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Abstract 

According to Engle and Granger (1987), the concept of fractional cointegration was 

introduced to generalize the traditional cointegration to the long memory framework. In this 

paper, we extend the fractional cointegration model in Johansen (2008) and propose a time-

varying framework, in which the fractional cointegrating relationship varies over time. In this 

case, the Johansen (2008) fractional cointegration setup is treated as a special case of our 

model.  
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1.0 Introduction 

Fractional cointegration has attracted interest in time series econometrics in recent years (see 

among others, Dittmann 2004). Fractional cointegration analysis has emerged based on the 

view that cointegrating relationships between non-stationary economic variables may exist 

without observable processes necessarily being unit root )1(I processes or cointegrating 

errors necessarily )0(I processes. 

Both fractional and standard cointegration were originally defined simultaneously in Engle 

and Granger (1987), but standard cointegration has received extensive coverage. The 

standard cointegration allows only integer values for the memory parameter, and tests for the 

existence of cointegration rely on unit root theory. The fractional cointegration framework is 

more general since it allows the memory parameter to take fractional values, and to be any 

positive real number. In their standard approach, Engle and Granger (1987) and Johansen 

(1988) assumed that the cointegrating vector(s) do not change over time. However, when one 

takes into account such phenomenon as structural breaks and regime shifts, the assumption of 

fixed cointegrating vector(s) becomes quite restrictive.  

In this paper, we extend this analysis by examining the fractional cointegration case using 

time-varying vector autoregression model. We specify the vector error correction model 

(VECM) with a cointegrating vector that varies with time and we approximate this vector by 

a linear combination of orthogonal Chebyshev time polynomials. 

1.1 Fractional Cointegration  

Following Granger (1986), a set of )(dI variables are said to be cointegrated, or ),( bdCI , if 

there exists a linear combination that is )( bdCI −  for 0>b . To define fractional 

cointegration, let tx  by n-dimensional vector )1(I  process. Then tx  is fractionally 

cointegrated if there is an n
Ra ∈ , 0≠a , such that txa

' ~ )(dI  with 10 << d . In this case, d 

is called the equilibrium long-memory parameter and write tx ~ )(dI . Compared to classical 

cointegration, where 0=d , defining the cointegration rank is more difficult for fractionally 

cointegrated systems, because different cointegrating relationship need not have the same 

long-memory parameter. 



The fractional cointegration setup that we consider in this paper is based on an extension of 

the Johansen’s (2008) Error Correction Mechanism (ECM) framework which is specified as 

follows:  
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where tX  is a vector of )1(I  series of order k x 1, tD are deterministic terms, tε  is a k x 1  

vector of Gaussian errors with variance-covariance matrix Ω , and Π , ΦΓΓ − ,,..., 11 k  are freely 

varying parameters. When the vector tX  is cointegrated, we have the reduced rank condition 

'αβ=Π , where  α  and β  are N x r constant parameter matrices, having rank r, representing 

the error correction and cointegrating coefficients, respectively.  

Granger (1986) proposed the first generalization of the VECM model to the fractional case 

with the following form: 
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Where )(* LA is a lag polynomial, tX  and tε  are N x 1, tε ~i.i.d ),( Σo ; α  and β  are as 

defined in (1.1) above; and b and d  are real values, with d representing order of fractional 

integration and bd −  representing order of co-fractional order. The process tX   is a 

fractional order of d  and co-fractional order of, bd − . In other words, that is there exists β  

vectors for which tX'β   is fractional of order bd − . L  represents lag operator, and ( d∆ ) 

represents fractional difference parameter. Note that equation (1.2) has the conventional error 

correction representation when 1=d  and 0=− bd , i.e. )1(I variables cointegrate to )0(I . 

Dittman (2004) attempts to derive this model from a moving average form but, according to 

Johansen 2008, the results are not correctly proved. In this paper, we follow the formulation 

suggested by Johansen (2008): 
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This formulation implies the following changes from (1.2): 1)1( −∆− t

b
X  is changed to tb XL ; 

the lag polynomial )(* LA  is changed to )( bLA ; i.e. the latter is lag polynomial in bL  (and 

not bL ). b

b LL )1(1 −−= . The lag polynomial )(Ld  is ignored. 

When 1=d  and 0=− bd , i.e. )1(I variables cointegrate to )0(I . 
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 However, from (1.2) also note that the condition 

 0~)1( '

t
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is required so that the equation balances, having both sides I(0). bd −  represents 

cointegrating rank. Setting 1== bd  yields to the usual Johansen (1988, 1991) style VECM, 

but d and b  can be real values with 0>d  and db ≤<0  . In this model, all elements of tx  

exhibit the sane order of integration, not necessarily unit, and similarly, the cointegrating 

residuals tx
'β  are all of order bd − . It should be noted that in fractional cointegration, the 

cointegrating residual is long memory and possibly even non-stationary, but has a lower order 

of integration than its constituent variables.  

1.2 Time-Varying Fractional Cointegration Representation 

In this model, we extend the Johansen (2008) Fractional VECM )( p  framework to a time-

varying framework as follows: 
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where ttt βα=Π ' , and tβ is time-varying cointegrating vector of coefficients. Thus one can 

test the null hypothesis of time-invariant cointegration, αβ=Π '

t , where α  and β  are fixed k 

and r matrices with rank r,  against the time varying parameter of the type 

  ''

ttt βα=Π ,        (1.7) 

Where tα  and tβ ’s are time varying k x r matrices, with constant rank r and t  represents 

time, where 0≥t  .  In this case, both tα ’s and tβ ’s are assumed to be time dependent.  

Equation (1.7) is governed by the following assumptions: 



Assumption 1: Ttt /ββ = , where each element of ,, ,ττ ββ i )1,0(,,...,1 ∈= τki is a function of 

time, t. Assumption 2: tu  is a stationary martingale difference sequence with finite 4-th 

moments, which is independent of tX   at all leads and lags. Assumption 3: tX  is a vector of 

non-stationary variables. 

Assumption 1 is quite essential. It specifies that β  is a deterministic function of time. It is 

interesting to note that it depends not only on the point in time t, but also on the sample size 

T. This is necessary as one needs the sample size that relates to that parameter to tend to 

infinity, for one to estimate consistently a particular parameter. This is achieved by allowing 

an increasing number of neighbouring observations in order to obtain more information about 

β  at time t. In other words, we have to assume that as the sample size grows, the function τβ  

will extend to cover the whole period of the sample. This kind of setup has examples in the 

statistical literature. Assumptions 2 and 3 are standard conditions in cointegration analysis for 

the error term and tX . 

1.3 Chebyshev Time Polynomials 

Making use of a theorem due to Halbert White, Granger (2002) claimed that any linear model 

can be estimated using a time-varying parameter linear model. Furthermore, he argued that 

time-varying coefficients could be deterministic function of time. This principle was 

implicitly introduced by Bierens and Martins (2010) in time varying relationships. In Bierens 

and Martins (2010), the time-varying cointegrating vector was approximated by a linear 

combination of orthogonal Chebyshev time polynomials so that the resulting vector error 

correction model had time invariant coefficients. 

In this paper, we follow Halbert White and Granger’s (2002) principle and model a time 

varying fractional cointegration using Chebyshev polynomials.  

Chebyshev time polynomials )(tTPi  are defined by 

 )/)5.0((cos)(,1 ,,0 TtitPP TiT −== π      (1.8) 

` Tt ,...,2,1= t=  ,...2,1=i  

Bierens (1997) makes use of these polynomials in his unit root test against nonlinear trend 

stationarity. The polynomials are orthonormal, since for all 
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this orthonormality property, any function )(tg of discrete time Tt ,...,1= can be specified as: 
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Assume that in equation (1.9), )(tg is linearly decomposed into parts )(,, tP TiTiξ . Thus  )(tg  

can be estimated as follows: 
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Proof: See Bierens and Martins (2010). 

Thus we may specify tβ  for t=1,….,T as )(
1
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0,….,T-1 are unknown k x r matrices.  

1.4 Modelling Time-varying Fractional Cointegration using Chebyshev Time 

Polynomials   

Substituting )]'([ ,0
tP Ti

m

i ittt ∑ =
=Π= ξαβα in 1.8 yields 
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for some k x r matrices iξ . 
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