studied the relative importance of these explanations in a related sequential
bargaining game, and their findings suggest the limited forward-looking is the main cause for
this behavior.

The paper is structured as follows. Section 2 presents our model. Section 3 describes our
solution concept (and in Appendix B we demonstrate the robustness of our results to a few

plausible variants of this concept). In Section 4 we present our results, and it is followed by

" In Selten and Stoecker (1986)’s experiments players engaged in 25 sequences (“super-games”) of iterated
Prisoner’s Dilemma. The above results describe the behavior of subjects in the last 13 sequences (after
the initial 12 sequences in which players are inexperienced and their actions are “noisier”). During these 13
sequences there is a slow drift in the behavior of players towards earlier defections. Nevertheless, defections
before the last 4 rounds were infrequent also in the last couple of rounds.

8 Heifetz and Pauzner (2005) explain this behavior with a different kind of cognitive limitations: at each
node, each player has a small probability to be “confused” and choose a different action than the optimal one.
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sketches of the proofs in Section 5 (formal proofs appear in Appendix A). We conclude in

Section 6.

2 Model

We study a symmetric finitely-iterated Prisoner’s Dilemma game that repeats M stages (M >
4), denoted by G. The payoff of each stage game are as described in Table 1 (A > 2+ /2).
The payoff of the repeated game is the undiscounted sum of the stage payoffs. This payoff is
interpreted, as standard in the evolutionary literature, as representing “success” or “fitness”.
Define the horizon of a stage as the number of remaining stages including the current stage.
That is, the horizon at stage k is equal to L — k + 1. History hy of length k is a sequence of
k pairs, where the [-th pair describes the actions chosen by the players at stage [. Let Hy be
the sets of histories of length k, and let H = Uj<x<prHy be the set of all histories.

A pure strategy s is a function from H into {C, D}, and a behavioral strategy o is a
function from H into A ({C, D}). With some abuse of notations we write o (hy) = C when
o assigns probability 1 to playing C' (and similarly for D). Let ¥ be the set of behavioral
strategies. Strategy o is k-grim if whenever the horizon is larger than k: (1) o assigns
probability 1 to C' if the opponent has never defected before, and (2) o assigns probability
1 to D if the opponent has defected in the past. Let >, be the set of k-grim behavioral
strategies. Let u (o,0’) be the expected payoff of a player who plays behavioral strategy o
against an opponent who plays behavioral strategy o’. Let d;, € X be the pure strategy that
plays grim as long as the horizon is larger then k, and then defects at all following stages
(when the horizon is at most k).

We imagine a large population randomly matched to play GG. Different agents in the pop-
ulation differ in their cognitive ability, which is captured by their type. Let £ = {L,..., Ly}

9 An agent of type Lj looks only k steps ahead, and when

be the set of types (or levels).
the horizon is larger than k£ he ignores end-of-game strategic considerations and plays grim -
defecting if and only if his opponent defected in the past. That is, an agent with type Ly can
only play k-grim strategies. When the horizon is at most &, the agent is no longer limited in
his play.

Following the model of partial observability of Dekel, Ely, and Yilankaya (2007), we
assume that each player knows the type of his opponent with probability p (and get no
information about his opponent’s type with probability 1 — p), independently of the event

that his opponent knows his type. Let a stranger denote an opponent that his type was not

9 We explicitly omit type of level 0 (who keep using use grim throughout the entire interaction). See
Subsection 4 for a discussion of this assumption, and the influence of changing it.
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observed.

3 Solution Concept

In this section we formally present a reduced-form stability concept (a variant of Dekel,
Ely, and Yilankaya (2007)’s notion of stability), which extends neutral stable strategy (NSS,
Maynard Smith (1982)) to indirect preferences. This concept is intended to capture the
essential features of the following three components of the evolutionary process: (1) mutations
- which introduces new types and behaviors in the population, (2) optimization - agents
best respond to the behavior of the population within the limits of their bounded forward
looking, and (3) natural selection - type composition is updated as successful types replicate.
Mutations are modeled by considering an entry of a small group of players of any type
who play any strategy. It is assumed that the population continues to play the pre-entry
equilibrium, except when observing an opponent with a type that did not exist in the pre-
entry distribution; in this latter case the incumbents are assumed to learn to play a best
response to the mutants’ strategy. Finally, natural selection is modeled by a static stability
concept that identifies populations of types in which: (1) all types have the same fitness, (2)
any small group of mutants that enter the population fare worse than the incumbents.

Suppose that the distribution of types in the population is given by pu € A(L). Let
C (1) be the support of . The interaction can be analyzed via the following two-player
Bayesian game, I', (). The types of the two players are drawn independently from p, and
each player with independent probability p observes the preferences of the other. With the
complementary probability 1 — p, the player observes the uninformative signal (). A strategy
for type L; is a rule that specifies a behavioral k-grim strategy in the repeated game for each
possible observation: b, : LU — X;. We assume that aggregate play in the population
corresponds to a symmetric Bayesian-Nash equilibrium of this game. That is, we assume that
each individual of type Ly, when the horizon is at most k , plays a best reply to a correct
belief about the distribution of his opponents’ play. When type k is matched with type £’
and plays strategy o € X, the expected payoff of £ is:

pu (ok, by (k) + (1 — p) u (o, b (0)) .

The payoff is the average over two possibilities. With probability p, the opponent observes
the type k', and with probability 1—p he observes (). An equilibrium b is thus characterized by
two properties. First, type k chooses a k-grim optimal action by, (k") conditional on observing

that the opponent’s type is k'
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b (K') € argmaz,es,, (pu (o, b (k) + (1 —p) u (o, b (0)))

for each k' € C'(u). Second, type k chooses an optimal k-grim action conditional on

observing nothing informative:

b (0) € argmazaes, Y (pu(onbis (0) + (1= p)u (o b (0) (L),
k' eC(u)
Let B, (1) denote the set of all Bayesian-Nash equilibria of the game I', (1) . Given a popu-
lation distribution pand an equilibrium b € B, (1), the average fitness of type Ly € C (p) is
denoted IIj (u|b) and is given by:

> [PPulbe () b (k) +p (1= p)u(be (K) b (0))

k'eC(p)

+p (1= p)u (b (0),br (k) + (1= p)*u (b (B), b (9))]

This fitness, which depends on the equilibrium played, is the measure of evolutionary
success for types. Hence, evolution depends both on the distribution of types and the equi-
librium played given this distribution, and the stability definition applies to configurations -
(i, ), where b € B, (u).

A configuration is stable if it is satisfies two conditions. First, it must be balanced: all
types present must get the same fitness. If the configuration were not balanced, then some
types have higher fitness than others and natural selection would alter the configuration as

the former types multiply and the latter types recede. Formally:
Definition 1. Configuration (u,b) is balanced if uy (pu|b) = ug (p|b) for all Ly, Ly € C (u) .

Second, a stable configuration must resist entry by mutants who have some arbitrary
type Lj and play an arbitrary strategy o;. We assume that after the entry, the incumbents
continue to play the same against strangers and incumbents, while they play a best response
to the mutant’s strategy when they observe a new type, which did not exist in the pre-entry
population. Formally, the post-entry state of the population is described by a perturbed

configuration:

Definition 2. Given configuration (u,b), parameter ¢ > 0, type L; € L and strategy
o, = (o (K) € Eidwec(uuiup for each K € C'(u) U kU0, let the perturbed configuration
(/1, blp, b, e, Ly, a,;) where i € A (L) and b is a profile of strategies for the different types in
C (1) be as follows:
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rbk (%)

k-grim best response to oy, (k)
(1 =€) b () +€- 05, (K)

oz, (K)

\

Given perturbed distribution ([L,i)) , type Ly € C (i) and k-grim strategy oy, define
Iy o, (,&|5> as the expected payoff of an agent of type L, who plays strategy o, against

population g who plays b. A configuration is stable if mutants fare worse than all incumbents

in any perturbed configuration. Formally:

Definition 3. Configuration (u,b) is stable if it is balanced and there exists ¢ > 0, such that

for each parameter 0 < e < €, type L; € £ and strategy o = (o (') € X;) the

K €C(p)UkUD?
mutants fare worse than all incumbents in any perturbed configuration </l, l~7> = </l, l;],u, be, L, 0,;) .

That is:
1. If L; ¢ C' () then II; (mé) <1, (mé) for each k € C ().

2. If Ly € C'(p) then I, ([L|B> < I p, ([L|B> for each k € C ().
Our notion of stability extends the direct evolution notion of neutral stability strategy. Recall,

that a mixed strategy o in a normal-form game is neutrally stable (NSS, Maynard Smith

(1982)) if for every strategy & there exists €y > 0 such that for every 0 < € < ¢:

u(c,ec+(1—€)d) <u(o,ec+ (1 —¢€)a).

Observe, that when the set of types is a singleton and only includes fully-rational players,
then our Definition 3 coincides with Maynard Smith (1982)’s neutral stability.

In Appendix B we present a few alternative notions of stability (including Dekel, Ely, and
Yilankaya (2007)’s definition), which differ in the way the population reacts to the entry of
the mutants, and in how much mutants are required to fare worse than the incumbents, and

we demonstrate that our results are robust to the way in which stability is defined.
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4 Results

Our main result gives a sharp prediction for the unique stable configuration in the interval

ﬁ <p< % . In this configuration naive players (of type L;) and sophisticated players

(who play as if they were Ls, and start defecting 2-3 stages from then end) co-exist. Formally:

Theorem 1. Let ﬁ <p< %. A configuration (u,b) is stable if and only the following

three conditions are satisfied:

1. Players of type Ly (dubbed, “naive” players) have frequency pu(Ly) = 1 — m, and

they all play dy (play “grim” until the last stage, and defect at the last stage).
2. There are no players of type Lo (1 (L1) =0).

3. All other players (types Lz or more, dubbed “sophisticated” players) play the same strat-
egy: ds against an observed sophisticated opponent (following “grim” until the last 8

stages, and defecting at the last 3 remaining stages), and dy in all other cases.

Let C be the sets of configurations that satisfy conditions 1-3 above. The sketch of the
proof is presented in the next section, and the formal proof is given in Appendix A.

All the stable configurations in C are “equivalent” in the sense that they differ only by the
types of the sophisticated players (Ls or higher) but all of them play as if they had type Ls.
If one adds arbitrarily small costs for having higher cognitive levels, then there is a unique

stable configuration in which all the sophisticated players have type L3. Formally:

Corollary 1. Let f : L — RT be any strictly increasing function on the set of types
(f (Ly) > f (Ly) < k > k') that represents cognitive costs. For each € > 0, let the € per-
turbed model be the same as out basic model, except that the fitness of Ly s equal to his

total payoff in the repeated Prisoner’s Dilemma minus his cognitive cost, which is equal to
€ f(Lg). Then:

1. For sufficiently small € the game admits a unique stable configuration that only include
naive players of type Ly (that play dy) and sophisticated players of type Ls (that play

ds against observed sophisticated opponents and dy otherwise).

2. In the limit when € — 0, the share of naive players converge to 1 — ]m.

The corollary follows from simple adaptations to the proof of Theorem 1 (proof is omitted).
Our next result, shows that in the benchmark cases when p is close to 0 and 1 the stable
configurations are very different. In both cases, stable configurations must include fully-

rational players who, when facing other fully-rational agents, defect at all stages. When p is
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close to 0, this occurs because the indirect advantage of lower types is too small and they can
not exist in a stable configuration (because the probability of being identified by the opponent
is too low). When p is close to 1, there is an “arms-race” between sophisticated agents who
observe each other: each such agent wishes to defect one stage before his opponent. The
result of this “race” is that there must some fully-rational agents in the population.

Formally:
Theorem 2.

1. Let 0 < p < m. Then there exists a unique stable configuration where all

players have type Ly and they defect at all stages.

2. Let 1 > p > %. Then in any stable configuration there is a positive frequency of

players of type Ly, and these players defect at all stages when observing an opponent

of type L.

5 Sketches of Proofs

In this section we present a few propositions that imply the results of the previous section,

and sketch the intuition behind their proofs. The formal proof are presented in the appendix.

5.1 Stability of the Configurations in C (Theorem 1 - “if side”)

The following proposition shows that the configurations in C are stable in the interval —4— <

o (A-1)
p< i
Proposition 1. Let ﬁ < p < 4L Any configuration (p,b) € C (see Theorem 1) is
stable.

The intuition of Proposition 1 is as follows. First we have to show that b only includes
best-responses (given the bounded forward-looking). Naive players (L;) play their unique
dominating strategy - d; (as they must play grim when he horizon is larger than 1). Sophis-
ticated players play ds against observed sophisticated players. This is optimal (and not d,)
for small enough p. They play dy otherwise. This is optimal (and not d3) if p(Lq) is large
enough.

Next, we have to show that (u,b) is balanced. In order to show it, we compare the fitness
of naive and sophisticated agents as a function of their opponent. Naive agents succeed more
only against an observing sophisticated opponent (who observed their type), because their

observed naivety induces an additional round of mutual cooperation. Sophisticated agents
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fare better in the two other cases: against naive opponents and against an unobserving
sophisticated opponent. This implies that there is a unique intermediate level of p (L) that
balance the payoff of the two kinds of players .

Finally, we have to show resistance to mutations. If € more naive players join the popula-
tions, then due to the previous argument, naive agents fare worse and the excess frequency of
naive players (the mutants) will be eliminated. The same holds for e more sophisticated who
join the population and play the same as the existing sophisticated players. Finally, one can
show that e sophisticated mutants (type 3 or more) who play different actions fare strictly

worse then the incumbents.

5.2 Instability Outside C (Theorem 1 - “only if side”)

The next proposition shows that any configuration outside C are unstable in the interval
1 A—2
A1 <P < -

Proposition 2. Let ﬁ <p< ﬁj and let (u,b) be a configuration outside C'. Then (u,b)

18 not stable.

The intuition behind the proof is as follows. First, observe that a configuration with a
single type is not stable: 1) if the type is Ly, then the entire population defects all the time,
and mutants of type L; would induce cooperation against them and invade the population;
and 2) if the type is Ly # Ly, then mutants of type Ly, can invade the population and get
strictly higher payoff then the incumbents. Let L; be the smallest type in the population.
Then, type L, must always defect when the horizon is k (as it is common knowledge that
all players are rational at that stage), and all other types must defect at horizon k + 1 (or
sooner). The next step is to show that all other types in the population must play dyi1
against strangers. This is because if there is type Ly that plays d; (I > k + 1) against
strangers, then it implies (assuming that p is not too small) that type Ly fares worse against
Ly, then Lj gets against itself (because members of L;, loose at least one round of mutual
cooperation when facing unobserved L;). This implies, that ¢ mutants of type Ly who enter
the population and slightly increase L;’s frequency, would fare better than the incumbents of
type Ly (before the entry, both types fared the same as the configuration was balanced; after
the entry L;’s payoff becomes higher because there are more Ly agents). This contradicts
the stability of the configuration.

Next we show that if p is not too close to 1, then all the sophisticated players play dg.o
when they observe that their opponent is sophisticated, and that type Li,; cannot exist in

the population (as its members would fare strictly worse then the more sophisticated types).
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Finally, we show that if L, # L, and p is not too small, then the population can be invaded
by mutants of type L; as they would fare strictly better than the incumbents of type Ly

(because they induce more mutual cooperation when their type is observed).

5.3 Stable Configuration for Low and High p-s (Theorem 2)

1. Low p-s: The configuration that everyone has type Lj; (fully-rational) and begin
defecting at the first stage is stable because the indirect advantage of naive mutants
(with a lower type than L,s) is too small: they strictly lose when their naivety is
unobserved, and their naivety is observed too rarely. Due to a similar argument, in any
other configuration where different types co-exist, the lower type would fare strictly

worse (and this implies the uniqueness).

2. High p-s: Assume to the contrary that no agent in the population ever defects at the
first stage. Let Lj be the highest type in the population. Let [ < M be the horizon in
which L players begin defecting when they observe an opponent of type Lg. If p is
large enough, their opponent is likely to observe their signal as well and begin defecting
at stage [ as well. This implies (again for large enough p) that starting to defect one
stage earlier is strictly better. This implies that either type Lidoes not play a best
response (if L + 1 < k) or that mutants with type Lg; who play like type Ly except

that they defect one stage earlier against L, opponents would fare strictly better.

6 Concluding remarks

1. Other heuristics for long horizons: In our model we assumed that all players use
a “grim” heuristic whenever the horizon is larger than their forward-looking ability.
One could relax this assumption by allowing a player to choose his strategy for long
horizons from some fixed set of heuristics. For example, the set of possible heuristics
might be the strategies with “memory-1” (which depend only on the actions observed
in the previous stage). Observe that these “memory-1" strategies include the “grim”
heuristics: cooperate at stage 1, and cooperate at any later stage if and only if both
players cooperated at the previous stage. A strategy of a player of type L in this setup
specifies two strategic components for each possible signal about the opponent’s type:
(1) the heuristic he plays when the horizon is larger than k, and (2) the (unrestricted)
strategy he plays when the horizon is at most k. It is immediate to apply our first result
(Proposition 1) in this setup, and show that any configuration in C in which all players

choose grim as their heuristic is stable. We conjuncture that there are only two sets of
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stable configurations in this extended setup: (1) the efficient configurations in C in which
all players use a “nice” (cooperate at the first stage) and “retaliating” heuristic (defect
if your opponent defected at the previous stage), and (2) inefficient configurations in

which all players defect at all stages (and use “always-defect” heuristics).

2. Analogy-based expectation equilibrium: Our model of bounded forward looking
types could also be formulated using Jehiel (2005)’s Analogy-Based Expectation Equi-
librium (ABEE). In this formulation a player of type Lj bundles all nodes with horizon
of at least k into a single analogy class (while fully-differentiating among nodes with
horizons smaller than k), and expects his opponent to play the same in all nodes of this
class. The requirement that players play a Bayesian-Nash equilibrium in a configura-
tion (restricted by k-grim consistency) is replaced with the requirement that players
play an ABEE in a configuration: at each stage every player best-responses to his
analogy-based expectations, and expectations correctly represent the average behavior
in every class. As in the previous remark: (1) it is immediate to show that every con-
figuration in C is stable in this formulation, and (2) we conjuncture that there are only
two sets of stable configurations in this ABEE formulation: efficient C-like configura-
tions (in which everyone is “nice” and “retaliating” in his non-trivial analogy-class), and

inefficient configurations in which all players defect at all stages.

3. Random continuation probability: Our model assumes that the repeated interac-
tion has a deterministic constant length, and that players completely ignore this fact
when the horizon is too large. These assumptions may seem unrealistic. However,
one should note that the model may be a reduced-form for a more realistic inter-
action with a random length and incomplete information. Specifiably, let T be the
random unknown length of each interaction. Assume that the interaction lasts at least
M rounds (Pr (T > M) = 1), and that the continuation probability at each stage
(Pr (T > n|T >n —1)) is not too far from 1. Bounded forward-looking is modeled in
this setup as the stage in which a player becomes aware to the timing of the final period:
player of type L gets a signal about the final period of the interaction (i.e., about the
realization of T') k stages before the end. In this setup, players are not restricted in
their strategies (each type may play any strategy at any horizon). As in the previous
remarks: (1) it is immediate to see that any configuration in C is stable, and (2) we
conjuncture that other stable configurations are only those in which everyone defects

at all stages.

4. Level 0: In the main model we do not allow players to belong to “level-0" (Lg) who
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follow grim strategy at all rounds of the interaction. Such “level-0” players play a
strictly-dominated strategy (cooperating at the last stage), and we chose to omit them
from the model as such extreme bounded forward-looking may seem implausible. We
note that our results are qualitatively robust to the addition of type Ly in the following
sense. All of our results would remain shift a single step backwards: the naive players in
the stable configurations in C would be of type L instead of L;, and the sophisticated
players would look 1-2 steps ahead instead of 2-3 steps.

5. Other games: The formal analysis deals only with iterated Prisoner’s Dilemma. How-
ever, we conjuncture that the results can be extended to other games in which iterated
reasoning decreases payoffs. In particular, the extension of our results to “centipede’™
like games (Rosenthal (1981)) is relatively straightforward. Such game can represent
sequential interactions of gift exchanges. Such interactions were important in primitive
hunter-gatherer populations (see, e.g., Haviland, Prins, and Walrath (2007), P. 440),

which driven the biological evolution of human characteristics.

A Proofs

A.1 Proposition 1 - Stability of Configurations in C

Proposition. 1 Let Ll)g < p < AL Any configuration (u,b) € C (see Theorem 1) is

(A- A
stable.

Proof. We divide the proof into three lemmas: we first show that the configuration is balanced
(Lemma 1), then we show that the configuration only includes strict best replies (Lemma 2),

and finally we show stability against mutations (Lemma 3). O
Lemma 1. Any configuration (u,b) € C is balanced.

Proof. Let ¢ = uu(L1) be the frequency of the naive players. A naive player gets (L — 1) A+1
against a naive opponent, and (L — 2) A 4+ 1 against a sophisticated player. A sophisticated
player gets (L —2) A+(A+1)+1= (L — 1) A+2 against naive, and against a sophisticated
opponent he gets : (L — 3) A+ 3 if both players identify each other, (L —3) A+(A+1)+2 =
(L — 2) A+3if only he identifies his opponent, (L — 3) A4+0+2 if only his opponent identifies
him, and (L — 2) A + 2 if both players identify each other. The different types get the same
payoff if:
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g(L-1DA+)+(1-q)(L-2)A+1)=q((L-1)A+2)+(1—q)-
P L=3)A+3)+p(1—p)(L=2)A+3)+ (L —3)A+2)++(1—p)* (L —2) A+2))

1-q)(L-2)A+1—((L-3)A+1+20*+p(1—p)(A+2+ 1)+ (1 -p)*(A+1))) =¢

¢=(1-q) (A= (27 +p(1-p) (A+3)+(1-p)*(A+1)))
g=1-q)(A-=(p*(2-A=-3+A+1)+p(A+3-24-2)+(A+1)))
¢=1-q)(A-(p1-A4)+(A+1)
¢=1-q¢)(=p(1-A)-)=>0-qg(pA-1)-1)

gp(A-1)—-1+1)=p(A-1)—-1

p(A—1)—1

=2t v
p(A—1)

Observe, that for each p > ﬁ we get a valid value of 0 < ¢ < 1. O]

Lemma 2. In any configuration (i, b) € C all types play a best response (thus, these configura-
tions are well defined). Moreover, any deviation that induces a different play on-equilibrium-

path, yields a strictly worse outcome.

Proof. We have to show that all types play a best response (among the k-grim strategies).
This is immediate for the naive player, as his only choice is between cooperating and defecting
at the last stage, and the latter strictly dominates the former. We have to show that the
sophisticated players play best responses. It is immediate that ds is a strict best response
against naive opponents. Next, we show that playing ds against a stranger is strictly better

than playing d3. This is true if the following inequality holds (looking at the payoff of the
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last 3 rounds):
q2A+2)+(1-q)(2p+(1-p)(A+2)>q(A+3)+(1-q)Bp+(1—-p)(A+3))

q(A=1)>(1—-q)
1
q> 1
Using (1) one obtains:
pA-D-1_1
p(A—=1) A

pA(A-1)—A>p(A-1)
pA? —pA—A>pA—p

p(A*—24+41) > A
b A

(A—1)°

It is immediate that ds is also strictly better (against strangers) than any other strategy
that induces a different play on-equilibrium-path. We are left with showing that it is strict
better for a sophisticated player to play d; and not dy against a sophisticated opponent (and
this immediately implies that d3 is strictly better against identified sophisticated opponents
than any other strategy that induces a different play on-equilibrium-path). This is true if
the following inequality holds (focusing on the payoffs of the last 4 rounds, as all preceding

payoffs are the same):

p(A+3)+(1—p)(2A+3)>p(A+4)+(1—p)(A+4)

1-p)(A=1)>p

A—1>Ap

_A-1
P="

Lemma 3. Any configuration (u,b) € C is stable.

Proof. We have to show resistance against mutations (for all variants of stability presented

in this paper). Observe first that naive players fare strictly worse than sophisticated agents
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against naive opponents (the sophisticated players obtain an additional fitness point by de-
fecting when the horizon is equal to 2). As the configuration is balanced, it immediately
implies that sophisticated players fare strictly worse than naive agents against sophisticated
opponents. This implies that if € naive (sophisticated) players join the population and play
the same as the naive (sophisticated) incumbents, then naive (sophisticated) agents would
fare worse (as their number has become larger and they fare worse against themselves). This
implies that the mutants would fare worse than all the incumbents. Next, observe that any
mutants of type Ly would fare strictly worse than the sophisticated players: Ly players would
fare the same when they do not observe their opponent, and fare strictly worse when they
observe a sophisticated opponent. Finally, if sophisticated mutants enter the population and

play differently on-equilibrium-path, then they would earn strictly less due to Lemma (2). [

A.2 Proposition 2 - Instability of Configurations Outside C

Proposition. 2 Let ﬁ <p< % and let (1, b) be a configuration outside C. Then (u,b)

15 not stable.
The proposition follows immediately from the following lemmas.

Lemma 4. If any player ever defects in a configuration, then both players defect at all

following stages.

Proof. Assume to the contrary that player 1 defected at some stage of the game. After the
deviation it is common knowledge, that player 1 plays rationally. Similarly, it is also common
knowledge that player 2 either defects (if his horizon hasn’t arrived yet) or play rationally.
The fact that the game is dominance solvable then implies that both players must defect at

all the following stages. O]
The lemma immediately implies the following corollary.

Corollary 2. It can be assumed without loss of generality that in any configuration, and
given any stgnal about the opponent, all players play with positive probability only strategies

d; for some L.

Lemma 5. Let (u,b) be a configuration. Let type Ly € C (u) be the smallest type in the
population. Then: (1) Ly always defects with probability 1 at horizon k; (2) all other types
in the population always defect with probability 1 at horizon k+1; and (3) if m <p
and p (Ly) = 1 then the configuration is not stable.
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Proof. 1t is common knowledge that all types are at least k. This implies that defecting
when the horizon is equal to k is the unique strategy that survives iterations of eliminating
dominated strategies, and thus all players must defect with probability 1 when the horizon is
equal to k£ given any signal about the opponent (as the strategy profile in a configuration must
be a Bayesian-Nash equilibrium). This, in turn, implies that all agent of type higher than k
must defect with probability 1 at horizon k + 1. To prove part (3), observe that if £ < M,
then ¢ mutants of type Ly, would fare strictly better than the incumbents. If £k = M, e
mutants of type L; would fare strictly better than the incumbents: with probability 1 — p
the mutant’s type is unobservable and he would obtain 1 point less than the incumbents
(when facing an incumbent). With probability p the mutant is identified and he obtains
(M —2)-(A —1)—1 points more than the incumbents. This implies the mutants would earn

strictly more than the incumbents if and only if:

l—-p<p(M-=2)-(A-1)—-1) &

1
(M—2)-(A-1)

p >
[l

Lemma 6. If Players of type Ly are indifferent between playing d; and dy against strangers

with k > 1> 1" in a stable configuration, then they can not play dy with positive probability.

Proof. Assume to the contrary that players of type L are indifferent between defecting at
horizon [ and horizon I’ when playing against strangers, and that they play dy with positive
probability. Consider mutants of type L, who defect at horizon [ against strangers (and
play the same as the incumbents in all other cases). Such mutants would fare strictly better
than the incumbents of type Lp who happen to begin defecting against strangers only at
the smaller horizon I: pre-entry both strategies yielded the same payoff, now as there a bit
more early defectors, defecting at the larger horizon [ is strictly better. This implies that the

configuration cannot be stable or adjusting-stable. O
The lemma immediately implies the following corollary:

Corollary 3. All players only use pure strategies when playing against strangers in a stable

configuration.

Lemma 7. Let p < %. Let (u,b) be a balanced configuration. Let type Ly, € C(u) be

the smallest type in the population. Assume that there exist type ko who begins defecting at
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horizon ly (with probability 1) against strangers and that ky < ly — 1. Then, the configuration

18 not stable.

Proof. 1t is sufficient to show that type Ly, gets an higher payoff when playing against Ly,
than Ly, gets against Ly, (because if this holds, then an entry of e mutants of type Ly, who
play like the incumbents would violate stability and adjusting-stability). Due to Lemma 5,
type k; always begin defecting at stage ki, and thus gets against itself the following payoff:
(L—Fk1) A+ k. Type ko gets 1 more if he observes ki’s type (probability p), but gets
(Il — k1 —1) (A —1) — 1 less if he doesn’t observe (probability 1 — p). Thus type k; gets a
higher payoff against itself if:

(le=Fk-1)A-1)-1)1-p)>(A-2)(1-p)>p

This holds if:

]

Lemma 8. Let 1= < p < 4=2. Let (11,b) be a balanced configuration. Let Ly, € C (n) be

the lowest type in the population. Then:

1. Type Ly, always plays dy, (begin defecting at horizon k). All other types Ly # Ly, play
di,+1 against strangers and against an observed Ly, , and play di, o when they observe

an opponent with any other type Ly # Ly, .
2. If p(Lg,) #1— m then the configuration is not stable.
3. If kv > 1 then the configuration is not stable.
Proof.

1. Type L, behavior is immediately implied from Lemma 5. By Lemma 8, all other types
Ly # Ly, play di, 41 against strangers (and against observed Ly,). If p < 421, then by
a similar argument to the one given in Lemma 2 all other types Ly # Li, play di, 4o

against observed types Ly # Ly,.

2. Assume first that p(Lg,) = 1. If K&y < N then € mutants of type k; + 1 who always
play di,+1 would earn strictly more than the incumbents. If £, = N, then we show
that e mutants of type L; would fare strictly more than the incumbents. The mutants

would get 1 less point than the incumbents when their type is unobserved, and (N — 2)-
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(A — 1) — 1 more points if their type is observed. Thus, they would earn strictly more

than the incumbents if:
l—p<p-(N=2)-(A-1)—1) &

Il<p-(N=2)-(A-1)) &
1
N-2)-(A-1)
+ (as N > 2). We are left with case that p(Ly,) < 1. In
this case, the balance between the payoff of type Ly, and the higher types implies (in
1

the same way as in the proof of Lemma 1) that p(Lg,) =1 — AT

p>(

which holds for every p >

3. Now assume k; > 1. Consider ¢ mutants of type 1 who enter the population. We show
that these mutants earn strictly more than type k. This is true because type 1 and
type k; get the same payoff whenever their types are unobserved and their opponent
has a type larger than k. Type k; gets at most 1 more point when the opponent is of
type k1. Type 1 gets at least A — 1 points more when the opponent identifies him and
has type larger than k. Thus the mutants would get a strictly higher payoft if:

(1= p (k1) p(A—=1) > p (k)
pA=1)>pu(k) (1 +p(A-1))

(A-1) _ 1 p(A-—1)-1
T > (k) =1 -0 = 5an
Which always holds. O

A.3 Theorem 2 - Stable Configurations Near 0 and 1
Theorem. 2

1. Let 0 < p < m. Then there exists a unique stable configuration where all

players have type Ly and they defect at all stages.

2. Let1 > p > %. Then in any stable configuration there is a positive frequency of
players of type Ly, and these players defect at all stages when observing an opponent
of type L.
Proof.

1. We begin by showing the stability of the configuration in which all players have type
Ly and they defect at all stages. It is immediate that player best respond to each
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other and that the balance property holds. By a similar argument to the proof of

Lemma 5, ¢ mutants with type & < L would fare worse than the incumbents if and

m < p. This implies that the configuration in which all players are

fully-rational and defect at all stages is table if and only if p < m.

Next we show that no other configuration is stable when p < ﬁ (thus, if WIUFD <
1

p < 5 then no stable configuration exist). By Lemmas 7 and 10, in any stable

configuration, all players have wither type L; and they always play d, or they have

only if

higher types and they play against strangers di, ;. If the entire population has type Ly
and k < M, then mutants type L;,; would earn strictly more. Otherwise, by similar
arguments to those given in the proofs of Lemmas 1 and 2 if p < ﬁ then either the

configuration is unbalanced, or the higher types do not play a strictly best reply.

2. Assume first that no fully-rational players exist in the population: p(Ly) = 0. In this
case, fully-rational mutants who defect one stage earlier then an identified opponent
with the highest existing type, and imitate that highest existing type in all other
cases, would earn strictly more then the incumbents. Now, assume that fully-rational
players exist, and that they play d; when observing a fully-rational opponent for some
k < N. Consider fully-rational mutants who play d;,; when observing a fully-rational
opponent, and imitate incumbents otherwise. Such mutants would get 1 more point
against a fully-rational opponent if both players identify each other. If only they identify
their fully-rational opponent they would get at most A—1 less points. In all other cases
they would fare the same as the fully-rational incumbents. This imply that the mutants

would fare strictly better if:
p>(1—-p)-(A-1) &

pA>(A-1) <
A-1

B Robustness to Alternative Stability Notions

In this appendix we present a few alternative notions of stability (Subsection B.1), and we
demonstrate the robustness of our results to the exact way in which stability is defined

(subsection B.1.2). The presentation and the discussion of the alternative definitions may be
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of a separate interest for readers who are interested in applications of indirect evolutionary

approach in other setups.

B.1 Alternative Definitions of Stability

In this subsection we present a few alternative ways to define stability, which differ in: (1)
the way mutant’s payoff is compared with the incumbent’s payoff, (2) the way incumbents

react to entry of mutants.

B.1.1 Weak Stability

The requirement in Definition 3 that the mutants must earn lower fitness than any incumbent
may be too strong. When the entrants earn more than some incumbents, but less than
the mean payoff of the incumbents, the mutants would be eliminated from he population.
However, in this case it is not clear in general if the induced decline in the frequency of the
incumbents who fare the worst would cause the aggregate behavior to move farther from the
equilibrium. In some examples, the aggregate behavior would move back to the equilibrium.
One such example, is a variant of the Rock-Scissors-Paper game with a victory yielding 1.5
and a loss giving -1. Assume that there are 3 types in the population {rock, scissors, paper},
and that each type limits its members to only use “its” action (i.e., types directly determine
member’s actions). Further assume that the pre-entry distribution of types is uniform over
all these 3 types. Then an entry of ¢ mutants of type rock would violate our notion of
stability (Definition 3), because the entrants would fare strictly better than incumbents of
type scissors. Yet, it is well known that under the replicator dynamics, such mutants (that
fare, on average, worse than the incumbents) would be eliminated without disturbing the
equilibrium (see, e.g., Neeman, 1980).

In what follows we present a weaker notion, according to which entrants are only required
to fare on average worse than the incumbents. We interpret this notion as a necessary
requirement for evolutionary stability, and we use it to refine our uniqueness results in the

next subsection. Formally:

Definition 4. A configuration (u,b) is weakly-stable if it is balanced and there exists ey > 0,
such that for each 0 < e < €, Lj, € £ and strategy profile o}, = (07 (K) € ) coume the

mutants fare worse on average than the incumbents in any perturbed configuration (/], E) =

([L,l;m, b, e,L,;,a,;). That is:

1. If L; ¢ C (1) then II; (,:4‘6) <Y eoq it (k) -1 (mb).
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2. 11 L € C () then ITj (mé) < S heo i (k) - T, (mB).

It is immediate to see any stable configuration is also weakly-stable.

B.1.2 DEY- Stability (Dekel, Ely, and Yilankaya (2007))

A different way one may criticize our definition of stability is our assumption that the incum-
bents continue playing the same strategy unless they observe a new mutant type. This implies
that post-entry the incumbent may play an approximate best response, but not necessarily
an exact one. This is because they do not take into account the presence of the ¢ mutants
when playing against strangers. Dekel, Ely, and Yilankaya (2007)’s notion of stability takes
the opposite assumption: post-entry the incumbents adapt their strategies such that the
new strategy profile is again an exact equilibrium. They require that there exists post-entry
equilibria in which the incumbents play is only slightly changed (dubbed, approximate focal
equilibria), and that in all these equilibria the mutants would fare worse then all incumbents.

In order to formally present their notion, we shall introduce some notation. Let N, (x1, L)
be the set of all distributions resulting from entry by no more than ¢, mutants of type L; to

population p. Formally:

Neg (s L) ={p': /' = (L =€) p+ €Ly, 0 < € < e}

Let 6 > 0. Beginning with a configuration (u,b), and following an entry by at most
€0 mutants of type L; leading to fi € N, (p, Lj) , an equilibrium Ve e B, (ft) is d-focal if
incumbent’s behavior is changed by at most d, that is, ‘EkE (k') — by (k:’)‘ < 0 (whenever p > 0)

and |bF (0) — by, (0)| < 6 (whenever p < 1) for all Ly, Ly € C (). An equilibrium is focal
if it is O-focal. Notice that when the entrants have a new type (L ¢ C (u)), then a d-focal
equilibrium does not restrict the behavior of entrants, nor does it restrict the behavior of
incumbents when they observe that they have been matched with mutants. Let B (fi|b)
denote the set of all -focal equilibria relative to b if the post-entry distribution is ji.

Dekel, Ely, and Yilankaya (2007) assume that any focal equilibrium can potentially arise
following a mutation. Thus, DEY-stability requires that in all of them, entrants earn no
higher fitness than any incumbent. However, not all post-entry populations will have focal
equilibria. In that case, they require that approximate focal equilibria exist, and that in all

of them entrants earn no higher fitness than any incumbent. Formally:

10 We simplified the original more complex notion of almost-focal equilibria in Dekel, Ely, and Yilankaya
(2007), using the fact that the set of possible types in our setup is finite.
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Definition 5. A configuration (u,b) is DEY-stable if it balanced and for every §y > 0 there
exist 0 < 0 < g and € > 0 such that for every L; € Land ji € Nc (i, Ly), uy, ([L|Z~)) > uj, ([L‘i))
for all b € BS (fi|b) and Ly, € C (n).

We think that Dekel, Ely, and Yilankaya (2007)’s assumption that the incumbents adjust
their play to have an exact post-entry equilibrium in less plausible when the mutants have
a type and play a strategy that was already existed before the entry. Such e mutants can
enter the population very quickly. In particular, they may not be “mutants” in the biological
sense, they may simply be the result of a small difference between the realized number of
offspring of some type and its expectation. Such a small change in the distribution of play,
which does not introduce of a new type or a new strategy, is unlikely to be unnoticed, and
the incumbents may not have an opportunity to adjust their play in this case.

Moreover, Dekel, Ely, and Yilankaya (2007)’s adjustment causes their notion to be incon-
sistent with Maynard Smith (1982)’s neutral stability, and to predict counter-intuitive result
in the following example: a single-stage 2-strategy (T and B) symmetric coordination game
with a single fully-rational type. One can see that the mixed symmetric equilibrium that
gives equal weight to both actions is DEY-stable, while it is not stable according to our def-
inition, nor it is neutral stable a la Maynard Smith (1982). Consider, an entry of ¢ mutants
who play T'. Such an entree is adjusted by the incumbents slightly decreasing the probability
of choosing T from 0.5 to 0.5 — €). Such a prediction is counter-intuitive: first, it is not clear
how the incumbents become aware about the mutants, and second, the incumbents adjust by
playing less often the better strategy (the one that before the adjustment yielded a strictly
higher payoff).

B.1.3 Adjusting-Stability

When the mutants have a new type (or play a new strategy that was never played before),
the adjustment to a new exact equilibrium seems more plausible, as the incumbents imme-
diately observe things (types or actions) that were never existed before, thus the entree is
quickly recognized. With this intuition we offer the following definition which is a mixture
of our original definition (Definition 3) and DEY-stability. Specifically, when checking if a
configuration is adjusting-stable we assume that post-entry behavior of incumbents is unad-
justed (perturbed configuration as in Definition 2) if the mutants both have a type and play
a strategy that existed in the pre-entry population, and it is adjusted into an approximate
focal equilibrium if the type or the strategy are new (formal definition is straightforward and

it is omitted for brevity).
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B.1.4 Undominated-Stability

In our solution concept we assume that incumbents best reply to observed mutants (who
belong to new types that have not existed in the population before). One can relax this
assumption, and allow the incumbents to play against observed mutants any strategy that is
not strictly dominated. With this relaxed assumption, one can define undominated-stablity,
by requiring that mutants would fare worse than incumbents in any perturbed configuration
and given any undominated strategy the incumbents play against observed mutants (not

necessarily a best reply). It is immediate to see that undominated-stablity implies stability.

B.2 Robustness of The Results

In this subsection we show that our results are robust to other definitions of stability:

1. The stable configurations (the set C) that we characterized in Theorem 1 are also stable

according to all other definitions.

2. All other configurations (outside C) are also unstable according to the adjusting-stability

and undominated-stability variants (in the same interval of p-s).

3. The weak-stability and DEY-stability variants may induce other stable configurations,
but all of them (in the interval max <(Miz)1.(A71)7 (AE1)2> 2A-1

< p <1—35=) would have
similar properties to the configurations in C: the population will include naive players

of type Ly and sophisticated players of higher types who start defecting only 2-4 stages
before the end.

B.2.1 Adjusting-stability and Undominated-stability

It is immediate to see that all the proofs of our results (Appendix A) hold also for adjusting
stability and undominated stability. In particular, the only place in the proofs that we relied
on incumbents best-responding to observed mutants was in part (3) of Lemma 8, where entry
of mutants of type L; was considered. In this case, the incumbents have a unique dominating

strategy against identified mutants, and thus the proof remains unchanged.

B.2.2 Weak-Stability and DEY-Stability

Lemmas 1-5 hold for weak-stability and DEY-stability with minor adaptations. In particular,
it is immediate that any configuration in C is also weakly-stable and DEY-stable. However,

the proofs of Lemmas 6-7 are not valid for the setup of weak-stability and DEY-stability.
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The following proposition shows that any weak-stable or DEY-stable configuration has key
properties that are qualitatively similar to the configurations in C : the population will include
naive players of type L; and sophisticated players of higher types who start defecting 2-4
stages before the end.

<p<l— i’f__j and let (u, b) be a weakly-stable

Proposition 3. Let max ((M—2)1~(A—1)7 (A_ll)Q)

(resp., DEY-stable) configuration. Then:
1. 0 < p(Ly) < 1. Players of type L1 always play d; .
2. All other types Ly, # Ly only start defecting at the last four rounds.
Proof. The proposition follows from the following three lemmas. O]

Lemma 9. Let (u,b) be a weakly-stable (resp,. DEY-stable) configuration, let Ly, € C (u)

be the lowest type in the population and let p > 0 Then p(Ly) < 1, and the mean

1
M—2)-(A-1)"
probability that a random player with type different than Ly, plays di,+1 against strangers

(denoted by q) is at-least:
A-1)-(0-p-1
(A=1)-(1-p)

Proof. p(Ly,) < 1 is implied by Lemma 5 (which is valid also for weak-stability and DEY-
stability). Type Ly, gets (L — k1) A+ ky points when playing against itself. A random player
with a type different than L, who plays against Ly, gets at most (L — k1) - A+ k; + 1 when
he observes his opponent’s type, and an expected payoff of at most ¢ (L — k1) A+ k1 + 1)+
(1—q)-((L—k —1)A+k; +2). This implies that other types fare better when playing
against L, than the payoff that Ly, gets against itself only if (subtracting the equal amount
of (L —Fk; —1)- A+ kp from each payoff):

A<p-(A+1)+(1-p)-(¢-(A+1)+2-(1-¢q))
A<1+p-A+(1-p)-(¢g-A+1—-9q)
1
A-——<q-A+1—gq
l—p

1
— ] - <gq- —
A-1 1_p_q(A 1)
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1

Ay aop ¢

(A-1)-(1-p) -1
(A-1)-(1-p)

The configuration may be weakly-stable (resp., DEY-stable) only if % <gq. O

<q (2)

Lemma 10. Let (u,b) be a weakly-stable (resp., DEY-stable) configuration, let Ly, € C (u)

2-A—1 1 .
A2_A >p> m Then:

be the lowest type in the population, and let 1 —

1. No player defects with positive probability against strangers at horizon strictly larger
than ki + 2.

2. No player defects with positive probability against any other player at horizon strictly
larger than ki + 3.

Proof.

1. Assume to the contrary that there is a type who defects with positive probability against
strangers at horizon [ > k;+2. This implies that d; yields a weekly better payoff against

strangers than dg, 2. This can occur only if:
¢-(1-p)-(A-1)<((1-q) +ap)-1

q-(1-p)-(A-1)<1-¢q-(1-p)

g-(1-p)-A<1
_ 1

q_—.

(1-p)-A

Substituting (2) yields:

(A-1-0-p—1_ 1
(A-1)-(1-p) ~(1-p)-A

A-(A=-1D-A-p)-1)<(A-1)

A(A-1)-(1-p) —A<A—1

A(A-1)-(1-p)<2-A-1
1_p< 2-A—-1
P=Aa-
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51 2-A-1
p — A2 . A Y
and we get a contradiction to p < 1 — Z;“__j.

2. Strategy d; (I > ky + 3) may yield a better payoff than dy, 5 only if:

. . 2.A-1
The latter inequality cannot hold because 1 — 5=

< % for every A > 1.
O

Lemma 11. Let (u,b) be a weakly-stable (resp. DEY-stable) configuration, let Ly, € C (u)

. : 2.A-1 1 1 .
be the lowest type in the population, and let 1 — 55— > p > mazx <(M—2)'(A—1)’ A7) Then.:

1. If every type different than Ly, always plays dy,+1against strangers, then the configura-

tion must be in C.

2. If there are types who play with positive probability d, + 2 against strangers than

3. k1 must be equal to 1.
Proof.

1. If everyone besides type Ly, always plays dj, ;1 against strangers, then we can immedi-
ately apply the arguments in the proof of Lemma 8, and conclude that the configuration

must be in C.

2. The fact that there are types who play with positive probability dy, +2 against strangers
implies that di, + 2 yields a weakly-better payoff than dy, .+, against strangers. This
implies that:

p(Le) < 5. )

3. Assume to the contrary that k£ > 1. Observe that ¢ mutants of type L; would fare
strictly better than the incumbents of type Ly, (and thus would fare strictly better than
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all incumbents in the post-entry perturbed-configuration / approximate focal equilib-
rium) if:
p-(A=1)- (1 —p(Le,)) > p(Le)-1

p-(A=1)>p(Ly) - (1+p-(A-1))

p-(A-1)
1+p-(A-1

)>M(Lk1)'
Substituting (3) yields:
p-(A-1) 1
I+p-(A—-1) A
p-A-(A-1)>14+p-(A-1)
b
(A-1)

p>
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