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1 Introduction

The wide–scale adoption of refrigeration in the storage and processing of agricultural

commodities proceeded in two stages: The first phase, which began in the late 1870s,

employed natural ice in the shipping of beef and pork (Aduddell and Cain, 1973,

1981; Anderson, 1953; Kujovich, 1970). The second phase, which began in the 1880s,

employed mechanical refrigeration in the storage of a wide range of commodities,

including, not only beef and pork, but also butter, cheese, and eggs. Even though the

ancients understood the physics of refrigeration, the technological bottleneck limiting

wide–spread use was in building a reliable, low–cost mechanical refrigerator. Indeed,

doing so was only accomplished in the final two decades of the nineteenth century,

and even these early mechanical refrigerators could not be profitably employed in

the shipping of perishables. Size, maintenance, and the absence of a consistent power

source forced shippers to use ice to refrigerate rail cars well into the twentieth century

(see, e.g., Goodwin, Grennes and Craig, 2002).

Previous scholarly work on the economic impact of refrigeration has focused on three

changes in the market for perishable commodities: (1) the spatial integration; (2)

structural change; and (3) the welfare effects. With respect to spatial integration,

Serra and Goodwin (2004) and Serra et al. (2006) estimate the impact on regional

prices differences in the U.S. egg market and find that “price shocks in one market

generate responses in the other markets, leading to a tendency for prices to converge

after market shocks” (p. 70). Craig and Holt (2008)and Holt and Craig (2006)

model structural changes in the hog–cycle cycle as a result of the introduction of the

refrigeration in the shipping and storage of pork and conclude that, between 1870

and 1940, “the cycle underwent fundamental seasonal change, which was largely the

result of mechanical refrigeration” (p. 49). And, with respect to the welfare effects of

refrigeration, Craig et al. (2004) estimate that, in the United States, the adoption of

refrigeration in the late–nineteenth–century “resulted in an increase of 1.26 percent

of national income” (p. 332).

In this paper, we investigate the impact of refrigeration on the market for eggs,

focusing on changes in both the spatial and temporal price dynamics. Previous studies

have emphasized refrigeration’s impact on the spatial dimension of market integration;
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however, mechanical refrigeration employed in storage facilitated arbitrage over time

as well as space, and there were important welfare effects from this opportunity.

Interestingly, the effect on the market from the resulting temporal smoothing often

conflicted with the impact from spatial integration. In short, refrigeration in shipping,

and the absence of refrigeration in storage, forced farmers and wholesalers holding

a perishable commodity to ship to another market as quickly as possible, usually a

more–distant urban area, a phenomenon well–documented in the spatial integration

literature. But once mechanical refrigeration was available for storage, sellers could

hold their perishable inventories for sale in the local market or a closer urban area.

This logic has implications for the impact on the price dynamics for perishables and

the welfare effects of refrigeration.

2 Regional U.S. Egg Markets: An Historical Perspective

On the eve of the Civil War, U.S. farmers produced 633 million dozen eggs, with

a market value of $51 million. By 1910, the market had grown to 2,250 million

dozen, with a market value of $470 million.1 During that 50 year period, per capita

egg production increased at an average compounded rate of 2.6 percent per annum,

which was substantially faster than the 2.2 percent growth experienced by the U.S.

population, and, as a result, per capita annual egg consumption increased from 20.1

dozen to 24.6 dozen. At the same time, the urban share of the population grew at

3.6 percent annually, and the farm share of the labor force declined by 1.1 percent

annually. Thus, U.S. farmers increased dramatically the productivity of their poultry

operations. Indeed, the annual egg output per hen increased by a factor of 2.5, nearly

two percent per annum.

These changes were facilitated by two important technological innovations: The ex-

pansion of the rail network, and transportation improvements more generally, and the

wider use of refrigeration in both shipping and storage. Refrigeration had an espe-

cially strong, and often overlooked, impact on the markets for perishable agricultural

commodities. Once farmers, processors, wholesalers, and retailers could refrigerate

1These are nominal figures; however, the price level in 1910 was roughly the same as it was in
1870 (Clark, Craig and Wilson, 2003, p. 226).
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some critical proportion of the product, the possibilities for arbitrage over space and

time expanded, with the result that markets became more integrated, by various

measures of the term. It follows that price differentials between places and points in

time fell, and, other changes aside, the prices in formally off-peak seasons decreased

as quantities exchanged increased; while formally peak-season prices increased and

quantities decreased, with resulting welfare and real output gains (Holt and Craig,

2006; Craig and Holt, 2008; Goodwin, Grennes and Craig, 2002; Craig, Goodwin and

Grennes, 2004).

While in general refrigeration facilitated geographical market integration, and thus

arbitrage over space and time, the effects of “natural” refrigeration–that is, through

ice–and mechanical refrigeration were potentially quite different. The use of refrig-

erated rail cars antedated the widespread use of mechanical refrigeration. The first

large-scale applications were in the shipping of slaughtered beef and hogs. The car-

casses were hung in rail cars with slated sides, and in the four corners of the cars were

bins in which fresh ice was packed. As the cars moved down the line the air blowing

through the slats passed by the ice bins and circulated cooler air among the carcasses.

Because the carcasses did not reach all the way from ceiling to floor, there was room

at the bottom of the car for packing dairy products (mainly butter and cheese) and

eggs. This system offered arbitrage opportunities primarily between locations, mainly

the Midwest, where the products were processed and the urban areas to the east.

Refrigerated storage, which was primarily generated mechanical refrigerators, on the

other hand, primarily facilitated the arbitrage over time, as processors and wholesalers

could store inventories to meet future market demand.2 It was possible that the two

types of refrigeration sent conflicting signals to sellers.

For example, suppose a processor or wholesaler recognizes a price differential of delta

between locations X (the source of the commodity) and Y (where the commodity is

demanded), and suppose delta is greater than epsilon, which is the cost of refrigerated

shipping. As a result of the trade between X and Y, the market price would increase

in X and decrease in Y. Econometric tests might show a decrease in the half-life

between the period before refrigerated shipping as available and after.

2Ice was not a good cooling agent for storage, because the endothermic process that generates
lower temperatures also results in melting, and the moisture damaged perishables.
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Now suppose that not only can processors or wholesalers ship via refrigerated rail

cars, but they can also warehouse with mechanical refrigeration at either end of the

rail line, again X and Y. Further suppose that at either end of the line, the price

differential phi between time t and t+n, is greater than epsilon star, which is the

cost of refrigerated storage. If phi less epsilon star is greater the delta less epsilon,

then it paid to store and arbitrage over time in X rather than over space between X

and Y. As a result, not all of the epsilon opportunities would be exploited. Indeed,

there may have been opportunities to ship before mechanical refrigeration that are

no longer profitable, and, importantly, the econometric manifestation of this would

an increase in half-lives.

Now, the market can work this out over time by adjusting supply; however, the “over

time”qualifier is important. The storage technology was improving fairly continuously

throughout the period in question; so for a period of time, captured by our data

range, the arbitrage opportunities in time might have expanded more rapidly than

the physical supply responses to the increasing arbitrage opportunities in space.

To see this practice, consider two sets of cities, first, say, either Dubuque–Chicago

or Indianapolis-Chicago. Our data reveal that, in both cases, Chicago was typically

the higher-priced market, and was therefore in general a net importer of eggs from

the hinterlands. It is approximately 178 miles from Dubuque to downtown Chicago.

Likewise, it is about 183 miles from downtown Indianapolis to downtown Chicago,

and both cities were connected by rail to Chicago. We find that the Dubuque–Chicago

and the Indianapolis-Chicago egg markets were reasonably integrated, by econometric

standards, both before and after the approximate period in which mechanical refrig-

eration became available on a commercial basis. Of interest, however, is the fact that

the dynamics in these markets did not change in the slightest with the expansion of

mechanical refrigeration. In Indianapolis, for example, the half-life of a shock to the

price difference (between Chicago and Indianapolis) remained steady over the entire

sample period at 0.77 months, or about three weeks. The comparable estimate for

Chicago–Dubuque is 0.40 months, or about two weeks. We argue that these markets

were fairly well integrated, via refrigerated rail car before the beginning of the period

we consider here, and that a reasonable proportion of marketable surplus of eggs was

being sent from both Indianapolis and Dubuque top Chicago both before and after

the introduction of mechanical refrigeration. Nothing much changed, in other words.
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It’s not that refrigeration and temporal storage didn’t become an option in either

city; it’s just likely that, at the margin, the cost of doing so did not in general exceed

the expected profit of continuing to ship eggs to Chicago.

An alternative scenario is St. Louis, which is just shy of 300 miles from Chicago.

Here, with the technical change being centered somewhere around 1899, the half life

of a shock in the Chicago-St. Louis price relationship went from being 0.25 (about

one week) to 2.00 (four weeks). We interpret this as saying that, at the margin, there

was less shipping from St. Louis to Chicago after the technical change and more

local “storage.” Of course shipments to other locations could have changed, too. But

we think this is a key finding. With the expansion of mechanical refrigeration and

storage, the arbitrage profits over time locally dominated the arbitrage profits over

space between St. Louis and Chicago. The technological change resulted in less trade.

3 Spatial Price Linkages: Conceptual and Empirical Issues

3.1 The Law of One Price: Some Simple Analytics

The data we analyze in subsequent sections are comprised of wholesale egg prices for

a variety of U.S. cities during the late 19th and early 20th centuries. In this section

we present a simple model of spatial price relationships for commodities priced in

the same currency. In doing so we build on the basic framework presented by Lo

and Zivot (2001) and O’Connell and Wei (2002), and others, although the modern

underpinnings for the theory of spatial price relationships are typically attributed to

Dumas (1992).

Let Pit and Pjt denote wholesale egg prices, in cents per dozen, at time t in cities i

and j, respectively. The spatial relationship between these prices at time t may then

be expressed as:

Pit = α̃P β
jt exp (εt) , (1)

or, after taking natural logarithms,

pit = α + βpjt + εt, (2)
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where t = 1, . . . , T ; pℓt = ln (Pℓt), ℓ = i, j; α = ln α̃, with α̃ denoting the proportion

of the price in city j attributable to shipping and transport costs (i.e., shipping costs

are assumed to be of the “iceberg” variety); and εt is an idiosyncratic error term such

that εt ∼ N (0, σ2) ∀t, t = 1, . . . , T . A typical assumption in the Law of One Price

(LOP) literature is that β = 1; see, for example, Goodwin et al. (2002). Under this

assumption it is a straightforward matter to rearrange (2) as follows:

yt = ln (Pit/Pjt) = α + εt. (3)

Equation (3) simply states that, under the assumed conditions, the LOP holds if log

price differentials equal a constant term plus a mean–zero idiosyncratic shock. At

this point the time series properties of the data are typically invoked to aid in the

interpretation of the LOP condition. Specifically, there is considerable evidence that

most medium–frequency prices, even in logarithmic form, behave in a manner con-

sistent with the unit root hypothesis; see (Balagtas and Holt, 2009) for a reasonably

current review. That is, we could think of expressing the underlying statistical model

for city prices as:

∆pℓt = υt, ℓ = i, j, (4)

where ∆ is a first difference operator such that ∆zt = zt − zt−1 and where υℓt ∼

iid
(
0, σ2

pℓt

)
. Of course it is always possible to add either a drift term (i.e., an intercept)

or lagged values of ∆pℓt to (4) as required, although doing so will not alter the

underlying model implications. Assuming that (4) is a reasonable description of

movements in nominal prices, it follows that the relative price relationship in (3) can

be interpreted as a cointegrating relationship, assuming, of course, that εt, although

possibly autocorrelated, does not contain a unit root. In other words, expressing (3)

is rewritten in first difference form, we obtain:

∆yt = δ0 +

p∑

k=1

ϕk∆yt−k + ρyt−1 + εt, (5)

where an intercept term, δ, has been added (an assumption consistent with the pres-

ence of a deterministic linear trend in (3). As well, lagged values of ∆yt have also

been added under the assumption that the errors of the relative price relationship are

autocorrelated, in this case up to lag order p+ 1.
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The coefficient of primary interest in regression equation (5) is the parameter ρ, the

coefficient on the lagged log price differential. specifically, ρ indicates the degree to

which egg markets in city i and city j are integrated. Assuming the above arguments

regarding the statistical behavior of these prices and the LOP are correct, then we

would ordinarily expect to obtain an estimated value for ρ that is negative and that

is less than one in absolute value. The closer the estimated (absolute) value of ρ is to

zero, the less integrated are the markets in question, and the longer time required for

the LOP equilibrium to be restored following a transitory price shock. Alternatively,

the greater is the estimated (absolute) value of ρ, the more more highly integrated are

the respective markets in question, and the more quickly will the LOP equilibrium

be restored following a transitory shock.

In the law–of–one price literature it is common to express the rapidity with which

market equilibrium is restored following a transitory sock by computing and reporting

the so called half–life measure, defined as:

ĥ =
ln (0.5)

ln (1 + ρ̂)
, (6)

where ρ̂ is the estimated value for ρ based on (5). The value of reporting half lives

is that they are measured in time units (i.e., in the same time frequency as the data

being analyzed), and therefore estimates can be readily compared for different market

pairs and even for differing commodities. In any event, the half life measure in (6)

indicates the amount of elapsed time required (again, where time is measured in

the same frequency as that for the data being analyzed) for half of the effects of a

transitory shock away from the LOP fundamental to dissipate.

3.2 Recent Developments: Transactions Costs

A common empirical finding in LOP studies is that estimates of ρ are larger than

would otherwise be anticipated (correspondingly, estimates of ρ are much closer to

zero in absolute terms than would be anticipated) based on institutional knowledge

regarding trade amongst the markets in question.3 The result is that economist have

3Similar results are frequently obtained as well in the related Purchasing Power Parity (PPP)
literature.

7



sought to explore the LOP using alternative frameworks.

An approach that has gained popularity in recent years is to assume that otherwise

unobserved transactions costs play an important role. See, for example, Goodwin and

Piggott (2001) and Lo and Zivot (2001). The idea is that for real trade, transactions

costs, defined by, for example, insurance, freight, legal fees, and so forth, matter.

Small price deviations, that is, small movements of pit away from pjt will likely not

generate any meaningful arbitrage activity because such movements may, in general,

not be large enough to cover the transactions costs associated with engaging in physi-

cal arbitrage activity. It is only large discrepancies then between pit away from pjt–or

correspondingly, in terms of (3), only large values for εt in absolute terms–that gen-

erate any real arbitrage activity. The thinking is that when prices are within a so

called transactions cost band, a reasonable expectation then is that (5) might look

very much like a unit root process, that is:

∆yt = δ0 +

p∑

k=1

ϕk∆yt−k + εt. (7)

Alternatively, if the difference between pit away from pjt is sufficient to cover typical

transactions costs, then we would expect arbitrage activity to occur quickly, therefore

bringing the spatially related prices back into line. In this case the model in (2)

would apply where we would expect the estimate of ρ to be considerably less than

zero, implying a relatively rapid return to within the transactions cost ban.

In terms of modeling price behavior that is consistent with a transactions cost ban,

we could think of taking a weighted average of (5) and (7), given by:

∆yt =

(
δ01 +

p∑

i=1

ϕi1∆yt−i

)
(1− I (st,θ))

+

(
δ02 +

p∑

i=1

ϕi2∆yt−i + ρyt−1

)
I (st,θ) + εt,

(8)

where θ = (θ1, θ2)
′ typically denotes a (2 × 1) parameter vector that defines the

transactions cost band; I(st−1,θ) is a Heaviside indicator function such that I(st,θ) =

0 if θ1 ≤ st ≤ θ2 and I(st,θ) = 1 otherwise; and where st is the so called transition

variable. In practice it is often the case that st = yt−1, or perhaps yt−d for some
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d ∈ [1, Dmax], although it is also possible, as described by Kilian and Taylor (2003),

to use a weighted average of lagged values of yt. For example,

st =
(

1
Dmax

)Dmax∑

k=1

st−k, (9)

could also be used as a candidate for the transition variable. The setup described

in (8) yields what is referred to as the self exciting threshold autoregressive model,

or SETAR model (see, e.g., Tong and Lim, 1980). Models of this sort have been

used extensively in recent years to examine issues related to the LOP and, relatedly,

Purchasing Power Parity (PPP). See, Lo and Zivot (2001), Goodwin, Grennes and

Craig (2002), and Serra and Goodwin (2004), among others, for relevant applications

of SETAR models involving the LOP.

As an alternative to the SETAR, various authors including, for example, Kilian and

Taylor (2003), Ghoshray (2010), and Goodwin, Holt and Prestemon (2011) have pro-

posed replacing the Heaviside indicator function, I(st−1,θ), in (8) with a specification

that is continuous in st. For example, I(st−1,θ) could be replaced with:

G (st; θ) = 1− exp
(
−γ (st − c)2κ

)
, γ > 0, κ = 1, 2, . . . , κmax, (10)

where θ = (γ, c, κ)′ is a parameter vector. The combination of (10) and (8) yields the

so called Generalized Exponential Smooth Transition Autoregression, or GESTAR,

first considered by Goodwin, Holt and Prestemon (2011). The GESTAR is, in turn, an

extension of the Exponential Smooth Transition Autoregression, or ESTAR, wherein

κ = 1. In any event, the GESTAR model is a member of the general class of smooth

transition autoregressive models, or STAR models, introduced by Teräsvirta (1994).

In (10) γ is the speed–of–adjustment parameter, and in turn dictates how quickly

the function moves from zero to one as st diverges from the centrality parameter,

c, in absolute value. Likewise, κ is a shape parameter that determines how abrupt

the transition is as
√

(st − c)2 becomes large. Specifically, for large γ and large κ

the GESTAR will approximate the SETAR model outlined previously. In practice

κmax = 8 is often sufficient to generate something akin to SETAR–like behavior, and

therefore a typical search over κ might be conducted over the κ ∈ [1, . . . , 8] grid.
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An alternative to the GESTAR is the generalized logistic function, given by:

G (st;θ) =

[
1 + exp

(
−γ

k∏

i=1

(st − ck)

)]−1

, γ > 0, c1 ≤ . . . ≤ ck. (11)

When (11) is combined with (8), the resultant model is referred to as the General-

ized Logistic Function Smooth Transition Autoregression, or GLSTAR. Two common

choices for k are k = 1 and k = 2. When k = 1 in (11), the generalized logis-

tic function reduces to the standard two–parameter logistic function, which in turn,

when combined with (8), generates the Logistic STAR, or LSTAR. While the LSTAR

is useful for modelling certain types of nonlinearity, for example, the change in un-

employment dynamics during expansions versus contractions (see, e.g., Skalin and

Teräsvirta, 2002), it is generally not useful for modelling the role of transactions costs

in the LOP. Alternatively, when k = 2 the resultant transition function, when com-

bined with (8), is the so called Quadratic STAR, or QSTAR model, which has also

been used in LOP studies; see, for example, Goodwin, Holt and Prestemon (2011).

The QSTAR, like the GESTAR, also implies equilibrium band behavior. Notably, as

γ → ∞, the quadratic logistic in (8) effectively becomes a Heaviside indicator func-

tion. In this manner the QSTAR also nests the popular SETAR specification, and

therefore provides considerable flexibility in modeling.4

4 An Alternative Approach: Time–Varying Parameters

4.1 Time–Varying Autoregressions: Model Specification

Regardless of the approach used, the SETAR/STAR modelling framework that allows

for the possibility of transactions costs, and thereby allows for estimated half–lives to

be regime dependent, typically represents an improvement over the linear modelling

approach in (3). Even so, the nonlinear framework assumes that markets are well

established and that, moreover, institutional and technological changes have not oc-

curred that would otherwise influence the ability to arbitrage the markets in question.

4Alternatively, in (11) when k = 1, the resultant transition function when combined with (8)
yields the Logistic STAR, or LSTAR model, which is also popular in applied work. See van Dijk,
Teräsvirta and Franses (2002) for additional details.
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As previously mentioned, this may not be the case for regional egg markets during the

period of the late 19th and early 20th centuries. In this scenario a different modelling

strategy may be in order.

As previously discussed, due to technological innovations in the late 19th century

commercial refrigeration became not only technologically feasible but economically

viable. As such, the ability to store eggs, even for comparatively brief periods of

time, might have impacted the rapidity with which changes in relative prices would

be arbitraged away. To this end the spatial price model in (8) could me modified

so that I(st,θ) could be replaced with I(t∗,θ), where t∗ = t/T , t = 1, . . . , T . For

example, if only the intercept is allowed to change, and if θ = θ, a scalar, then we

have:

∆yt = δ01 (1− I (t∗, θ)) + δ02I (t
∗, θ) +

p∑

i=1

ϕi∆yt−i + ρyt−1 + εt, (12)

where I(t∗,θ) is a Heaviside indicator function such that I(t∗,θ) = 0 if t∗ ≤ θ

and I(t∗,θ) = 1 otherwise. Models of this sort, that is, models that allow for a

single, discrete break have been explored in detail by Perron (1989) and Andrews

and Ploberger (1994), and extended to multiple discrete intercept breaks by Bai and

Perron (1998, 2003).

While generalizing to models that allow for one or more intercept breaks is potentially

useful, such models are likely of limited interest in the present context. Importantly,

it is more likely that the structural change associated with the adoption of large–scale

mechanical refrigeration over the period examined resulted in changes to the model’s

entire dynamic structure. Moreover, it is likely that construction and adoption of

mechanical refrigeration during the period examined did not happen in strict zero–

one manner, that is, with the structural shift occurring fully at single, precise point in

time. To this end, a framework for model specification and estimation that is similar

in spirit to the Bai and Perron methodology, but allows instead for the possibility

of smoothly changing parameters–including persistence parameters–was put forth by

Lin and Teräsvirta (1994).

The Lin and Teräsvirta approach is to use versions of either the generalized exponen-

tial function in (10) or the generalized logistic function in (11) where, as previously

indicated, st = t∗. When combining these time–dependent transition functions with
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(8), we obtain:

∆yt =

(
δ01 +

p∑

i=1

ϕi1∆yt−i + ρ1yt−1

)
(1−G (t∗,θ))

+

(
δ02 +

p∑

i=1

ϕi2∆yt−i + ρ2yt−1

)
G (t∗,θ) + εt,

(13)

the Time Varying Autoregression (TVAR). Of interest is that in this most general

form all parameters in (13), including ρ, and hence the estimated half–life of a devi-

ation from LOP equilibrium, can change in a potentially smooth manner over time.

Moreover, if, the generalized logistic function in (11) is used with k = 1, and as

γ → ∞, the structural change becomes discrete at time t∗ = c. In this manner the

TVAR nests the discrete break methods put forth by Bai and Perron (1998). In

this manner the general TVAR model offers considerable flexibility in modelling, and

therefore is a potentially useful tool for examining changes in market price dynamics

for eggs during a known period of rapid technological change.

4.2 Time–Varying Autoregressions: Testing and Model Specification

Before proceeding, several basic questions must be addressed. Specifically, in the first

instance how do we know if a TVAR model is even called for? And how do we know if

the TVAR model, once estimated, captures the relevant structural change? We now

turn to addressing these issues.

To begin, the first question posed asks if the TVAR model in (13) is a statistically

valid improvement in model fit relative to the constant parameter LOP model in (5).

It would seem that such an issue could be addressed in a straightforward matter by

simply estimating (13) and then performing a test of the hypothesis:5

H0 : γ = 0. (14)

The problem with performing such a test, however, is that under the restriction im-

plied by the null hypothesis the parameters (δ02, ϕ12, . . . , ϕp2, ρ2)
′ are not identified.

5Alternatively, setting δ01 = δ02, ϕ11 = ϕ12, . . . , ϕp1 = ϕp2, ρ1 = ρ2 also reduces (13) to a constant
parameter model. In this case, the parameters in θ, namely, γ and c, are unidentified.

12



Problems of this sort, that is, tests wherein there are unidentified nuisance parameters

under the null hypothesis, have been explored by Davies (1977, 1987). The implica-

tion is that usual test statistics such as the F–statistic associated with imposing the

restrictions under the null hypothesis in (14) no longer have asymptotically valid F

distributions.

Various methods have been proposed for circumventing this problem in the literature,

including simulation methods (see, e.g., Hansen, 1997). Even so, a particularly useful

approach in the present case, as described by Lukkonen, Saikkonen and Teräsvirta

(1988), is to replace G (t∗; γ, c) with a suitable Taylor series approximation, where the

approximation is for γ evaluated at γ = 0. For example, a third–order Taylor series

approximation yields, after substitution into (13) and collecting terms:

∆yt = β′
0xt + β

′
1xtt

∗ + β′
2xtt

∗2 + β′
3xtt

∗3 + ϵt, (15)

where xt = (1,∆yt−1, . . . ,∆yt−p, yt−1)
′; where βj, j = 0, . . . , 3 are conformable pa-

rameter vectors; and where ϵt includes the original error term, εt, plus approximation

error. In this case a test of parameter constancy, that is, a test of (14), is akin to a

test of the null hypothesis:6

H′
0 : β1 = β2 = β3 = 0. (16)

Moreover, the test can be conducted by using the F–test version of an LM test,

denoted as LM0 , which under the null hypothesis of parameter constancy will be

approximately F distributed with 3 (p+ 2) and T − 4 (p+ 2) degrees of freedom.

Following a framework similar to that put forth by Teräsvirta (1994), Lin and Teräsvirta

(1994) define a sequence of tests that, in principle, may be used to identify whether

the GESTAR in (10) (or, alternatively, the QSTAR in (11) when k = 2) or the LSTAR

in (11) (i.e., when k = 1) is called for. Specifically, the hypotheses to be tested are:

H03 : β3 = 0

H02 : β2 = 0 | β3 = 0

H01 : β1 = 0 | β2 = β3 = 0

(17)

6Under the null hypothesis of parameter constancy there is no approximation error and hence
ϵt = εt.
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Of course the testing sequence in (17) can be performed as a sequence of LM F tests

similar to that described for the general test of nonlinearity in (16). The correspond-

ing sequence of LM tests may be defined as: LM03, LM02, and LM01. Finally, the

basic parameter constancy test in (16) as well as the sequence of tests in (17) can be

performed for all variables included in xt or for some subset of variables. For example,

suppose that both lagged values of ∆yt and seasonal dummy variables are included in

the base model. With the hope of obtaining more parsimonious final model specifi-

cations, it may be desirable to test for parameter constancy separately for the lagged

dependent variables and the seasonal terms.

In any event the basic idea underlying the testing sequence in (17) is simple, and is as

follows. Assume that linearity is rejected, that is, that the null hypothesis in (16) is

rejected. Then if H02 in (17) is associated with the smallest p–value, a second–order

approximation apparently has the most empirical support, which in turn implies that

the GESTAR in (10) or the QSTAR where k = 2 in (11) is called for.7 Alternatively,

if either H03 or H01 are associated with the smallest p–value in the testing sequence,

then an LSTAR (i.e., (11) when k = 1) is suitable.8 Once the candidate transition

function has been identified, the parameters of the TVAR model may be estimated by

using nonlinear least squares. See van Dijk, Teräsvirta and Franses (2002) for details

on model estimation.

Once a candidate TVAR model has been identified and estimated it is useful to

evaluate its statistical adequacy. To do so, define the skeleton of the relevant TVAR

model as:

F (xt,ψ) = ϕ′
1xt (1−G (t∗,θ)) +ϕ′

2xtG (t∗,θ) , (18)

where ϕi = (δ0i, ϕ1i, . . . , ϕpi, ρi)
′, i = 1, 2; where θ = (γ, c)′ with an LSTAR or

GESTAR and θ = (γ, c1, c2)
′ for the QSTAR; and where the vector ψ is defined as

ψ = (ϕ1,ϕ2,θ)
′. Let ε̂t denote the estimated residuals from the TVAR. And let

∇F
(
xt, ψ̂

)
= ∂F (.) /∂ψ|ψ=ψ̂, that is, let ∇F

(
xt, ψ̂

)
denotes the gradient of the

skeleton of the TVAR model with respect to its parameters. Following Eitrheim and

7Discriminating between the GESTAR and the QSTAR cannot be done by testing, but rather
must be done based on overall model fit and diagnostic criteria.

8Alternatively, Escribano and Jordà (1999) argue that expanding (16) to include fourth–order
terms in the approximation can be useful when attempting to discriminate between a GES-
TAR/QSTAR and an LSTAR. The null hypothesis in (16) and, as well, in (17) would in this be
modified accordingly.

14



Teräsvirta (1996), an LM test of remaining autocorrelation, referred to as LMAR, can

then be obtained by regressing ε̂t on the elements in ∇F
(
xt, ψ̂

)
and q lags of ε̂t

and by then performing an F test for the joint significance of the lagged residual

terms. In a similar manner, an LM test for remaining (additive) parameter non–

constancy, referred to as LMTV may be performed in a similar manner. Specifically,

ε̂t is regressed on elements in ∇F
(
xt, ψ̂

)
and the interaction terms xtt

∗, xtt
∗2 , and

xtt
∗3 , with the joint significance of the latter 3(2+p) terms tested in the usual manner

by using an appropriate F test. Finally, as with the initial parameter constancy tests

discussed previously, it is possible to: (1) perform a sequence of tests for remaining

parameter non–constancy in a manner similar to that in (17) and, (2) to conduct

tests for remaining parameter non–constancy on a subset of variables included in the

initial model specification. See Eitrheim and Teräsvirta (1996) for additional details

on diagnostic testing in the context of smooth transition models.

5 Data and Basic Data Properties

5.1 Overview

In the empirical analysis we analyze wholesale egg prices for nine U.S. cities, including:

Baltimore (BWI), Chicago (CHI), Cincinnati (CVG), Dubuque (DBQ), Indianapolis

(IND), Minneapolis (MSP), New Orleans (MSY), New York (NYC), and Saint Louis

(STL). The data are taken from Holmes (1913) and are reported as monthly wholesale

prices for eggs in cents/dozen. In most instances the sample period runs from October,

1880 through September, 1911 for a total of 372 monthly observations; in the case

of Minneapolis, however, the data do not begin until October, 1983 for a total of

336 observations. Sample properties for the underlying city–level egg price data are

summarized in the upper panel of Table 1. Likewise, time series plots for the egg price

data are presented in Figure 1. As illustrated in Table 1, on average New York is

associate with the highest average price over the sample period followed, respectively,

by Baltimore and Chicago. These results are consistent with the notion that large,

urban population centers were effectively net importers of eggs. Alternatively, the

lowest average price is for Saint Louis followed by Indianapolis. These results also

make sense inasmuch as both cities are centrally located in what has historically been
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(and continues to be) a prime agricultural production region of the United States.

It is also of interest that prices in New York and Baltimore were also more volatile

than those elsewhere, again a result consistent with these cities being net importers

of eggs.

Prior to estimation all data are converted by taking natural logarithms, implying

that, in a manner consistent with (3), that the primary variables of interest, that

is, the yt’s, are log relative prices. It is common in LOP studies to choose one or

more central markets as representative of the base price. For example, when using

the same data we consider here Serra et al. (2006) treat New York as the central

market. In the present analyses we treat the prices in New York and Chicago as

the representative central markets. We use these respective cities to denote base

prices because even during the time considered they were major population centers,

and hence were likely regions that were consistent net importers of eggs from other

regional markets. Moreover, Chicago, although likely a consistent net importer of

eggs, is obviously closer in proximity to the central egg producing region than is New

York.

Summary statistics for the log relative price pairs are reported in the lower panel of

Table 1. Plots of the prices relative to the New York base are reported in Figure 2

while those for prices relative to the Chicago central market are presented in Figure

3. As indicated in both Table 1 and Figure 2, New York did indeed experience higher

prices on average relative to markets in the interior. Even so there were obviously

brief periods when prices in the interior exceeded those in New York. Also, as further

illustrated in Table 1, egg prices in Chicago also tended to be higher than those in

other regional markets (with Baltimore being a notable exception), but even so there

were larger number of periods (relative to the case where New York in the base)

where prices in Chicago were lower than those in other reginal markets. This general

observation is made especially clear from the plots presented in Figure 3.

5.2 Basic Data Properties

As an initial step in the analysis, we being by exploring some of the basic time series

properties of the data. First, we conducted standard unit root tests for each nominal
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series and concluded that, with the exception of Indianapolis, nominal wholesale egg

prices in each city considered apparently has one autoregressive unit root. For this

reason we exclude Indianapolis in all subsequent analyses involving relative prices.

Next, we examined the time series properties of relative prices by treating New York

and Chicago as the central markets for purposes of comparison.9 That is, yt is con-

structed either as the log of the egg price in New York relative to other cities or the

log of the egg price in Chicago relative to other cities.

At this stage of the analysis two sets of additional tests are performed. Firstly, we

test the log relative prices for a unit root by using a standard testing procedure,

namely, Augmented Dickey–Fuller (ADF) tests wherein the relevant test statistics

are bootstrapped.10 Specifically, the model examined under the null of a unit root in

the present case is:

∆yt = δ0 +

p∑

i=1

φi∆yt−i +
11∑

j=1

πiDjt + εt, (19)

where Djt are monthly dummy variables defined as Djt = Sjt − S12t, j = 1, . . . , 11,

and where Sjt are standard monthly dummy variables.11 Note that while in general

the LOP would rule out the inclusion of predictable seasonality, it is likely the case

that, due in part to technical change associated with mechanical refrigeration, that

seasonal price patterns changed during the sample period. Moreover, it is also likely

the case that the rate of change in seasonality differed by geographic region. For this

reason we include seasonal terms in all LOP regressions. When parameter constancy

is assumed, the alternative to (19) is simply a model wherein yt−1 is included as an

additional regressor. The bootstrap tests are performed then by estimating the appro-

priate models under both the null and the alternative, constructing the test statistic

(i.e., the t–statistic associate with the coefficient on yt−1), and then dynamically boos-

trapping the residuals of the null model in (19) 999 times. For each bootstrap draw

the alternative model is also estimated and the relevant test statistic obtained and

stored. The empirical p–value of the sample test can then be constructed by using

9In a related study, Serra et al. (2006) examined only New York as the candidate central market.
10The bootstraps are dynamic bootstraps of the null model, that is, the model that contains a

unit root process.
11The specification for Djt allows for separate interpretation of the intercept term, and therefore

does not alter the interpretation of δ0 as a drift parameter under the null of a unit root.
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the constructed empirical sampling distribution.

The results of the linear unit root tests for the relevant city price pairs are recorded

in the left–hand panel of Table 2. For testing purposes optimal lag lengths, p, are

determined by using Akaike’s (1974) information criterion, or AIC. As results in the

Table indicate, the null of a unit root, and therefore mean reversion, is rejected at

usual significance levels for all city pairs except for New York and Cincinnati, where

the empirical p–value is 0.128. At this point there appears to be substantial evidence

in support of the LOP for late 19th and early 20th century regional egg markets in

the United States. In other words, there is empirical evidence that virtually all of

the markets considered were reasonably well integrated. Even so, these tests do not

allow for the possibility of structural change, the issue to which we now turn.

What is desirable in the present case is to test the null of a unit root as depicted by the

model in (19) against the TVAR alternative with mean reversion as illustrated in (13).

Of course such a direct test is not possible in the present case because of the problems

already noted with unidentified nuisance parameters under the null hypothesis. One

possibility, however, is to use in lieu of (13) the approximating regression in (15).

In this case the approximating regression fully nests the null model in (19), and an

F–test statistic of the restrictions involved can be readily computed. Specifically,

define x̃t = (∆yt−1, . . . ,∆yt−p, D1t, . . . , D11t)
′, so that xt = (1, x̃t, yt−1)

′. We may

then re–write (15) as:

∆yt = β0 + ϑ
′
0x̃t + λ0yt−1 +

3∑

j=1

βjt
∗j +

3∑

j=1

λjyt−1t
∗j +

3∑

j=1

ϑ′
jx̃tt

∗j + ϵt, (20)

where as before ϵt contains both the original error, εt, and approximation error.

The relevant null hypothesis of linearity and a unit root in this case is then: Hlur
0 :

λ0 = β1 = β2 = β3 = λ1 = λ2 = λ3 = ϑ1,1 = . . . = ϑ3,p+11 = 0. We denote

the corresponding F statistic as Flur, where lur is short for ‘linear unit root’. In

general Flur will be associated with (7 + 3 (p+ 11)) and T − (8 + 4 (p+ 11)) degrees

of freedom, respectively. The problem in the present case, however, is that for the

usual reasons Flur is not associated with a standard F distribution under the null

hypothesis. Even so, as argued by Eklund (2003) and illustrated by Balagtas and Holt

(2009), it is possible under many circumstances to simply employ a dynamic bootstrap

18



for which the empirical distribution of the Flur test statistic can be generated. Such

a procedure is, in fact, what we do here.

The results of testing a linear unit root model against mean reversion with structural

change are presented in the center panel of Table 2. The results essentially confirm

those of the linear unit roots tests discussed previously. Of some interest is that in

this instance for the New York–Cincinnati price pair the null hypothesis of linearity

and parameter constancy is rejected at the 10–percent level, but not at the 5–percent

level. On balance the results of these tests suggest that estimation of the general

TVAR model in (13) may be valid for most if not all price pairs considered.

As a final test of the general properties of the city price–pairs, the null hypothesis of

parameter constancy was tested against the alternative of a TVAR by computing the

LM0 test statistic. Specifically, for testing parameter constancy we assume that mean

reversion occurs under the null hypothesis. Although, as described previously, this test

statistic is distributed approximately as an F with 3 (p+ 2) and T −4 (p+ 2) degrees

of freedom, for completeness we obtain bootstrapped p–values for this test statistic

as well. The results are reported in the right–hand panel of Table 2. There we see

in most instances there is reasonably strong evidence of parameter non–constancy for

relative egg prices consistent, perhaps, with a TVAR specification. The lone exception

appears to be the Chicago–Dubuque price pair. Given that Dubuque is 178 miles

from Chicago, and given that these cities were likely highly interconnected by rail

throughout the sample period, it is likely the case that the adoption of refrigeration

made little difference at the margin to the price relationship for eggs in these two

cities.

6 Model Specification and Estimation Results

6.1 Additional Parameter Constancy Test Results

The preliminary results discussed in the previous section suggest that parameter non–

constancy may be a feature of the city price pairs in a number of instances. As a

further aid to specifying the appropriate pattern of structural change in the TVAR
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models, the testing sequence outlined in Section 4.2 was employed. The analysis

begins by estimating for each city pair an appropriate linear autoregressive (AR)

model of the general form:

∆yt = δ0 +

p∑

i=1

φi∆yt−i + ρyt−1 +
11∑

j=1

πiDjt + εt,

which differs from the specification in (19) in that the lagged level term, yt−1, is

included. As well, the lag order, p, is determined by using the Hannan and Quinn

(1979) information criterion, or HQC.12 Once estimated, the residuals from the linear

models can be used to perform the sequence of tests outlined in 16 and (17). The

testing sequence is, in turn, applied to: (1) the intercept; (2) the lagged dependent

variable terms, or model synamics; and (3) the seasonal dummy variable terms. The

results are reported in Table 3.

There are several noteworthy results in Table 3. To begin, there are only three city

pairs (i.e., New York–New Orleans, Chicago–Dubuque, and Chicago–New Orleans)

for which there is no significant evidence of structural change in the linear AR model’s

dynamics. In fact, as indicated previously in Table 2 the results in Table 3 provide

further confirmation that the Chicago–Dubuque price pair experienced no significant

structural change in any facet of the model during the 1880–1911 sample period. For

these reasons we do not further pursue any investigation of the Chicago–Dubuque

price relationship. Even so, we note that the estimated half–life associated with a

deviation from the LOP for the Chicago–Dubuque city pair is 0.400, or approximately

twelve days. This suggests a high degree of market integration between Dubuque and

Chicago and a degree of integration, which, moreover, is stable throughout the sample

period. This result is perhaps not surprising given that Dubuque was a primary feeder

market for farm products from Iowa and other western regions of the so called Corn

Belt.

Regarding the New York–New Orleans and Chicago–New Orleans results, given the

relative distances involved it is perhaps not surprising that there is no evidence of

structural change in their respective dynamics. The estimated half–lives are, accord-

12The HQC tends to be more parsimonious than the AIC, which is potentially useful when fitting
TVAR models. Moreover, once a provisional model is fitted to the data LM tests may be performed
to determine if there is significant remaining autocorrelation.
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ingly, 1.56 months (46.67 days) and 0.966 months (29 days). While physical trade

data among these cities do not, to our knowledge, exist, the results suggest that only

limited trade in eggs occurred between the Northeast (Midwest) and New Orleans.

While in both instances, that is, for both NYC–MSY and CHI–MSY, there is some

evidence that seasonal patterns changed over time, we do not investigate this issue

further.

For the remainder of the city pairs reported on in Table 3, there is ample evidence

of structural change in each respective model’s dynamics. In most of these instances

the structural change appears to be consistent with an LSTAR specification. The

sole exception is for the Chicago–Minneapolis price pair, where it seems that the

model’s dynamics change over time in a manner consistent with the GESTAR. In

most instances there is also evidence of evolving seasonal patterns in the price pairs,

with the exceptions being New York–Chicago, New York–Dubuque, and New York–

Minneapolis.

6.2 TVAR Models

The results in Table 3 are used as a guide for specifying provisional TVAR models for

the nine city pairs for which structural change in the model’s autoregressive terms was

suggested. In each case a provisional TVAR model was estimated and evaluated by

using, notably, the diagnostic tests described in Section 4.2. Importantly, diagnostic

tests for parameter constancy in each provisional TVAR were preformed for, respec-

tively, the intercept, the autoregressive terms, and the seasonal terms. The results

of these tests along with the results of the LM tests for remaining serial correlation

were used in a number of instances to further refine the TVAR specifications. The

estimation along with a suite of model diagnostic test results for the final TVAR

specifications are reported in Table 4. Plots of the estimated transition functions are

presented in Figure 4.

In estimation we employ the parametrization for γ suggested by Goodwin, Holt and

Prestemon (2011), where instead of estimating γ directly instead η is estimated in

the identity γ = exp(η). This transformation tends to provide for greater numerical

stability in the estimation of the speed–of–adjustment parameter. Following common
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practice (see, e.g., van Dijk, Strikholm and Teräsvirta, 2003), in estimation we also

impose an upper limit on η. Specifically, we bound η from about at 5.010635, which

corresponds to a value of 150 for γ.13 Finally, because γ is not per se scale free, we

divide it by the “standard deviation” of t∗ = t/T, t = 1, . . . , T , which we denote by

σ̂t∗ . See Teräsvirta, Tjøstheim and Granger (2010) for additional details.

For each city pair considered there is only one transition function associated with

the TVAR model’s dynamics, that is, with its autoregressive structure. Moreover,

for all city pairs save for Chicago–Minneapolis, the corresponding transition function

is of the simple logistic type, that is, of the type identified in (11) where k is set

to one. The implication is, depending on the magnitude of the speed–of–adjustment

parameter, γ, that the change in the autoregressive structure, and hence, in implied

half lives, can be either sharp or gradual. In the case of Chicago–Minneapolis, and

consistent with the results in Table 3, a generalize exponential transition function

was specified to accommodate the structural change in the model’s dynamics. That

is, (10) was employed where κ = 4 was found to provide the best overall fit. In only

one case, namely, for New York–Chicago, were three transition functions needed to

capture relevant structural change. In the remainder of the cases considered either two

(i.e., New York–Cincinnati, Chicago–Baltimore, Chicago–Cincinnati, and Chicago–

Minneapolis) or one (i.e., New York–Dubuque, New York–Minneapolis, New York–St.

Louis, and Chicago–St. Louis) were included in the relevant TVAR.

The diagnostic test results recorded in Table 4 show that in all instances the estimated

TVAR models provide a reasonable good fit to the data, especially after considering

that the dependent variable is in each case in first difference form. The results also

show, as indicated by the ratio of the residual standard error for the TVAR model

(σ̂NL) relative to that of the fixed–parameter AR model (σ̂L), that each estimated

TVAR model yields an improvement in fit relative to its fixed–parameter counterpart.

The results further reveal there is in no evidence of remaining residual autocorrelation

at lags four or twelve for any of the estimated TVAR models, therefore implying

there is no misspecification of each model’s dynamic component. Importantly, in

13As indicated previously, for large values of γ = exp(η) the transition function effectively becomes
a Heaviside indicator function. Convergence of the nonlinear estimation algorithm in this case can
be difficult to obtain as the derivatives of the likelihood function with respect to η parameter will
typically become degenerate. For this reason it is common practice to place an upper limit on this
parameter in estimation.
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every case LM diagnostic tests indicate there is no evidence of remaining parameter

non–constancy with respect to each estimated model’s autoregressive parameters. In

several instances there is some evidence of remaining parameter non–constancy for

the intercept and/or seasonal terms, but given that these parameters are not involved

in determining estimates of time–varying half lives, we did not pursue these issues

further. Finally, the results in Table 4 indicate that in most cases the residuals for the

estimated TVAR depart significantly from the normality assumption, typically due to

fat–tailed behavior (i.e., a larger number of outliers than would be suggested by the

normal distribution). The basic picture revealed in Table 4, however, is that (1) the

estimated TVAR models provide a reasonable fit to the data; and (2) the diagnostic

test results indicated only limited evidence of model misspecification.

Of interest, of course, is the nature of the structural change implied by each estimated

TVAR model. Plots of the estimated transition functions for each TVAR are reported

in Figure 4. As indicated there the majority of the estimated transition functions

were of the simple logistic function type, that is, consistent with (11) where k = 1.

In three cases, however, structural change appears to have been U–shaped, that is, of

the generalized exponential form in (10). Even so, only for the Chicago–Minneapolis

price pair does the model’s autoregressive structure evolve in a manner consistent

with the generalized exponential form.

To obtain additional information, the timing of structural change in the autoregressive

structure for each estimated TVAR model is detailed in Table 5. As indicated there

(as well as in the results in Figure 4), of the eight TVARs with dynamics that evolve

according to a simple logistic function, four effectively have nearly instantaneous ad-

justments, that is, ˆgamma = 150 (i.e., New York–Cincinnati, New York–Minneapolis,

Chicago–Baltimore, and Chicago–Cincinnati). The remaining four TVARs experience

more gradual structural change, as indicated in Table 5. Of additional interest is that

while there is some variation in the dates around which structural change in the

each model’s dynamics is centered, with only two exceptions (i.e., for New York–St.

Louis and for Chicago–Cincinatti) the structural change is centered at some point

in the 1890s. And even for the two exceptions the change is centered at dates oc-

curring in the very early 1900s. Although the exact timing of the construction and

implementation of mechanical refrigeration in the cities considered is unknown, casual

evidence suggests that the dates corresponding the midpoint of structural change are
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not inconsistent with the adoption of large–scale mechanical refrigeration.

6.3 Half Life Estimates

As noted previously, a key component of the present analysis is an assessment of

the half–life trajectory associated with a shock to the underlying price relationship.

Specifically, the estimated half–life defines the horizon, h, at which at which the effect

of a shock is one–half as prices adjust back to the long–run LOP equilibrium. Based

on (6), we define the estimated half–lives over time for a TVAR model as:

ĥ (t∗) =
ln (0.5)

ln (1 + ρ̂1 (1−G (t∗; γ̂, ĉ)) + ρ̂2G (t∗; γ̂, ĉ))
, (21)

where ρ̂1 and ρ̂2 are the estimates of ρ1 and ρ2 based on (13) and where G (t∗; γ̂, ĉ)

is the estimated transition function. Implicit in the definition of (21) is the assump-

tion that ρ̂j ∈ (0, 1) in order for ĥ (t∗) to be continuously defined. Moreover, while

(21) provides an estimate of the mean–path for the half–lives implied by an estimated

TVAR, it is also possible to use, for example, a delta method approximation to obtain

an approximate 90–percent confidence interval associated with the mean estimates,

say,
(
ĥl (t

∗) , ĥu (t
∗)
)
. See, for example, Rossi (2005) for additional details and dis-

cussion.14 Finally, for ease of presentation and interpretation we convert estimated

half–lives, which in the present case will naturally be reported in fractions of months,

to days by multiplying all estimates by 30.4375.

Mean paths for estimated half–lives along with approximate 90–percent confidence

intervals are presented in Figure 5. What is revealed is that in every case estimated

half–lives increase toward the end of the sample relative to the beginning of the

sample. Likewise, in most instances the estimated confidence interval limits also widen

following the structural change. For example, the estimated half–life for the New–

York Chicago price pair is approximately 7.96 days (with an estimated standard error

of 2.22 days) in the early and mid 1880s, but increases to 53.5 days (with a standard

error of 10.88 days) by the end of the sample (September of 1911). Similarly, for

the Chicago–St. Louis price pair the estimated half–life is approximately 7.87 days

14Because half–lives cannot be negative, we follow common practice (see, e.g., Rossi, 2005) and,
when necessary, truncate the lower confidence interval at zero.
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through the 1880s (with an approximate standard error of 6.05 days) to 57.60 days

(with an approximate standard error of 17.71 days) towards the end of the sample

period. Similar results are evident for the remaining price pairs considered.15

At first blush these results seem counterintuitive. Why, for example, would technical

change that is presumably linked to the adoption of mechanical refrigeration result in

an increase in the half–life of a shock? Further reflection, however, reveals that these

results make intuitive sense. Prior to the adoption of mechanical refrigeration, and

due to the perishability of commodity in question, egg wholesalers had no choice but

to sell (ship) their egg inventory as quickly as possible. But following the adoption

of mechanical refrigeration, wholesalers now could consider a temporal as well as a

spatial dimension to egg marketing. For example, the ability to store eggs for even

one or two weeks could, at the margin, could have a significant impact on spatial price

relationships. This appears to be the case here with regional markets, at the margin,

becoming somewhat less integrated over space following a period of rather extreme

and rapid technical change.

7 Conclusions

With the wide–scale adoption of natural and mechanical refrigeration in the ship-

ping and storage of perishable commodities in the late–nineteenth century, U.S. egg

production expanded dramatically. This expansion was promoted by the spatial in-

tegration of the market for eggs. Simply put, farmers could now profitably ship their

eggs to a wider array of markets, which collectively increased the size of the market.

At the same time, mechanical refrigeration permitted farmers and wholesalers to store

eggs for future consumption in local, or at least less–distant, urban areas, and thus

sellers could arbitrage over time as well as space.

We find that, in general, the half–lives of a price shock for a wide range of market

pairs actually increased following the adoption of refrigeration. At first glance, this

result seems to conflict with the results from the spatial integration literature. Indeed,

15As indicated in Table 4, the estimate of ρ1 for the Chicago–Minneapolis price pair is -1.029. This
result implies effectively instantaneous returns to the LOP following a price shock when G2 = 1,
which in this case occurs between 1887.06 and 1892.10.
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they suggest that refrigeration disrupted the market for eggs and, thus, led to a loss

in welfare. We argue, however, that such an interpretation ignores the temporal

dynamics of the market for perishables. For example, an Ohio wholesaler, who,

having access to refrigerated shipping in the 1880s might have sold his inventory in

New York, as long as the New York price covered his variable costs, rather than see it

rot in Ohio, could, with access to a mechanically refrigerated storage facility, simply

hold the inventory in Ohio until prices increased, perhaps in a few weeks. Such a

transaction would tend to weaken the spatial bond between Ohio and New York, but

it would be welfare–enhancing from the perspective of the economy overall. Although

we have not estimated the welfare effects of the resulting temporal price dynamics, we

suspect they would be represent a substantial proportion of the roughly 1.25 percent

increase in national income Craig, Goodwin and Grennes (2004) attributed to the

adoption of refrigeration in the shipping of perishables more generally.
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Table 1: Basic Descriptive Statistics For U.S. City Egg Prices:

Raw Data and Log Relative Prices.

City Variable T Mean StDev Min Max

Baltimore BWI 372 19.47 6.03 9.25 40.00

Chicago CHI 372 17.31 5.42 8.00 37.50

Cincinnati CVG 372 16.56 5.87 7.00 40.00

Debuque DBQ 372 16.29 5.41 7.25 37.50

Indianapolis IND 372 15.60 5.34 7.00 35.00

Minappolis MSP 336 16.58 5.42 7.25 38.00

New Orleans MSY 372 16.45 5.29 7.00 33.50

New York NYC 372 22.72 7.32 10.38 46.00

St. Louis STL 372 15.37 5.25 6.00 38.00

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

log(NYC/CHI) 372 26.99 13.11 -15.08 79.85

log(NYC/CVG) 372 32.50 12.53 -5.13 76.21

log(NYC/DBQ) 372 33.59 16.29 -24.61 87.55

log(NYC/IND) 372 38.16 12.68 0.00 86.50

log(NYC/MSP) 336 30.96 15.58 -18.76 107.61

log(NYC/MSY) 372 32.46 16.06 -12.41 91.63

log(NYC/STL) 372 39.82 14.63 -2.02 98.08

log(CHI/BWI) 372 -11.87 11.38 -54.36 30.11

log(CHI/CVG) 372 5.51 13.76 -30.23 59.14

log(CHI/DBQ) 372 6.59 12.07 -36.55 51.88

log(CHI/IND) 372 11.16 11.09 -24.12 54.52

log(CHI/MSP) 336 3.49 12.14 -32.38 47.00

log(CHI/MSY) 372 5.46 16.54 -51.08 57.98

log(CHI/STL) 372 12.83 12.26 -36.77 57.38

Note: Raw prices are reported in cents per dozen. T denotes the effec-
tive sample size; Mean denotes the sample average; StDev denotes the
sample standard deviation; Min denotes minimum observation in the
sample; and Max denotes the maximum observation in the sample. The
lower panel reports basic statistics for log relative prices, in each case
multiplied by 100.
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Table 2: Unit Root and Parameter Constancy Test Results for Relevant City Price

Pairs.

Linear Alternative Nonlinear Alternative, Flur TVAR Alternative, LM0

City Pair Test Statistic p–value Test Statistic p–value Test Statistic p–value

NYC-CHI -5.909 0.001 2.604 0.001 1.802 0.003

NYC-CVG -2.375 0.128 1.555 0.081 1.490 0.049

NYC-DBQ -5.503 0.001 2.474 0.001 1.851 0.002

NYC-MSP -4.354 0.001 2.099 0.003 1.779 0.003

NYC-MSY -4.035 0.003 1.603 0.039 1.316 0.050

NYC-STL -7.754 0.001 3.636 0.001 2.169 0.001

CHI-BWI -7.344 0.001 2.999 0.001 1.677 0.010

CHI-CVG -6.442 0.001 2.733 0.001 1.775 0.003

CHI-DBQ -6.391 0.001 1.781 0.014 1.013 0.420

CHI-MSP -4.761 0.001 2.172 0.001 1.527 0.014

CHI-MSY -6.086 0.001 2.104 0.002 1.339 0.057

CHI-STL -6.439 0.001 3.550 0.001 2.518 0.001

Note: p–values are empirical p–values obtained by conducting 999 dynamic boostrap replications. In each
case the optimal lag length, p, is determined by using Akaike’s (1974) information criterion, or AIC. For
the parameter non–constancy test, LM0, the null model is one for which mean reversion is maintained.
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Table 3: Results of Lagrange Multiplier Parameter Constancy Tests Applied to the Model’s Intercept, Lagged

Dependent Variables, and Seasonal Terms.

Intercept Dynamics Seasonals

City Pair LM0 LM03 LM02 LM01 LM0 LM03 LM02 LM01 LM0 LM03 LM02 LM01

NYC-CHI 2.01×10−3 0.727 0.616 2.45×10−4 5.80×10−6 0.035 0.850 6.72×10−7 0.146 0.173 0.213 0.047

NYC-CVG 7.68×10−3 0.655 0.137 0.365 4.56×10−3 0.195 0.513 9.07×10−4 6.94×10−4 0.389 4.72×10−10 0.026

NYC-DBQ 1.47×10−4 0.718 0.505 1.70×10−5 1.20×10−5 0.059 0.905 1.00×10−6 0.087 0.428 3.81×10−3 0.015

NYC-MSP 1.31×10−3 0.202 0.320 2.44×10−3 1.00×10−3 0.127 0.138 1.06×10−3 0.086 0.613 1.03×10−6 0.335

NYC-MSY 0.014 0.130 0.835 4.45×10−3 0.194 0.588 0.463 0.063 0.045 0.353 1.25×10−4 0.270

NYC-STL 0.313 0.270 0.913 0.130 1.03×10−3 0.468 0.497 5.29×10−5 2.29×10−3 0.842 5.8E-05 1.08×10−4

CHI-BWI 0.748 0.742 0.859 0.320 0.036 0.091 0.423 0.035 0.016 0.103 2.96×10−5 0.040

CHI-CVG 0.014 0.513 0.339 0.017 0.010 0.029 0.815 8.42×10−3 0.011 0.746 1.41×10−5 3.82×10−3

CHI-DBQ 0.994 0.876 0.939 0.849 0.129 0.012 0.999 0.291 0.564 0.561 0.027 0.265

CHI-MSP 0.012 0.015 0.333 0.255 0.010 0.862 6.18×10−3 0.063 0.035 0.414 1.21×10−9 0.321

CHI-MSY 0.305 0.060 0.885 0.954 0.263 0.057 0.374 0.681 9.05×10−3 0.033 5.35×10−5 0.055

CHI-STL 0.031 0.217 0.692 0.010 1.29×10−3 0.137 0.657 1.81×10−4 1.00×10−3 0.519 9.77×10−4 3.34×10−5

Note: Entries are p–values for LM tests of parameter constancy including the testing sequence defined in (17). In each case the misspecification tests are applied to a linear
AR model. A bolded entry in the column headed LM0 indicates that the null hypothesis of parameter constancy is rejected at the 5–percent level. An underlined entry in the
corresponding LM03, LM02, and LM01 columns indicate the minimum p–value in the testing sequence. If the LM03 or LM01 p–values are underlined an LSTAR specification
is called for. Alternatively, if the LM02 p–value is underlined a GESTAR transition function is in order.
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Table 4: TVAR Model Estimates for the Monthly Regional Egg Price Relationships, 1881–1911.

Panel A, yt = ln(NY Ct/CHIt)

∆yt = 0.140
(0.022)

[1−G1(t∗; η1, c1)] + 0.030
(0.031)

G1(t∗; η1, c1) + [− 0.034
(0.060)

∆yt−1 − 0.018
(0.050)

∆yt−2 − 0.930
(0.052)

yt−1][1−G2(t∗; η2, c2)] + [− 0.211
(0.073)

∆yt−1 − 0.120
(0.058)

∆yt−2

− 0.326
(0.054)

yt−1]G2(t∗; η2, c2) + 0.080
(0.016)

G3(t∗; η3, c3) + 0.005
(0.008)

D1t − 0.076
(0.011)

D2t − 0.120
(0.012)

D3t − 0.076
(0.011)

D4t − 0.046
(0.008)

D5t + 0.016
(0.009)

D6t + 0.080
(0.009)

D7t

− 0.103
(0.014)

D8t + 0.055
(0.010)

D9t − 0.006
(0.009)

D10t − 0.034
(0.008)

D11t + ε̂t; G1(t∗; η1, c1) = [1 + exp{− exp(5.011
(−)

)(t∗ − 0.623
(0.001)

)/σ̂2
t∗}]

−1;

G2(t∗; η2, c2) = [1 + exp{− exp( 1.705
(0.398)

)(t∗ − 0.583
(0.025)

)/σ̂2
t∗}]

−1; G3(t∗; η3, c3) = [1 + exp{− exp( 3.060
(0.657)

)(t∗ − 0.077
(0.017)

)/σ̂2
t∗}]

−1.

R2 = 0.501, σ̂NL = 0.0872, σ̂NL/σ̂L = 0.938, AIC = −1.970, SBC = −1.681, LJB = 2.289(0.318), LMSC(4) = 0.511(0.728), LMARCH(4) = 3.781(5.0510−5),

LMSC(12) = 0.365(0.975), LMARCH(12) = 1.850(0.040), LMC(Int) = 0.609(0.609), LMC(AR) = 0.418(0.956), LMC(Seas) = 1.013(0.452).

Panel B, yt = ln(NY Ct/CV Gt)

∆yt = [− 0.152
(0.080)

∆yt−1 − 0.037
(0.060)

∆yt−2 − 0.697
(0.081)

yt−1][1−G1(t∗; η1, c1)] + [− 0.166
(0.055)

∆yt−1 − 0.168
(0.042)

∆yt−2 − 0.484
(0.056)

yt−1]G1(t∗; η1, c1) + [ 0.198
(0.024)

+ 0.025
(0.014)

D1t

− 0.095
(0.020)

D2t − 0.008
(0.023)

D3t − 0.066
(0.016)

D4t − 0.060
(0.015)

D5t − 0.046
(0.020)

D6t + 0.087
(0.019)

D7t + 0.220
(0.018)

D8t − 0.021
(0.022)

D9t + 0.016
(0.016)

D10t − 0.041
(0.018)

D11t][1−G2(t∗; η2, c2)]

+[ 0.148
(0.020)

− 0.044
(0.017)

D1t − 0.020
(0.034)

D2t + 0.036
(0.014)

D3t − 0.079
(0.015)

D4t − 0.052
(0.015)

D5t + 0.009
(0.014)

D6t + 0.056
(0.015)

D7t + 0.146
(0.011)

D8t − 0.052
(0.015)

D9t + 0.032
(0.014)

D10t

− 0.041
(0.016)

D11t]G2(t∗; η2, c2) + ε̂t; G1(t∗; η1, c1) = [1 + exp{− exp(5.011
(−)

)(t∗ − 0.656
(0.002)

)/σ̂2
t∗}]

−1; G2(t∗; η2, c2) = [1 + exp{− exp( 4.068
(0.519)

)(t∗ − 0.599
(0.009)

)2/σ̂2
t∗}]

−1.

R2 = 0.646, σ̂NL = 0.0830, σ̂NL/σ̂L = 0.955, AIC = −2.047, SBC = −1.670, LJB = 90.647(2.0710−20), LMSC(4) = 0.597(0.665), LMARCH(4) = 1.925(0.106),

LMSC(12) = 0.501(0.903), LMARCH(12) = 1.024(0.426), LMC(Int) = 1.051(0.370), LMC(AR) = 1.373(0.177), LMC(Seas) = 1.698(0.012).

Panel C, yt = ln(NY Ct/DBQt)

∆yt = [ 0.254
(0.026)

+ 0.106
(0.074)

∆yt−1 − 0.896
(0.086)

yt−1][1−G1(t∗; η1, c1)] + [ 0.221
(0.028)

− 0.100
(0.068)

∆yt−1 − 0.585
(0.071)

yt−1]G1(t∗; η1, c1, c2)− 0.027
(0.019)

D1t − 0.141
(0.016)

D2t − 0.187
(0.020)

D3t

− 0.014
(0.021)

D4t − 0.012
(0.021)

D5t + 0.031
(0.017)

D6t + 0.060
(0.018)

D7t + 0.079
(0.017)

D8t + 0.109
(0.017)

D9t + 0.016
(0.020)

D10t + 0.044
(0.019)

D11t + ε̂t;

G1(t∗; η1, c1) = [1 + exp{− exp( 2.614
(1.202)

)(t∗ − 0.454
(0.029)

)/σ̂2
t∗}]

−1.

R2 = 0.510, σ̂NL = 0.1187, σ̂NL/σ̂L = 0.963, AIC = −1.447, SBC = −1.236, LJB = 2.218(0.329), LMSC(4) = 0.205(0.936), LMARCH(4) = 1.181(0.319),

LMSC(12) = 0.563(0.871), LMARCH(12) = 1.980(0.025), LMC(Int) = 1.492(0.216), LMC(AR) = 1.676(0.094), LMC(Seas) = 1.532(0.035).
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Table 4: Continued.

Panel D, yt = ln(NY Ct/MSPt)

∆yt = [ 0.212
(0.030)

+ 0.026
(0.113)

∆yt−1 + 0.027
(0.089)

∆yt−2 − 0.967
(0.131)

yt−1][1−G1(t∗; η1, c1)] + [ 0.199
(0.028)

− 0.209
(0.071)

∆yt−1 − 0.063
(0.064)

∆yt−2 − 0.541
(0.075)

yt−1]G1(t∗; η1, c1)− 0.025
(0.018)

D1t

− 0.084
(0.013)

D2t − 0.142
(0.019)

D3t − 0.070
(0.018)

D4t − 0.016
(0.017)

D5t + 0.040
(0.016)

D6t + 0.068
(0.015)

D7t + 0.050
(0.017)

D8t + 0.080
(0.015)

D9t + 0.037
(0.015)

D10t + 0.011
(0.019)

D11t + ε̂t;

G1(t∗; η1, c1) = [1 + exp{− exp(5.011
(−)

)(t∗ − 0.436
(0.004)

)/σ̂2
t∗}]

−1.

R2 = 0.477, σ̂NL = 0.1118, σ̂NL/σ̂L = 0.953, AIC = −1.480, SBC = −1.227, LJB = 170.62(8.8910−38), LMSC(4) = 1.002(0.407), LMARCH(4) = 0.658(0.622),

LMSC(12) = 0.683(0.767), LMARCH(12) = 0.331(0.983), LMC(Int) = 2.180(0.090), LMC(AR) = 1.233(0.259), LMC(Seas) = 1.325(0.117).

Panel E, yt = ln(NY Ct/STLt)

∆yt = [ 0.343
(0.093)

− 0.237
(0.128)

∆yt−1 − 0.051
(0.070)

∆yt−2 − 0.880
(0.248)

yt−1 + 0.012
(0.023)

D1t − 0.083
(0.033)

D2t − 0.153
(0.022)

D3t − 0.096
(0.034)

D4t − 0.027
(0.025)

D5t + 0.001
(0.030)

D6t + 0.137
(0.022)

D7t + 0.331
(0.072)

D8t

+ 0.021
(0.038)

D9t − 0.054
(0.035)

D10t − 0.027
(0.030)

D11t][1−G1(t∗; η1, c1)] + [ 0.105
(0.082)

− 0.210
(0.147)

∆yt−1 − 0.235
(0.138)

∆yt−2 − 0.225
(0.213)

yt−1 − 0.042
(0.058)

D1t − 0.140
(0.075)

D2t − 0.095
(0.066)

D3t

− 0.076
(0.046)

D4t − 0.065
(0.032)

D5t + 0.068
(0.043)

D6t + 0.131
(0.036)

D7t + 0.040
(0.092)

D8t + 0.018
(0.041)

D9t + 0.005
(0.052)

D10t + 0.090
(0.065)

D11t]G1(t∗; η1, c1) + ε̂t;

G1(t∗; η1, c1) = [1 + exp{− exp( 0.563
(0.499)

)(t∗ − 0.653
(0.203)

)/σ̂t∗}]
−1.

R2 = 0.651, σ̂NL = 0.1051, σ̂NL/σ̂L = 0.945, AIC = −1.694, SBC = −1.339, LJB = 13.841(9.8710−4), LMSC(4) = 0.541(0.705), LMARCH(4) = 0.811(0.519),

LMSC(12) = 0.723(0.729), LMARCH(12) = 0.976(0.471), LMC(Int) = 1.631(0.182), LMC(AR) = 0.759(0.692), LMC(Seas) = 1.108(0.318).

Panel F, yt = ln(CHIt/BWIt)

∆yt = [− 0.144
(0.066)

∆yt−1 − 0.611
(0.065)

yt−1][1−G1(t∗; η1, c1)] + [− 0.031
(0.007)

∆yt−1 − 0.238
(0.077)

yt−1]G1(t∗; η1, c1) + [− 0.082
(0.011)

− 0.042
(0.020)

D1t + 0.048
(0.014)

D2t + 0.084
(0.027)

D3t

− 0.040
(0.019)

D4t + 0.071
(0.016)

D5t − 0.084
(0.012)

D6t − 0.066
(0.030)

D7t + 0.089
(0.014)

D8t − 0.036
(0.018)

D9t + 0.008
(0.016)

D10t − 0.046
(0.013)

D11t][1−G2(t∗; η2, c2)] + [− 0.031
(0.007)

+ 0.038
(0.016)

D1t

+ 0.045
(0.018)

D2t + 0.045
(0.021)

D3t + 0.049
(0.016)

D4t + 0.004
(0.013)

D5t − 0.042
(0.015)

D6t − 0.067
(0.016)

D7t + 0.023
(0.018)

D8t − 0.096
(0.014)

D9t + 0.017
(0.017)

D10t − 0.009
(0.016)

D11t]G2(t∗; η2, c2) + ε̂t;

G1(t∗; η1, c1) = [1 + exp{− exp(5.011
(−)

)(t∗ − 0.591
(0.003)

)/σ̂t∗}]
−1; G2(t∗; η2, c2) = 1− exp{− exp( 1.330

(0.639)
)(t∗ − 0.265

(0.024)
)8/σ̂8

t∗}.

R2 = 0.541, σ̂NL = 0.0836, σ̂NL/σ̂L = 0.956, AIC = −2.036, SBC = −1.687, LJB = 8.978(0.011), LMSC(4) = 0.533(0.711), LMARCH(4) = 0.452(0.771),

LMSC(12) = 1.223(0.266), LMARCH(12) = 0.728(0.724), LMC(Int) = 2.653(0.049), LMC(AR) = 1.433(0.173), LMC(Seas) = 1.276(0.149).
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Table 4: Continued.

Panel G, yt = ln(CHIt/CV Gt)

∆yt = [− 0.070
(0.138)

∆yt−1 − 0.010
(0.086)

∆yt−2 − 0.804
(0.181)

yt−1][1−G1(t∗; η1, c1)] + [− 0.229
(0.019)

∆yt−1 − 0.117
(0.098)

∆yt−2 − 0.428
(0.050)

yt−1]G1(t∗; η1, c1) + [ 0.060
(0.012)

+ 0.021
(0.020)

D1t − 0.033
(0.029)

D2t

+ 0.141
(0.033)

D3t − 0.025
(0.035)

D4t − 0.041
(0.020)

D5t − 0.092
(0.026)

D6t + 0.013
(0.020)

D7t + 0.119
(0.019)

D8t − 0.054
(0.020)

D9t + 0.009
(0.017)

D10t − 0.046
(0.017)

D11t][1−G2(t∗; η2, c2)] + [− 0.002
(0.008)

− 0.033
(0.017)

D1t

+ 0.067
(0.035)

D2t + 0.106
(0.033)

D3t + 0.028
(0.014)

D4t + 0.006
(0.021)

D5t + 0.014
(0.023)

D6t − 0.030
(0.019)

D7t + 0.048
(0.028)

D8t − 0.124
(0.018)

D9t + 0.022
(0.023)

D10t − 0.076
(0.042)

D11t]G2(t∗; η2, c2) + ε̂t;

G1(t∗; η1, c1) = [1 + exp{− exp( 1.781
(0.929)

)(t∗ − 0.380
(0.065)

)/σ̂2
t∗}]

−1; G2(t∗; η2, c2) = [1 + exp{− exp(5.011
(−)

)(t∗ − 0.583
(0.004)

)/σ̂t∗}]
−1.

R2 = 0.572, σ̂NL = 0.1098, σ̂NL/σ̂L = 0.947, AIC = −1.596, SBC = −1.219, LJB = 140.53(3.0610−31), LMSC(4) = 0.913(0.456), LMARCH(4) = 0.652(0.626),

LMSC(12) = 1.107(0.354), LMARCH(12) = 0.777(0.674), LMC(Int) = 0.895(0.444), LMC(AR) = 1.374(0.177), LMC(Seas) = 0.890(0.645).

Panel H, yt = ln(CHIt/MSPt)

∆yt = 0.038
(0.012)

[1−G1(t∗; η1, c1)] + 0.023
(0.006)

G1(t∗; η1, c1) + [ 0.017
(0.101)

∆yt−1 − 1.029
(0.122)

yt−1 − 0.077
(0.044)

D1t − 0.001
(0.024)

D2t − 0.120
(0.040)

D3t − 0.034
(0.041)

D4t + 0.079
(0.023)

D5t + 0.052
(0.014)

D6t

+ 0.005
(0.021)

D7t − 0.082
(0.015)

D8t + 0.055
(0.039)

D9t + 0.056
(0.017)

D10t − 0.022
(0.016)

D11t][1−G2(t∗; η2, c2)] + [− 0.192
(0.046)

∆yt−1 − 0.387
(0.048)

yt−1 − 0.010
(0.011)

D1t − 0.012
(0.014)

D2t + 0.019
(0.022)

D3t

+ 0.011
(0.016)

D4t + 0.019
(0.011)

D5t + 0.025
(0.008)

D6t − 0.020
(0.009)

D7t − 0.050
(0.011)

D8t + 0.030
(0.016)

D9t + 0.018
(0.010)

D10t − 0.035
(0.010)

D11t]G2(t∗; η2, c2) + ε̂t;

G1(t∗; η1, c1) = [1 + exp{− exp(5.011
(−)

)(t∗ − 0.308
(0.002)

)/σ̂2
t∗}]

−1; G2(t∗; η2, c2) = 1− exp{− exp(5.011
(−)

)(t∗ − 0.282
(0.016)

)8/σ̂8
t∗}.

R2 = 0.460, σ̂NL = 0.1061, σ̂NL/σ̂L = 0.965, AIC = −1.619, SBC = −1.241, LJB = 27.14(1.2810−6), LMSC(4) = 0.798(0.528), LMARCH(4) = 1.514(0.198),

LMSC(12) = 0.621(0.823), LMARCH(12) = 1.397(0.166), LMC(Int) = 1.346(0.260), LMC(AR) = 1.011(0.431), LMC(Seas) = 1.806(0.006).
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Table 4: Continued.

Panel G, yt = ln(CHIt/STLt)

∆yt = [ 0.156
(0.025)

− 0.195
(0.049)

∆yt−1 − 0.091
(0.051)

∆yt−2 − 0.932
(0.141)

yt−1 − 0.024
(0.025)

D1t − 0.032
(0.025)

D2t + 0.006
(0.023)

D3t − 0.038
(0.023)

D4t − 0.003
(0.025)

D5t − 0.036
(0.025)

D6t + 0.071
(0.024)

D7t + 0.214
(0.025)

D8t

− 0.012
(0.028)

D9t − 0.049
(0.031)

D10t − 0.038
(0.028)

D11t][1−G1(t∗; η1, c1)] + [ 0.027
(0.011)

− 0.228
(0.085)

∆yt−1 − 0.056
(0.076)

∆yt−2 − 0.307
(0.078)

yt−1 − 0.002
(0.022)

D1t − 0.025
(0.023)

D2t − 0.010
(0.023)

D3t

+ 0.037
(0.023)

D4t − 0.001
(0.023)

D5t + 0.040
(0.021)

D6t + 0.020
(0.019)

D7t − 0.001
(0.023)

D8t − 0.068
(0.020)

D9t − 0.008
(0.025)

D10t + 0.025
(0.022)

D11t]G1(t∗; η1, c1) + ε̂t;

G1(t∗; η1, c1) = [1 + exp{− exp( 2.047
(0.559)

)(t∗ − 0.519
(0.034)

)/σ̂t∗}]
−1.

R2 = 0.573, σ̂NL = 0.0926, σ̂NL/σ̂L = 0.919, AIC = −1.833, SBC = −1.478, LJB = 27.69(9.7110−7), LMSC(4) = 0.915(0.416), LMARCH(4) = 0.538(0.708),

LMSC(12) = 0.973(0.474), LMARCH(12) = 1.578(0.097), LMC(Int) = 1.858(0.137), LMC(AR) = 1.179(0.297), LMC(Seas) = 1.154(0.264).

Note: Asymptotic standard errors are given below parameter estimates in parentheses; R2 is the unadjusted R2; ε̂t denotes the model’s residual at time t ; σ̂NL

denotes the TVAR model’s residual standard error; σ̂NL/σ̂L is the ratio of the TVAR model versus AR model residual standard error; and AIC is Akaike information
criterion and SBC denotes Schwarz’s Bayesian Criterion. As well, LJB is the Lomnicki–Jarque–Bera test of normality of residuals, with asymptotic p–values in
parentheses. LMSC(j) denotes the F variant of Eitrheim and Teräsvirta’s (1996) LM test of no remaining autocorrelation based on j, j = 4, 12 lags. Likewise,
LMARCH(j) denotes an LM test for ARCH–type heteroskedasticity based on j, j = 4, 12 lags. As well, LMC(Int), LMC(AR), and LMC(Seas) are the F variants
of Lim and Teräsvirta’s (1994) LM test for parameter constancy in, respectively, the model’s intercept, autoregressive terms, and seasonal terms. p–values are in
parentheses next to test statistics.
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Table 5: Select Structural Dates for Each Regional Egg Price TVAR

Model’s Autoregressive Structure, Select City Pairs .

City Pair γ̂ ĉ 10% Centre 90%

New York – Chicago:a 5.50 0.583 1885.09 1897.03 1908.10

New York – Cincinnati:a 150 0.656 1892.01 1893.06 1894.10

New York – Dubuque:a 13.65 0.454 1894.08 1895.12 1897.04

New York – Minneapolis:a 150 0.436 1893.12 1894.02 1894.03

New York – St. Louis:a 1.76 0.653 1891.03 1901.08 1912.03

Average: 1891.07 1896.06 1901.06
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Chicago – Baltimore:a 150 0.591 1899.09 1899.11 1900.01

Chicago – Cincinnati:a 150 0.599 1899.12 1900.02 1900.03

Chicago – Minneapolis:b 150 0.282 1887.02 1890.01 1894.07

Chicago – St. Louis:a 7.75 0.519 1895.06 1897.10 1908.10

Average: 1895.07 1896.06 1900.06

a The relevant transition function is a logistic function (k = 1), so that 10% (90%)
denotes the dates for which the transition function is associated with a value of 0.10
(0.90), implying that 10% (90%) of the structural change adjustment has occurred.
The column headed Centre denotes the date for which t∗ = ĉ for the relevant logistic
function.

b The relevant transition function is a (symmetric) generalized exponential. As such, the
data for 10% (90%) denotes the date when the transition function first (last) equals 0.10
(0.90). In this case the column headed Centre denotes the point where the transition
function is at a minimum.
Note: γ̂ is the estimated speed–of–adjustment parameter for the relevant transition
function, while ĉ is the corresponding estimate of the centrality parameter.
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Figure 1: Regional Egg Price Data, cents/dozen, 1880–1911.
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Panel 6: New York - New Orleans
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Figure 2: Log Relative Price Pairs with New York as the Central Market, 1880–1911.
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Figure 3: Log Relative Price Pairs with Chicago as the Central Market, 1880–1911.
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Figure 4: Estimated Transition Functions for TVAR Models of Relative Egg Prices, Select City Pairs, 1880–1911. The
solid line denotes the first transition function, G1(.); the dash–dot line the second transition function, G2(.); and the
dash–dot–dot line the third transition function, G3(.).
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Figure 5: Estimated Mean Half Life Paths (solid line) and 90–percent Confidence Bands (dashed lines) for Estimated
TVAR Models of Relative Egg Prices, Select City Pairs, 1882–1911.
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