MPRA

Munich Personal RePEc Archive

Partially Linear Models

Hardle, Wolfgang and Llang, Hua and Gao, Jiti

Humboldt-Universitéit zu Berlin, University of Rochester, USA,
Monash University, Australia

1 September 2000

Online at https://mpra.ub.uni-muenchen.de/39562/
MPRA Paper No. 39562, posted 20 Jun 2012 22:03 UTC



PARTIALLY LINEAR MODELS

December 23, 1999

Wolfgang Hardle

Institut fiir Statistik und Okonometrie
Humboldt-Universitat zu Berlin
D-10178 Berlin, Germany

Hua Liang

Department of Statistics

Texas A&M University

College Station
TX 77843-3143, USA
and
Institut fiir Statistik und Okonometrie
Humboldt-Universitat zu Berlin

D-10178 Berlin, Germany

Jiti Gao

School of Mathematical Sciences
Queensland University of Technology
Brisbane 4001, Australia
and
Department of Mathematics and Statistics
The University of Western Australia
Perth WA 6907, Australia

Hm Electronic Version:
http:/ /www.xplore-stat.de/ebooks.html






PREFACE

In the last ten years, there has been increasing interest and activity in the general
area of partially linear regression smoothing in statistics. Many methods and
techniques have been proposed and studied. This monograph hopes to bring
an up-to-date presentation of the state of the art of partially linear regression
techniques. The emphasis of this monograph is on methodologies rather than on
the theory, with a particular focus on applications of partially linear regression
techniques to various statistical problems. These problems include least squares
regression, asymptotically efficient estimation, bootstrap resampling, censored
data analysis, linear measurement error models, nonlinear measurement models,

nonlinear and nonparametric time series models.

We hope that this monograph will serve as a useful reference for theoretical
and applied statisticians and to graduate students and others who are interested
in the area of partially linear regression. While advanced mathematical ideas
have been valuable in some of the theoretical development, the methodological
power of partially linear regression can be demonstrated and discussed without

advanced mathematics.

This monograph can be divided into three parts: part one-Chapter 1 through
Chapter 4; part two—Chapter 5; and part three-Chapter 6. In the first part, we
discuss various estimators for partially linear regression models, establish theo-
retical results for the estimators, propose estimation procedures, and implement

the proposed estimation procedures through real and simulated examples.

The second part is of more theoretical interest. In this part, we construct
several adaptive and efficient estimates for the parametric component. We show
that the LS estimator of the parametric component can be modified to have both

Bahadur asymptotic efficiency and second order asymptotic efficiency.
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In the third part, we consider partially linear time series models. First, we
propose a test procedure to determine whether a partially linear model can be
used to fit a given set of data. Asymptotic test criteria and power investigations
are presented. Second, we propose a Cross-Validation (CV) based criterion to
select the optimum linear subset from a partially linear regression and establish
a CV selection criterion for the bandwidth involved in the nonparametric ker-
nel estimation. The CV selection criterion can be applied to the case where the
observations fitted by the partially linear model (1.1.1) are independent and iden-
tically distributed (i.i.d.). Due to this reason, we have not provided a separate
chapter to discuss the selection problem for the i.i.d. case. Third, we provide

recent developments in nonparametric and semiparametric time series regression.

This work of the authors was supported partially by the Sonderforschungs-
bereich 373 “Quantifikation und Simulation Okonomischer Prozesse”. The second
author was also supported by the National Natural Science Foundation of China
and an Alexander von Humboldt Fellowship at the Humboldt University, while
the third author was also supported by the Australian Research Council. The
second and third authors would like to thank their teachers: Professors Raymond
Carroll, Guijing Chen, Xiru Chen, Ping Cheng and Lincheng Zhao for their valu-
able inspiration on the two authors’ research efforts. We would like to express our
sincere thanks to our colleagues and collaborators for many helpful discussions
and stimulating collaborations, in particular, Vo Anh, Shengyan Hong, Enno
Mammen, Howell Tong, Axel Werwatz and Rodney Wolff. For various ways in
which they helped us, we would like to thank Adrian Baddeley, Rong Chen, An-
thony Pettitt, Maxwell King, Michael Schimek, George Seber, Alastair Scott,
Naisyin Wang, Qiwei Yao, Lijian Yang and Lixing Zhu.

The authors are grateful to everyone who has encouraged and supported us

to finish this undertaking. Any remaining errors are ours.

Berlin, Germany Wolfgang Hardle
Texas, USA and Berlin, Germany Hua Liang
Perth and Brisbane, Australia Jiti Gao



Symbols and Notation

The following notation is used throughout the monograph.

a.s. almost surely (that is, with probability one)

iid. independent and identically distributed

F the identity matrix of order p

CLT central limit theorem

LIL law of the iterated logarithm

MLE maximum likelihood estimate

Var(§) the variance of £

N(a,o?) normal distribution with mean a and variance o

Ul(a,b) uniform distribution on (a, b)

o denote

—k convergence in distribution

—P convergence in probability

X (X1,...,X5)

Y (Y1,...,Y,)

T (Ty,...,T,)

wnj(+) or wri(-)  weight functions

ST (Si,..., ) with S; = S; — X0 w,i(T3) S5,
where S; represents a random variable or a function.

&n = Op(1n) P{[&| = Mna|} < ¢
for each ¢ > 0, some M and large enough n

n = Op(nn) P{|&u] = (lnal} — 0 for each ¢ >0

& = 0,(1) &, converges to zero in probability
0,(1) stochastically bounded

ST the transpose of vector or matrix S
S®2 SST

St = (s7),xp the inverse of S = (sij)pxp

d(x) standard normal distribution function
o(x) standard normal density function

For convenience and simplicity, we always let C' denote some positive constant

which may have different values at each appearance throughout this monograph.
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Chapter 1

INTRODUCTION

1.1 Background, History and Practical Exam-
ples

A partially linear regression model of the form is defined by
Yi=X{B+g(T) +ei=1,...,n (1.1.1)

where X; = (z1,...,2;p)" and T; = (t;1, ..., tq)" are vectors of explanatory vari-
ables, (X;,T;) are either independent and identically distributed (i.i.d.) random
design points or fixed design points. 8 = (81,...,5,)" is a vector of unknown
parameters, ¢ is an unknown function from IR¢ to R, and ¢, ..., e, are inde-
pendent random errors with mean zero and finite variances o7 = Fe?.

Partially linear models have many applications.

( ) were among the first to consider the partially linear model
(1.1.1). They analyzed the relationship between temperature and electricity us-
age.

We first mention several examples from the existing literature. Most of the

examples are concerned with practical problems involving partially linear models.

Example 1.1.1 ( ) used data based on the
monthly electricity sales y; for four cities, the monthly price of electricity xq,
mcome xa, and average daily temperature t. They modeled the electricity demand
y as the sum of a smooth function g of monthly temperature t, and a linear

function of x1 and xo, as well as with 11 monthly dummy variables xs, ..., 3.

1



2 CHAPTER 1. INTRODUCTION

That is, their model was

13
y = > Bz +g(t)

j=1

= X'B+g(t)

where g s a smooth function.

In Figure 1.1, the nonparametric estimates of the weather-sensitive load for
St. Louis is given by the solid curve and two sets of parametric estimates are

given by the dashed curves.

Figure 1.1: Temperature Response Function for St. Louis. The nonparametric
estimate is given by the solid curve, and the parametric estimates by the dashed
curves. From Engle, Granger, Rice and Weiss (1986), with permission from the
Journal of the American Statistical Association.

Example 1.1.2 ( ) gave an application of the partially linear model
to a mouthwash experiment. A control group (X = 0) used only a water rinse for
mouthwash, and an experimental group (X = 1) used a common brand of anal-
gesic. Figure 1.2 shows the raw data and the partially kernel regression estimates

for this data set.
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Figure 1.2: Raw data partially linear regression estimates for mouthwash data.
The predictor variable is T' = baseline SBI, the response is Y = SBI index after
three weeks. The SBI index is a measurement indicating gum shrinkage. From
Speckman (1988), with the permission from the Royal Statistical Society.

Example 1.1.3 (1999) used the partially linear model to
analyze household gasoline consumption in the United States. They summarized

the modelling framework as

LTGALS = G(LY,LAGE)+ 31 LDRVRS + (3, LSIZE + (3 Residence
+ 5T Region + Bs Lifecycle + ¢

where LTGALS is log gallons, LY and LAGE denote log(income) and log(age)
respectively, LDRVRS is log(numbers of drive), LSIZE is log(household size),
and E(e|predictor variables) = 0.

Figures 1.3 and 1.4 depicts log-income profiles for different ages and log-
age profiles for different incomes. The income structure is quite clear from 1.3.

Similarly, 1.4 shows a clear age structure of household gasoline demand.
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Figure 1.3: Income structure, 1991. From Schmalensee and Stoker (1999), with
the permission from the Journal of Econometrica.

Example 1.1.4 ( ) take into account an example of the
use of partially linear models, and compare the results with a classical approach
employing blocking. They consider the data, primarily discussed by

( ), from a marketing price-volume study carried out in the petroleum
distribution industry.

The response variable Y is the log volume of sales of gasoline, and the two
main explanatory variables of interest are x1, the price in cents per gallon of gaso-
line, and x5, the differential price to competition. The nonparametric component
t represents the day of the year.

Aspect of their analysis are displayed in Figure 1.5. There three separate
plots against t are shown. Upper plot: parametric component of the fit; middle
plot: dependence on nonparametric component; lower plot: residuals. All three
plots are drown to the same vertical scale, but the upper two plots are displaced

upwards.

Example 1.1.5 ( ) report on a logistic analysis of some

bioassay data from a US National Toxicology Program study of flame retardants.
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Data on male and female rates exposed to various doses of a polybrominated
biphenyl mixture known as Firemaster FF-1 consist of a binary response vari-
able, Y, indicating presence or absence of a particular nonlethal lesion, bile duct
hyperplasia, at each animal’s death. There are four explanatory variables: log
dose, x1, initial weight, x4, cage position (height above the floor), x3, and age
at death, t. Our choice of this notation reflects the fact that Dinse and Lagakos
commented on various possible treatments of this fourth variable. As alternatives
to the use of step functions based on age intervals, they considered both a straight-
forward linear dependence on t, and higher order polynomials. In all cases, they
fitted a conventional logistic regression model, the GLM data from male and fe-
male rats separate in the final analysis, having observed interactions with gender
in an initial examination of the data.

( ) treated this as a semiparametric GLM regression
problem, regarding xi, xo and x3 as linear variables, and t the nonlinear vari-
ables. Decompositions of the fitted linear predictors for the male and female rats
are shown in Figures 1.0 and 1.7, based on the Dinse and Lagokos data sets,

consisting of 207 and 112 animals respectively.

Furthermore, let us now cite two examples of partially linear models that may
typically occur in microeconomics, constructed by ( ). In these two
examples, we are interested in estimating the parametric component when we

only know that the unknown function belongs to a set of appropriate functions.

Example 1.1.6 A firm produces two different goods with production functions
Fy and F,. That is, y3 = Fi(z) and yo = F5(2), with (x x z) € R x R™. The
firm mazximizes total profits pyy1 — wix = pyys — wlz. The maximized profit
can be written as m(u) + m2(v), where u = (p1,wy) and v = (pg,ws). Now
suppose that the econometrician has sufficient information about the first good to
parameterize the first profit function as m(u) = ur0y. Then the observed profit
18 M = uiTHO + mo(v;) + €4, where Ty is monotone, conver, linearly homogeneous

and continuous in its arguments.

Example 1.1.7 Again, suppose we have n similar but geographically dispersed
firms with the same profit function. This could happen if, for instance, these

firms had access to similar technologies. Now suppose that the observed profit
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depends not only upon the price vector, but also on a linear index of exogenous
variables. That is, m; = x! 0y + 7 (D}, ..., p}) + &, where the profit function 7* is

continuous, monotone, convex, and homogeneous of degree one in its arguments.

Partially linear models are semiparametric models since they contain
both parametric and nonparametric components. It allows easier interpretation
of the effect of each variable and may be preferred to a completely nonparametric
regression because of the well-known “curse of dimensionality”. The parametric
components can be estimated at the rate of \/n, while the estimation precision
of the nonparametric function decreases rapidly as the the dimension of the non-
linear variable increases. Moreover, the partially linear models are more flexible
than the standard linear models, since they combine both parametric and non-
parametric components when it is believed that the response depends on some
variables in linear relationship but is nonlinearly related to other particular in-

dependent variables.

Following the work of ( ), much atten-
tion has been directed to estimating (1.1.1). See, for example, ( )
(1986), (1988), (1988), (1988), (1991),

( ) ( ) ( ), Schick (1996a,b) and
( ) and the references therein. For instance, ( ) con-

structed a feasible least squares estimator of  based on estimating the non-
parametric component by a Nadaraya-Waston kernel estimator. Under some
regularity conditions, he deduced the asymptotic distribution of the estimate.

( ) argued that the nonparametric component can be charac-
terized by Wy, where W is a (n x ¢)—matrix of full rank, v is an additional
unknown parameter and ¢ is unknown. The partially linear model (1.1.1)

can be rewritten in a matrix form
Y = X3+ Wy +e. (1.1.2)
The estimator of 5 based on (1.1.2) is
B ={X"(F - Pw)X)} X" (F - B)Y)} (1.1.3)

where Py = WWIW)'W? is a projection matrix. Under some suitable condi-

tions, ( ) studied the asymptotic behavior of this estimator. This
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estimator is asymptotically unbiased because 3 is calculated after removing the
influence of T from both the X and Y. (See (3.3a) and (3.3b) of

( ) and his kernel estimator thereafter). ( )
proposed to replace W in (1.1.3) by a smoothing operator for estimating [ as

follows:
Bass = {X(F = W) X)} HXT(F = W) Y)}. (1.1.4)

Following ( ), ( ) systematically
studied asymptotic behaviors of the least squares estimator given by (1.1.3) for

the case of non-random design points.

(1986), (1986), Rice (1986),
(1990), (1994) and

( ) used the spline smoothing technique and defined the penal-

ized estimators of 3 and g as the solution of

N R
argiming ;- Y- X8 —g(T)}y + )\/{g”(u)}zdu (1.1.5)

i=1
where )\ is a penalty parameter (see ( )). The above estimators are
asymptotically biased (Rice, 1986, Schimek, 1997). ( ) demonstrated

in a simulation study that this bias is negligible apart from small sample sizes
(e.g. n = 50), even when the parametric and nonparametric components are
correlated.

The original motivation for Speckman’s algorithm was a result of ( ),
who showed that within a certain asymptotic framework, the penalized least
squares (PLS) estimate of 5 could be susceptible to biases of the kind that are
inevitable when estimating a curve. ( ) only considered the case
where X; and T; are independent and constructed an asymptotically normal es-
timator for 5. Indeed, ( ) proved that the PLS estimator of [ is
consistent at parametric rates if small values of the smoothing parameter are used.

( ) used local linear regression in partially linear models
and established the asymptotic distributions of the estimators of the paramet-
ric and nonparametric components. More general theoretical results along with
these lines are provided by ( ), who considered the case where the

density of ¢ is known. See also ( ) for an extension to the case where
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the density function of € is unknown. ( ) systematically studied the
Bahadur efficiency and the second order asymptotic efficiency for a num-
bers of cases. More recently, ( ) derived the upper and
lower bounds for the second minimax order risk and showed that the second
order minimax estimator is a penalized maximum likelihood estimator. Simi-
larly, ( ) applied the theory of empirical processes
to derive the asymptotic properties of a penalized quasi likelihood estimator,
which generalizes the piecewise polynomial-based estimator of ( ).
In the case of heteroscedasticity, ( ) constructed root-n con-
sistent weighted least squares estimates and proposed an optimal weight function
for the case where the variance function is known up to a multiplicative constant.
More recently, ( ) further studied this issue for more general
variance functions.
( ) and ( ) stud-

ied a generalization of (1.1.1), which corresponds to
EY|X,T)=H{X"3+g(T)} (1.1.6)

where H (called link function) is a known function, and  and g are the same
as in (1.1.1). To estimate 8 and g, ( ) introduced
the quasi-likelihood estimation method, which has properties similar to those
of the likelihood function, but requires only specification of the second-moment
properties of Y rather than the entire distribution. Based on the approach of
Severini and Staniswalis, ( ) considered the
problem of testing the linearity of g. Their test indicates whether nonlinear
shapes observed in nonparametric fits of g are significant. Under the linear case,
the test statistic is shown to be asymptotically normal. In some sense, their
test complements the work of ( ). The practical
performance of the tests is shown in applications to data on East-West German

migration and credit scoring. Related discussions can also be found in

(1997) and (1997).

Example 1.1.8 Consider a model on FEast-West German migration in 1991
( )data from the German Socio-Economic Panel for the state Mecklenburg-

Vorpommern, a land of the Federal State of Germany. The dependent variable
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is binary with Y = 1 (intention to move) or' Y = 0 (stay). Let X denote some
socioeconomic factors such as age, sex, friends in west, city size and unemploy-
ment, T do household income. Figure 1.8 shows a fit of the function g in the
semiparametric model (1.1.6). It is clearly nonlinear and shows a saturation in
the intention to migrate for higher income households. The question is, of course,

whether the observed nonlinearity is significant.

Example 1.1.9 (2000) discuss credit scoring methods which
aim to assess credit worthiness of potential borrowers to keep the risk of credit
loss low and to minimize the costs of failure over risk groups. One of the classical
parametric approaches, logit regression, assumes that the probability of belonging
to the group of "bad” clients is given by P(Y = 1) = F(BTX), with Y =1 indi-
cating a "bad” client and X denoting the vector of explanatory variables, which
include eight continuous and thirteen categorical variables. X5 to Xg are the con-
tinuous variables. All of them have (left) skewed distributions. The variables Xg
to Xg in particular have one realization which covers the majority of observations.
Xyg to Xo4 are the categorical variables. Sixz of them are dichotomous. The others
have 3 to 11 categories which are not ordered. Hence, these variables have been
categorized into dummies for the estimation and validation.

The authors consider a special case of the generalized partially linear model
E(Y|X,T)=G{pTX + g(T)} which allows to model the influence of a part T of

the explanatory variables in a nonparametric way. The model they study is

24
PY=1)=F (g(:c5) + > ﬁjx])
J=2,#5
where a possible constant is contained in the function g(e). This model is es-
timated by semiparametric maximum-likelithood, a combination of ordinary and
smoothed mazimum-—likelithood. Figure 1.9 compares the performance of the para-
metric logit fit and the semiparametric logit fit obtained by including X5 in a
nonparametric way. Their analysis indicated that this generalized partially linear

model improves the previous performance. The detailed discussion can be found
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1.2 The Least Squares Estimators

If the nonparametric component of the partially linear model is assumed to be
known, then LS theory may be applied. In practice, the nonparametric compo-
nent g, regarded as a nuisance parameter, has to be estimated through smoothing
methods. Here we are mainly concerned with the nonparametric regression es-
timation. For technical convenience, we focus only on the case of T' € [0,1] in
Chapters 2-5. In Chapter 6, we extend model (1.1.1) to the multi-dimensional
time series case. Therefore some corresponding results for the multidimensional
independent case follows immediately, see for example, Sections 6.2 and 6.3.
For identifiability, we assume that the pair (3, g) of (1.1.1) satisfies

LS B - XTB— (TP = min = 3 B(Y - XTa— [T (12.1)
i=1 & i=1

This implies that if X/ 81 +¢:1(T;) = X[ B2+ g2(T;) for all 1 < i < n, then 51 = (s
and g; = g» simultaneously. We will justify this separately for the random design
case and the fixed design case.

For the random design case, if we assume that E[Y;[(X;,T;)] = X[ 3 +
g1(Ty) = XTI By + go(T;) for all 1 < i < n, then it follows from E{Y; — X3 —
G1(T)Y? = E{Yi— X7 By go(T) Y+ (B )" E{(Xi— E[X,|T) (X~ E[X,| )T} (5
B2) that we have 1 = 5 due to the fact that the matrix E{(X; — E[X;|T;])(X; —
E[X;|T))T} is positive definite assumed in Assumption 1.3.1(i) below. Thus
g1 = go follows from the fact g;(T;) = E|Y;|T;] — E[X} 3;|T;] for all 1 < i < n and
j=1,2.

For the fixed design case, we can justify the identifiability using several dif-
ferent methods. We here provide one of them. Suppose that g of (1.1.1) can be
parameterized as G = {g(T1),...,9(T,)}" = Wr used in (1.2.2), where v is a
vector of unknown parameters.

Then submitting G = W into (1.2.1), we have the normal equations
XTXB=X"(Y —Wr) and Wry=P(Y — Xp3),

where P = W(WTW)'WT, XT = (Xy,...,X,) and YT = (Y},....Y,).
Similarly, if we assume that E[Y;] = X3, + ¢1(T;) = X' 35 + g2(T;) for all

1 < i < n, then it follows from Assumption 1.3.1(ii) below and the fact that

nE{(Y = X3 = Wy)"(Y = X0 = W)} = 1/nE{(Y — X0 — Wy)" (Y —
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Xy = W)} + 1/n(Br — B2)" X (I — P)X (B — 32) that we have 3, = 3, and
g1 = g2 simultaneously.

Assume that {(X;,7;,Y;);i = 1,...,n.} satisfies model (1.1.1). Let w,;(t){=
wni(t; Ty, ..., T,)} be positive weight functions depending on ¢ and the design
points 11, ..., T,. For every given 3, we define an estimator of g(-) by

wa WY; — X[ B).

We often drop the § for convenience. Replacing ¢(7;) by g,(7;) in model (1.1.1)

and using the LS criterion, we obtain the least squares estimator of /3:
Brs = (XTX)'X"Y, (1.2.2)

which is just the estimator Bays in (1.1.4) with a different smoothing operator.

The nonparametric estimator of g(t) is then defined as follows:

Zwm )Y; — X7 Brs). (1.2.3)

where XT = (X1,..., X,,) with X; = X; = Y7, w(T) X; and YT = (Y3,...,Y,)
with V; = Y; = X, w,i(T;)Y;. Due to Lemma A.2 below, we have as n — oo
nY(XTX) — %, where ¥ is a positive matrix. Thus, we assume that n(X7X)™!
exists for large enough n throughout this monograph.

When €4, ..., ¢, are identically distributed, we denote their distribution func-

tion by ¢(-) and the variance by o2, and define the estimator of o2 by
1 -
0=~ > (Vi = X{ Brs)® (1.2.4)

In this monograph, most of the estimation procedures are based on the estimators

(1.2.2), (1.2.3) and (1.2.4).

1.3 Assumptions and Remarks

This monograph considers the two cases: the fixed design and thei.i.d. random

design. When considering the random case, denote

hi(Ti) = E(xy;|T3) and uy; = x5 — E(xy5]T7).
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Assumption 1.3.1 i) supgc,; E(|X1[P|T = t) < 0o and ¥ = Cov{X; —
E(X4|T1)} is a positive definite matriz. The random errors €; are independent of
(X, T5).

it) When (X;,T;) are fixed design points, there exist continuous functions

h;(-) defined on [0, 1] such that each component of X; satisfies
zij = hi(T;) +uy; 1<i<n, 1<j<p (1.3.1)
where {u;;} is a sequence of real numbers satisfying

lim — Zuu = (1.3.2)

n—oon !

and form=1,...,p,

1 k
h{ln_)sogp . Iax Zuﬁ < 00 (1.3.3)
for all permutations (ji,...,jn) of (1,2,...,n), where u; = (W1, ..., up)", an =

n'2logn, and ¥ is a positive definite matriz.

Throughout the monograph, we apply Assumption 1.3.1 i) to the case of
random design points and Assumption 1.3.1 ii) to the case where (X;,T;) are
fixed design points. Assumption 1.3.1 i) is a reasonable condition for the
random design case, while Assumption 1.3.1 ii) generalizes the corresponding
conditions of ( ) and ( ), and simplifies the conditions of

( ). See also Remark 2.1 (i) of ( ).

Assumption 1.3.2 The first two derivatives of g(-) and h;(-) are Lipschitz

continuous of order one.

Assumption 1.3.3 When (X;,T;) are fixed design points, the positive weight

functions wy;(+) satisfy

n

(i) max > wi(T;) = O(1),

n

gja;glzwni@) = 0(1),

(22)  max wyi(Th) = O(bn),

1<4,5<n
n

(id) gg%zwm (THI(T; = T5] > en) = O(cn),

J=
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where b, and ¢, are two sequences satisfying lim sup nb? log* n < oo, lim inf nc: >

n—o0 n—oo

0, limsup nck logn < oo and limsup nb?c? < oco. When (X;,T;) are i.i.d. random

n—oo n—oo

design points, (i), (ii) and (iii) hold with probability one.

Remark 1.3.1 There are many weight functions satisfying Assumption 1.5.5.
For examples,

Wﬁ)(t) _ hin/ssl K(t};ns)d& Wg)(t) = K(tl_{nTl) é}((f ;RTJ),

where S; = %(T(i) +T4-n), 1 =1,---,n—=1,5 = 0,5, = 1, and Tj;) are the

order statistics of {T;}. K(-) is a kernel function satisfying certain conditions,

and H, is a positive number sequence. Here H, = h,, or r,, h, is a bandwidth
parameter, and r, = r,(t,T1,---,T,) is the distance from t to the k,—th nearest

neighbor among the T!s, and where k,, is an integer sequence.

We can justify that both W,Ell)(t) and Wr(f) (t) satisfy Assumption 1.3.3. The
details of the justification are very lengthy and omitted. We also want to point

out that when w,; is either WE) or W2

ni

Assumption 1.3.3 holds automatically
with H,, = An~'/% for some 0 < \ < co. This is the same as the result established
by ( ) (see Theorem 2 with v = 2), who pointed out that the usual
n~1/% rate for the bandwidth is fast enough to establish that the LS estimate g
of 3 is y/n-consistent. Sections 2.1.3 and 6.4 will discuss some practical selections

for the bandwidth.

Remark 1.3.2 Throughout this monograph, we are mostly using Assumption
1.3.1 1) and 1.5.3 for the fired design case. As a matter of fact, we can re-
place Assumption 1.5.1 i) and 1.5.3 by the following corresponding conditions.
Assumption 1.3.1 i1)” When (X;,T;) are the fized design points, equations
(1.3.1) and (1.3.2) hold.

Assumption 1.3.3° When (X;,T;) are fived design points, Assumption 1.5.3
(i)- (1) holds. In addition, the weight functions wy; satisfy

(iv) fg%ﬁzwnj(ﬂ)uﬂ = 0(d,),

() 5 Fiu = Oldy).
(vi) %z”:{znz wnk(Tj)Uks}Ujl = O(dy)
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foralll <1,s < p, whered, is a sequence of real numbers satisfying lim sup nd2 logn <

00, f] = f(T;) — Xp_q wnk(T}) f(Ty) for f =g or h; defined in (1.5.1).
Obviously, the three conditions (iv), (v) and (vi) follows from (1.5.3) and
Abel’s inequality.
When the weight functions w,; are chosen as Wéf) defined in Remark 1.5.1,
Assumptions 1.3.1 11)” and 1.3.3" are almost the same as Assumptions (a)-(f) of
( ). As mentioned above, however, we prefer to use Assumptions

1.3.1 1) and 1.3.3 for the fized design case throughout this monograph.

Under the above assumptions, we provide bounds for h;(T;) — >3 _; wni(T;)
h;(Ty) and g(T;) — >p_; wnk(T3)g(T})) in the appendix.

1.4 The Scope of the Monograph

The main objectives of this monograph are: (i) To present a number of theoreti-
cal results for the estimators of both parametric and nonparametric components,
and (ii) To illustrate the proposed estimation and testing procedures by several
simulated and true data sets using XploRe-The Interactive Statistical Comput-
ing Environment (see Hardle, Klinke and Miiller, 1999), available on website:
http://www.xplore-stat.de/.

In addition, we generalize the existing approaches for homoscedasticity to
heteroscedastic models, introduce and study partially linear errors-in-variables

models, and discuss partially linear time series models.

1.5 The Structure of the Monograph

The monograph is organized as follows: Chapter 2 considers a simple partially
linear model. An estimation procedure for the parametric component of the par-
tially linear model is established based on the nonparametric weight sum. Section
2.1 mainly provides asymptotic theory and an estimation procedure for the para-
metric component with heteroscedastic errors. In this section, the least squares
estimator O of (1.2.2) is modified to the weighted least squares estimator Sy rg.
For constructing Sy g, we employ the split-sample techniques. The asymp-
totic normality of Sy g is then derived. Three different variance functions are

discussed and estimated. The selection of smoothing parameters involved in the
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nonparametric weight sum is also discussed in Subsection 2.1.3. Simulation com-
parison is also implemented in Subsection 2.1.4. A modified estimation procedure
for the case of censored data is given in Section 2.2. Based on a modification of
the Kaplan-Meier estimator, synthetic data and an estimator of § are con-
structed. We then establish the asymptotic normality for the resulting estimator
of . We also examine the behaviors of the finite sample through a simulated

example. Bootstrap approximations are given in Section 2.3.

Chapter 3 discusses the estimation of the nonparametric component without
the restriction of constant variance. Convergence and asymptotic normality of
the nonparametric estimate are given in Sections 3.2 and 3.3. The estimation
methods proposed in this chapter are illustrated through examples in Section
3.4, in which the estimator (1.2.3) is applied to the analysis of the logarithm of

the earnings to labour market experience.

In Chapter 4, we consider both linear and nonlinear variables with measure-
ment errors. An estimation procedure and asymptotic theory for the case where
the linear variables are measured with measurement errors are given in Section
4.1. The common estimator given in (1.2.2) is modified by applying the so-called
“correction for attenuation”, and hence deletes the inconsistence caused by
measurement error. The modified estimator is still asymptotically normal as
(1.2.2) but with a more complicated form of the asymptotic variance. Section 4.2
discusses the case where the nonlinear variables are measured with measurement
errors. Our conclusion shows that asymptotic normality heavily depends on the
distribution of the measurement error when 7 is measured with error. Examples

and numerical discussions are presented to support the theoretical results.

Chapter 5 discusses several relatively theoretic topics. The laws of the
iterative logarithm (LIL) and the Berry-Esseen bounds for the parametric
component are established. Section 5.3 constructs a class of asymptotically
efficient estimators of 3. Two classes of efficiency concepts are introduced.
The well-known Bahadur asymptotic efficiency, which considers the exponential
rate of the tail probability, and second order asymptotic efficiency are dis-
cussed in detail in Sections 5.4 and 5.5, respectively. The results of this chapter
show that the LS estimate can be modified to have both Bahadur asymptotic

efficiency and second order asymptotic efficiency even when the parametric and
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nonparametric components are dependent. The estimation of the error distribu-

tion is also investigated in Section 5.6.

Chapter 6 generalizes the case studied in previous chapters to partially
linear time series models and establishes asymptotic results as well as small
sample studies. At first we present several data-based test statistics to de-
termine which model should be chosen to model a partially linear dynamical
system. Secondly we propose a cross-validation (CV) based criterion to select
the optimum linear subset for a partially linear regression model. We investi-
gate the problem of selecting the optimum bandwidth for a partially linear
autoregressive model. Finally, we summarize recent developments in a general

class of additive stochastic regression models.
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Figure 1.4: Age structure, 1991. From Schmalensee and Stoker (1999), with the
permission from the Journal of Econometrica.
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Figure 1.8:  The influence of household income (function g(¢)) on migration
intention. Sample from Mecklenburg—Vorpommern, n = 402.
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metric logit (thick grey) with variable X5 included nonparametrically. Results

taken from Miiller and Rénz (2000).



Chapter 2

ESTIMATION OF THE
PARAMETRIC COMPONENT

2.1 Estimation with Heteroscedastic Errors

2.1.1 Introduction

This section considers asymptotic normality for the estimator of § when ¢ is a

homoscedastic error. This aspect has been discussed by ( ),
(1988), (1988), (1991), (1993),

( ) and ( ). Here we state one of the main
results obtained by ( ) for model (1.1.1).

Theorem 2.1.1 Under Assumptions 1.53.1-1.5.3, Brs is an asymptotically nor-

mal estimator of 3, i.e.,
Vn(Brs — B) —* N(0,02571). (2.1.1)

Furthermore, assume that the weight functions wy;(t) are Lipschitz continuous
of order one. Let sup, E|g;|* < 00, b, = n~Y5log " n and ¢, = n~*5log®>n in
Assumption 1.5.5. Then with probability one
sup |gGn(t) — g(t)| = O(n=*%1og?> n). (2.1.2)
0<t<1
The proof of this theorem has been given in several papers. The proof of
(2.1.1) is similar to that of Theorem 2.1.2 below. Similar to the proof of Theorem
5.1 of ( ), the proof of (2.1.2) can be completed. The

details have been given in ( ).

21
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Example 2.1.1 Suppose the data are drawn from Y; = X! By + T2 + &; for
i=1,...,100, where By = (1.2,1.3,1.4)T, T;, ~ U0, 1], &; ~ N(0,0.01) and X; ~

0.81 0.1 0.2
N(0,%,) with¥, = | 0.1 225 0.1 [. In this simulation, we perform 20 repli-
0.2 01 1

cations and take bandwidth 0.05. The estimate Brs is (1.201167,1.300773,1.397741)T
with mean squared error (2.1 % 1075,2.23 x 107°,5.1 x 107°)T.  The estimate of
go(t)(= 1) is based on (1.2.3). For comparison, we also calculate a parametric
fit for go(t). Figure 2.1 shows the parametric estimate and nonparametric fitting
for go(t). The true curve is given by grey line(in the left side), the nonparametric
estimate by thick curve(in the right side) and the parametric estimate by the black

straight line.

Simulation comparisan Simulotion com parison

1] oz

o4

T ahd = palamd 'k catioa
0%
Falaiet k& ahd hohpa soct k catioak:

Figure 2.1: Parametric and nonparametric estimates of the function g(7)

( ) considered the problem of heteroscedasticity, i.e., non-

constant variance, for model (1.1.1). He constructed root-n consistent weighted
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least squares estimates for the case where the variance is known up to a
multiplicative constant. In his discussion, he assumed that the nonconstant vari-
ance function of Y given (X, 7') is an unknown smooth function of an exogenous
random vector W.

In the remainder of this section, we mainly consider model (1.1.1) with
heteroscedastic error and focus on the following cases: (i) {¢?} is an unknown
function of independent exogenous variables; (ii) {¢?} is an unknown function of
T;; and (iii) {o?} is an unknown function of X 3+ ¢(T;). We establish asymptotic
results for the three cases. In relation to our results, we mention recent devel-
opments in linear and nonparametric regression models with heteroscedastic

errors. See for example, ( ), ( ), ( ),

(1982), (1989), (1978),
( )7 ( )7 ( )and
(1987).

Let {(Y;, X;,T;),i = 1,...,n} denote a sequence of random samples from
YVi=X8+g(T) +0:&,i=1,...,n, (2.1.3)

where (X;,T;) are i.i.d. random variables, & are i.i.d. with mean 0 and variance
1, and o? are some functions of other variables. The concrete forms of o2 will be
discussed in later subsections.

When the errors are heteroscedastic, f1g is modified to a weighted least
squares estimator

b = (X XT) T (KT (2.1.4)

i=1 i=1
for some weights 7; ¢ = 1,...,n. In this section, we assume that {;} is either a

sequence of random variables or a sequence of constants. In our model (2.1.3) we

take v; = 1/02.
2

In principle the weights v; (or ¢;7) are unknown and must be estimated. Let
{7, i =1,...,n} be a sequence of estimators of {7;}. We define an estimator of
£ by substituting ; in (2.1.4) by 7;.

In order to develop the asymptotic theory conveniently, we use the tech-
nique of split-sample. Let k,(< n/2) be the largest integer part of n/2. %(1)

and %(2) are the estimators of v; based on the first k, observations (X, 7},Y1),
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ooy (Xk s Tk, s Y, ), and the later n — k,, observations (Xg, 11, Tk, 41, Yen+1), « -+,
(Xn, T, Ys), respectively. Define

n P kn . n o
Buss = (L AXXD) (L APXY + Y X)) (2.1.5)
i=1 i=1 i—knt1

as the estimator of (.
The next step is to prove that Gy g is asymptotically normal. We first prove
that Oy is asymptotically normal, and then show that v/n(Bw s — Bw) converges

to zero in probability.

Assumption 2.1.1 supy.,«; E([|X1|]*|T =t) < co. When {;} is a sequence of
real numbers, then lim, . 1/n z;;l%-uiuf = B, where B is a positive definite
matriz, and lim, .. 1/n> " v < oco. When {v;} is a sequence of i.i.d. random

variables, then B = E(yyujul) is a positive definite matrix.

Assumption 2.1.2 There exist constants C7 and Cy such that
0<Cy < Hiin%' < max y; < Csy < 0.
We suppose that the estimator {7;} of {7;} satisfy

max [3; — vl = op(n”?) ¢ >1/4. (2.1.6)

1<i<n

We shall construct estimators to satisfy (2.1.6) for three kinds of v; later. The
following theorems present general results for the estimators of the parametric

components in the partially linear heteroscedastic model (2.1.3).

Theorem 2.1.2 Assume that Assumptions 2.1.1, 2.1.2 and 1.5.2-1.8.3 hold.

Then By s an asymptotically normal estimator of 3, i.e.,

Vn(Bw — B) —* N(0,B~'SB™).

Theorem 2.1.3 Under Assumptions 2.1.1, 2.1.2 and (2.1.6), Bwrs s asymp-
totically equivalent to By, i.e., \/n(Bwrs — B) and /n(Bw — () have the same

asymptotically normal distribution.
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Remark 2.1.1 In the case of constant error variance, i.e. o = o2, Theorem

2.1.2 has been obtained by many authors. See, for example, Theorem 2.1.1.

Remark 2.1.2 Theorem 2.1.3 not only assures that our estimator given in (2.1.5)
15 asymptotically equivalent to the weighted LS estimator with known weights,

but also generalizes the results obtained previously.

Before proving Theorems 2.1.2 and 2.1.3, we discuss three different variance
functions and construct their corresponding estimates. Subsection 2.1.4 gives
small sample simulation results. The proofs of Theorems 2.1.2 and 2.1.3 are

postponed to Subsection 2.1.5.

2.1.2 Estimation of the Non-constant Variance Functions

2.1.2.1 Variance is a function of exogenous variables

This subsection is devoted to the nonparametric heteroscedasticity struc-

ture

where H is unknown and Lipschitz continuous, {W;;i = 1,...,n} is a se-
quence of i.i.d. design points defined on [0, 1], which are assumed to be indepen-

dent of (&, X;,T;).

Define
Hy(w) = 3" @ny(w){Y; = X Brs — Gu(T0)}?
=1
as the estimator of H(w), where {&,;(t);7 = 1,...,n} is a sequence of weight

functions satisfying Assumption 1.3.3 with w,; replaced by @&,,;.

Theorem 2.1.4 Assume that the conditions of Theorem 2.1.2 hold. Let ¢, =
n~Y3logn in Assumption 1.3.3. Then

sup |H,(Wi) — H(W;)| = Op(n~*logn).

1<i<n
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Proof. Note that

o~

Hn(Wz) = an] Y X BLS)
= Z G W{XT (B = Brs) + 3(T3) + &}

= ﬁ 5[15’ an] X X (ﬁ ﬁLS + anj 52(7—‘@)

7j=1
+Zwm e+22wm W) XT (8 — Brs)d(T;)
J=1
—i—QanJ X7 (8~ Bus 51—1—2an] 9(TyE.  (2.1.7)

The first term of (2.1.7) is therefore Op(n~2/%) since 3.7 X; X7 is a symmetric

matrix, 0 < @,;(W;) < Cn=%/3,

zn:{wn] (W) — Cn_2/3}X XT

j=1
is a p x p nonpositive matrix, and Brg — 8 = Op(n~/?). The second term of
(2.1.7) is easily shown to be of order Op(n'/3¢2?).

Now we need to prove

= Op(n~Y3logn), (2.1.8)

Z ww 6 — H(WZ)

sup
which is equivalent to proving the following three results

sup Z@m {Z Wk (T Ek} ’ = Op(n —1/3 logn), (2.1.9)

i

sup Zwm el — H(W;)| = Op(n~logn), (2.1.10)

7

sup anj(m)gj{z war(Ty)ex | = Op(n~*logn).  (2.1.11)
j=1 k=1

i

(A.3) below assures that (2.1.9) holds. Lipschitz continuity of H(-) and as-

sumptions on &y;(-) imply that

> On(Wi)ei — H(W;)| = Op(n~?logn). (2.1.12)
j=1

sup
i

By taking ay; = @u(Wi)HWy), Vi =& — 17 =2, p; =2/3 and py, = 0 in

Lemma A.3, we have

(€ = D] = 0p(nlogn). (2.1.13)
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A combination of (2.1.13) and (2.1.12) implies (2.1.10). Cauchy-Schwarz inequal-
ity, (2.1.9) and (2.1.10) imply (2.1.11), and then (2.1.8). The last three terms
of (2.1.7) are all of order Op(n~3logn) by Cauchy-Schwarz inequality. We
therefore complete the proof of Theorem 2.1.4.

2.1.2.2 Variance is a function of the design points 7T;

In this subsection we consider the case where {02} is a function of {T}}, i.e.,

o? = H(T;), H unknown Lipschitz continuous.

Similar to Subsection 2.1.2.1, we define our estimator of H(-) as

(t) = i@nj(t){yj — X7 Brs — Gu(T)}.

Theorem 2.1.5 Under the conditions of Theorem 2.1.2, we have

sup |Ho(T;) — H(T)| = Op(n~ " logn).

1<i<n

Proof. The proof of Theorem 2.1.5 is similar to that of Theorem 2.1.4 and

therefore omitted.

2.1.2.3 Variance is a function of the mean

Here we consider model (2.1.3) with
o} = H{X! B3+ g(T;)}, H unknown Lipschitz continuous.

This means that the variance is an unknown function of the mean response.

Several related situations in linear and nonlinear models have been discussed by

(1974), (1978), (1980), (1982) and
(1982).

Since H(-) is assumed to be completely unknown, the standard method is
to get information about H(-) by replication, i.e., to consider the following

“improved” partially linear heteroscedastic model

Yij:X?ﬁ+9(ﬂ)+@fm g=1....m;; 1=1,...,n,
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where {Y;;} is the response of the j—th replicate at the design point (X;,T;), &;
are i.i.d. with mean 0 and variance 1, 3, g(-) and (X;, T;) are as defined in (2.1.3).

We here apply the idea of ( ) for linear heteroscedastic
model to construct an estimate of o?. Based on the least squares estimate (g

and the nonparametric estimate §,(7;), we use Y;; — { X/ Brs + 9.(T})} to define

1 &

62 = — Y IV —{X[ Bus + Gu(T)} %, (2.1.14)
v =1
with a positive sequence {m;; i = 1,---,n} determined later.
Theorem 2.1.6 Let m; = a,n* o m(n) for some sequence a, converging to

infinity. Suppose the conditions of Theorem 2.1.2 hold. Then

sup |67 — H{X] B+ g(T;)} = op(n™®) ¢ >1/4.

1<i<n

Proof. We provide only an outline for the proof of Theorem 2.1.6. Obviously

67 — H{XT B+ g(T)} < 3{X] (B Brs)}* + 3{9(T)) — g.(T7)}?

b2 -
m; = 7 \S%j .
The first two items are obviously op(n~9). Since &;; are i.i.d. with mean zero and

variance 1, by taking m; = a,n??, using the law of the iterated logarithm and the

boundedness of H(-), we have
1 &
S o3l — 1) = Ofm(n) ™ logm(n)} = op(n~).

v =1

Thus we derive the proof of Theorem 2.1.6.

2.1.3 Selection of Smoothing Parameters

In practice, an important problem is how to select the smoothing parameter
involved in the weight functions w,;. Currently, the results on bandwidth selec-

tion for completely nonparametric regression can be found in the monographs by

( ), Hérdle (1990, 1991), ( )
(1996), and (1997).
More recently, ( ) considered the selection of an truncation

truncation parameter for model (1.1.1) and established large and small sample
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results for the case where the weight functions w,; are a sequence of orthogonal
series. See also ( ), who discussed the time series case and provided both
theory and practical applications.

In this subsection, we briefly mention the selection procedure for bandwidth
for the case where the weight function is a kernel weight.

For 1 <i < n, define

Ginlt) = K(—

gi,n@?ﬁ) = Z w]n Y XTﬁ)

We now define the modified LS estimator 3(h) of § by minimizing

> AYi = X718 = gin(T:, 8)}*.

i=1
The Cross-Validation (CV) function can be defined as

Z{Y XTB(h) = Gin(Ti, B(R))}.

Let i denote the estimator of A, which is obtained by minimizing the CV function
CV(h) over h € O, where Oy, is an interval defined by

0, = [>\1n—1/5—m7 >\2n_1/5+7’1],

where 0 < A\ < Ay < oo and 0 < 73 < 1/20 are constants. Under Assumptions
1.3.1-1.3.3, we can show that the CV function provides an optimum bandwidth
for estimating both 3 and ¢g. Details for the i.i.d. case are similar to those in

Section 6.4.

2.1.4 Simulation Comparisons

We present a small simulation study to illustrate the properties of the theoretical
results in this chapter. We consider the following model with different variance

functions.
Y; =X B+9(T;) + o5, i=1,...,n=300,

where {e;} is a sequence of the standard normal random variables, {X;} and {7;}
are mutually independent uniform random variables on [0, 1], 8 = (1,0.75)7 and

g(t) = sin(t). The number of simulations for each situation is 500.
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Table 2.1: Simulation results (x1073)

Estimator | Variance Go =1 6y =0.75

Model Bias MSE Bias MSE

LSE 1 8.696 | 8.7291 | 23.401 | 9.1567
WLSE 1 4.230 | 2.2592 | 1.93 | 2.0011
LSE 2 12.882 | 7.2312 | 5.595 | 8.4213
WLSE 2 5.676 | 1.9235 | 0.357 | 1.3241
LSE 3 5.9 4.351 | 18.83 | 8.521
WLSE 3 1.87 1.762 3.94 2.642

Three models for the variance functions are considered. LSE and WLSE rep-
resent the least squares estimator and the weighted least squares estimator

given in (1.1.1) and (2.1.5), respectively.
e Model 1: 07 = T?;

e Model 2: 02 = W3; where W; are i.i.d. uniformly distributed random

7 7

variables.

e Model 3: 02 = ajexpla{X] 3 + g(T})}?], where (a1,a2) = (1/4,1/3200).
The case where g = 0 has been studied by ( ).

From Table 2.1, one can find that our estimator (WLSE) is better than LSE
in the sense of both bias and MSE for each of the models.
By the way, we also study the behavior of the estimate for the nonparametric

part g(t)

> wn(O(Y; = XT Bws),

i=1
where w?,;(-) are weight functions satisfying Assumption 1.3.3. In simulation,
we take Nadaraya-Watson weight function with quartic kernel(15/16)(1 —
u?)?I(Ju| < 1) and use the cross-validation criterion to select the bandwidth.
Figure 2.2 presents for the simulation results of the nonparametric parts of models
1-3, respectively. In the three pictures, thin dashed lines stand for true values and
thick solid lines for our estimate values. The figures indicate that our estimators
for the nonparametric part perform also well except in the neighborhoods of the

points 0 and 1.
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2.1.5 Technical Details
We introduce the following notation,
A=Y AKXT, A=Y XX,
= i=1
Proof of Theorem 2.1.2. It follows from the definition of Gy that

Pw — B = Aﬁl{i%yﬁ(ﬂ) + Z:%ng}
We will complete the proof by pr(;Ving the followzng three facts for j =1,...,p,
(i) Hy; = 1/v/n3i, 7i259(T:) = op(1);
(i) Hay = 1/v/m 0y @i i wnk (Té | = op(1);
(i) Hs = 1/y/n X0, %iX:& —~ N(0, B-'SBY).
The proof of (i) is mainly based on Lemmas A.1 and A.3. Observe that
VnH; = Zn:l%'uijﬁi + zn:l%hm‘jgz Z Vi Z Wnq(Ti)g;9s, (2.1.15)

where hy,;j = hi(T;) — 25— wnk(T5)h;(T)). In Lemma A3, we take r = 2, Vj, = wuyy,
aj; =gj, 1/4 <p1 <1/3 and po =1 — p;. Then, the first term of (2.1.15) is

OP(n—(2p1—1)/2> - 0p(n1/2).

The second term of (2.1.15) can be easily shown to be order Op(nc?) by using
Lemma A.1.

The proof of the third term of (2.1.15) follows from Lemmas A.1 and A.3,
and

‘Z Z %qu qugz

=1 q=1

< Compa[l x| 3 (T
= O(n*3c,logn) = o,(n'/?).

Thus we complete the proof of (i).
We now show (ii), i.e., \/nHs; — 0. Notice that

\/EH% = ZVZ{Zxk]Wm Tk }&
- Xn:fyl{z Uk jWni Tk }fl + Z’Y@{Z hnkjwm Tk }5
=Y [ g (1) Yo ()] 6 (2.1.16)

i=1 k=1 g¢=1
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The order of the first term of (2.1.16) is O(n~=(2P1=Y/2logn) by letting r = 2,
Vie =&k, @i = 2f—q Ukjwni(Tk), 1/4 <py < 1/3 and p, =1 — p; in Lemma A.3.

It follows from Lemma A.1 and (A.3) that the second term of (2.1.16) is
bounded by

‘Z %{i Pontejwni(Tk) }fz‘

1 k=1

< nmaX’Zwm (Th) é}

max |hnk]|

n

)

= O(n2/3cn logn) a.s. (2.1.17)

The same argument as that for (2.1.17) yields that the third term of (2.1.16) is
bounded by

’Z{Z%wm (%) 5@}{2“%”@ (%) H

k=1 =1

< n I?gzctzl wni(Th)&;

x 1,5135\2 tgjeong(T5)
<nli—
= Op(n*3logn) = op(n/?). (2.1.18)

A combination (2.1.16)—(2.1.18) implies (ii).

Using the same procedure as in Lemma A.2, we deduce that

lim — Z X 'X; = B. (2.1.19)

n—oon

A central limit theorem shows that as n — oo

1
X6 —E N(0,%
\F;v 13 (0,%).

We therefore show that as n — 0o

1 "o~
— AN Xi& —F N(0,B'EB ™).
N>

This completes the proof of Theorem 2.1.2.

Proof of Theorem 2.1.3. In order to complete the proof of Theorem 2.1.3, we

only need to prove

Vn(Bwrs — Bw) = op(1).

First we state a fact, whose proof is immediately derived by (2.1.6) and (2.1.19),

(1) — an(3, )] = op(n”) (21.20)
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for j,1 =1,...,p, where @,(j,1) and a,(j,1) are the (j,1)—th elements of A, and
A, respectively. The fact (2.1.20) will be often used later.
It follows that

Bwis —Bw = S{A (A= A)A Y uXig(T)
=1
k n
FAS (3 = AN XiG(T) + AN (A, — A)ATS 7 Xg
i= i=1
k n
FATS (i = AKX+ A Y (=AM Xig(T)

i=1 i=kn+1

+A0 Y (i —A)XiG - (2.1.21)
By Cauchy-Schwarz inequality, for any j =1,...,p,
n 1/2
‘Z "szzjg !g (Z: )

which is op(n**) by Lemma A.1 and (2.1.19). Thus each element of the first term
of (2.1.21) is op(n~/2) by using the fact that each element of A-'(A, — A,)A!

is op(n~"*). The similar argument demonstrates that each element of the second
and fifth terms is also op(n~'/2).

Similar to the proof of Hy; = op(1), and using the fact that Hj converges
to the normal distribution, we conclude that the third term of (2.1.21) is also
op(n™'/?). Tt suffices to show that the fourth and the last terms of (2.1.21)

are both op(n~'/2). Since their proofs are the same, we only show that for

i=1,....p,
e kn o
{A;l Z(% . ,/)71(2))XZ£Z}] = OP(n—l/Z)
i=1
or equivalently
S @)
> (% = A7)k = op(n'/?). (2.1.22)

i=1
Let {d,} be a sequence of real numbers converging to zero but satisfying
8, >n~Y% Then for any > 0and j=1,...,p,

P{

.
Stw — AT -3 2 5n)’ > /mm}

i=1

< P{r?glxm- ~A2 > 6,} —0. (2.1.23)
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The last step is due to (2.1.6).

Next we deal with the term

kn
~(2)\ ~ ~(2
P{ > (- 7 ))xijfil(‘% — )\ < (5n)’ > /ml/Q}
i=1
using Chebyshev’s inequality. Since ’71(2) are independent of §; fori = 1,..., k,,
we can easily derive
kn
~(2 (2
E{Z(’Y 'Yz() xw&} ZE{ () Iwgz} .
i=1

This is why we use the split-sample technique to estimate ~; by 7 7 ) and 7(1).

In fact,

> = AEsG (b = A7) < 0| > 2

n E{(y — A I — 32| < 6,)}2E|| X |2 B2

<
< 2
k02
< 0% o, (2.1.24)
L
Thus, by (2.1.23) and (2.1.24),
S (2)
> (v =3 )Ty = op(n'/?).
i=1
Finally,
kn @) n
S (i = ANEG{Y wa(T)é}]
i=1 k=1

1<i<n 1<i<n

< VA R2)" b3 ]S B
i=1 =1

This is op(n'/?) by using (2.1.20), (A.3), and (2.1.19). Therefore, we complete
the proof of Theorem 2.1.3.

2.2 Estimation with Censored Data

2.2.1 Introduction

We are here interested in the estimation of 5 in model (1.1.1) when the response
Y; are incompletely observed and right-censored by random variables Z;. That

is, we observe
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where Z; are i.i.d., and Z; and Y; are mutually independent. We assume that
Y; and Z; have a common distribution F' and an unknown distribution G, re-
spectively. In this section, we also assume that ¢; are i.i.d. and that (X;,T;) are
random designs and that (Z;, X') are independent random vectors and indepen-
dent of the sequence {¢;}. The main results are based on the paper of

(1995).

When the Y; are observable, the estimator of § with the ordinary rate of
convergence are given in (1.2.2). In present situation, the least squares form
of (1.2.2) cannot be used any more since Y; are not observed completely. It is
well-known that in linear and nonlinear censored regression models, consistent
estimators are obtained by replacing incomplete observations with synthetic
data. See, for example, ( ),

( ), Lai and Ying (1991, 1992) and ( ). In our context, these suggest

that we use the following estimator
= DX = Gu(T, }®2] Z{X Gen(TOHYS — G- n(T)}  (2:2.2)
i=1

for some synthetic data Y;*, where A®2 % A x AT,
In this section, we analyze the estimate (2.2.2) and show that it is asymptot-

ically normal for appropriate synthetic data Y;*.

2.2.2 Synthetic Data and Statement of the Main Results

We assume that G is known first. The unknown case is discussed in the second

part. The third part states the main results.

2.2.2.1 When G is Known

Define synthetic data
= ¢1(Qi, G)0; + $2(Qs, G)(1 — &), (2.2.3)
where ¢; and ¢, are continuous functions which satisfy
(D). {1=GY)}ou(Y,G) + 2y 6a(t, G)dG(t) =
(ii). ¢ and ¢ don’t depend on F.

The set containing all pairs (¢, ¢2) satisfying (i) and (ii) is denoted by K.
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Remark 2.2.1 FEquation (2.2.3) plays an important role in our case. Note that
E(Y,|T;, Xi) = E(Y;|T;, X;) by (i), which implies that the regressors of Y1y and
Y; on (W, X)) are the same. In addition, if Z = oo, orY; are completely observed,
then Y;qy =Y, by taking ¢1(u, G) = u/{1 — G(u)} and ¢, = 0. So our synthetic

data are the same as the original ones.

Remark 2.2.2 We here list the variances of the synthetic data for the follow-
ing three pairs (¢1,¢2). Their calculations are direct and we therefore omit the

details.
o ¢1(U, G) =u, ¢2(u7 G) =u-+ G(u)/G,<u>7

Var(Yiy) = Var(Y') + /OOO {g/((qi)) } {1 — F(u)}dG(u).

o 01(u,G) =u/{l —G(u)}, ¢ =0,

o g2
Var(Yqy) = Var(Y +/ wGu) —————dF(u).

G(u)
o ¢1(u,G) = do(u,G) = [* {1 —G(s)} ds,

Var(Yiy) = Var(Y)+2/Ooo{1— }/ 1_ = G e,

These arguments indicate that each of the variances of Y is greater than that of
Y;, which is pretty reasonable since we have modified Y;. We cannot compare the
variances for different (¢1, ¢2), which depends on the behavior of G(u). Therefore,
it is difficult to recommend the choice of (¢1, P2) absolutely.

Equation (2.2.2) suggests that the generalized least squares estimator of 3 is
Bay = (XTX) X"V 1)) (2.2.4)
where ?(1) denotes (171(1), e ,ffn(l)) with Yfz‘(l) = Sfi(l) — Zj 1 Wnj (T)Y}(l)

2.2.2.2 When G is Unknown

Generally, G(-) is unknown in practice and must be estimated. The usual

estimate of G(-) is a modification of its Kaplan-Meier estimator. In order to
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construct our estimators, we need to assume G(sup( xw) L. F(X,W)) < v for some
known 0 < v < 1, where T, ,,, = inf{y; Fixw)(y) = 1} and Fixw)(y) = P{Y <
y| X, W}. Let 1/3 <v < 1/2 and 7, = sup{t : 1 — F(t) > n~(=")}. Then a simple
modification of the Kaplan-Meier estimator is

én(z)> if én(z) <7

Gﬁ("'): 1=1,...,n
v, if z <max@; and G,,(z) > 7,

where G, () is the Kaplan-Meier estimator given by

1 )(1—52‘)
n—i+1 ’

Ga(z) =1— H(l—

Qi<z

Substituting G in (2.2.3) by G, we get the synthetic data for the case of

unknown G(u), that is,
Yi) = ¢1(Qi, G)6; + 2(Qi, G2 ) (1 — 6;).

Replacing Y1) in (2.2.4) by Yj«), we get an estimate of 3 for the case of un-
known G(-). For convenience, we make a modification of (2.2.4) by employing
the split-sample technique as follows. Let k, (< n/2) be the largest integer part
of n/2. Let G2, (o) and G2,(e) be the estimators of G based on the observations

(Q1,...,Qr,) and (Qk,+1, .- .,Qn), respectively. Denote
Y3 = 61(Qi, G2)01 + 62(Qi, G (1 = 8) for i =1,
and
Vi3 = 01(Qi, G)6: + 62(Qi, Gay)(1 = 6) for i = Ky +1,..., .

Finally, we define

Y W
ey = (XX YRR + S XOT)

i=1 i=kn+1

as the estimator of # and modify the estimator given in (2.2.4) as

o

oy = (XTSI + 3 XOT),
1 i=kn+1

-
Il
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where
S ) & 1) @) @) S )
Yigy =Yig) = 2 wni(T)Yja), Yiiy =Yiy — 22 wni(T)Yy
j=1 j=kn+1
~<1> > (2) S
Yy Zwm Yiay, Yiny =Yipy— X w(T)Y0)
j=kn+1

=X, — Zwm VX, X2 =X, - 3w, ()X,

G=kn+1

2.2.2.3 Main Results

Theorem 2.2.1 Suppose that Assumptions 1.5.1-1.5.3 hold. Let (¢1,¢2) € K
and E|X|* < oo. Then B,y is an asymptotically normal estimator of 3, that is,

n'2(Baa) — B) —* N(0,2%)

where ¥* = Z’2E{ef(1)u1u1T} with €11y = Y1) — E{Y1(y| X, W}.

Let K* be a subset of IC, consisting of all the elements (¢1, ¢2) satisfying the

following: There exists a constant 0 < C < oo such that

max_ |¢;(u,G)| < C for all s with G(s) <

j=1,2,u<s

and there exist constants 0 < L = L(s) < oo and 1 > 0 such that

max_ 051, G*) = 6,(u, G)] < Lsup|G*(u) — Glu)

71=1,2,u<s

for all distribution functions G* with sup,,, |G*(u) — G(u)| < 7.

Assumption 2.2.1 Assume that F(w) and G(w) are continuous. Let

/T; T 7 —1F(s)dG(s> < 00.

Theorem 2.2.2 Under the conditions of Theorem 2.2.1 and Assumption 2.2.1,
Bny and By2) have the same normal limit distribution with mean 3 and covari-

ance matrix 2.
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2.2.3 Estimation of the Asymptotic Variance

Subsection 2.2.2 gives asymptotic normal approximations to the estimators (3,
and 3,2 with asymptotic variance ¥*. In principle, X* is unknown and must
be estimated. The usual method is to replace X — E(X|T') by X; — I',(X;) and
define

Zn == :L i{X F }®2
=1
1 n
Vo) = Z[{X L (Xi)}*{ Vi) — X{ Brg) — gn(Tz’)}ﬂ
=1

as the estimators of X and E{e], uiuf }, respectively, where
=1

(Tz) = anj( (2) ang X Bn(Q)
j=1

Using the same techniques as in the proof of Theorem 2.2.2, one can show that
Y, and V(o) are consistent estimators of ¥ and E (e%(l)ulu?), respectively. Hence,

%, % En2) is a consistent estimator of X7 E{e} jyuiuf }.

2.2.4 A Numerical Example

To illustrate the behavior of our estimator (3,2), we present some small sam-
ple simulations to study the sample bias and mean squares error (MSE) of the

estimate (3,,(2). We consider the model given by
Y, = X8+ T + e, i=1,...,n for n = 30,50,

where X; are i.i.d. with two-dimensional uniform distribution U0, 100; 0, 100], 7T;
are i.i.d. drawn from U[0,1], and By = (2,1.75)7. The right-censored random
variables Z; are i.i.d. with exp(—0.008z2), the exponential distribution function
with freedom degree A = 0.008, and ¢; are i.i.d. with common N (0, 1) distribu-

tion. Three pairs of (¢1, ¢2) are considered:
o PL: ¢1(u,G) = u, ¢o(u,G) = u+ G(u)/G'(u);
o P2 ¢1(’LL, G) = U/{l o G(u)}a ¢2 = O;

o P3: ¢1(u,G) = do(u,G) = [* {1 — G(u)} ds.
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The results in Table 2.2 are based on 500 replications. The simulation study
shows that our estimation procedure works very well numerically in small sample
case. It is worthwhile to mention that, after a direct calculation using Remark
2.2.2, the variance of the estimator based on the first pair (¢q, ¢2) is the smallest
one in our context, while that based on the second pair (¢1, ¢2) is the largest one,

with which the simulation results also coincide.

Table 2.2: Simulation Results

n | MODELS | (=2 B =1.75
MSE MSE
P1 0.0166717 | 0.0170406
30 P2 0.0569963 | 0.0541931
P3 0.0191386 | 0.0180647
P1 0.0103607 | 0.0099157
50 P2 0.0277258 | 0.0268500
P3 0.0129026 | 0.0118281

2.2.5 Technical Details

Since Tryy, < Te < oo for Tg = inf{2;G(z) = 1} and P(Q > 7,|X, W) =
n~17) we have P(Q > 7,) = n U™ 1~ F(r,) > n " and 1 — G(r,) >

~(1=1)  These will be often used later.

n
The proof of Theorem 2.2.1. The proof of the fact that n'/?(3,1) — 3)
converges to N (0, ¥*) in distribution can be completed by slightly modifying the
proof of Theorem 3.1 of ( ). We therefore omit the details.

Before proving Theorem 2.2.2, we state the following two lemmas.

Lemma 2.2.1 If E|X|* < co and (¢1, ) € K, then for some given positive inte-
germ < 4, E(]Y;(I)W‘X,W) < C, B{eljyuiui }? < 0o and E(|Yi)|" 1,57 X, W
) < CP(Q; > T‘X,W) for any T € R'.

Lemma 2.2.2 (See Gu and Lai, 1990) Assume that Assumption 2.2.1 holds.

Then
I - Gu(z) — G(2)]
11m Su Ssu nlZ) — VA =

S(2)

()’

sup
ZSTF

a.s.,
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where S(z) =1 —G(2), o(z) = [*,S7%(s){1 — F(s)}'dG(s), and log, denotes
log log.
The proof of Theorem 2.2.2. We shall show that \/n(8,2) — fa1)) converges
to zero in probability. For the sake of simplicity of notation, we suppose k = 1
without loss of generality and denote h(t) = E(X,|T} = t) and u; = X; — h(T;)
fori=1,...,n.

Denote n(X7X)™ by A(n). By a direct calculation, V1 (Br(2) — Br(1)) can be

decomposed as follows:

kn . N
A2 XOF — T+ Amn 2 Y XPEE - 7))
=1 i=kn+1

It suffices to show that each of the above terms converges to zero in probability.
Since their proofs are the same, we only show this assertion for the first term,

which can be decomposed into

kn
_ 7 (1 (1
mn ™2 3BT (Vi) = Vi) @iz
nl? Z WYy — Vi) i<r)

- (1)
1/2ZX Y; ))I(Q1>Tn)
déf A(n)nil/z(Jnl + JnQ -+ Jng)

Lemma A.2 implies that A(n) converges to ¥~! in probability. Hence we only
need to prove that these three terms are of op(n'/?).

Obviously, Lemma 2.2.2 implies that

sup |Gn(t) — G(t)] = O(n"Y?log,n), a.s. (2.2.5)

t<Tn
Lemma A.1 implies that sup, |2(T;)] = O(c,). These arguments and a simple

calculation demonstrate that
[ Jua| < Csup [B(T, IZ{l + Zwm )} sup |Gu(t) - G|
S C’cnnl/z(log2 n)/% = o(n'/?).

Analogously, J,» is bounded by

’n

1) 1
Z wyj (T3)uy( Y(Q) zglg) ’I(QiSTn)

kn kn
>owlVie) = Vi@ >
=1 =1

= Jnor + Jnz (2.2.6)
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Taking V; = u; and a,; = wy;(7;) in Lemma A.3, we obtain
kn
3" wnk(T)ug = O(n~*1og"* n), (2.2.7)
k=1
which implies that
_ (1 1
Jnzo < COn~H* log1/4n; ’Y(E(%) - KE1§|
< CnY*log"*n = o(n'’?) a.s.
by the definitions of Y and Y( and (2.2.5). We now show that
Jn?l = Op(nl/Q). (228)

Since Y;g; depend only on the first k,—th samples, J,2; is the sum of the
independent random variables given the last n — k,, samples. From Chebyshev’s

inequality, for any given ¢ > 0,

1
1 (1) 1/2 2 (1) (1)y2
{ { (1)}I(Qi§7'n) >(n } = ”C2 ZEUEY() Yz(1))
k,
< G ButswGat) =GP,

which converges to zero as n tends to infinite. Thus J,2; is 0p(n1/ 2). A combina-
tion of the above arguments yields that n~'/2.J,, converges to zero in probability.
Next we show that n=/2.J,5 converges to zero in probability, which is equiv-
alent to showing that the following sum converges to zero in probability,
kn kn,
_ = 1 1 _ ~ 11 1
n Y AT (Vi) = Vi) @i + 172 Y @Y = Vi @ism)- (2:2.9)
' i=1

The first term of (2.2.9) is bounded by

n e {max |Y ZIQ»m + Z Yo |IQ1>T")}

which is bounded by Cn~'2¢,{nP(Q1 > 7,)+nE(|Yi1)l(@,>m))} and then op(1)
by Lemma 2.2.1.
The second term of (2.2.9) equals

kn

- (1) (1)

n 1/22“1 Yz(z) - )/i(l))I(Qi>7'n)
i=1

WSS () ~ Y g g 2210

=1 =1
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By Lemma 2.2.1, the first term of (2.2.10) is smaller than

k‘n kn
_ 1 _
w2 Yo @ em + 1Y Y g om),

J=1 Jj=1

which is further bounded by

kn
2N ugllgsny + CnPE{uYiw [ gysn) }

j=1
< Cn'PElui|lig,5r,)
= Cn'PE{jua|P(Q1 > 7| X1, T1)}
= O(n~Y*) = op(1). (2.2.11)

Similar to the proof of (2.2.11) and Lemma A.3, we can show that the second
term of (2.2.10) is op(1). We therefore complete the proof of Theorem 2.2.2.

2.3 Bootstrap Approximations

2.3.1 Introduction

The technique of bootstrap is a useful tool for the approximation to an unknown
probability distribution as well as its characteristics like moments and confidence
regions. In this section, we use the empirical distribution function to approx-
imate the underlying error distribution (for more details see subsection 2.3.2).
This classical bootstrap technique was introduced by Efron (for a review see
e.g. Efron and Tibshirani, 1993 and Davison and Hinkley, 1997). Note that for
a heteroscedastic error structure, a wild bootstrap procedure (see e.g.

( ) or ( )) would be more appropriate.

( ) considered using bootstrap approximations to the
estimators of the parameters in model (1.1.1) for the case where {X;, T;,i =
1,...,n} is a sequence of ii.d. random variables and g¢(-) is estimated by a
kernel smoother. The authors proved that their bootstrap approximations
are the same as the classic methods, but failed to explain the advantage of the
bootstrap method. We will construct bootstrap statistics of 3 and o2, study their
asymptotic normality when ¢; are i.i.d. and (X}, T;) are known design points, then
show that the bootstrap techniques provide a reliable method to approximate the
distributions of the estimates, and finally illustrate the method by a simulated

example.
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The effect of a smoothing parameter is discussed in a simulation study. Our
research shows that the estimators of the parametric part are quite robust against
the choice of the smoothing parameter. More details can be found in Subsection

2.3.3.
2.3.2 Bootstrap Approximations

In the partially linear model, the observable column n—vector é of residuals is

given by
E=Y — Gy, — X0s,

where G = {Ga(T1), .., Gn(T)}". Denote p, = 1/nY" &. Let F, be the
empirical distribution of £, centered at the mean, so Fn puts mass 1/n at &; — u,
and [ zdF,(z) = 0. Given Y, let €, ..., " be conditionally independent with the

common distribution F),, e* be the n—vector whose i—th component is €7, and
Y = XﬁLS + G"n + 5*7

where Y™ is generated from the data, B is regarded as a vector of parameters.
We denote the distribution of the disturbance terms £* by E,.

We now define the estimates of 3 and o2 by, respectively,

Gio= (XTRXIYTand % = S - X
i=1
where Y* = (Y;,...,Y")T with Y;* = Y;* — Yy wn ()Y fori=1,... n.

The bootstrap principle asserts that the distributions of \/n(5;¢ — frs) and
V(% — 62), which can be computed directly from the data, can approximate
the distributions of v/n(8rs — 3) and \/n(2 — 0?), respectively. As shown later,
this approximation works very well as n — oo. The main result of this section is

given in the following theorem.

Theorem 2.3.1 Suppose that Assumptions 1.3.1-1.3.3 hold. If maxj<i<p ||u|
< Cy < ¢ and Ee} < co. Then

P{Vn(Brs — Brs) <z} — P{v/n(Brs — B) < 1’}‘ — 0 (2.3.1)

Sup,

and

P62 —52) < x} = P{Vn(62 — 0®) < x}| = 0 (2.3.2)

where P* denotes the conditional probability given Y.

SUP,
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Recalling the decompositions for \/n(8s — 3) and \/n(62 —o?) in (5.1.3) and
(5.1.4) below, and applying these to\/n(Big — Brs) and /n(3* — &%), we can
calculate the tail probability value of each term explicitly. The proof is similar
to those given in Sections 5.1 and 5.2. We refer the details to

(1999).

We have now shown that the bootstrap method performs at least as good as
the normal approximation with the error rate of 0,(1). It is natural to expect that
the bootstrap method should perform better than this in practice. As a matter

of fact, our numerical results support this conclusion. Furthermore, we have the
following theoretical result. Let M;,(3) [M;n(0?)] and My, (3) [M},(6°)] be the

j—th moments of \/n(BLs — B8) [Vn(6;, — 0*)] and V/n(B1s = Brs) [Vn(G7" = 57)],

respectively.

Theorem 2.3.2 Assume that Assumptions 1.5.1-1.5.3 hold. Let Ee$ < oo and
maxi<i<p [|usl| < Co < co. Then M, (3)—M;n(8) = Op(n~"/*logn) and M}, (0*)—
M;,(0?) = Op(n~Y3logn) for j =1,2,3,4.

The proof of Theorem 2.3.2 follows similarly from that of Theorem 2.3.1. We
omit the details here.

Theorem 2.3.2 shows that the bootstrap distributions have much better ap-
proximations for the first four moments of 3} ¢ and 52*. The first four moments
are the most important quantities in characterizing distributions. In fact, Theo-

rems 2.3.1 and 2.1.1 can only obtain
M (B) — Mjn(3) = op(1) and M;,(0%) — Mjn(0?) = op(1)
for j =1,2,3,4.

2.3.3 Numerical Results

In this subsection we present a small simulation study to illustrate the finite

sample behaviors of the estimators. We investigate the model given by
Y, = X[ B+ g(T}) + ¢ (2.3.3)

where ¢(T;) = sin(7;), = (1,5)" and &; ~ Uniform(—0.3,0.3). The mutually
independent variables X; = (X M x®

T )

) and 7; are realizations of a Uniform(0, 1)
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Figure 2.3:  Plot of of the smoothed bootstrap density (dashed), the normal
approximation (dotted) and the smoothed true density (solid).

distributed random variable. We analyze (2.3.3) for the sample sizes of 30, 50, 100
and 300. For nonparametric fitting, we use a Nadaraya-Watson kernel weight
function with Epanechnikov kernel. We perform the smoothing with different
bandwidths using some grid search. Our simulations show that the results for
the parametric part are quite robust against the bandwidth chosen in the non-
parametric part. In the following we present only the simulation results for the
parameter (3. Those for 3; are similar.

We implement our small sample studies for the cases of sample sizes 30, 50,
100, 300. In Figure 2.3, we plot the smoothed densities of the estimated true
distribution of /n(Bs — 2)/ with 62 = 1/n >, (V; — X73,)%. Additionally
we depict the corresponding bootstrap distributions and the asymptotic normal
distributions, in which we estimate 02B~! by 52B~! with B = 1/ny 0, )Z)A(/ZT It
turns out that the bootstrap distribution and the asymptotic normal distribution

approximates the true ones very well even when the sample size of n is only 30.
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Chapter 3

ESTIMATION OF THE
NONPARAMETRIC
COMPONENT

3.1 Introduction

In this chapter, we will focus on deriving the asymptotic properties of an estimator
of the unknown function g(-) for the case of fixed design points. We consider
its consistency, weak convergence rate and asymptotic normality. We also derive
these results for a specific version of (1.2.3) with nonstochastic regressors and

heteroscedastic errors.

Previous work in a heteroscedastic setting has focused on the nonpara-
metric regression model (ie. [ = 0). ( ) pro-
posed an estimate of the variance function by using a kernel smoother, and then
proved that the estimate is uniformly consistent. ( ) consid-
ered the consistency of estimates of g(-). ( ) proposed
trigonometric series type estimators of g. They investigated asymptotic ap-
proximations of the integrated mean squared error and the partial integrated
mean squared error of g,.

Well-known applications in econometrics literature that can be put in the
form of (1.1.1) are the human capital earnings function ( ( )) and the
wage curve (Blanchflower and Oswald, 1994). In both cases, log-earnings of an
individual are related to personal characteristics (sex, marital status) and mea-
sures of a person’s human capital like schooling and labor market experience.

Economic theory suggests a non-linear relationship between log-earnings and la-

49
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bor market experience. The wage curve is obtained by including the local
unemployment rate as an additional regressor, with a possibly non-linear influ-
ence. ( ), for instance, estimated g(+) as a function of
the local unemployment rate using smoothing-splines and found a U-shaped
relationship.

The organization of this chapter is as follows. Weak and strong consistency
results are given in Section 3.2. The asymptotic normality of the nonparametric
estimator of g is given in Section 3.3. In Section 3.4, we illustrate our estimation

procedure by a small-scale Monte Carlo study and an empirical illustration.

3.2 Consistency Results

In order to establish some consistency results, we introduce the following assump-

tions.

Assumption 3.2.1 Assume that the following equations hold uniformly over

[0,1] and n > 1:
(a) S0 |wni(t)| < Cy for all t and some constant Ci;
(b) iy wni(t) =1 = O(p) for some pun > 0;
(¢) iy lwni (O ([t = Ti| > pn) = O(ptn);
(d) sup; <, |wni(t)] = O(v 1),
(e) Y0 wi.(t)Ee? = 02 /v, + o(1/vy,) for some of > 0.

where both ., and v, are positive sequences satisfying nhrgo i =0, nhrgo vn/n =0,

Y21ogn /vy, = 0, and lim sup p,v2 < co.

lim n
n—00 n—o00
Assumption 3.2.2 The weight functions wy; satisfy

max |wp;(s) — wni(t)] < Cafs — 1|

uniformly over n > 1 and s,t € [0, 1], where Cy is a bounded constant.

We now have the following result.
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Theorem 3.2.1 Assume that Assumptions 1.5.1 and 3.2.1 hold. Then at every

continuity point of the function g,

2

E{Ga(t) = g0} = 2 + O(u2) + o) + olu?).

n

Proof. Observe the following decomposition:
(1) =90 = Yo 005 + X OX] (3= o)
j=
+Zwm —g(t). (3.2.1)
Similar to Lemma A.1, we have
> n9(T;) —ol0) = O

at every continuity point of g.

Similar to the proof of Lemma A.2, we have for 1 < j < p,

S entt)rs] = [ entfuy + hy(T))
-~ O(l)+‘;wm~(t)uij
k
< 0)+6 3 low(0)] |3 i
= O(1)+ O(n*?lognrv; ) = O(1). (3.2.2)

On the other hand, it follows from the definition of 3;¢ that

E(Brs — B)* = E(Brs — EBrs)® + (Efrs — B)* = O(n™"), (3.2.3)

which is a direct calculation.

Similarly, we have

n n 2
B{Y wnlt)e) = S wki(t)Be? = ? T oY) (3.2.4)
=1 =1 n

using Assumptions 3.2.1 (e).
Therefore, (3.2.1)-(3.2.4) imply

2

E{Ga(t) = 9O} = 22 + O(u2) + o) + olu?). (3.25)

n
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Remark 3.2.1 FEquation (5.2.5) not only provides an optimum convergence rate,
but proposes a theoretical selection for the smoothing parameter involved in the
wetght functions wy; as well. For example, when considering w,(lli) or wfi-) defined
i Remark 1.3.1 as wy;, Vp = nhy, and p, = hi, under Assumptions 1.3.1, 3.2.1
and 3.2.2, we have

2

E{g.(t) —g(t)}* = nU;; + O +o(n tht) 4+ o(ht). (3.2.6)

This suggests that the theoretical selection of hy, is proportional to n=°. Details

about the practical selection of h,, are similar to those in Section 6.4.

Remark 3.2.2 [In the proof of (3.2.2), we can assume that for all 1 < j < p,
> wni(t)ui; = O(sy) (3.2.7)
i=1

uniformly over t € [0, 1], where s, — 0 as n — oco. Since the real sequences u;;
behave like i.i.d. random variables with mean zero, equation (3.2.7) is reasonable.
Actually, both Assumption 1.3.1 and equation (3.2.7) hold with probability one

when (X;,T;) are independent random designs.

We now establish the strong rate of convergence of g,.

Theorem 3.2.2 Assume that Assumptions 1.5.1, 1.3.2, 3.2.1 and 3.2.2 hold.
Let E|e1|* < co. Then

sup g, (t) — g(t)] = Op(l/gl/2 logl/2 n) + O(u,) + Op(nfl/z). (3.2.8)
t

Proof. It follows from Assumption 3.2.1 that

sup| 3wy ()9(T5) = 9(5)] = Ofy1a). (3.2.9)
=1
Similar to the proof of Lemma 5.1 of ( ), we have
sup‘z wnj(t)es| = Op(v; tlog'? n). (3.2.10)

The details are similar to those of Lemma A.3 below and have been given in
( ). Therefore, the proof of (3.2.8) follows from (3.2.1),
(3.2.2), (3.2.9), (3.2.10) and the fact 319 — 8 = Op(n~/?).
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Remark 3.2.3 Theorem 3.2.2 shows that the estimator of the nonparametric
component in (1.1.1) can achieve the optimum rate of convergence for the com-

pletely nonparametric regression.

Theorem 3.2.3 Assume that Assumptions 1.5.1, 3.2.1 and 3.2.2 hold. Then

v, Var{g.(t)} — o2 asn — .
Proof.
~ - 2 T (T -1%T =\
vo,Var{g.(t)} = I/nE{Zwm(t)ai} + v, {Z Wi (1) X7 (X X)X 5}
i=1
~2, B{} " wni(t)ei } - {Z wni() X (XTX) X e}
i=1
The first term converges to o2. The second term tends to zero, since
~ 2
{Z wni() X (XTX) X} = 0(n ).

Using Cauchy-Schwarz inequality, the third term is shown to tend to zero.

3.3 Asymptotic Normality

In the nonparametric regression model, ( ) proved asymptotic nor-
mality for independent ¢;’s under some mild conditions. In this section, we shall
consider the asymptotic normality of g,(t) under the Assumptions 1.3.1, 3.2.1
and 3.2.2.

Theorem 3.3.1 Assume that ey, es, ..., e, are independent random variables with

FEe; =0 and inf; Ee? > ¢, > 0 for some c,. There exists a function G(u) satisfy-

mg
/OOO uG(u)du < 0o (3.3.1)
such that
P(le;] > u) < G(u), fori=1,...,n and large enough u. (3.3.2)
If

max <i<n Wey(t)

> W?n‘(t)

— 0 as n — 0o, (3.3.3)
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then

gn(t) — Egn(t)

— —* N(0,1) asn — oco.
Var{g.(t)}

Remark 3.3.1 The conditions (3.3.1) and (5.5.2) guarantee sup; Ee? < oo.
The proof of Theorem 3.3.1. It follow from the proof of Theorem 3.2.3 that

Var{g.(t)} = Zwm U+O{Zwm l}.

Furthermore
Gn(t) — EGn(t) Zwm Zwm XT XTX) IXTz — Op(n‘1/2),

which yields
S wm(8) X (XTX) 1 XTE
Var{g,(t)}

= Op(n~Y20}/?) = op(1).

It follows that

Gn(t) — Egn(t) _ YL wnit)e o
Warlo)  Jomatm T gt

Wni (t)
n
i=1 w?, (t)oy

00, due to [;° vG(v)dv < oo. The proof of the theorem immediately follows from

(3.3.1)—(3.3.3) and Lemma 3.5.3 below.

where o}, = . Let a,; = a;,0;. Obviously, this means that sup, o; <

Remark 3.3.2 [fey,..., e, arei.i.d., then E|e||* < oo and the condition (3.5.5)
of Theorem 3.5.1 can yield the result of Theorem 5.5.1.

Remark 3.3.3 (a) Let w,; be either wfl or w deﬁned in Remark 1.5.1, v, =
nhy,, and p, = h2. Assume that the probabzlzty kernel function K satisfies: (i)
K has compact support; (ii) the first two derivatives of K are bounded on the

compact support of K. Then Theorem 5.5.1 implies that as n — oo,

Vb {Ga(t) = Ega(t)} —~ N(0,02).

This is the classical conclusion in nonparametric regression. See ( ).



3.4. SIMULATED AND REAL EXAMPLES 35

(b) If we replace the condition lim supy,u? < oo by ,}H{}o”n“i = 0 in Assump-

n—oo

tion 3.2.1, then as n — o0,

gn(t) — g(t)
Var{gn(t)}

Obuiously, the selection of bandwidth in the kernel regression case is not asymp-

—£ N(0,1).

totically optimal since the bandwidth satisfies nh_}rro10 nhS = 0. In general, asymp-
totically optimal estimate in the kernel regression case always has a nontrivial
bias. See (1990).

3.4 Simulated and Real Examples

In this section, we illustrate the finite-sample behavior of the estimator by ap-

plying it to real data and by performing a small simulation study.

Example 3.4.1 In the introduction, we mentioned the human capital earnings
function as a well-known econometric application that can be put into the form
of a partially linear model. It typically relates the logarithm of earnings to a set
of explanatory variables describing an individual’s skills, personal characteristics

and labour market conditions. Specifically, we estimate 3 and g(-) in the model
nY; = X756 + g(T,) + (3.4.1)

where X contains two dummy variables indicating that the level of secondary
schooling a person has completed, and T is a measure of labour market experience
(defined as the number of years spent in the labour market and approzimated by

subtracting (years of schooling + 6) from a person’s age).

Under certain assumptions, the estimate of # can be interpreted as the rate
of return from obtaining the respective level of secondary schooling. Regarding
g(T), human capital theory suggests a concave form: Rapid human capital
accumulation in the early stage of one’s labor market career is associated with
rising earnings that peak somewhere during midlife and decline thereafter as
hours worked and the incentive to invest in human capital decreases. To allow
for concavity, parametric specifications of the earnings-function typically include
T and T? in the model and obtain a positive estimate for the coefficient of T and

a negative estimate for the coefficient of T2
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For nonparametric fitting, we use a Nadaraya-Watson weight function with

quartic kernel
(15/16)(1 — u®)*I(|u| < 1)

and choose the bandwidth using cross-validation. The estimate of g(7) is

given in Figure 3.1. When a sample size is smaller than that used in most em-

Nonparametric part fit
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Figure 3.1: Relationship between log-earnings and labour-market experience

pirical investigations of the human capital earnings function, we obtain a non-
parametric estimate that nicely agrees with the concave relationship envisioned

by economic theory.

Remark 3.4.1 Figure 3.1 shows that the relation between predicted earnings and
the level of experience is nonlinear. This conclusion is the same as that reached
by using the classical parametric fitting. Empirical economics suggests using a

second-order polynomial to fit the relationship between the predicted earnings and
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the level experience. Our nonparametric approach provides a better fitting between

the two.

Remark 3.4.2 The above Example 5./.1 demonstrates that partially linear re-
gression s better than the classical linear regression for fitting some economic
data. Recently, ( ) considered another application of par-
tially linear regression to a hedonic price function. They estimated a benchmark
parametric model which passes several common specification tests before showing
that a partially linear model outperforms it significantly. Their research suggests
that the partially linear model provides more accurate mean predictions than the
benchmark parametric model. See also ( ), who discussed

some applications of partially linear regression to economic data.

Example 3.4.2 We also conduct a small simulation study to get further small-

sample properties of the estimator of g(-). We consider the model

Y; = X! B +sin(aT;) +sin(X] B+ T))&,  i=1,...,n =300
where {&} is sequence of i.i.d. standard normal errors, X; = (X1, X0)?, and
X=X =T, =1i/n. Weset 3= (1,0.75)" and perform 100 replications of
generating samples of size n = 300. Figure 3.2 presents the “true” curve g(T) =

sin(7T") (solid-line) and an average of the 100 estimates of g(-) (dashed-line).

The average estimate nicely captures the shape of g(-).

3.5 Appendix

In this section we state some useful lemmas.

Lemma 3.5.1 Suppose that Assumptions 5.2.1 and 3.2.2 hold and that g(-) and

h;(-) are continuous. Then

) Gy — (TG T = o).

1<i<n

Furthermore, suppose that g(-) and h;(-) are Lipschitz continuous of order 1.

Then

(i) max|G(T) - Z TG (T)| = O(cx)

1<i<n

for j=0,...,p, where Go(-) = g(-) and G,(-) = ly(-) forl=1,... p.
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Simulation comparison
!,-.':" .I.---.
7 \
N
k= 3
= / Y
g
g
IE kr"l- "
LR
i
g 3
= .
5|4
N . \
0 0.5 L
T

Figure 3.2: Estimates of the function ¢(7T').

Proof. The proofs are similar to Lemma A.1. We omit the details.
The following Lemma is a slightly modified version of Theorem 9.1.1 of

( ). We therefore do not give its proof.

Lemma 3.5.2 Let&,, k= 1,...,k,, beindependent random variables with mean
zero and finite variance o2, Assume that lim ) k:1072”“ = 1 and max;<j<y, 02, —

n—oo

0. Then S5, & —= N(0,1) if and only if
kn
Y B[] >6) — 0 foranyd>0 asn— oo.
k=1
Lemma 3.5.3 Let Vy,...,V, be independent random variables with EV; = 0 and

inf; EV? > C > 0 for some constant number C. There exists a function H(v)

satisfying [3° vH (v)dv < oo such that

P{|Vk| > v} < H(v) forlarge enoughv >0 andk=1,...,n. (3.5.1)
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Also assume that {a;,i =1,...,n,n > 1} is a sequence of real numbers satisfying

" a2, = 1. If maxj<i<p ]am] — 0, then for al, = ay;/o;(V),

> al, Vi —* N(0,1) asn — oo.
i=1

where {o;(V)} is the variance of {V;}.

Proof. Denote &, = al, Vi, k = 1,...,n. We have 3-}_; E¢2, = 1. Moreover, it
follows that

S B 6ul > O} = 3 BRIl > 0)
k=1

n 2

= 3 BV (|awVil > 0)}

k=1 “k

(inf o) " sup E{VZ T (ja,Vi| > 6)}.
k

IN

It follows from the condition (3.5.1) that
sup E{V2I(lamVi| > 0)} — 0 as n — oo.
k

Therefore Lemma 3.5.3 follows from Lemma 3.5.2.
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Chapter 4

ESTIMATION WITH
MEASUREMENT ERRORS

4.1 Linear Variables with Measurement Errors

4.1.1 Introduction and Motivation

In this section, we are interested in the estimation of the unknown parameter
# and the unknown function ¢(-) in model (1.1.1) when the covariates X; are

measured with errors. Instead of observing X;, we observe

where the measurement errors U; are i.i.d., independent of (Y}, X;,T;), with
mean zero and covariance matrix Y,,. We will assume that X, is known, taking
up the case that it is estimated in subsection 4.1.4. The measurement error
literature has been surveyed by ( ) and
(1995).

It is well known that in linear regression, by applying the so—called correction
for attenuation, inconsistency caused by measurement error can be overcome.

In our context, this suggests that we use the estimator

By = (WI'W —n2,,)"WTY. (4.1.2)
The estimator (4.1.2) can be derived in much the same way as the Severini-
Staniswalis estimator. For every (3, let g(7', #) maximize the weighted likelihood
ignoring measurement error, and then form an estimator of 3 via a negatively
penalized operation:

minimize 3 Y, - WIB - 5(T.8)}) - 570 (4.1.3)

=1

61
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The fact that g(t) = E(Y; — WIB|T = t) suggests
Gua(t) = X g ((Y; — W5, (41.4)
=1

as the estimator of g(t).

In some cases, it may be reasonable to assume that the model errors ¢; are
homoscedastic with common variance o2, In this event, since F{Y; — X3 —
g(T))}? = o* and E{Y; = W3 — g(T))}* = E{Y; = X[ 8 — g(T))}* + 5" ZuuB, we
define

n
52 =n"' S (Y — W B,)? - BrS B (4.1.5)
i=1
as the estimator of 0. The negative sign in the second term in (4.1.3) looks odd
until one remembers that the effect of measurement error is attenuation, i.e.,
to underestimate 3 in absolute value when it is scalar, and thus one must correct
for attenuation by making g larger, not by shrinking it further towards zero.

In this chapter, we analyze the estimate (4.1.2) and show that it is consistent,
asymptotically normally distributed with a variance different from (2.1.1). Just
as in the Severini-Staniswalis algorithm, a kernel weighting ordinary bandwidth
of order h ~ n~'/% may be used.

Subsection 4.1.2 is the statement of the main results for #, while the results
for g(-) are stated in Subsection 4.1.3. Subsection 4.1.4 states the corresponding
results for the measurement error variance Y, estimated. Subsection 4.1.5

gives a numerical illustration. Several remarks are given in Subsection 4.1.6. All

proofs are delayed until the last subsection.

4.1.2 Asymptotic Normality for the Parameters

Our two main results are concerned with the limit distributions of the estimates

of 3 and o2.
Theorem 4.1.1 Suppose that Assumptions 1.5.1-1.5.5 hold and that E(e* +
|U||4) < 00. Then B, is an asymptotically normal estimator, i.e.

n'2(B, — B) —* N(0, 27 T2,

where T' = E|(e — UTB){X — E(X|T)}]*? + E{(UUT — ¥,,)5}%% + E(UUT<?).
Note that T = E(e—UTB)?*S+E{(UUT —%,,)3}%?+3,,0? if ¢ is homoscedastic
and independent of (X, T).
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Theorem 4.1.2 Suppose that the conditions of Theorem j.1.1 hold. In addition,

we assume that the €’s are homoscedastic with variance o>

(X,T). Then

, and independent of

n'/2(?

—0%) —* N(0,09),
where 02 = E{(e — UT3)? — (873,06 + 0?)}%.

Remarks

e As described in the introduction, an important aspect of the results of
Severini and Staniswalis is that their methods lead to asymptotically normal
parameter estimates in kernel regression, even with the bandwidth of the
usual order h, ~ n~'/°. The same holds for our estimators in general. For
example, suppose that the design points T; satisfy that there exist constants

M; and M5 such that
My /n <min [T, = T, | < max |T; = Tiq| < My/n.
Then Assumptions 1.3.3(i)-(iii) are satisfied by a simple verification.

o It is relatively easy to estimate the covariance matrix of §3,. Let dim(X) be

the number of the components of X. A consistent estimate of 3 is just
{n —dim(X)}~ Z {W; = Gun(T)}*? — Euu(déf ).

In the general case, one can use (4.1.15) to construct a consistent sandwich-type
estimate of I', namely

n

n*lz{ (Vi = W B) + )

In the homoscedastic case, namely that ¢ is independent of (X, T, U) with
variance o2, and with U being normally distributed, a different formula can

be used. Let C(8) = E{(UUT — %,,)3}%2. Then a consistent estimate of T’

is

(32 + BT0ufB0) S0 4 0280 + C(B,).
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e In the classical functional model, instead of obtaining an estimate of >,
through replication, it is instead assumed that the ratio of ¥,, to o2 is
known. Without loss of generality, we set this ratio equal to the identity
matrix. The resulting analogue of the parametric estimators to the partially

linear model is to solve the following minimization problem:

2

i ?Z _ ﬁ?zTﬁ ]

—————| = min!,

i=1 |/ 1+ 8]

where || - || denotes the Euclidean norm. One can use the techniques of

this section to show that this estimator is consistent and asymptotically
normally distributed. The asymptotic variance of the estimate of 3 for the
case where ¢ is independent of (X,T") can be shown to be

E{(e —U"B)*T\IT}

y
1+ 18]

ST A8 +

where T'y = (1 + ||3]|))U + (¢ — UTB)S.

4.1.3 Asymptotic Results for the Nonparametric Part

Theorem 4.1.3 Suppose that Assumptions 1.5.1-1.3.3 hold and that wy;(t) are
Lipschitz continuous of order 1 for all i = 1,... . n. If E(s* + [|[U|*) < oo,
then for fixed T;, the asymptotic bias and asymptotic variance of Gnw(t) are
S wni()g(Ty) — g(t) and X0y w2.(1) (BT X0 + 02), respectively.

If (X;,T;) are random, then the bias and variance formulas are the usual ones

for nonparametric kernel regression.

4.1.4 Estimation of Error Variance

Although in some cases, the measurement error covariance matrix X,, has been
established by independent experiments, in others it is unknown and must be
estimated. The usual method of doing so is by partial replication, so that we
observe W;; = X; +Uy;, j=1,..m,.

We consider here only the usual case that m; < 2, and assume that a fraction
§ of the data has such replicates. Let W, be the sample mean of the replicates.
Then a consistent, unbiased method of moments estimate for ¥, is

S S (W — W)

?:1(7”1' - 1)

~
Z’MU
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The estimator changes only slightly to accommodate the replicates, becoming

-1

B = [Z (W= gun)}” = n(1=5/2)S.,
Xi{W Gun(T) }{Y; = Gyn(T1)} (4.1.6)

where G, ,(+) is the kernel regression of the W;’s on T;.
Using the techniques in Subsection 4.1.7, one can show that the limit distri-

bution of (4.1.6) is N(0, £7!'Ty2 ") with

Ly = (1-6)E [~ UTB){X — BT}
+5E (e - U)X — B(X|T)}]"
+(1 - 8)E ({UUT — (1 - §/2) S0} 0% + UUTE?)
+0B ([{UT" — (1 - 6/2)Su )81 + TU " &) . (4.1.7)

In (4.1.7), U refers to the mean of two U’s. In the case that ¢ is independent of
(X, T), the sum of the first two terms simplifies to {o? + 57(1 — §/2)S,.0}%.

Standard error estimates can also be derived. A consistent estimate of X is
& ) ®2 .
Y, ={n—dim(X)}"~ Z{ — Guwh T)} —(1-4/2)2u

Estimates of I'y are also easily developed. In the case where ¢ is homoscedastic
and normal error, the sum of first two terms can be estimated by (62 + (1 —
6/2)37S,u3,) 2. The sum of the last two terms is a deterministic function of
(8,0% Yuu), and these estimates can be simply substituted into the formula.

A general sandwich-type estimator is developed as follows.

K 1 ~

—_— ~ NTA Y Y
=WAY =W, 3 4 (W — Wr)®2 =%
Rz z( % 7 571) uuﬁn/mz 5(77% — 1) {2( 7l 12) uu}a

where k = n~' 3" m;!. Then a consistent estimate of I'y is the sample covari-

ance matrix of the R;’s.

4.1.5 Numerical Example

To illustrate the method, we consider data from the Framingham Heart Study.
We considered n = 1615 males with Y being their average blood pressure in a
fixed 2—year period, T being their age and W being the logarithm of the observed

cholesterol level, for which there are two replicates.
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Kernel fit: SBP on patient Age
oy
M e -
m —]
L ¥
2
0
'J'
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]
N T T T
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Figure 4.1:  Estimate of the function ¢(7") in the Framingham data ignoring
measurement error.
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We did two analyses. In the first, we used both cholesterol measurements,
so that in the notation of Subsection 4.1.4, § = 1. In this analysis, there is not a
great deal of measurement error. Thus, in our second analysis, which is given
for illustrative purposes, we used only the first cholesterol measurement, but
fixed the measurement error variance at the value obtained in the first analysis,
in which 6 = 0. For nonparametric fitting, we chose the bandwidth using cross-
validation to predict the response. Precisely we computed the squared error
using a geometric sequence of 191 bandwidths ranging in [1,20]. The optimal
bandwidth was selected to minimize the square error among these 191 candidates.
An analysis ignoring measurement error found some curvature in T, see Figure
4.1 for the estimate of g(T).

As mentioned below, we will consider four cases and use XploRe (Hérdle,
Klinke and Miiller, 1999) to calculate each case. Our results are as follows. We
first consider the case in which the measurement error is estimated, and both
cholesterol values are used to estimate X,,. The estimator of (3, ignoring
measurement error was 9.438, with an estimated standard error 0.187. When
we accounted for measurement error, the estimate increased to B = 12.540, and
the standard error increased to 0.195.

In the second analysis, we fixed the measurement error variance and used
only the first cholesterol value. The estimator of (3, ignoring measurement
error, was 10.744, with an estimated standard error 0.492. When we accounted
for measurement error, the estimate increased to B = 13.690, and the standard

error increased to 0.495.

4.1.6 Discussions

Our results have been phrased as if the X’s were fixed constants. If they are
random variables, the proofs can be simplified and the same results are obtained,
now with uw; = X; — E(X;|T).

The nonparametric regression estimator (4.1.4) is based on locally weighted
averages. In the random X context, the same results apply if (4.1.4) is replaced
by a locally linear kernel regression estimator.

If we ignore measurement error, the estimator of 3 is given by (1.2.2) but

with the unobserved X replaced by the observed W. This differs from the correc-
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tion for the attenuation estimator (4.1.2) by a simple factor which is the inverse
of the reliability matrix (Gleser, 1992). In other words, the estimator which ig-
nores measurement error is multiplied by the inverse of the reliability matrix to
produce a consistent estimator of 3. This same algorithm is widely employed in
parametric measurement error problems for generalized linear models, where it
is often known as an example of regression calibration (see Carroll, et al., 1995,
for discussion and references). The use of regression calibration in our semi-
parametric context thus appears to be promising when (1.1.1) is replaced by a
semiparametric generalized linear model.

We have treated the case in which the parametric part X of the model has
measurement error and the nonparametric part 7' is measured exactly. An in-
teresting problem is to interchange the roles of X and 7T, so that the parametric
part is measured exactly and the nonparametric part is measured with error, i.e.,
E(Y|X,T) =0T + g(X). ( ) have discussed the case where
the measurement error is normally distributed, and shown that the nonpara-
metric function g(+) can be estimated only at logarithmic rates, but not with rate

n~%/°. The next section will study this problem in detail.

4.1.7 Technical Details
We first point out two facts, which will be used in the proofs.

Lemma 4.1.1 Assume that Assumption 1.5.3 holds and that E(|e|* + [|[U||*) <

0o. Then

nz{zwm} = op(n™'),

i=1
n_l Z Uis {an](Tl)U]m} = 0P<n_1/2)7 (418>
i=1 j=1
for1 < s,m <p.

Its proof can be completed in the same way as Lemma 5.2.3 (5.2.7). We refer the

details to ( ).

Lemma 4.1.2 Assume that Assumptions 1.5.1-1.5.3 hold and that E(e*+||U||*)

< 00. Then the following equations

lim n 'W/W =¥ + %, (4.1.9)

n—oo
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lim n'W'Y = 23 (4.1.10)
lim n Y'Y = 6758 + o2 (4.1.11)

hold in probability.
Proof. Since W; = X; + U; and Wl = )Z + (NJZ», we have

(WIW)an = (XTX) g + (UTX) g + (XTU) g + (UTU) . (4.1.12)
It follows from the strong law of large numbers and Lemma A.2 that

n 'Y XU — 0 as. (4.1.13)

Observe that

-1 Z)?/jsﬁjm = nil [Z stUjm - Z{Z Wnk(j})st}U]m
=1 : =

> na(T) e {3 wna(T) i}

Similar to the proof of Lemma A.3, we can prove that sup,<,, | 25— Wk (T})Upm| =
op(1), which together with (4.1.13) and Assumptions 1.3.3 (ii) deduce that the
above each term tends to zero. For the same reason, n_l(ﬁTi)sm also converges
to zero.

We now prove

“HUTU),, — o? (4.1.14)

sm)

where o2 is the (s, m)—th element of ¥,,. Obviously

n (U"0)am [Xi: Ujm = ij{ijwnk(Tj)Uks}Um
- i{éwnk<TJ)Ukm}Ujs
+ i{iwnk Uks}{zwnk Ukm}]

Noting that n=!' Y7, U;sUj, — 02, equation (4.1.14) follows from Lemma A.3
and (4.1.8). Comblnmg (4.1.12), (4.1.14) with the arguments for 1/n(U"X),,, —
0 and 1/n(X*U),,, — 0, we complete the proof of (4.1.9).
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Next we prove (4.1.10). It is easy to see that

n n n 1/2 n 1/2
‘Z stgj‘ < (Z ngs 2%2) < c,n*’? (Z X]i) < Cney,
j=1 j=1 j=1

=1

1 & 1 &~
E(WT'&V)S—N)and EZUJ-S%—N)

=1

as n — o0o. Thus,

| P 1 &= L~ 7
— WTG s — — X's~ - US~
n( ) njz:l Jgj—i_njz:l js9i
1 » 1
= E X]s_zwnk(j})XkS gj—i_gZUjsgj — 0
j=1 k=1 j=1

as n — 0o. Combining the above arguments with (4.1.9), we complete the proof
(4.1.10). The proof of (4.1.11) can be completed by the similar arguments. The

details are omitted.
Proof of Theorem 4.1.1. Denote A, = (W'W — nX,,)/n. By Lemma 4.1.2

and direct calculations,

n'?(B,—0) = nPAN WY - WIWB 0¥, )
= 0 V2ATYXTG + XTE+ UTG + UTE
~XTUB - UTUB + nZuwf3).

By Lemmas A.2, A.3 and 4.1.1, we conclude that

nl/Q(Bn - ﬁ) = n_1/2A,:1 Z (UiEi — UZUZTﬁ + UiEi — UZUZTﬁ + Zuuﬁ) + Op(l)
i=1

n

© 237G, +op(1). (4.1.15)
i=1
Since
lim n' =0, lim n' D wul =% (4.1.16)
i=1 i=1

and E(c* + |U||*) < oo, it follows that the k—th element {¢™} of {¢in} (k =
1,...,p) satisfies that for any given ¢ > 0,

1& 2
- ZE{C’L(:) I(Ki(:)‘ > <n1/2>} — 0 as n — oo.
n 1
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This means that Lindeberg’s condition for the central limit theorem holds.

Moreover,

Cov(Gu) = Elui(es — UFBl'} + B{UUT — £,,)8}" + EQUUTE)
+wE(US BTUUT) + EUU BB U Y,

which and (4.1.16) imply that

lim n " zn: Cov(Cni) = E(e —UTB)?*S 4+ BE{(U - U" — £,,)8}*? + E(UUTE?).

n—00 4
1=1

Theorem 4.1.1 now follows.

Proof of Theorem 4.1.2. Denote
rY YW

S N - A
An = n [WTY WIW

A= [Fe FE

i |:(€+U6)T(€—|—Uﬂ) (€+U6)T(U+u)}
" U+uw)T(e+UB) (U+uw)(U+u)

According to the definition of 52, a direct calculation and Lemma 4.1.1 yield that

1

5
262 - 0?) =02 S+
n

J=1

(e—Up) (e - UB)
— n"2(BTS0uBn + 02) + op(1),

where Sy, = (1, =B1)(An — A,) (1, =81, San = (1,=01) (A, — A)(0, 87 = BI)",
San = (0,87 = B1)A(0, 87 = BT, Sin = (0,67 = BI) (A, — A)(1, ") and
Ssn = —(8 — Bn)T(ﬂ — Bn) It follows from Theorem 4.1.1 and Lemma 4.1.2 that
n'/2¥%_ S, — 0 in probability and

n

262 = 0%) = n V23 {(e = UTB)? = (B"SuuB+ 0?)} + 0p(1).

i=1
Theorem 4.1.2 now follows immediately.

Proof of Theorem 4.1.3. Since Bn is a consistent estimator of (3, its asymptotic
bias and variance equal the relative ones of 7 wy;(t)(Y; — W'3), which is

denoted by g (t). By simple calculations,
Eg,(t) —g(t) = D wau(t)g(T) — g(t),
i=1
E{g,(t) = Egp ()} = > wn()(8" 2w +0%).
i=1

Theorem 4.1.3 is immediately proved.
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4.2 Nonlinear Variables with Measurement Er-
rors

4.2.1 Introduction

The previous section concerns the case where X is measured with error and 7T is
measured exactly. In this section, we interchange the roles of X and T so that the
parametric part is measured exactly and the nonparametric part is measured with
error, i.e., B(Y|X,T) = XT3+ g(T) and W = T + U, where U is a measurement
erTor.

The following theorem shows that in the case of a large sample, there is no
cost due to the measurement error of 7" when the measurement error is ordinary
smooth or super smooth and X and 7' are independent. That is, the estimator
of § given in (4.2.4), under our assumptions, is equivalent to the estimator given
by (4.2.2) below when we suppose that 7T; are known. This phenomenon looks
unsurprising since the related work on the partially linear model suggests that a
rate of at least n=1/* is generally needed, and since ( ) proved
that the nonparametric function estimate can reach the rate of Op(n=*/(2k+2a+1))
{< o(n~"*)} in the case of ordinary smooth error. In the case of ordinary
smooth error, the proof of the theorem indicates that g(7") seldomly affects our
estimate B;“L for the case where X and 7" are independent.

( ) have treated the case where 8 = 0 and T is observed
with measurement error. They proposed a new class of kernel estimators using
deconvolution and found that optimal local and global rates of convergence of
these estimators depend heavily on the tail behavior of the characteristic function
of the error distribution; the smoother, the slower.

In model (1.1.1), we assume that ¢; are i.i.d. and that the covariates T} are

measured with errors, and we can only observe their surrogates W;, i.e.,
W, =1, + U, (4.2.1)

where the measurement errors U; are i.i.d., independent of (Y}, X;,T;), with
mean zero and covariance matrix >,,. We will assume that U has a known
distribution, which was proposed by ( ) to assure that the
model is identifiable. The model (1.1.1) with (4.2.1) can be seen as a mixture of

linear and nonlinear errors-in-variables models.
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Recalling the argument for (1.2.2), it can be obtained as follows. Let g, ()
and g, n(-) be the kernel regression estimators of E(Y|T") and E(X|T), respec-
tively. Then

ﬁLsz[zn;{Xi—awh N Z{X G THY: ~5,a(T)). (422)

Due to the disturbance of measurement error U and the fact that g, ,(7})
and g, ,(7;) are no longer statistics, the least squares form of (4.2.2) must be
modified. In the next subsection, we will redefine an estimator of 3. More
exactly, we have to find a new estimator of g(-) and then perform the regression
of Y and X on W. The asymptotic normality of the resulting estimator of

depends on the smoothness of the error distribution.

4.2.2 Construction of Estimators

As pointed out in the former subsection, our first objective is to estimate the
nonparametric function g(-) when 7' is observed with error. This can be overcome
by using the ideas of ( ). By using the deconvolution
technique, one can construct consistent nonparametric estimates of g(-) with some
convergence rate under appropriate assumptions. First, we briefly describe the
deconvolution method, which has been studied by ( ),
and ( ). Denote the densities of W and T by fi (-) and fr(-),

respectively. As pointed out in the literature, fr(-) can be estimated by

2 (5)

Fnl ~ nh, = B
with
1
Kalt) = 5 /R 1 exp(—ist)mds, (4.2.3)

where ¢ (-) is the Fourier transform of K(-), a kernel function and ¢y (+) is the
characteristic function of the error variable U. For a detailed discussion, see

( ). Denote

e VSR () o () /80

Now let us return to our goal. Replacing the g, (¢) in Section 1.2 by

(0 = S w0 - XT9),
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then the least squares estimator B;; of 3 can be explicitly expressed as
B = X'X)"'(X'Y). (4.2.4)

where Y denotes (Y3,...,Y,) with V; = V; — >y wri(W3)Y; and X denotes
(Yh . ,Yn) with X; = X, — >i—y whi(Wi)X;. The estimator B;‘; will be shown

to possess asymptotic normality under appropriate conditions.

4.2.3 Asymptotic Normality

Assumption 4.2.1 (i) The marginal density fr(-) of the unobserved covariate
T is bounded away from 0 on [0,1], and has a bounded k—th derivative, where
k is a positive integer. (ii) The characteristic function of the error distribution
ou(+) does not vanish. (iii) The distribution of the error U is ordinary smooth

OT super smooth.

The definitions of super smooth and ordinary smooth distributions were given

by ( ). We also state them here for easy reference.

1. Super smooth of order a: If the characteristic function of the error distri-

bution ¢y (+) satisfies
dolt|" exp(~[11°/C) < |6u(1)] < di[t™ exp(~[t]*/C) as t — 00, (4.2.5)
where dy,dy, o and ¢ are positive constants, and oy and o are constants.

2. Ordinary smooth of order a: If the characteristic function of the error

distribution ¢y () satisfies
dolt| ™ < |ou(t)] < dilt| ™™ as t — oo, (4.2.6)
for positive constants dg,dy and .

For example, standard normal and Cauchy distributions are super smooth with
a = 2 and a = 1 respectively. The gamma distribution of degree p and the
double exponential distribution are ordinary smooth with o = p and o = 2,
respectively. We should note that an error cannot be both ordinary smooth and

super smooth.
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Assumption 4.2.2 (i) The regression functions g(-) and h;(-) have continuous
kth derivatives on [0, 1].
(ii) The kernel K(-) is a k—th order kernel function, that is

— 00

o0 o 0 1 :O lzl,...,k’—l,
/ K(u)du = 1, /_OOuK(u)du{ 20 Ik
Assumption 4.2.2 (i) modifies Assumption 1.3.2 to meet the condition 1 of

(1993),

Our main result is concerned with the limit distribution of the estimate of (3

stated as follows.

Theorem 4.2.1 Suppose that Assumptions 1.5.1, 4.2.1 and /.2.2 hold and that
E(|e* + |U|?) < co. If either of the following conditions holds, then [ is an

asymptotically normal estimator, i.e., n'/2(3, — ) —~£ N(0,02571).

(i) The error distribution is super smooth. X and T are mutually independent.
oK (t) has a bounded support on |t| < M,. We take the bandwidth h, =
c(logn)=Y with ¢ > My(2/¢)Y?;

(i) The error distribution is ordinary smooth. We take h, = dn~1/(2k+2a+1)

with d > 0 and 2k > 2a + 1.
ty(t) —c, t*Te,(t) =0(1) ast — oo
for some constant ¢ # 0,

| ) + (D}t < o0, [ [ ne(t) Pt < oo,

4.2.4 Simulation Investigations

We conduct a moderate sample Monte-Carlo simulation to show the behavior
of the estimator 3;; A generalization of the model studied by

( ) is considered.
Y=X"8+g(T)+cand W =T +U with 8 = 0.75,

where X ~ N(0,1), T ~ N(0.5,0.25%), ¢ ~ N(0,0.0015%) and g(t) = t3 (1 —t)3.
Two kinds of error distributions are examined to study the effect of them on the
mean squared error (MSE) of the estimator Bf;: one is normal and the other is

double exponential.
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Table 4.1: MSE(x1073) of the estimator 37

Kernel | n =100 | n =500 | n = 1000 | n = 2000
MSE MSE MSE MSE

(4.2.7) | 3.095000 | 0.578765 | 0.280809 | 0.151008
(4.2.8) | 7.950000 | 1.486650 | 0.721303 | 0.387888
quartic | 15.52743 | 10.36125 | 8.274210 | 4.166037

1. (Double exponential error). U has a double exponential distribution:
fo(uw) = (V200) ™" exp(—=v2[ul /o0) for of = (3/7)Var(T).
Let K (-) be the Gaussian kernel
K(z) = (V2r) ! exp(~2?/2),

then

K, (x) = (vV2r) " exp(~a?/2){1 — 2%(952 -1} (4.2.7)

2. (Normal error). U ~ N(0,0.125%). Suppose the function K (-) has a Fourier
transform by ¢ (t) = (1 — t*)2. By (4.2.3),

K,(t) = 1 /01 cos(st)(1 — s?)? exp(

™

0.125%52
o2

)ds. (4.2.8)

For the above model, we use three different kernels: (4.2.7), (4.2.8) and
quartic kernel (15/16)(1—u?)?I(|u] < 1) (ignoring measurement error). Our
aim is to compare the results in the cases of considering measurement error and
ignoring measurement error. The results for different sample numbers are pre-
sented in NV = 2000 replications. The mean square errors (MSE) are calculated
based on 100, 500, 1000 and 2000 observations with three kinds of kernels. Table
4.1 gives the final detailed simulation results. The simulations reported show that
the behavior of MSE with double exponential error model is the best one, while
the behavior of MSE with quartic kernel is the worst one.

In the simulation procedure, we also fit the nonparametric part using

n

Gnt) =S wi () (Y — XT3y, (4.2.9)

=1
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where 3% is the resulting estimator given in (4.2.4).

An analysis ignoring measurement error (with quartic kernel) finds some
curvature in 7. See Figure 4.2 for the comparison of g(7') with its estimator
(4.2.9) using the different-size samples. Each curve represents the mean of 2000
realizations of these true curves and estimating curves. The solid lines stand for
true values and the dashed lines stand for the values of the resulting estimator
given by (4.2.9).

The bandwidth used in our simulation is selected using cross-validation to
predict the response. More precisely, we compute the average squared error us-
ing a geometric sequence of 41 bandwidths ranging in [0.1,0.5]. The optimal
bandwidth is selected to minimize the average squared error among 41 candi-
dates. The results reported here support our theoretical procedure, and illustrate
that our estimators for both the parametric and nonparametric parts work very

well numerically.
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Figure 4.2: Estimates of the function ¢(7').
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4.2.5 Technical Details

Lemma 4.2.1 provides bounds for h;(T;)—>"3_; w. (W) h;(T}) and g(T;)—>"5— wi
(W:)g(Ty). The proof is partly based upon the conclusion of

(1993).

Lemma 4.2.1 Suppose that Assumptions 1.53.1 and 4.2.2 hold. Then for all
1<i<pand1<4,j<p

E(g;g;hahs) = O(h*),

J

where
_ 1 Wi — Wy
o= — (T, K.
gz fT( Z{g g k)} hn n( hn )7
- 1 Wi — Wy
he = h(T;) — hy(T, K,
§ = gy ) T (R
Proof. Similar to the proof of Lemma 1 of ( ), we have

BGg k) = / [ Agtus) = glu) Holus) = gua) Hbulor) = h(ea)}

{hi(v3) — hl(v4)}><Kn(TW)Kn(UP,h;w;)Kn(Ulh—nvg)Kn(Ugi;M)

fr(ug) fr(us) fr(va) fr(va) [ dug du,

q=1
= O(hy)
by applying Assumption 4.2.2.
Proof of Theorem 4.2.1. We first outline the proof of the theorem. We

decompose v/n(, — () into three terms. Then we calculate the tail probability
value of each term. By the definition of B;;,

Vi -8) = VAKTR) [N K- Y XY w0} + 30 Kie

=1 7j=1 i=1
. 1 — 1 ... i}
L An) [7 > Xigi — ~ > X,{Z ww(WZ)EJ}
i=1 =1 4=l
+Ln > X, (4.2.10)

where A(n) = n'X"X and §; = g(T}) — X0, wi, (W;)g(Ty). Similar to Lemma
A.2 below, we can show that A(n) converges to £~! in probability.
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In view of (4.2.10), in order to prove Theorem 4.2.1, it suffices to show that

> Xigi = op(v/n), (4.2.11)

if{i why(Wies} = op(v/n), (4.2.12)

and
X;e; —* N(0,0%%). (4.2.13)
Obviously for all 1 < j <

Zj{ij?i = Zuijgi 3 i (TG — 3 D" wiy (Wi)ug; i, (4.2.14)
i=1 i=1 -1

i=1¢g=1

where hu(T;) = hj(T3) — Siey win (Wi (T).
Similar to the proof of Lemma A.3, we can prove that for 1 < j <p,

Pglfg%‘zw €k’ = op(n1*) (4.2.15)
lrg%);”; win (W) ukj’ = op(n /%), (4.2.16)

Equations (4.2.15) and (4.2.16) will be used repeatedly in the following proof.
Taking r = 3, Vi, = uy of uyj, a;; = w);(W;), p1 = 2/3, and po = 0 in Lemma A.3
below, we can prove both (4.2.15) and (4.2.16).

For the case where U is ordinary smooth error. Analogous to the proof of

Lemma A.3, we can prove that

Zuwgz = Op<n1/2). (4217)
=1
Similarly,
‘Z{anq qu} o= <n |§i]IZII<E%7LX‘Zw;q(M/i)qu‘ :OP(nl/Q)- (4'2-18)
i=1 ¢g=1 - = q=1

In view of (4.2.14), (4.2.17) and (4.2.18), in order to prove (4.2.11), it suffices to

show

which is equivalent to
i Zn:i{g — g(T)H I (T3) — hj(T) Yok (T))wn(T3) = 0p(n'/?). (4.2.19)

k=11=11i=1
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In order to prove (4.2.19), noting that

sup|fo(6) = fr(0) = or(1)

which is similar to Lemma 2 of ( ), it suffices to show
33 ST — (T HA(T) — by (T} 5
i=1 k=11=1 fr(W3)
R };W'“)Mh;%
- S = only

=1

which follows from for any given § > 0
= ~% 7 x 1 ~% 7 %
P(\; gihy| > ovn) < 52E(Zl gihy)’

= 52 {ZE "’;kh;kj 2 + 3 _Z E(~*~*h* hk])}

i=1 k=1,ksi

= W{O( nhy’) + O(n*hyf)} = o(1). (4.2.20)

The last step uses Lemma 4.2.1 and the fact that h,, = dn =1/ @R+2040) with d > 0
and 2k > 2a + 1.

Thus, equations (4.2.17), (4.2.18) and (4.2.20) imply (4.2.11).

Observe that

n n n

E{I;Ykgwiz(m)}& = Zl{kzlukngl(wk)}&
+ Z:{kzn: o (T ) (W) f s
_ z:[l: {anlquw;;q(wk)}w;i(wk)}gi.(zl.zm)

In order to prove (4.2.12), it suffices to show

il{; Wi) fei = op(n'/?) (4.2.22)
Z:{i: Wi (W) bei = 0p(n'/?) (4.2.23)
Zn:[zn:{zn:quw } (Wk)] _Op(nl/z) (4.2.24)

s
Il
—

k=

—
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Applying (4.2.15) and (4.2.16), equation (4.2.24) follows from

n
* .
< mglgg];wm(%)&

xmax| Y ugien, ()|
<n '35
= Op(n1/2>-
Similar to the proof of Lemma A.3 below, we finish the proof of (4.2.22).

Analogous to (4.2.19)-(4.2.20), in order to prove (4.2.23), it suffices to show
that

1 & & 1 Wi — Wi+,
n;{kz fT(I/[/i)K( khn ) kj}€i=0P(n1/2),
which follows from
i 2 B ey e (o i 5 = ot

Thus, the proof of (4.2.12) follows from (4.2.22)-(4.2.24.)

The proof of (4.2.13) follows from CLT and the fact that 1/nX”X — X holds
in probability as n — oo.
When U is a super smooth error. By checking the above proofs, we find that
the proof of (4.2.11) is required to be modified due to the fact that both (4.2.17)
and (4.2.20) are no longer true when U is a super smooth error.

Similar to (4.2.19)-(4.2.20), in order to prove (4.2.11), it suffices to show that

1 W; — Wi
s 3 0% = X0 ()
{kgl{gm) - 0} e ()

= op(Vn).
Let

-1 | Wi — W,

¥ =y 5~ ) g S ()
i = o 20T — T}t

Observe that

B(YX5w) = X B+ Y > B Xy,
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Since X; and (7T;,W;) are independent, we have for j = 1, T = (Ty,---,T,) and
W: (le"'awn)7
1

E(X; X0 T,W) = E{(X11 — X21)(X31 — Xo1)} 55 NCYS >
n =112k

W, —W, Wy, — W,
- l)Kn( khn 1)

1
FEX0 = Xa)? s K,

K

Wi — Wi (Wk_

hn hn
W, — W, ~
+E{(X11 — Xo1)(X31 — Xu1)} 2h2 > K= l)Kn(T)
n 1=1,l#i,k n n

i (M

+E{(X11 — Xo1)(Xo1 — X31)} th Z K( h
n 1=1,l#i.k

forall 1 <1,k <n.

Similar to the proof of Lemma 4.2.1, we can show that for all 1 < j <p
(Zx;;~j) = O(nh).
Finally, for any given n > 0

P{I3 Xiar

>V} < %E(ZXU@*)Q = O(h,) — 0

i=1
as n — oo, which implies (4.2.23) and therefore the proof of Theorem 4.2.1 is

completed.



Chapter 5

SOME RELATED THEORETIC
TOPICS

5.1 The Laws of the Iterated Logarithm

5.1.1 Introduction

The CLT states that the estimator given in (1.2.2) converges to normal distribu-
tion, but does not provide information about the fluctuations of this estimator
about the true value. The laws of iterative logarithm (LIL) complement
the CLT by describing the precise extremes of the fluctuations of the estimator
(1.2.2). This forms the key of this section. The following studies assert that the
extreme fluctuations of the estimators (1.2.2) and (1.2.4) are essentially the same
order of magnitude (2loglogn)'/? as classical LIL for the i.i.d. case.

The aim of this section is concerned with the case where ¢; are 1.i.d. and
(X;,T;) are fixed design points. Similar results for the random design case
can be found in ( ) and Gao (1995a, b). The version of the

LIL for the estimators is stated as follows:

Theorem 5.1.1 Suppose that Assumptions 1.5.1-1.5.5 hold. If E|e1|* < oo, then

1/2
s (5] s - 3= () as G
Furthermore, let b, = Cn=3/*(logn)~ in Assumption 1.3.5 and if Ec} < oo, then
n 1/2
hgl_ilip (m) |(/J\'?L — 0'2’ = (VG/T’€%>1/2, a.s. (512)

where Brsi, B; and % denote the j—th element of Brs, B and the (j,j)—th

element of X1 respectively.

83
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We outline the proof of the theorem. First we decompose /n(8rs — ) and
V1(G% — 0?) into three terms and five terms respectively. Then we calculate the

tail probability value of each term. We have, from the definitions of grg and

o2 that
\/ﬁ(ﬁLS_ﬁ) = \/_XTX {Zng ZX an] 5]+ZX51}
© (XTX)"Y(H, — Hy + H3); (5.1.3)
/A —o?) = %?T{}“ CXXTX) XYY — no?
1 2

1 e .
= %ETg — \/ﬁO’ — WSTX(XTX)_lee

1 ~ e e
— G F - X(XTX)"'X"G
+ﬁ {F = X( ) }

Qe 9
—— GTX(X™X) ' XTe + —GT
NG ( ) e+ NG 5

Vi{(ly — 0?) — Iy + I3 — 21, + 215}, (5.1.4)

where G = {g(T1) — Gu(T3), ..., 9(T3) — Gn(T1)}T and Gy () is given by (1.2.3).
In the following steps we prove that each element of H; and Hy converges
almost surely to zero, and \/nl; also converge almost surely to zero for ¢ =
2,3,4,5. The proof of the first half assertion will be finished in steps 1 and 2.
The proof of the second half assertion will be arranged in Subsection 5.1.3 after
we complete the proof of (5.1.1). Finally, we apply Corollary 5.2.3 of ( )

to complete the proof of the theorem.

5.1.2 Preliminary Processes

Step 1.
VnHy; = /n g = On*?log™?n) forj=1,...,p. (5.1.5)

Proof. Recalling the definition of h,;; given on the page 32, \/nH;; can be
decomposed into

Z uz]ﬁz + Z hm'jgz Z Z wnq qugz

=1 i=1 i=1q=1

By Lemma A.1,

< nmax|g;| max |h,;| = O(ne?).
i<n i<n

\gnl onii i
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Applying Abel’s inequality, and using (1.3.1) and Lemma A.1 below, we have for
all 1 <j <p,

Z Wi G = O(nl/2 logncy,)

and

‘Z Z wnq(T3)uq; i

i=1¢=1

< nmax|g| rglgf\;wnq(ﬂ)qu\
= O(n*3c,logn).
The above arguments imply that

VnHy; = O(n*?log™?n) forj=1,....p.

We complete the proof of (5.1.5).
Step 2.

ViHy; = o(n'?) for j=1,....p, as. (5.1.6)

Proof. Observe that

VnHy = {En: TpojWn; Tk)}gi

k=1

{i UpjWni Tk }51 + i{i hnkjwm Tk)}
1 k= i=1 k=1

- {Z{Z Uqjwnq(Tk) }Wm<Tk)] &

i=1 k=1 g¢=1

1 11>

[y

-.
I

We now handle these three terms separately. Applying Lemma A.3 with a;; =
Soh Ukjwni(Tx), 7 =2, Vi, = €x, 1/4 < p1 < 1/3 and p, = 1 — p;, we obtain that

n

Z{En: Ukjwm(Tk)}& =O0(n~®=Y21ogn), a.s. (5.1.7)

=1 k=1
Similarly, by Lemma A.1 and (A.3), we get

‘zn:{zn: h”kjwm(Tk)}Ei

i=1 k=1

n
< ‘ ,
< n I??f’; Wni(Th)Ei

= O(n*3cylogn), a.s. (5.1.8)

max ||

Analogously, applying (A.3) and Abel’s inequality we have

‘Z [Z {Z Uqjwng(Tk) }Wm<Tk)}

1=1 k=1 q=1

n n
< n Iilgi(‘zzl wni(Ty)ei r]?g:f‘; quwnq(Tk)’

= O(n'2log’n) =o(n'?), a.s. (5.1.9)

A combination of (5.1.7)—(5.1.9) yields (5.1.6).
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5.1.3 Appendix

In this subsection we complete the proof of the main result. At first, we state a

conclusion, Corollary 5.2.3 of ( ), which will play an elementary role in
our proof.
Conclusion S. Let Vi,...,V, be independent random variables with mean zero.

There exists a 09 > 0 such that

1
max E|V;|*7 < co and liminf — ZV&T Vi) > 0.

1<i<n n—0oo ’fll 1

Then

lim su 15|
p
n—eo /252 loglog s2
where S, = Y1, V; and s2 = Y1 EV2
Recalling that (5.1.3) and (5.1.5) and (5.1.6), in order to complete the proof
of (5.1.1), it suffices to prove

=1, a.s.,

Y 1/2
: (X' Xe); 2_jj\1
| —_— = 19)1/2 .S. 1.1
lgl—?;ip{inoglogn (%7) 7, as (5.1.10)

By a calculation, we get
(57" Xe); = Z o Wi + —= Z{qu K(Ty)}e,]
p
= > o* Wy + —= Z(Z o’ uqk>€q,

k=1 qlkl

Si-

where
zn:{hk anq Drgee for 1<k <p.
Analogous to the proof of (A.4), by Lemma A.1 we can prove for all 1 < k < p
Wi| < \/_’Z@{hk anq |
‘Z{anq “qk}‘

= O(logn) - o(log 'n)=o(1) a.s.

using the fact that {e;} is independent of (X;, T;).
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Denote W;; = Sy 0% u;.e;. Then EW;;=0fori=1,...,n, and

E|W;; [>T < C max E|g;|*™ < oo,
J 1<i<n

and
. 1 '
it LSS EWE = ool o) (1 fim D)o o)
= o?(o?,...,0P)2(c7, ..., 0P = 0?0% > 0.

It follows from Conclusion S that (5.1.10) holds. This completes the proof of
(5.1.1).

Next, we prove the second part of Theorem 5.1.1, i.e., (5.1.2). We show
that \/nl; = o(1) (i = 2,3,4,5) hold with probability one, and then deal with
Vil = o).

It follows from Lemma A.1 and (A.3) that

1<i<n

Vil < OV {lo(T) - X enTgm)] + |3 T

= o(l), a.s.
It follows from Lemma A.1 and (5.1.5) and (5.1.10) that

Vnly = o(1), +/nly=o0(1), a.s.

We now consider I5. We decompose I5 into three terms and then prove that each

term is o(n~'/?) with probability one. Precisely,

1.
Is = ;{Zgﬁz anz Tk Zzwnz Tk gzgk}
i=1

i=1 k#i

= I51 + Iso + I53.

From Lemma A.1, we know that

Vil = o(1) and v/nls < b,n /23 2 = O(log™?>n) = o(1) a.s. (5.1.11)

=1

Observe that

1
V|l < — wn(Ti)eien — Ll + I, € —— (T, + 1),
I \Zg W(Teier — 1 U+ )
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where I, = 377 320 wnj(ti)(e) — E€})(e; — Ee;). Similar arguments used in the
proof of Lemma A.3 imply that

J < max‘Zw D
In = &< nJ !

{Z |€//| + E|Ez|”}

+1rga<>;\zwm Ex) {;:1|s;'|+E|s;'|}
= o(1), a.s. (5.1.12)

It follows from Lemma A.4 and (5.1.12) that

Vnlss =o(1)  a.s. (5.1.13)

A combination of (5.1.11)—(5.1.13) leads that /nl; = o(1) a.s.

To this end, using Hartman-Winter theorem, we have

I o
imsup (| ———
n—»oop 2loglogn

1/2
) I, — 0% = (Vare)Y? a.s.

This completes the proof of Theorem 5.1.1.

5.2 The Berry-Esseen Bounds

5.2.1 Introduction and Results

It is of theoretical and practical interest to characterize the error of approximation

in the CLT. This section is concerned with establishing the Berry-Esseen bounds

for the estimators defined in (1.2.2) and (1.2.4). Our results focus only on the

case where ¢; are i.i.d. and (X;, T;) are fixed design points. Similar discussions for

the random design case can be found in ( ), ( ),
(1995) and Liang (1994D).

In order to state the main results of this section, we need the following addi-

tional assumption.

Assumption 5.2.1

max |wi]] < By < o0, (5.2.1)
lim sup n'/?|vj, — o] < o0 (5.2.2)

for all 1 < j, k <p, where 1/n S0 uul = (vjp)i1<jr<p and X = (0jx)1<jk<p-
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Let Brs; and 3; denote the j—th components of B¢ and 3 respectively.

Theorem 5.2.1 Assume that Assumptions 5.2.1 and 1.3.1-1.3.3 hold. Let E|&,|* <
o0o. Then for all 1 < 7 < p and large enough n

sup | P{V/n(Brs; — B;)/(0%07)'? < 2} — 0(x)| = Om'),  (5.23)
Furthermore, for ¢, = Cn~'? we have for all 1 < j < p and large enough n

sup |[P{Vn(Bs; — 5))/(o%0")2 < 2} = ()| = O™1%). (5.2.4)

Theorem 5.2.2 Suppose that Assumptions 5.2.1 and 1.5.1-1.5.3 hold and that
Eeb < co. Let b, = Cn~/3 in Assumption 1.3.3. Then

P{/n(5> — o) /\Jvare? < z} — ®(z)| = O(n~1/?). (5.2.5)

sup
€T

Remark 5.2.1 This section mainly establishes the Berry-Esseen bounds for the
2

LS estimator Brs and the error estimate 0. In order to ensure that the two

estimators can achieve the optimal Berry-Esseen bound n="?, we assume that the
nonparametric weight functions wy; satisfy Assumption 1.5.3 with ¢, = cn™ /2.
The restriction of ¢, is equivalent to selecting h, = cn="/* in the kernel regression
case since Efrs — 3 = O(ht) +O(h3/*n=1%) under Assumptions 1.5.2 and 1.5.3.
See also Theorem 2 of ( ). As mentioned above, the n~'/° rate
for the bandwidth is required for establishing that the LS estimate Brs is \/n-
consistent. For this rate of bandwidth, the Berry-Esseen bounds are only of order

Vnht = n=31° In order to establish the optimal Berry-Esseen rate n='/?, the

faster n=Y/* rate for the bandwidth is required. This is reasonable.

5.2.2 Basic Facts

Lemma 5.2.1 (i) Let W,, = U, + V,, be a sequence of random variables and let
F, and G, be the distributions of W,, and U,, respectively. Assume that

|G, —®|| < Cn~ Y2 and P{|V,| > Cn~V?} <Cn~/2

Then || F, — ®|| < Cn~'2, where ||F, — ®|| = sup, |F,,(z) — ®(x)|.

(ii) Let W,, = AU, + B, where A, and B,, are real number sequences such
that |A, — 1| < Cn™Y2 and |B,| < Cn~'2. Assume that |G, — ®|| < Cn~1/2,
Then ||F, — ®|| < Cn~1/2.
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Proof. See Lemma 1 of ( ).

Lemma 5.2.2 Let Vy,---,V, be i.i.d. random variables. Let Z,; be the functions
of Vi and Z,;i, be the symmetric functions of V; and Vj,. Assume that EZ,; = 0 for
i=1,--n, and E(Z,jx|V;) =0 for 1 < j # k < n. Furthermore |C,| < Cn=%/2,

1 n
=—Y FEZ},<C>0, max E|Z,| <C <o,
n — 1<i<n

E|Zy|? < &2+ d2y, and Y d, < Cn.

Putting
n Z Zm + C Z ank
n i=1 1<i<k<n
Then
sup |P{L, <z} — ®(z)| < Cn~1/?
Proof. See Theorem 2 of ( ).

Lemma 5.2.3 Assume that Assumption 1.5.5 holds. Let E® < co. Then

{g&)@‘ank )é‘k’ > Cyn =14 10gn} < Cn 2. (5.2.6)
{‘ZZwm ejeil > Ci(n/ logn)l/Q} < Cn~Y2 (5.2.7)
1=1 j#i

> Cin~ Y logn} < Cn7'2. (5.2.8)

P (S ()
P{‘Z Z (Z Wni (Tk)wnj (Tk)>€j€i

i=1 j#i k=1

> C1(n/log n)l/Q} < Cn~Y2(5.2.9)

Proof. a) Firstly, let ¢’ = €jl(j,j<niray and €] = &; —¢; for j = 1,---,n. By
Assumption 1.3.3(ii) and Ee8 < oo,

P{max|Y wn(T)(e] — Ee))

> Cmfl/zl}

IA

P{>bu(le]] + Ele)]) > Cin 4}
j=1

IN

Cban'* (3" Ele]]) < Cb,Eef
j=1

< Cn7Y2 (5.2.10)
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By Bernstein’s inequality and Assumption 1.3.3(i)(ii), we have

{1@&}%‘2 W (T — Egg-)‘ > Cyn 14 10gn}
< ZP{’anJ(T)(e — Ee))| > Cln_1/4logn}
=1 =1
" Cin~?1og’ n
<2 —
= Z;QXP{ 2y w2, (T) E<? + 2Chb, logn}
< 2nexp{—C?Clogn} < Cn~1/? (5.2.11)

for large enough C). Combining (5.2.10) with (5.2.11), we finish the proof of
(5.2.6).
b) Secondly, let

zj:é: — E€))(e; — Ee)).

Note that
n n
" //
‘ZZwm L)EEj — [n’ < gﬁﬁ‘z:wm ‘ Z 7] + Ele]])
i=1 j#i - - =1 j=1
/ 1 Z
+1rg]a<>;\zwm — =] X1+ B
. (5.2.12)
By the same reason as (5.2.11),
{gj{};’Zwm () — Eeh)| > Cyn~ V4 logn} < Cn~Y2, (5.2.13)

Next, by Fe$ < 0o we have

PI ()] + B > Cini(logm) ™2} < O (log n)*? Y Bl

i=1 i=1

S Cn1/4(log n)3/2E‘81|I(|51|2n1/4)
< C-n7 V2 (5.2.14)
Thus, by (5.2.6) and (5.2.14) we get
P{J, > Cy(n/logn)"/?} < Cn~1/2. (5.2.15)

On the other hand, by the similar way as for (5.2.11)

= O(n Y4(logn)~?) a.s. (5.2.16)

max ’Z wnj(T;)(gj — E¢})
<nlfH
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In view of (5.2.12)-(5.2.15), in order to prove (5.2.7), it suffices to show that for

some suitable C;
P{|I,| > Cy(n/logn)'/?} < Cn~1/? (5.2.17)

whose proof is similar to that of Lemma A .4.
¢) The proofs of (5.2.8) and (5.2.9) can be completed by the similar reason
as (5.2.6) and (5.2.7).

Lemma 5.2.4 Assume that Assumptions 1.5.1-1.5.5 and that Ee% < oo hold.

Let (ay,---,a,); denote the j-th element of (ay,---,a,). Then for all1 < j<p
P{|(XTe),| > en®*(logn)~V*} < Cn~V/2, (5.2.18)
P{|(X"G);| > ecn®*(logn)~"*} < Cn~ 12, (5.2.19)

Proof. a) Firstly, observe that

n n
T = g+ Y e = YD wu T o
=1 =1 =1 k=1

Using max<;<, |u;;| < C and Assumption 1.3.1, and applying Bernstein’s

inequality for all 1 < j < p,
P{[Yuijle; — Eel)
i=1
—Cn3/*(logn)~1/? }

<2e
- Xp{ i1 zQJVaI'<5i) +nt/2(logn) =4 maxi <i<p |uij]

> Cn**(log n)’l/‘l}

< Cn~Y2, (5.2.20)

Similarly by Assumption 1.3.1,

{‘Z u; (el — Eel)

> C’n3/4(logn)’l/4}

< 2n7*?(logn)'/? > u E(e] — Eel)?

=1

< Cn *(logn)'/? Y uiEe} < Cn~Y2. (5.2.21)

i=1
Thus, by (5.2.20) and (5.2.21) we get
P{‘Z uijei| > Cn®*(log n)_1/4} < Cn~'2 (5.2.22)
i=1
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Analogous to the proof of (5.2.22), using Assumption 1.3.3(i) and max;<;<,, [Ju;|| <
C,

P{‘zn:zn:w T )ugje;

i=1 k=1

> Cn®*(log n)’1/4} < Cn~ Y2, (5.2.23)

On the other hand, applying Lemma A.3 we have

P{ ‘X:L; h/m'jgi

> Cn?/*(log n)_1/4} < Cn~ Y2, (5.2.24)

Therefore, by (5.2.22)-(5.2.24) we complete the proof of (5.2.18).
b) Secondly, observe that

XTC); = 3 {oy = D wnlBm HolT) ~ 3u(T)
S VLIRS S TR o) oRMCOTA TS

=1 k=1 i=1

_zn:{z:wnk( T; m]} Xi:{z::wnk uw}

N Ty (5.2.25)
Applying Abel’s inequality and using Assumption 1.3.1 and Lemma A.1,
Jij = Olane,) for k=1,3 and Jy; = O(nc2). (5.2.26)
Similar to the proof of (5.2.23), for k = 5,6
P{|Jy;]| > Cn®/*(logn)~Y*} < Cn~ Y2, (5.2.27)
On the other hand, applying Lemma A.3 we have
P{|Jy;| > Cn®*(logn)~/*} < Cn~V2 (5.2.28)

Combining (5.2.25)-(5.2.28), we complete the proof of (5.2.19).

5.2.3 Technical Details

The proof of Theorem 5.2.1
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Here we prove only the case of 7 = 1, and the others follow by the same

reason. Denote n‘liTi = (ij)lgj,kgp, n(iTi)_l = (ajk)léj,képa
Poi = Z a”{xij -y wnk(Ti)iﬂm} = Za T Zij,
Qi = ank )Pk (5.2.29)

Then, by Assumption 1.3.1 we have

02 (B — B1) = 072 uigs + 1012 puidie (5.2.30)

i=1 =1

Noting that Assumptions 1.3.1, 1.3.2 and 1.3.3(i) and

max |z, < max |hy(Ti)] + max |uy| < € < oo,

we obtain for large enough n

max Ipni| < C and max lgni| < C.

Let Z,; = qniei, then EZ,; = 0, and

Di:n_leZ =n" O'2qu20>0

=1

max E|Zm| = max |qm| *Ele |’ < C < 0.
1<i<n

It follows from (5.2.39) that

D2 =n'o? Z q.; > C >0 for large enough n
i=1

Therefore, by Lemma 5.2.2 we obtain

{n V2D 2oy < w} = B(w)| < O (5.2.31)
=1

In the following, we need to determine the order of D2.
Let @/ = (a’,---,a/P)T and 07 = (¢71,---,0/P)T for 1 < j < p. By Lemma
A.2(i) we get

n
lim n~ 1me = lim n™Y( TZ~52T a')

n—oo n—oo

= (@Y% (01) = gl (5.2.32)
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We now prove

i{z wni(Tj)pnj}2 =0(n'?). (5.2.33)
Denote
= zn:wm(Tk)wm(Ts), 1<k#s<n, mg= En:mkspnk-

=1

By Abel’s inequality, we obtain

n
‘me'mi
i=1

- max |my/, (5.2.34)

1<i<n

k
<6 max [ p

1<k<n =1

max wnk(T ) (5.2.35)

n
‘ms‘ = ’anzmzs < 6 max ‘me :
i=1 1

1<k<nl & 1<k,s
and
1?1?%‘2:1{2(*}”8 i }usj = O(ay). (5.2.36)
Also, by Assumption 1.3.1 and Lemma A.1, we have
Pk
D 9 RV o
P kK n )
+ max [30[3° D S wns (L) g (1) = hy(T3)} |

= O(an) + O(ncy,). (5.2.37)

Thus, by Assumption 1.3.3, (5.2.32) and (5.2.34)-(5.2.37), we obtain

i[é{i i (T )i ( )}pnk}pm = 0(a2b,) + O(nb,c?)

s=1 k
and
n n 9 n n
Z{ Z Tk pnk} - Z Z W Tlc pnk + Z Z Wi Tk wm(Ts)pnkpns
=1 k=1 s=1k=1 i=1 k#s
= O(nby) + O(a2b,) + O(n?b,c?)
= 0(n*?c,). (5.2.38)

On the other hand, by (5.2.32), (5.2.38) and the definition of ¢,;, we obtain

lim n~! qu lim n'y pl=o" > 0. (5.2.39)

n—o00 4
=1 =1
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Furthermore, by (5.2.29) and Lemma A.2(ii) we have for all (j, k)
|ajr — o] <Cn~'?  and ’n_l > — 011‘ < Cn~V?
i=1

Also, by (5.2.35), (5.2.38), and Assumption 1.3.3(ii) and using the similar reason
as (5.2.34),

‘n_l zn:q?“ — 011‘ < ‘n_l me — O'H‘ +nt Z{Z Wi (Ty, pnk}
i=1

=1 k=1

+12n71 lrél%xn’;pm : max’z wni(Tx) pnk‘

< Cn'?&. (5.2.40)

By the similar reason as in the proof of (5.2.34), using (5.2.37), Lemma A.1, and

Assumption 1.3.3, we obtain

max |gZ| < Cnc?. (5.2.41)

\Z Pnili

< 6 max ’me

Therefore, by (5.2.30), (5.2.31), (5.2.40) and (5.2.41), and using the conditions of

Theorem 5.2.1, we have

sup |[P{v/n (s — B1)/(0*0™)/? < 2} — @(a)| = O(n*/*c}).

Thus, we complete the proof of (5.2.3). The proof of (5.2.4) follows similarly.
The proof of Theorem 5.2.2

In view of Lemmas 5.2.1 and 5.2.2 and the expression given in (5.1.4), in order
to prove Theorem 5.2.2, we only need to prove P{\/n|l.| > Cn~'/?} < Cn~1/2
for £ = 2,3,4,5 and large enough C' > 0, which are arranged in the following

lemmas.
Lemma 5.2.5 Assume that Assumptions 1.5.1-1.5.3 hold. Let E® < co. Then
P{|v/nl,| > Cn~Y?} < Cn~Y/?

Proof. According to the definition of I, it suffices to show that

G

vn

1
P {WETU(UTU)_lUTd > Cln—1/2} <
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for some constants C; > pFe? and Cy > 0. Let {p;;} denote the (¢,7) element of
the matrix U(UTU)~'UT. We now have

P {aTU(UTU)_lUTe > Cl} = {ans + Zpre g; > Cl}

i=1 j#i

= {me — Eé? +ZZpW€5]>Cl pEef}

i=1 j7#i

1
S P{ 62) > 5(01 —pES%)}
i—1
" 1
P{ > piEic| > ;G —PEsf)}
i=1 ji
4 Iy + Is.
Using (5.2.1) we have
’ p C
S P B
[21 {Zp“ } S giag)izp”C%E(Ez EE@) S na

where Cy = %(C’l — pEe?) and C3 > 0 is a constant.
Similarly, we can estimate show that Iy < C/y/n.

Lemma 5.2.6 Assume that Assumptions 1.3.1 and 1.3.3 hold. Let Eef < oo.
Then P{|\/nls| > Cn=1/?} < Cn~Y2.

Proof. In view of Lemma A.1 and the definition of a, in order to prove Lemma

5.2.6, it suffices to show that

P {z; (;; Wnk(ﬂ)ak>2 > cl} < %

for some positive constant C; and C5. Observe that
n n 2 n
3 (z wnmak) > (
i=1 \k=1
+ Z > Wk (T)Wo(T;)ere, + Eet Z Z W2 (T;

1 lI#k k=11i=1

w2 m)) (ch — BEd)

Thus can finish the proof of Lemma 5.2.6 by using the similar reason as the proofs

of Lemmas 5.2.3 and 5.2.5
Lemma 5.2.7 Assume that Assumptions 1.3.1-1.5.3 hold. Let Ee® < co. Then

P{|v/nl| > Cn~'?} < Cn~Y2, (5.2.42)
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Proof. The proof is similar to that of Lemma 5.2.5. We omit the details.
We now handle I5. Observe the following decomposition
1 n _ n n n o
E{Z gici — Y wue(Ti)er — > ani(Tk>5i5k} C Loy + Iy + Iss. (5.2.43)
i=1 =1 i=1 k#i

For ¢ = 1/4, we have

P{Vn|ls| > Cn™ 2} < P{ji@aﬂ(mnq) >C}+ P{’i§i8i1(|5i>nq) > C}
< Rin + Ron.

It follows from Bernstein inequality and Lemma A.1 that

Ry, < Qexp{—C’nl/Q’q} < Cn~1/?
and

Ry, < Ci 19il - Eleil(je;>n9)]
< Clrga<x |gl\;E5 n~% < Cn™!

Combining the conclusions for Ry, and R,,, we obtain

P{\/n|I5| > Cn~Y?} < Cn~Y2, (5.2.44)

By Assumptions 1.3.3 (ii) (iii), we have for any constant C' > cyEe?

P{\/ﬁ|f5g| >C'n_1/2} = {’Zwm (62 — Ee?) —I—Zwm

j

< {]Zwm (7 — Ee})| > C — CoEel}

< {Z woni(T) (& — B

< Cr max w(T5) ani(Ti)E(€f — Eej)?

< CynV2 (5.2.45)

where C satisfies max,>1 30 ; wni(T;) < Co, C) = (C — CyEe?)™2 and Cy is a
positive constant.
Calculate the tail probability of Is3.
P{V/nl|lzs| > Cn7'?} < p{\zzwnk Deier — I > C} + P{|L,| > C}

i=1 k#1

o Jin + Jon,
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where I, = > 320, wnj(Th) (e — E€))(e; — Eej) and &} = &;1(|c,|<na)-

By a direct calculation, we have

Jln S P { max ‘Z wn] 57, Z ’g”| + E|51|H) > C}
s1snhoy

=1

+P { max |3 wn (T1)(e] — Ee))|(Y [e]] + Elef]) > C}
=1 =1

def
= Jin1 + Jina2.

Similar to the proof of (5.2.11), we have

Ppmas S ens(T0iel — Bep)| > On )
< 23 P{|S w0 — Bep| > )
=1 =1
n ~1/2
= 2]; exp(— i wijsze% vach,)
< 2nexp(—Cn~Y2p;1) < Cn~ V2 (5.2.46)
On the other hand, applying Chebyshev’s inequality,
P{zn: lel| + E|ef| > Cn1/4} < Cn_l/"‘EXn: =4
i=1 i=1
< _1/4ZE86 4 < OnTY? (5.2.47)
Hence, (5.2.46) and (5.2.47) imply
Jing < Cn~1/2, (5.2.48)
Similar to (5.2.46) and (5.2.47) we have
Jinp < Cn~Y2. (5.2.49)
Combining (5.2.48) with (5.2.49), we obtain
Jin < Cn~Y2, (5.2.50)

Thus, from (5.2.50) and Lemma A.4, we get

P{\/n|Iss| > Cn~ Y} < Cn~ V2, (5.2.51)
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It follows from (5.2.43), (5.2.44), (5.2.45) and (5.2.51) that
P{\/n|I;| > Cn~Y?} < Cn~Y2, (5.2.52)

The proof of Theorem 5.2.2. From Lemmas 5.2.5, 5.2.6, 5.2.7 and (5.2.52),

n
P o |=L+ I — 2L + 25| > Cn™? ) < Cn Y2, 5.2.53
{ Var(e%)‘ 2+ 13 4+ 5‘ n n ( )

Let Z,; = €2 — 0% and Z,;; = 0. Then D2 = 1/nY0 | EZ%, = Var(?) and
E|Z.|® < E|e? — 0%® < 0o, which and Lemma 5.2.2 imply that

we have

sup |P{v/nD; (I, — 0°) < 2} — ®(z)| < Cn~ Y2, (5.2.54)

Applying Lemma 5.2.1, (5.2.53) and (5.2.54), we complete the proof of Theorem
5.2.2.

5.3 Asymptotically Efficient Estimation

5.3.1 Motivation

Recently, ( ) constructed asymptotically efficient estimators for
[ for the case where the error density is known. The problem was extended later
to the case of unknown error distribution by ( ) and ( ).

( ), under the assumption that X and 7' are mutually
independent, investigated the second order risk, and calculated it exactly up
to constant. Their further study shows that the spline estimator ( ( )
and ( )) is not a second order minimax estimator.

In this section, we shall consider the case where ¢; are i.i.d. and (X;,T;) are
random design points, and construct asymptotically efficient estimators in the
sense of normality, i.e., their asymptotically variance reaches an optimum value.

Our construction approach is essentially based on the following fact (Cheng,
Chen, Chen and Wu 1985, p256): Let Wy,..., W, be i.i.d. random variables
drawn from the density function s(w, ). Set

Z(w,0) = %log s(w,8) and B,(0) = %Z
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If 0, is a n*(a > 1/4)-order consistent estimator of 0, then under appropriate
reqularity conditions,

1 n

n i=1

is an asymptotically efficient estimator of 6. See also ( ) and

(1956).

5.3.2 Construction of Asymptotically Efficient Estimators

The efficiency criterion we shall be using in this section is a least dispersed
regular estimator as elaborated in ( ). See
(1993).

In order to derive asymptotically efficient estimators of 3, we assume
that there exist a root-n rate estimator 3 of 2 and a n~'/3log n-nonparametric
estimator g(t) of g(t). See, for example, the estimators given in (1.2.2) and (1.2.3).
We assume that the random error € has a density function ¢(-) which has finite

Fisher information

12
I:/('O—(y)dy< 0.
¥

The covariance of the asymptotically efficient estimator of 3 is L1171,
See ( ) and ( ). The common root-n rate
estimator is asymptotically normal with covariance matrix ¥~ !o2. ( )
showed that a root-n asymptotically normal estimator of [ is asymptotically
efficient if and only if € is Gaussian.

In constructing procedure, we smooth the density function ¢ to ensure that it
is continuously differentiable, and truncate the integration and use the split-sample
technique.

Let L(y) be the likelihood function of ¢(y), i.e., L(y) = ¢'/p(y). Let 1,.(z,7)
be the density function of the normal distribution N(0,r~2). Take r,, = logn and
f(z,r) = [ (2 —y,7)e(y) dy. Obviously f(z,r) is continuously differentiable of
all orders and converges to ¢(z) as r tends to infinity. Let f’(z,r) denote the first
derivative of f(z,7) on z. L(z,7) = [f'(2,7)/f(2,7)]:, where [a], = a if |a|] < r,
—rifa < —randrifa>r. L(zr)is also smoothed as

Tn

Ln(y,m) = / L(z,ro)0y, (y — 2,1y) dz.

—Trn
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Assume that (3, §i(t) are the estimators of 3, g(t) based on the first-half
samples (Y1, X1, T1), - - -, (Ya,, Xi,, Tk, ), respectively, while (s, g2(t) are the ones
based on the second-half samples (Yx, 11, Xk, +1, Tkn+1), -+ (Yo, Xn, Tn), respec-
tively, where k,, (< n/2) is the largest integer part of n/2. For the sake of simplicity
in notation, we denote A; = Y; — X8 — g(T}), Ay = Y; — XjTBl — 6:1(T}), and
Anzj = Y; — XT By — a(T5).

5.3.2.1 When the error density function ¢ known

We construct an estimator of § as follows:

— 1 kn n
ﬂ; ﬁ - 52_11_1{2)(3'[1”(/\”2]',7’”) + Z XjLn(Anljarn)}a
j=1

G=kn+1

where B, Eu 32 are discretized forms of B, Bl, Bg respectively.

Theorem 5.3.1 Suppose that 3 is a positive definite matrix and that ﬁ, Bl; BQ;
G(t), G1(t) and Go(t) are root-n rate and n~'/3logn estimators of 3 and g(t),

respectively. Then as n — oo
Vil — B) —*~ N(0,17'57).

5.3.2.2 When the error density function ¢ unknown

In this case, 3 is not a statistic any more since L(z, ,,) contains the unknown

function ¢ and I is also unknown. We estimate them as follows. Set

~ En n
fn(27r> = %{Zwrn<2_/\n2j:r)+ Z ¢Tn(Z_Anlj7r>}7
j=1

j=knt1
Y a~n )
iz = Anlan)
Liar) = (220 A= [ Bn)fien) i

Define

- -1 S kn
Bo=B = = [ L) {3 Xyt (2 = Auao7a)
j=1

—rn

+ Z ijrn(Z_Anlj;Tn>}dz

j:kn"rl

as the estimator of j.
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Theorem 5.3.2 Under the condition of Theorem 5.5.1, we have as n — 00

V(B — 8) —* N0, 1727,

Remark 5.3.1 Theorems 5.3.1 and 5.53.2 show us that the estimators 3 and ﬁn
are both asymptotically efficient.

Remark 5.3.2 Generally ¥ is unknown and must be estimated. To do so, let

Gz.n(+) be the kernel regression estimator of E(X|T). Then

7Z{X g:ch }{X gx h( )}T

1S a consistent estimator of 3.

5.3.3 Four Lemmas

In the following Lemmas 5.3.1 and 5.3.2, a; and v are constants satisfying 0 <

a; < 1/12 and v =0, 1, 2.
Lemma 5.3.1 As n sufficiently large,
O (1) < Cor ™ by, (1) + g (2,70) }
uniformly on x, where C,, is a positive constant depending only on a; and v.

Proof. Let n be large enough such that a;r? > 1. Then exp(z2a;r2/2) > |z|” if
lz|” > r®, and |z|” exp(—2?r2/2) < exp {—(1 — a;)x®r2/2} holds. If |z|* < r®,
then |z|” exp(—2%r2/2) < r@ exp(—22r2/2). These arguments deduce that

2| exp(—a?r2/2) < r [exp {—(1 —ay)x*2 )2} + eXp(—:L‘QTZ/Q)]
holds uniformly on z. The proof of this lemma immediately follows.

Lemma 5.3.2 Let M be a given positive constant. Then

sup Uy, (x+t,7) < 3{ty, (@, 70) + r (z,7m)}

[t|<Mn—1/4

holds uniformly on x as n sufficiently large.
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Proof. Let n be large enough such that
n*4t > 2May logr,. (5.3.1)

Denote a,, = r;*n'/*M~'. |z| < a,, implies |zr2t| < 1, and so

wrn (x + t? Tn)
U, (@,75)

When |z| > a,,, it follows from (5.3.1) that |z| > 2r2a; logr,. A direct calculation

= exp{— (22t + t*)r, /2} = exp(—xtr?) < e.

implies
w'fqn (I + t’ r”)
o (@, )

The proof of the lemma is immediately derived.

<l<e.

Lemma 5.3.3

(7). sup LY (y,ma)| = Oy ),

(#7) lim / /{L — (1), 7)) — L (y,70) Y20 (y)R(¢) dy dt = 0 (5.3.2)

if /0 V2($)h(t) dt = O(n~2310g*3 n).

Proof. By the definition of L) (y,r,), we obtain

Tn /_ W (y — z,1m,)| dz < m/ W (y — z,7,)| dz = O(ri ).

We complete the proof of (i).
Applying the Taylor expansion, L, (y—vn(t),7n) — Ln(y,70) = Ly, (Uns 1) vn(t),
where 7, is between y and y — v, (t). The left-hand side of (5.3.2) equals

tim [ [ { G ra)ea(t)Y o () h(t) dy

n—o0 0

which is bounded by

i [ [ sup L) P2 0 (o)) dy .

n—oo

The proof of (ii) is derived by (i) and the assumption.

Lemma 5.3.4

Tn ~(V) Z,Tpn) — v) Z,Tn 2
¢ A S SRR g2 0,0 25 ogt ety . 5.3

" {F(z,r) = fO(z,r) Y2 dz = O, (n Y3 log? n)riv+2a+5 - (5.3.4)
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Proof. The proofs of (5.3.3) and (5.3.4) are the same. We only prove the first
one. The left-hand side of (5.3.3) is bounded by

JIR L EAES A

- f12(z,m0)
ol & ¢xy)(z'_-Aﬂlj’Tn>'_4f00(37rn) 2
+2 — n dz
—Tn{n j:;k'n f1/2(27 Tn) }
déf (Wln + WZn)
Similarly,
]- i rn An2j7 Tn) - wv("l,z) (Z - Aj,?”n) 2
Wi, < /_ Z_j ) ) dz
R - ey,
—Tn fl/?(z) Tn)
déf (Wln + Wln )
By the Taylor expansion,
1 _ - Tn J njin2js 'n 4
wi = [ {n; o) tuj ) dz,

where t,0; = Apo; — Aj for j = 1,---,k, and p,; € (0,1). It follows from the
assumptions on [, and ga(f) that t,y; = O,(n~"3logn). It follows from Lemma
5.3.2 that Wl(rlb) is smaller than

™ —Aj,ry)

(Z7rn)

O,(n~?/31og? n)riv+2a+s / dz. (5.3.5)

—Tn

kn
Noting that the mean of the latter integrlty of (5.3.5) is smaller than 2r,, we

conclude that
Wiy = 0,(n~2/* log? n)riv+2a+s, (5.3.6)
Similar to (5.3.5), we have
EW® — /T" f’: E{o (2 = Aj, ) — [P (z,70)}2 &

= n2f(z,ry)
o [ ERE A
- o1 n?f(z,r,)
< Cnfl,r,41/+2a1+2.

Thus, we obtain that Wy, = O,(n=2/%log® n)riv+2a+6,
The same conclusion is true for Wy,. We therefore complete the proof of

Lemma 5.3.4.
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5.3.4 Appendix

Proof of Theorem 5.5.1. To prove Theorem 5.3.1 is equivalent to checking As-
sumptions A.1-A.3 of ( ). The verifications of A.3.1 and A.3.2 are
obvious. Lemma 5.3.3 can be applied to finish the verifications of Assumptions
A.3.4 and A.3.5in ( ). We omit the details.

Proof of Theorem 5.3.2. We now provide an outline of the proof of Theorem

5.3.2 as follows. Denote

A = [ L2 S dy.

—rn

- 1 - kn n
ﬁn = ﬁ_nA(rn)E 1{j2::1XjLn(An2jarn)+ Z X]'Ln(Anljarn)}‘

G=kn+1

It is easily shown that A(r,) — I, which means that (3, is also an asymptotically
efficient estimator of 3 when ¢ is known. If we can show that /n(8, — 3,)
converges to zero, then the proof of Theorem 5.3.2 is completed.

Note that

- 1 1
n — Mn — = Sn+Sn+~ Sn+Sn7
ﬁ ﬁ An(’f’n)< ' ? ) An T'n A rn)( ’ ! )
where
1 &n rn <
Stn = n XJ{/ L (2, m)r, (2 = Apgj,rp) dz — Lo (A, T")}’
j=1 o
1 & T~
D SIS ¥ [ M ES VA WP PR A )
j=kn+1 T

1, - &
Sz = ﬁ{An(rn) - A(rn)} Z XjLn(Anzj’ T")’
j=1

S = ()~ A} D X La(hugora)
j=kn+1

To prove Theorem 5.3.2 is equivalent to proving ||Sy,|| = o(n='/?) for I = 1,2, 3, 4.
We shall complete these proofs in three steps. Step 1 shows ||Sy,|| = o(n™/2)
and ||San|| = o(n~1/?). Step 2 analyzes the first part of Ss,, Ay (r,) — A(r,), and
derives its convergence rate. Step 3 handles the second part of Ss,, and then
completes the proof of ||Ss,| = o(n~'/?). The same arguments may be used for
proving ||Su,|| = o(n"1/2). We omit the details.

STEP 1 ||S1,|| = 0,(n™Y/2) and ||Sy, || = 0,(n~1/?).
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Proof. It is easy to see that

S = [ ALuer) — L} ZM« = Auzyy ) 2

—Tn

_ [ {f/n(z, rn) — L(z, rn)}g ;Xj{g/)m(z — Nnoj, ) — f(z,1)] dz.

—Tn

(i) When n?f,(z,r,) <1, it follows from Lemma 5.3.1 that

kn
1Sull = |7 {Zalzim) - zrn}lszTn — Auggor)

—Tn

1 Jn

S 27"71/ ZHX er - n2jarn)d2
™ 1 kn

<o [ 3l

= Op(n_1r2)

(i) When n?f(z,r,) <1, ||S1,]| is bounded by

J/ P J/ 02, (= = Anzy )

It follows from Lemmas 5.3.2 and 5.3.1 that

Zn Q’Dzn (Z - A”2j7 Tn) = Op(l) iWEn (Z - Aja rn) + 1/)3;2‘”(2 - Aj: Tn)}
j=1 Jj=1

kn
= Op(rn) Z Uy, (2 — Aj, 1),
j=

and 5o [Sua | = Op(r2)\/J77, F(z.7) dz = Op(n~'73/?).
(iii) When n?f(z,r,) > 1 and n?f,(z,r,) > 1,

ra | £ - / T 1 Fn
1Swll < / ?Ei:;—é((j:) ZX{% — A2y mn) — f(z.70)}|d2
1 k 7rn f/(’z?rn)
< |l ”2/-7% Pz F)
1 &
X EZ{¢rn<Z—An2j,rn) — f(z,rn)}?| dz (5.3.7)
=1
Denote

1’%

Z“DM — Anaj, ) — f(2, Tn)}Q-
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The integration part of (5.3.7) is bounded by

/_r:n é(z,?()zjrf;(z ) 2y,
i _’":n %z::g fn(z’?()z;f)(z )| 012 4
§ { / |ﬂ(z,r;)(; i’)(z,rn)P n fg,l:fn) dz}1/2
Lyl { / Iﬁ(z,r;zz}gz,rnw fgj;n) dz}l/z‘
Similar to (5.3.3), we deduce
f(%;n) dz = Op(n~**log?® n)ra™.

This fact and Lemma 5.3.4 deduce
[S1n]l = 0p(n~"/?).

A combination of the results in (i), (ii) and (iii) completes the proof of the first
part of Step 1. Similarly we can prove the second part. We omit the details.
STEP 2.

A, (ry) — A(ry) = Oy (n= 2320 Jog? p)pdatt, (5.3.8)
Proof. A, (r,) — A(r,) can be rewritten as

/7‘" L2(z,r0) fulz,m0) dz — / L2(z,r) f (2, ) d2

—Tn —Tn

/ {L2 Z Tn LQ(Z’rn)}fn(z,Tn) dz

+ LQ(ZaTn){ﬁw(z7rn) — f(z, )} dz

—Tn

déf Iln + [2n-

It follows from Lemma 5.3.4 that I, = O,(n~%3log®n)r®+5. We next consider
Ii,.

(i) When n?f,(z,7,) < 1, [I1,] < 212 o an(z,rn) dz = O(n2r3).

(ii) When n?f(z,7,) < 1, it follows from Lemma 5.3.4 that

Il < 27"5{\/ [ Rulzm) = ) darif® +

= O, (n""2logn)rats.

" f(z,m) dz}

—Trn
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(iii) When n?f,(z,7,) > 1 and n*f(z,7r,) > 1,

| < /_ Lz, ) — Lz, ) (| In(2, )+ Lz, 1) (2, ) d2
frlzra)  f(2m)

Tn
S an / -
—rn

fn(z,rn) f(z77»n) f"(zarn) dz

< 2%[/_ | o(z,mn) = f'(z, )| d2
et - seratad

It follows from Lemma 5.3.4 and Cauchy-Schwarz inequality that
L, = O, (n Y2 log n)ra® O, (n~ /320 Jog p)pdats,

The conclusions in (i), (ii) and (iii) finish the proof of Step 2.
STEP 3. Obviously, we have that, for [ =1,--- p,

kn . kn
> @jpLn (A, rn)‘ = ‘/ L(z,m0) Y 2, (2 — Anaj, 1) dz)
=1 =1

—Tn

Y
—Tn

Tn En
= ‘/ L(z,rn)ijl{l/Jm(Z—An2j,7“n) — f(z,m)} dz
j=1

which is bounded by
]

+7rn / '
2

def l l
S+ ol

dz

kn
:le{wrn (Z - An2j7 rn) - wrn (Z - Aj7 rn)}
7=1

kn

zi{r, (2 — Ajy ) — f(z,rn)}’dz
1

Qg,i is bounded by

e | kn Fon
rn/ J Z x?lJ Z{@Drn(z — Nn2j,mn) — U, (2 — Njyrn) P2 dz.
o\ =1 j=1

The term in the second integration part is just n [T} 1, dz. We conclude from
the discussion for Qy, that Q) = O, (n*3logn)ratt,

We now analyze the term Qég The same way as for Qgg leads that

<[

kn ) 1/2
ijl{¢Tn(2_Ajarn> _f(z,rn)}‘ dZ} .
7j=1
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Note that the expectation value of the integration equals
Tn kn 9
[ 3 Blaadte, (= = Ajra) = fz )} dz,
ot
which is bounded by

v En _—
/ Z Bl (z — Ajyrp)|Pdz < / Z Elxal*rof(z,ry) dz
“Tnoj=1 =1

= O(nry).
We thus conclude that
1 &
H— Z X5 L (Anaj, Tn)H = O, (n~1/3+ 20 Jog n)ratd, (5.3.9)

A combination of (5.3.8) and (5.3.9) implies
150l = 0p(n~1%).

We finally complete the proof of Theorem 5.3.2.

5.4 Bahadur Asymptotic Efficiency

5.4.1 Definition

This section is concerned with large deviations of estimation. Bahadur asymptotic
efficiency, which measures the rate of tail probability, is considered here.
It can be stated (under certain regularity conditions) that, for any consistent
estimator 7, (Q),

hmlnfhmmelogPﬁﬂT 2(Q) =06l >(>—-1(8)/2,

¢—0 n—oo
and that the maximum likelihood estimator (MLE) (3, can achieve the lower
bound, that is,

lim lim —glogP,B{Wn Bl = ¢y =—1(8)/2,

(—0n—oo

where I(3) is Fisher’s information. In other words, for any consistent esti-
mator T, P3{|T.,(Q) — 5| > (} cannot tend to zero faster than the expo-
nential rate given by exp{—n/2¢*I(3)}, and for MLE ,, Ps{|3. — 8] > ¢}
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achieves this optimal exponential rate. This estimator (3, is called Bahadur
asymptotically efficient (BAE).

( ) showed, under regularity conditions which differ partly from Ba-
hadur’s, that a large class of consistent estimators (3 are asymptotically efficient
in Bahadur’s sense. The author also gave a simple and direct method to verify

( ) conditions. ( ) proved, under weaker conditions than
Bahadur’s, that the MLFE in both single-parameter and multi-parameter cases is
BAE. Lu ( ) studied the Bahadur efficiency of MLE for the linear models.

In this section, we investigate BAE of the estimator of the parameter (3 in the
model (1.1.1). It is shown that a quasi-maximum likelihood estimator (QMLE)
is BAE under suitable assumptions. Similar results for generalized semiparamet-
ric models have been established by ( ).

In Sections 5.4 and 5.5 below, we always suppose that ¢ is an unknown
Hélder continuous function of known order of m+r (Chen, 1988) in R'. When

approximating g, we use a piecewise polynomial approximation gp studied by

( ) and ( ), which satisfies
9(T)) — Gp(T))| < BoM; ™) 4 =1,--- n, (5.4.1)
where M, satisfies lim nM2m+) = 0 and lim n™?M,, = 0 for some ¢ € (0, 1).
The MLE By, of 3 is defined based on {Y; = X7 3+gp(T))+e; i=1,---,n}.
Let {X;,T;,Y;,i=1,---,n} be a sequence of i.i.d. observations drawn from

the model (1.1.1). Throughout the remainder of this section we denote a vector
by a boldface letter, a matrix by a calligraphic letter, RY = XTX, I = I(p) =
J(@'(2))?p(x)dr < oo, and () = ¢'(z)/¢(z). We assume that ¢(z) is positive
and twice differentiable in R' and that the limit values of ¢(z) and ¢'(x) are zero

as x — 0o. For a € RP and By = (b;j)n, xn,, denote

(= 2\ V2 _ .
Ila\l—(;lﬁ%) . lal = max [ai

* - *
B = masxlbl, 1B = _max [Bul]

where || - || denotes Ly—norm and || - ||* does matrix norm.

We now state the following definitions.

Definition 5.4.1 The estimator ﬁn(Yl, -+, Y,) of B is called locally uniformly

consistent estimator of 3, if for every By € RP, there exists a 6 > 0 such that
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for each ¢ > 0,

lim sup Ps{[lhn, — 8]l > ¢} = 0.

"% B—Bo| <6

Definition 5.4.2 Assume that R’ ™" exists. The consistent estimator B of B is

said to be BAE, if for each By € RP,

: . 1 =1 7 I
llmsupllgls;}p ?HRn 1" log Pay {||hn — Boll > ¢} < —5

(—

5.4.2 Tail Probability

We make the following assumptions for our main result.

Assumption 5.4.1 There exist constants Cy, Cy > 0 such that C7 < py <
po < oor <y < Co, where py, pio, -+ - iy are the eigenvalues of n~'RY. Denote
R - Cg/Cl.

Assumption 5.4.2 There exists a Cy such that E|| X| < Cy < 00.

Assumption 5.4.3 (lsi_r%/supwgg [V (y+ h) — V' (y)|e(y) dy = 0.

Assumption 5.4.4 There exists a tg > 0 such that

[ expltolv@)}ole) dv < o0 and. [ exp{toly (@) }ol) do < oo.

Assumption 5.4.5 There ezist a measurable function h(xz) > 0 and a nonde-
creasing function y(t) satisfying v(t) > 0 fort > 0 and lim; o+ y(t) = 0 such that
Jexp{h(z)}p(z)dx < oo and | (x +1t) — Y (z)| < h(x)y(t) whenever [t| < |to.

Assumption 5.4.6 The MLE BML exists, and for each § > 0, By € RP, there
exist constants K = K (0, By) and p = p(6, By) > 0 such that

Pa{|Burz — Bo| > 6} < K exp(—p|[ R |[*6?).

The following theorem gives our main result which shows that BM 1 isa BAFE

estimator of [.
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Theorem 5.4.1 Bn s a locally uniformly consistent estimator. Suppose
that Assumptions 5.4.1-5.4.53 hold. Then for each By € RP
1 ~ 1
lim inf lim inf EHRZ”II* log Pay{ || = foll > ¢} > —. (5.4.2)

If Assumptions 5.4.1-5./.6 hold, then for each By € RP

R* —1y*
lim sup lim sup w
¢—0 n—00 C

5 I
log Pﬁo{HBML - 50” > C} S —5. (543)
The result (5.4.3) implies that 3, is BAE.

5.4.3 Technical Details

The proof of the theorem is partly based on the following lemma, which was

proven by Lu ( ).

Lemma 5.4.1 Assume that Wy, ---, W, are i.i.d. with mean zero and finite vari-
ance a?. There exists a ty > 0 such that E{exp(to|W1])} < co. For known con-
stants aiy, Gan, -+, Qnn, there exist constants A, and A such that Sraz < A,

and maxi <<y |Gin|/An < A. Then for small enough ¢ > 0,
i=1

where [0(C)| < AC1¢ and Cy only depends on Wi.

2

20’1214%

> ¢} < 2exp{- (1+0(C)},

We first prove the result (5.4.2). The proof is divided into three steps. In
the first step, we get a uniformly most powerful (UMP) test ®* whose power is
1/2 for the hypothesis Hy : = [y <= H; : f = [,. In the second step, by
constructing a test ®,(Y) corresponding to h,,, we show that the power of the
constructed test is larger than 1/2. In the last step, by using Neyman-Pearson
Lemma, we show that Eg ®,, the level of ®,,, is larger than Eg @} .

Proof of (5.4.2). For each ¢ > 0, set

Ry lan

Brn = B0+ i
IR

C?

where a,, € R?, a’ R 'a, = [|[R:7'||* and ||la,| = 1. Let [; = (0,---,1,---,0)" €
RP. it is easy to get

1
IR0

IR: > d" R a >
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and
B0 — Bol < | Ri|l - IR HI"¢ < RC.

Denote

m oY — XT B, — 9(Ty))
r.(Y) = 1;[1 o(Yi — XTI 8 — g(T3))

C_ XT3 e [ LA H)C
Az - Xz (ﬁn 60)7 dn_exp{2HR;_1H*} (/‘L>O>

By Neyman-Pearson Lemma, there exists a test @ (Y) such that
. 1
B3 (@5 (Y)) = 5.
Under Hy, we have the following inequality:
Bal®(Y)} = [ @i(Y)dPy,

11 .
= jn{§ a /n(Y)>dn oY) dpnﬁ"}'

If
. 1
limsup P, {T',(Y) > d,,} < 7 (5.4.4)
then for n large enough
. 1
Es{®(Y)} > i (5.4.5)
Define
L, Jag (= Bo)| = N
o,(Y)= (5.4.6)
0, otherwise,

where X' € (0,1). Since aT(3, — 3;) = ¢ and h, is a locally uniformly

consistent estimator, we have
liminf By, {@,(Y)} > liminf Py, {[f, — Bul| < (1= )¢} = 1.
It follows from Neyman-Pearson Lemma that for n large enough

Ep{®n(Y)} = B {9,(Y)} (5.4.7)
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It follows from (5.4.5), (5.4.6) and (5.4.7) that

Po{lln = Boll 2 X¢} = Pay{lag (h ﬁo)! > N}
— Ba{0u(Y)} 2
By letting 4 — 0 and X — 1, this completes the proof of (5.4.2).

Now we return to prove the inequality (5.4.4). It follows from Assumption

5.4.2 that ||A;|| < RC( and

9 T*x—1 . 2 2
ZA < % Rl ¢ sz%. (5.4.8)
1R: |+ IRl
A Taylor expansion implies that for sufficiently small
. e(Y3) S L, 2
log — o0 = = YA + S (0(Y) + R(V)AZ],
S 108 Ry =~ R85 + R(Y)
where R;(Y;) = ¢/ (Vi + 6;,A;) — ¢/(Y;) and 0 < 6; < 1. Thus
P AT, (Y) > d, = d,
> = R0 > )
- S s e
= Y+A) 2Ry~
1¢ I(1+5)¢
< K {— I(p)A? > =
2222 2||R5, 1H
n [M<2
Py — YA > ————
=S oma > gt
Pl =Y [ (V) +I(p))AZ > — 1>
1 Iuc?
+Fy {—— Ri(Y)A? > —}
2222 12|R;
o Pi+P+ P+ Py
We now estimate the four probabilities P, P, P; and Py, respectively.
1 I(1+£)
Plzpo{[(gﬁ) — _2 }: (549)
IR IR

It follows from Chebyshev’s inequality, Assumption 5.4.1 and (5.4.8) that

P = P [P {—f}p(ym- LS TH
14| Ry
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Py < el (T I omep B ) 4 1)) 0 asn - oc
: Tug? =T
6||R: | 1
s e[ e Bl 09 1]

By Assumption 5.4.3 and letting ¢ be sufficiently small such that |A;] < §, we

have

T} < / sup |4/ (y + h) — ' ()| py) dy < 2= (5.4.11)

Ey{max |R;(Y; )
ol [ROD|T < [ s .

1<i<n

Combining the results (5.4.9) to (5.4.11), we finally complete the proof of (5.4.4).

We outline the proof of the formula (5.4.3). Firstly, by using the Tay-
lor expansion and Assumption 5.4.2, we get the expansion of the projection,
aT(BML — ), of By — (3 on the unit sphere |la]| = 1. Secondly we decompose
Ps{|a” (Barz — Bo)| > ¢} into five terms. Finally, we calculate the value of each
term.

It follows from the definition of 3y, and Assumption 5.4.2 that

(B~ B) = ~AFD WY 6 - XI5~ g(T))a R,

=1
n

=S (Y = X8 = g (1) R, Xi{gr(Ty) — 9(T)},

i=1
where X7 3* lies between XT3y, and X738 and ¢*(T}) lies between ¢(T}) and
gr(Ty).

Denote

Ri(Ye, Xo.Th) = /(Y = X]'B" = g"(T;)) — o' (Vi — X[ B — g(Ty)),
Ry =Y {1 +¢'(Y; = X[ — g(T)) Ry X X
=1

Ry =" Ri(Yi, Xi, TR, ' XX

i=1

Let a be sufficiently small such that det(—F I+ R+ Rj) # 0 when |Rj+ R}| <
. Hence (—FI+Ri+R3) ™! exists and we denote it by —{(FI) ' +W}. Moreover,
according to continuity, there is a nondecreasing and positive function n(«a) such
that |W| < n(a) and lima_on(a) = 0 when |Rf + Rj| < a. Hence, we obtain,
for every 0 < A\ < 1/4, a € RP and |la|| = 1, that Ps,{|a”(Bar — Bo)] > ¢} is
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bounded by
Pﬁo{ i@D(K—XiTﬁo—g(ﬂ))a > (1—2)\)I§}
i=1
+Ps, ;a%( — X! — 9(T}))R;, . (2&)}

{
+Pﬁo{|RT| > Oé} + Pﬁo{|R;| > a}
{

+Ps, {3 1Gp(T2) — g(TIIW' (Vi = X[8" — g"(T1))a" Ry, ™' Xi| > A¢}
=1

© PP+ P+ P+ P

In the following we use Lemma 5.4.1 to calculate { P;; 5 < i < 9}. We calculate
only the probability Ps and the others can be obtained similarly. We omit the
details.

It follows from Assumption 5.4.5 that

|Ri(Y:, X, Ty)| = [W'(Yi— X3 —g"(T3) — ' (Vs — X[ Bo — g(T3))|
< h(Y; — X[ Bo — g(T))V(XF (Bur, — Bo) — (g"(T3) — g(T)))).

Denote hg = Eg,h(Y; — XI5y — g(T;)). We now have

n

o< S B[S n0 - XA oI (KT (s~ )
~(g"(T) — 9T > a)
< Y| PalUn @) — o) > 5+ P llBus — 0l > 8)

1s

.
Il
Il
i

+P50

=

> h(Yi = X{ Bo — 9(T)v(C6 + )1
i=1

< P+ PP+ PP

2
Let ¢ < (W) 1t follows from Assumption 5.4.6 and |a"R: ta| >

(IR%[*)~" that

20)21
PO AIRLI = S
and
1 —2) 2[
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Let 07 = Eg,{h(Y; — X} By — g(T;)) — ho}?. Tt follows from Lemma 5.4.1 that

PO < Py (IS — XTBy — o(T)) — ho VIR X,XTL| > — &
< B[ = XT B — (1) — h}RTXXTL 2 s
a? o
< 2 — 14+ O(z—5——=
= eXp{ 872((]5+5)C'2R0,%aTR;‘Lla( * 4(27(0(5—1—(5)))}’
« a
where ‘04(m)‘ < B4m and By depends only on h(e;). Fur-

thermore, for ( small enough, we obtain

: (1—20)1¢”
T T
It follows from (5.4.1) that
B = Pa{ UL, |(ar(T3) — g(T2)| > 8} = 0. (54.13)

Combining (5.4.12) with (5.4.13), we have

(1— 20212

Therefore
Pﬁo{laT(/@ML = Bo)| > C} < (Kp* + K+4p° +2p)

(1 —2X)21¢?
2aTR:a

where O(¢) = min{01(¢), 02(C), 05(¢), 04(¢), O5(Q)}, [O(O)] < CRB(n™ (20) +
1), which implies

(1+0(C)},

X exp{—

. . (IT *_161 ~ 1—2\ 2]
III?Sélp lim sup Tglog Pﬁ0{|aT(ﬁML — Bo)| > C} < _%.

Since a is arbitrary, the result (5.4.3) follows from A — 0. This completes the

proof of (5.4.3).

5.5 Second Order Asymptotic Efficiency

5.5.1 Asymptotic Efficiency

In Section 5.3, we constructed a class of asymptotically efficient estimators of the
parameter (3, that is, their asymptotic variances reach the asymptotically efficient
bound, the inverse of the Fisher information matrix. There is plenty of evi-

dence that there exist many asymptotic efficient estimators. The comparison of
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their strength and weakness is an interesting issue in both theoretical and prac-
tical aspects (Liang, 1995b, Linton, 1995). This section introduces a basic result
for the partially linear model (1.1.1) with p = 1. The basic results are related
to the second order asymptotic efficiency. The context of this section is
influenced by the idea proposed by ( ) for the linear
model.

This section consider only the case where ¢; are i.i.d. and (X;,T;) in model
(1.1.1) are random design points. Assume that X is a covariate variable with
finite second moment. For easy reference, we introduce some basic concepts on
asymptotic efficiency. We refer the details to ( ).

Suppose that © is an open set of R!. A {C,}-consistent estimator f3, is
called second order asymptotically median unbiased (or second order AMU )
estimator if for any v € O, there exists a positive number § such that

lim sup C’n‘Pgm{ﬁn < p} - %‘ =0
n—oo B:|B—v|<d
and
lim sup C’n‘ngn{ﬁn > G} — ;‘ =0.
n—oo B:|B—v| <8

Suppose that 3, is a second order AMU estimator. Gy(t, 8) + C.1G1(t, 3) is

called the second order asymptotic distribution of C,,(3, — () if

Jim G| Po,o{Ca(Ba = ) < 1} = Golt. ) = O G (1, 9)| = 0.

Let C,, = /n and [y(€ ©) be arbitrary but fixed. We consider the problem
of testing hypothesis

H+;5zﬁlzﬁo+\;%(u>0)<—>K;ﬁ:ﬁo.

Denote @172 = {én : Epyruymndn = 1/2+ 0(1/y/n)} and Ag g = {Vn(B, —
Bo) < u}. It follows that

n—oo

i : U 1
lin, Py n(As) = i oo n{n < 00+ =} = 5.

Obviously, the indicator functions {XAﬁn,ﬁo} of the sets Ag, g,(n =1,2,---) belong

to ®;/5. By Neyman-Pearson Lemma, if

1
sup limsup\/n{ Eg, n(dn) — H (¢, 53y) — —=H; (t, =0,
50 Tmsup v { By (00) = Hyf (1 60) = 2 HY (1 o))
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then Gy (t, By) < H{ (t, By). Furthermore, if Go(t, By) = Hy (¢, By), then G1(t, By) <
ll[lJr (ta ﬁO) :
Similarly, we consider the problem of testing hypothesis
H‘:6:ﬁ0+%(u<0)<—>[(:ﬁzﬁo.
We conclude that if

. .. _ I
. Tim inf Vi{ Egy n(én) — Hy (. o) — N (t,60)} =0,

then Go(t, Bo) < Hy (L, 50); if Go(t, Bo) = Hy (1, Bo), then Gi(t, Bo) < Hy (1, Bo)-
These arguments indicate that even the second order asymptotic distribution
of second AMU estimator cannot certainly reach the asymptotic distribution

bound. We first introduce the following definition. Its detailed discussions can
be found in ( ).

Definition 5.5.1 [, is said to be second order asymptotically efficient if
its second order asymptotic distribution uniformly attains the bound of the second

order asymptotic distribution of second order AMU estimators, that is for each

08 eO

H (u,8) foru>0
Gi(u, ) = { H (u,B) foru<D0.
The goal of this section is to consider second order asymptotic efficiency for

estimator of [.

5.5.2 Asymptotic Distribution Bounds

In this subsection we deduce the asymptotic distribution bound. The procedure
is based on Neyman-Pearson Lemma and Edgeworth expansion, which is given

in the following lemma.

Lemma 5.5.1 (Zhao and Bai, 1985) Suppose that Wy, --- W, are independent
with mean zero and EW? > 0 and E|W;[> < oo for each j. Let Gy(w) be the
distribution function of the standardization of >°1  W;. Then
1 _ 1
Ghr(w) = ¢(w) + 6¢>(’w)(1 — w)papy '+ 0(%)

uniformly on w € R', where pg = Y1y EW? and uz = 3", EW?.

7
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In the remainder of this subsection, we denote J = [ 9" (u)y'(u)p(u) du and
K = [{¢/(u)}}¢o(u) du. Let Pz and Eg denote probability and expectation cor-
responding to the parameter ', respectively.

We introduce the following assumptions.

Assumption 5.5.1 o(-) is three times continuously differentiable and p®(-) is

a bounded function.

Assumption 5.5.2 J and K are well-defined, and [ " (u)p(u)du = —3J — K.

Assumption 5.5.3

lim ¢(u) = lim ¢'(u) = lim ¢"(u) =0, and Ee* < .

u—=+0o0 u—=400 u—=+o0

It will be obtained that the bound of the second order asymptotic distribution of
second order AMU estimators of /3.

Let 3, be arbitrary but fixed point in R'. Consider the problem of testing
hypothesis

H+:ﬁ—ﬁl—ﬂo+%(u>0)%ffzﬁ—ﬁo.

Set

u o p(Yi — XiB — g(T3))
N and Zni = log p(Yi = Xif — g(T3))

It follows from Fv"(e;) = —1 and Ev'(g;) = 0 that if § = [,

. X
Zni = log —90<€z + A 2)
p(e:)
A% X? A3 X3 A*XE
= AX)(e5) + —9" (&) + ——¢" (&) + (),
2 6 24
where ¢! lies between ¢; and ¢; + AX;, and if 5 = [,
o(&4)
Zpi = log ————"+~
o8 plei — AX;)
AZX? A3X3 ArXE
_ AXZ¢/(€Z) . 5 3 1/)”(51') + ; i 7#’”(5,‘) . 7177/}(3)(5:*)’

where £* lies between ¢; and ¢; — AXj.
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We here calculate the first three moments of "' | Z,; at the points 3, and

(1, respectively. Direct calculations derive the following expressions,

" A?] , A33J+K) 3 1
Eg, (; Zni) = = nEX? - = nEXY o(ﬁ)
déf Ml(ﬂo)?
Varg, <Z Zm-) = A’InEX? — JAnEX? + o(nA?)
i=1
déf ,u2<50)7
Eﬁo Z(Zm - EBOZM)?) - Eﬁo Z Zgz -3 Z Eﬁozqg,iEﬁoZni +2 Z(EBOZM)S
i—1 i=1 i=1 1=1
= A*KnEX? +o(nA?)
déf :U’3<60)7
" A?] A3(3J + K) 1
E Zni) = ——nEX? - """ InEX? 4 o(—=
B <Zl ) 5 " g "EX o)
déf Ml(ﬂl)v
Varg, (Z Zm-) = A’InEX? — JAnEX? + o(nA?)
i=1
= pa(B),
and
Eﬁ1 Z(Zm - Eﬁl Zni)3 = Eﬂl Z Zgz -3 Z Eﬁl ZziEﬁl Zm' + 2 Z(Eﬁl Zni>3
i—1 i=1 i=1 =1
= A*KnEX? +o(nA®)
E s(B).
First we choose an a,, such that
" 1 1
P Lpi < Qp p = = —). 5.5.1
2 2o < = 5 ol ) (55.1)
Denote
R v RY 1Y R e v RV I
p2(B1) 112( o)
It follows from Lemma 5.5.1 that the left-hand side of (5.5.1) can be decomposed
into
1—c2 p3(f) 1
D (c,) + Plcn) - + o(—=). (5.5.2)
6 M§/2(51) Vi



5.5. SECOND ORDER ASYMPTOTIC EFFICIENCY 123

This means that (5.5.1) holds if and only if ¢, = O(1/y/n) and ®(c,) = 1/2 +
cn®(cy), which imply that

13(51) 1
Cn = —— e+ 0o(—=
S CER R
and therefore
ap, = + > Ej —).
6u2 ﬁl Zl o Zni) ¥ ol )

Second, we calculate Pg, ,{>"I" | Zni > a,}. It follows from Lemma 5.5.1 that

(1- 2)#3(50) 1

A3 P2 ) DAY
On the other hand, a simple calculation deduces that
1
d? = A’InEX”? —). 5.4
: n + O<\/ﬁ) (5.5.4)
Substituting (5.5.4) into (5.5.3), we conclude that
Paynd " Zni > 0} = ® (\/AQInEX2> + gb(\/A?InEX?)
i=1
A%*(3J + K)nEX? 1
+ o(—=). 5.5.5
6vInEX? (\/ﬁ ) (5:55)

So far, we establish the asymptotic distribution bound, which can be summarized

in the following theorem.

Theorem 5.5.1 Assume that EX* < oo and that Assumptions 5.5.1-5.5.3 hold.
If some estimator {3,} satisfies
(3J +K)EX?

u
6vVnI3E3X?

m%), (5.5.6)

Ps{VnIEX?(3, — B) < u} = ®(u) + ¢(u)

then {(,} is second order asymptotically efficient.

5.5.3 Construction of 2nd Order Asymptotic Efficient Es-
timator

In this subsection we shall construct a second order asymptotic efficient
estimator of 3. The primary estimator used here is PMLE BML given in section

5.4. First of all, we study the asymptotic normality of Gy
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Via the Taylor expansion,

n n

ST (Y — XiBur — Gp(T)Xi = d_o(Yi — XiB — g(T1)) X,
i=1 =1

—;WY XiB" = g*(T)[X7 (B — B)
+Xi{gp(T3) — 9(Ti)}, (5.5.7)

where 3* lies between 3, and § and ¢*(T}) lies between ¢(T}) and Gp(T}).
Recalling the fact given in (5.4.1), we deduce that

% Xj: [W'(Y; — X;5° — " (T7)) Xi{gp(T;) — g(T;)}| — O.

The definition of BM 1, implies

n

T DU X = g(T)X, = 3 (Y= X g (1) X
Vi(Bar — B) + o(1).

The asymptotic normality of \/H(BM 1 — ) is immediately derived and its asymp-
totic variance is (IEX?)™!

Although we have obtained the first order asymptotic distribution of \/n (B ML—
B), it is not enough for us to consider a higher order approximation. A key step

is to expand the left-hand side of (5.5.7) to the second order terms. That is,

n

S (Y — XiBar — Gr(T))Xs = S_0(Yi — Xif — 9(T1)) Xi
i=1 i=1

— 2 (Y= XiB - g(T, NXZ(Burr — B) + Xilge(T)) — 9(T)}]

o D= X — ()X X B — 9)
+3p(T;) — g(T})}?,  (5.5.8)

where 3* lies between 3,7, and § and §*(T}) lies between ¢(T}) and §p(T}).

We introduce some notation here.
Zl ¢ Y X3 — 9( ))X
\f Z

Z5(8 Z{w (Y; — X;8 — g(T3)) X} + EX*I},

f
1; Y- XF — " (T)XP.

3
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Elementary calculations deduce that

EZ\(B) = EZy(5) = 0,

EZ}(8) = IEX* < 1(3),

) = E{d/(e)X* + EX*I}?,

)Z5(83) = E(e)y () EX® = JEX.

A central limit theorem implies that Z;(3) and Z»(8) have asymptotically normal
distributions with mean zero, variances I(3) and E{¢/(e) X2+ EX2I}*(¥ L(B)),
respectively and covariance J(3) = JEX?3, while the law of large numbers im-
plies that W () converges to Evy"(e)EX? = —(3J + K)EX?3. Combining these
arguments with (5.5.8), we obtain an asymptotic expansion of \/n(Byz — 3).

That is,
Z\(B) | Z1(8)Z:(8) (3] + K)EX®
1(B)  nl2(B) 2/nI3(5)

+op(%). (5.5.9)

Z1 ()

Further study indicates that BML is not second order asymptotic efficient.

However, we have the following result.

Theorem 5.5.2 Suppose that the m-th(m > 4) cumulants of \/nfBuyy are less
than order 1/+/n and that Assumptions 5.5.1- 5.5.3 hold. Then

-~ ~ KEX?3
B, = Bur + 3n]—2(ﬁ)

15 second order asymptotically efficient.

Proof. Denote T, = /n(Baz — 3). We obtain from (5.5.9) and Assumptions
5.5.1-5.5.3 that

~ (J+K)EX?® 1
- 1 1
Vargl, = m +0(%),
3
Eg(fn—ngn)g _ _(3J+K)EX +of 1 )

NOEE) NG
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KEX3
Denote u(f) = —————. The cumulants of the asymptotic distribution of

31%(B)
Jnl(8)(33;, — B) can be approximated as follows:

VAT G EsFius - 8) =~ TSI ) + o

)7

1
i’
nl(8)Varg(B3) = 1+ of

i

Es{\/nI(B)(Bir, — EsBir)} = — (3(\]/;]52)55(3 - 0(%).

Obviously B}\} ; is an AMU estimator. Moreover, using Lemma 5.5.1 again and

the same technique as in the proof of Theorem 5.5.1, we deduce that

n A _ (3J+ K)EX? , oi
Py n{y/nl(8)(ByL — B) < t} = @(t) + ¢(t) N "+ (\/ﬁ>-<5-5.10>

The proof of Theorem 5.5.2 is finished by combining (5.5.6) and (5.5.10).

5.6 Estimation of the Error Distribution

5.6.1 Introduction

This section discusses asymptotic behaviors of the estimator of the error density
function p(u), @,(u), which is defined by using the estimators given in (1.2.2)
and (1.2.3). Under appropriate conditions, we first show that @, (u) converges
in probability, almost surely converges and uniformly almost surely converges.
Then we consider the asymptotic normality and the convergence rates of @, (u).
Finally we establish the LIL for @, (u).

Set & =Y — X! Brs — §.(T;) for i = 1,...,n. Define the estimator of ¢(u)
as follows,

1 & 1

where a,(> 0) is a bandwidth and /4 denotes the indicator function of the set A.

Estimator ¢,, is a special form of the general nonparametric density estimation.

5.6.2 Consistency Results

In this subsection we shall consider the case where ¢; are i.i.d. and (X;,T;) are

fixed design points, and prove that @, (u) converges in probability, almost surely
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converges and uniformly almost surely converges. In the following, we always
denote

1

n = Iu—a gi<u+ta
QD (u) 2”0/711:21 ( S’LS +n)

for fixed point u € C(g), where C(¢p) is the set of the continuous points of ¢.

Theorem 5.6.1 There exists a constant M > 0 such that || X;|| < M fori =
1,--+,n. Assume that Assumptions 1.3.1-1.5.3 hold. Let

0<a, — 0 and nl/gan logf1 n — 00o.
Then @, (u) — @(u) in probability as n — oo.

Proof. A simple calculation shows that the mean of ¢, (u) converges to (u)
and its variance converges to 0. This implies that ¢,(u) — ¢(u) in probability
as n — 0o.

Now, we prove @, (u) — ¢,(u) — 0 in probability.

If & < u— ay, then & € (u — a,,u + a,) implies u — a, + X! (Brs — B) +
(1) — g(T;) < & < u—ay. If & > u+ ay, then & € (u— a,,u + a,) implies
U+ a, <& <u+a, + X (Brs — B) + Gu(T;) — g(T;). Write

Cri = X (Brs — B) + gn(T;) — g(T;) for i = 1,... .
It follows from (2.1.2) that, for any ¢ > 0, there exists a 79 > 0 such that
P{n'?log™* nsup |Cri| >no} < C.

The above arguments yield that

1 1
Lutan—|Cril<eiutan) T 5

o~

|§0n(u) - Son(u>|

Qnan ](u:tangaigu:l:an+|0m-|)

o Ly + Iop,

where I(ytq, —|Cpi|<e;<utan) AENOLES L(yia, —|Cpi|<e; utan)U(u—an—|Cpil<ei<u—an)-
We shall complete the proof of the theorem by dealing with [y,, and I5,. For

any ¢’ > 0 and large enough n,
P{Iln > C/} S C+ P{Iln > C/,Sup ’Cm| S 7]0}

< <+ P{Z[(uian—Cnon*1/3 logn<e;<uztay) = 2nan</}'
=1
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Using the continuity of ¢ on u and applying Chebyshev’s inequality we know
that the second term is smaller than

1
2a,(’

P(u:l:an — C’non’l/:slogn <g <uxt an)

Cnol
= Senmirig. 90 +o(1)}.

It follows from a,n'/?log™* n — oo that
lim sup P{l, > ('} <.

Since ( is arbitrary, we obtain I;,, — 0 in probability as n — oco. We can similarly
prove that Is, tends to zero in probability as n — oo. Thus, we complete the proof

of Theorem 5.6.1.

Theorem 5.6.2 Assume that the conditions of Theorem 5.6.1 hold. Further-

more,
n*3a,log 2 n — oco. (5.6.2)
Then @, (u) — @(u) for u € C(p) a.s. as n — oo.

Proof. Set Z(u) = Ep,(u) for u € C(p). Using the continuity of ¢ on u and

a, — 0, it can be shown that
©E(u) — o(u) asn — oo. (5.6.3)

Consider ¢, (u) — ©Z(u), which can be represented as

1 n
E _ _
@n(u> — ¥n (u) - QTLCLn ;{[(u—anﬁeiﬁu—kan) E[(u—anﬁeiﬁu—i-an)}
def 1 &
2na,, ;
Uni, - - -, Upny are then independent with mean zero and |U,;| < 1, and Var(U,;) <

Plu—a, <e <u+a,) =2a,0(u)(1+0(1)) < 4ayp(u) for large enough n. It

follows from Bernstein’s inequality that for any ¢ > 0,

Pllou(u) ~ 5] 2 ¢} = P(I U] 2 200,0)

4n2a?(? }
8nanp(u) + 4/3na,(
3na, > }

< QeXp{—

= 2exp{- (5.6.4)
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Condition (5.6.2) and Borel-Cantelli Lemma imply

on(u) — oE(u) — 0 a.s. (5.6.5)
In the following, we shall prove

On(u) — pn(u) — 0 a.s. (5.6.6)

According to (2.1.2), we have with probability one that

R 1
|Q0n(U,) - Spn(u’)| < %I(uian—Cn*1/3 log n<e;<uzan)
1
na I(u:tangaigu:tan-l—Cn*l/?’ logn)
C Jin + Jon. (5.6.7)
Denote
1

on1 (1) = —Pu=+a, — Cn Ylogn <& <uzay,). (5.6.8)

2a,
Then ¢,1(u) < Co(u)(n'/3a,) ' logn for large enough n. By Condition (5.6.2),

we obtain

Yn1(u) = 0 asn — oo. (5.6.9)
Now let us deal with J,; — @1 (u). Set
Qni = Llutan—Cn—1/310gn<e;<utan) — (U £ an — Cn Y3logn <& <u=ay,),

fori=1,...,n. Then Q,1,...,Qnu, are independent with mean zero and |Q,;| <

1, and Var(Q,;) < 20n""?logny(u). By Bernstein’s inequality, we have

P{Jm = om (@) > ¢} = P{|3Qu| > ¢}
i=1
Cnay,(?
< 2eXp{_n1/3an1¢<u> 10g1n+<}
< 2exp(—Cna,(). (5.6.10)

Equation (5.6.10) and Borel-Cantelli Lemma imply that
Jo1 — pn1(u) — 0, a.s.

Combining (5.6.9) with the above conclusion, we obtain J,; — 0 a.s. Similar
arguments yield J,, — 0 a.s. From (5.6.3), (5.6.5) and (5.6.6), we complete the

proof of Theorem 5.6.2.
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Theorem 5.6.3 Assume that the conditions of Theorem 5.6.2 hold. In addition,

¢ s uniformly continuous on R'. Then sup, |@n(u) — o(u)| — 0, a.s.

We need the following conclusion to prove Theorem 5.6.3.
Conclusion D. (See Devroye and Wagner, 1980) Let p,, and u be 1-dimensional
empirical distribution and theoretical distribution, respectively, a > 0 and la be an

interval with length a. Then for any ¢ > 0,0 < b < 1/4 andn > max{1/b,8b/(*},

P(sup{|pn(a) — p(Ia)] : 0 < p(la) < b} > () < 160 exp{—n¢?/(64b+ 4¢)}
+8n exp{—nb/10}.

Proof of Theorem 5.6.3. We still use the notation in the proof of Theorem
5.6.2 to denote the empirical distribution of €4, ..., ¢, by i, and the distribution
of € by u. Since ¢ is uniformly continuous, we have sup, p(u) = ¢y < co. It is

easy to show that

sup |o(u) — fE(u)] -0 asn — oo. (5.6.11)

onl) — £5(u) = i{un([u — it ) — pu([t — G+ ).

and denote b = 2ppa, and (, = 2a,( for any ¢ > 0. Then for large enough n,
0 < b < 1/4 and sup,, p([u — an,u + a,]) < b for all n. From Conclusion D, we

have for large enough n

P{sup [eal) = E(0)| = ¢} = Psup = anu-+ o)
—p([u = an,u + a,))| > 2a,(}

naQ C2
< 160 — §
= eXp{ 32p0ay, + 2a,( }
na, o
+8n exp{— 5 }
It follows from (5.6.2) and Borel-Cantelli Lemma that
sup |@n (1) — @2 (u)| — 0 a.s. (5.6.12)

Combining (5.6.12) with (5.6.11), we obtain

sup lon(u) — @(u)] — 0 a.s. (5.6.13)
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In the following we shall prove that
sup |@n(u) — pn(u)] — 0 as. (5.6.14)

It is obvious that sup,, |@n1(u)| — 0 as n — co. Set d,, = @on~/3logn. For large

enough n, we have 0 < d,, < 1/4 and
sup pu{(u % a, — Cn~3logn,u =+ a,)} < Cd, for all n.
It follows from Conclusion D that

P(sup |Jn1 — pma(u)| > () < P(|,un{(u +a, — Cn~1/3 logn,u+ a,)}

—p{(u % a, — Cn~3logn,u +a,)}| > 2an§>

na2<-2
< 16n? - n
= o exp( 16900n_1/310gn+2an(’)
2/31

which and (5.6.2) imply that sup,, | Jn1 —¢n1(u)| — 0 a.s. and hence sup,, |J,1| — 0
a.s. We can prove sup,, |J,2| — 0 similarly. Recalling the proof of Theorem 5.6.2,

we can show that for large enough n

sup |Pn (1) — pn(u)| < sup | Jn| + sup | Jn2]

with probability one, which implies (5.6.14) and the conclusion of Theorem 5.6.3

follows.

5.6.3 Convergence Rates

Theorem 5.6.4 Assume that the conditions of Theorem 5.6.2 hold. If  is locally

Lipschitz continuous of order 1 onu. Then taking a, = n~"/¢ logl/2 n, we have
Bn(u) — @(u) = O(n™Y%10g'?n), a.s. (5.6.15)

Proof. The proof is analogous to that of Theorem 5.6.2. By the conditions of
Theorem 5.6.4, there exist ¢y > 0 and §; = d;(u) > 0 such that |p(u') — p(u)| <
colu” — u| for v’ € (u — 61, u + d1). Hence for large enough n

1 u+tan

E ) = e < o [ fp(u) = ()|’

26Ln U—an

< coan/2 = O(n~Y81og"? n). (5.6.16)
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Since ¢ is bounded on (u — d1,u + 1), we have for large enough n

1
on1(u) = 2—P(u +a, — CnYPlogn <& <u-+ an)
Qp,

IN

Cn Y3 logn  sup o(u)
u' €(u—0d1,u+01)

= O(n Y%1og?n).

Replacing ¢ by ¢, = ¢n~Ylog?n in (5.6.4), then for large enough n

3n/21og®/? nC}
6o + ¢ 7

Pl - oE0] > 20 g ) < 2o { -

here po = SUP, e (s, utsr) P(U'). Instead of (5.6.12), we have
on(u) — B (u) = O(n"Ylog?n), a.s. (5.6.17)

The same argument as (5.6.10) yields

P{|Jn1 — @1 (u)| > ¢n~Y00g 2 n} < 2exp(—Cn*?log'/?n).

Hence, J,1 — @1 (1) = O(n~%log'? n) a.s. Equations (5.6.16) and (5.6.17) imply
() — p(u) = O(n~Y%1og"?n), a.s.

This completes the proof of Theorem 5.6.4.

5.6.4 Asymptotic Normality and LIL

Theorem 5.6.5 Assume that the conditions of Theorem 5.6.2 hold. In addition,

¢ 1s locally Lipschitz continuous of order 1 on u. Let lim, .., na® =0. Then

V2 [0 () {Enlu) — p(u)} —~ N(0,1).

Theorem 5.6.6 Assume that the conditions of Theorem 5.6.2 hold. In addition,
¢ is locally Lipschitz continuous of order I on u, Let lim,, .., na?/loglogn =

0. Then

Na,

lim sup i{ }1/2{@n(u) —pu)} =1, as.

n—00 ©o(u)loglogn

The proofs of the above two theorems can be completed by slightly modifying
the proofs of Theorems 2 and 3 of ( ). Here we omit the details.



Chapter 6

PARTIALLY LINEAR TIME
SERIES MODELS

6.1 Introduction

Previous chapters considered the partially linear models in the framework of in-
dependent observations. The independence assumption can be reasonable when
data are collected from a human population or certain measurements. How-
ever, there are classical data sets such as the sunspot, lynx and the Australian
blowfly data where the independence assumption is far from being fulfilled. In
addition, recent developments in semiparametric regression have provided a solid
foundation for partially time series analysis. In this chapter, we pay attention
to partially linear time series models and establish asymptotic results as

well as small sample studies.

The organization of this chapter is as follows. Section 6.2 presents several
data-based test statistics to determine which model should be chosen to
model a partially linear dynamical system. Section 6.3 proposes a cross-validation
(CV) based criterion to select the optimum linear subset for a partially linear
regression model. In Section 6.4, we investigate the problem of selecting optimum
smoothing parameter for a partially linear autoregressive model. Section
6.5 summarizes recent developments in a general class of additive stochastic

regression models.

133
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6.2 Adaptive Parametric and Nonparametric Tests

6.2.1 Asymptotic Distributions of Test Statistics

Consider a partially linear dynamical model of the form

Yi=UlB+g(V;) +e,1<t<T (6.2.1)
where T is the number of observations, 3 = (31, ...,3,)" is a vector of unknown
parameters, ¢ is an unknown and nonlinear function over R?, U, = (Un, -, Utp)T

and V; = (Vj1,...,V,q)" are random processes, X, = (UL, V)T, (X,,Y;) are
strictly stationary processes, {¢;} is i.i.d. error processes with EFe; = 0 and
0 < Fe? = 02 < 00, and the {e,} is independent of {X;} for all s > t.

For identifiability, we assume that the (3, g) satisfies
E{Y, = U5 = g(V)}* = min E{Y; = Ua — f(Vi)}*

For the case where {X;} is a sequence of i.i.d. random variables, model (6.2.1)
with d = 1 has been discussed in the previous chapters. For Y, = yiip44,
Ui = Yraprda—i (1 <@ < p)and Vi = yrypra—; (1 < j < d), model (6.2.1) is

a semiparametric AR model of the form

p
Yisprd = O Yrprd—ilBi + 9(Ytaprd—1s - - - Yeip) + €1 (6.2.2)
i=1
This model was first discussed by ( ). Recently,
( ) established the asymptotic normality of the least squares estimator of 3.
See also ( ) and ( ) for some other results. For Y, = yiipia,

Ui = Yrrpra—i (1 < i@ < p) and {V;} is a vector of exogenous variables, model

(6.2.1) is an additive ARX model of the form

p
Yerprd = O Yerpra—ili + 9(Vi) + €. (6.2.3)

i=1
See Chapter 48 of ( ) for more details.
For the case where both U; and V; are stationary AR time series, model (6.2.1)
is an additive state-space model of the form

}/1; :ngﬂ—i_g(‘/t)—i_et?

Ut - f(Ut—l) + (5,5, (624)
‘/t - h(‘/;f—l) + Nt
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where the functions f and h are smooth functions, and the 9§, and 7, are error
processes.

In this section, we consider the case where p is a finite integer or p = pr —
oo as T — oo. By approximating ¢(-) by an orthogonal series of the form
>4 zi(4)vi, where ¢ = g is the number of summands, {z;(-) : i =1,2,...} is a
prespecified family of orthogonal functions and v = (7y1,...,7,)7 is a vector of
unknown parameters, we define the least squares estimator (B ,7) of (B,7) as the

solution of
T
SV = UfB = Z(V)"9}? = min!, (6.2.5)
t=1

where Z() = Z,(:) = {z1(:), ..., z(-)}*.
It follows from (6.2.5) that

3 = (UT0)*U"Y, (6.2.6)
(ZTz)* Z"{F - U0ru)ytumYy, (6.2.7)

)
I

where Y = (Yi,...,Yp)", U = (Uy,...,Up), Z = {Z(Vh)...., Z(Vi)}T, P =
Z(ZT2)*ZT, U = (F — P)U, and (-)* denotes the Moore-Penrose inverse.

Thus, the corresponding nonparametric estimator can be defined by
gv) = Z(v)"7. (6.2.8)

Given the data {(U;,V,,Y;) : 1 < t < T}, our objective is to test whether a

partially linear model of the form
Y, =U/B+g(Vi) + e

is better than either Y; = U + ¢; or Y; = g(V;) + e;. which is equivalent to
testing the hypothesis Hy, : g = 0 or Hyg : 3 = 0. This suggests using a statistic

of the form

Lip = (29)" oy (7" 2" 27 — g0} (6.2.9)
for testing Hy, or a statistic of the form

Lor = (2p) 203 *{B"U"UB — poi},

for testing Hg.

Now, we have the main results of this section.
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Theorem 6.2.1 (i) Assume that Assumptions 6.6.1-0.6.4 listed in Section 6.6
hold. If (Vi) = ¢** /T go(Vi) with go(V2) satisfying 0 < E{go(V;)?} < oo, then

asT — oo
Lip —* N (L, 1) (6.2.10)

where Lig = (v/202) ' E{go(V;)?}. Furthermore, under Hy, : g # 0, we have
limy_oo P(Lir > Ci7) = 1, where Cyr is any positive, nonstochastic sequence
with Cyp = o(Tq~'/?).

(ii) Assume that Assumptions 6.0.1-0.6./ listed in Section 6.6 hold. If B =
P4 INT By with 0 < E(UL By)? < oo, then as T — oo

Lop —* N(Lgp, 1) (6.2.11)

where Lyy = (vV202) ' E(UFBy)?.  Furthermore, under Hiz : 3 # 0, we have
limy oo P(Lor > Cor) = 1, where Cor is any positive, nonstochastic sequence

with Cyr = o(Tp~Y/?).

Let Ly = Ly or Loy and Hy denote Hy, or Hog. It follows from (6.2.10) or
(6.2.11) that Ly has an asymptotic normality distribution under the null hypoth-
esis Hy. In general, H, should be rejected if Ly exceeds a critical value, L, of
normal distribution. The proof of Theorem 6.2.1 is given in Section 6.6. Power

investigations of the test statistics are reported in Subsection 6.2.2.

Remark 6.2.1 Theorem 6.2.1 provides the test statistics for testing the partially
linear dynamical model (6.2.1). The test procedures can be applied to determine a
number of models including (6.2.2)-(6.2.4) (see Examples 6.2.1 and 0.2.2 below).
Similar discussions for the case where the observations in (0.2.1) are i.i.d. have
already been given by several authors (see ( ),

(1996), (1990), (1995) and (1997)).
Theorem 6.2.1 complements and generalizes the existing discussions for the i.i.d.

case.

Remark 6.2.2 In this section, we consider model (6.2.1). For the sake of iden-

tifiability, we need only to consider the following transformed model

p ~
Y= 6o+ Y Uulli + §(Vi) + e,

i=1
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where B = Y0 E(Uw)Bi + Eg(V,) is an unknown parameter, U, = U,; — EU,
and g(Vi) = g(Vi) — Eg(Vy). It is obvious from the proof in Section 6.6 that
the conclusion of Theorem 6.2.1 remains unchanged when Y; is replaced by Y, =

Y, — Bo; where Bo = 1/T XL, Y, is defined as the estimator of [3o.

Remark 6.2.3 In this chapter, we choose the traditional LS estimation method.
However, it is well known that the estimators based on the LS method are sen-
sitive to outliers and that the error distribution may be heavy-tailed. Thus, a
more robust estimation procedure for the nonparametric component g(-) might be
worthwhile to study in order to achieve desirable robustness properties. A recent
paper by ( ) on M—type smoothing splines for nonparametric
and semiparametric regression can be used to construct a test statistic based

on the following M —type estimator §(-) = Z(-)T A,
T ~
> Yo = Ui By — Z(Vi)"Anr} = minl,
t=1

where p(+) is a convex function.

Remark 6.2.4 The construction of the test statistic (0.2.9) is based on the
fact that g is approximated by the orthogonal series. The inverse matric
(ZTZ)~" involved in the test statistic (6.2.9) is just a random matriz of ¢ X q
order. We can estimate g by a kernel estimator and construct a kernel-based test
statistic for testing Ho, : g = 0. The proof of the asymptotic normality of the
kernel-based statistic is much more complicated than that of Theorem 6.2.1(i) due
to the fact that a random inverse matriz of T x T order is involved in the kernel-
based statistic. More recently, (1997) avoided using

this kind of test statistic by adopting an alternative version.

Remark 6.2.5 Consider the case where {e;} is a sequence of long-range depen-

dent error processes given by

00
€ = Z bs€i—s
s=0

with 320, b? < 0o, where {&,} is a sequence of i.i.d. random processes with mean
zero and variance one. More recently, ( ) have established a

result similar to Theorem 6.2.1.
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6.2.2 Power Investigations of the Test Statistics

In this section, we illustrate Theorem 6.2.1 by a number of simulated and real
examples. Rejection rates of the test statistics to test linearity and addi-
tivity are detailed in Examples 6.2.1 and 6.2.2 respectively. Both linearity and

additivity are also demonstrated by a real example.
Example 6.2.1 Consider an ARX model of the form

yr = 0.20y; 1 +5It2 + e,
ry = 05x1+¢e, 1<t<T, (6.2.12)

where 0 < 0 < 1 is a constant, e; and €; are mutually independent and identically
distributed random errors, e; ~ N(0,03), &, ~ U(—0.5,0.5), xq is independent of
Yo, To ~ U(—=1/3,1/3), yo ~ N(p1,0%), es and &; are independent for all s and t,
(¢4, €;) are independent of (xo,0), and the parameters oq, 1 and o1 are chosen

such that (zy,y;) are stationary.

Example 6.2.2 Consider a state-space model of the form

Y = Qup + 0.75%2 + ey,

Uy = 0.5Ut_1 + &4, 1<t < T,
Ut—1
= 05 ,
Ut 1 n vtz_l + Tt

where 0 < ¢ < 1 is a constant, both {e; : t > 1} and {n; : t > 1} are mutually
independent and identically distributed, {; : t > 1} is independent of ug, {v; : t >
1} is independent of vy, e, ~ U(—0.5,0.5), ug ~ U(—1/3,1/3), n ~ U(—0.5,0.5),
vo ~ U(=1,1), uy and v, are mutually independent, e, are i.i.d. random errors,

er ~ N(0,08), and {e; : t > 1} is independent of {(us,ve) 1 t > 1},

Firstly, it is clear that Assumption 6.6.1 holds. See, for example, Lemma
3.1 of ( ) ( ) and §2.4 of ( ).
Secondly, using (6.2.12) and applying the property of trigonometric functions, we

have

E{z?sin(inz,)} = 0 and E{sin(jrx,)sin(krz;)} = 0
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for all ¢+ > 1 and j # k. Therefore Assumption 6.6.3 holds. Finally, it follows
that there exists a sequence of constants {7; : j > 1} such that the even function
g(v) = d6v? can be approximated by a special form of the Gallant’s flexible Fourier

form (see ( )
{v* sin(mv), ... ,sin((¢ — 1)mv), ...}

Thus, Assumption 6.6.2 holds. We refer the asymptotic property of trigonometric
polynomials to ( ), Chapter IV of ( ) and
Chapter 7 of ( ). Thus, Assumptions 6.6.1-6.6.4 hold for
Example 6.2.1. Also, Assumptions 6.6.1-6.6.4 can be justified for Example 6.2.2

For Example 6.2.1, define the approximation of ¢;(z) = dz? by
g5 (@) = &y + Zsm m(j = Dx)ny,
Jj=2
where z € [~1,1], Z,(x;) = {22, sin(rx,),...,sin((q¢ — 1)7x,)}", ¢ = 2[T"?], and

Yo = (,ylla < 7,71Q)T'
For Example 6.2.2, define the approximation of go(v) = 0.750v* by

ga(v) = v 721+Zsm (L = 1)v)ya,
1=2

where v € [—1,1], Z,(v;) = {vZ,sin(7v,),...,sin(7(q — v}, ¢ = 2[T/?], and

Yo = (7217 v 772l1)T‘
For Example 6.2.1, compute

LlT = (Qq) 1/20-0_2( ZZQI;Z:I:;)\/Q: - qo'g)’

where 7, = (Z72,) '\ ZT{F — U,(U
Uy = o, v1, - yr—1)" Zo = {Zo(x
U, = (F — P)U,.

For Example 6.2.2, compute

U,)” 1UT}Y with Y = (y1,...,yr)T and
Zo(xp)Y, Py = Z(ZF 7)1 ZT | and

1); -

LQT =27 1/2 _2<5TUT uﬁu )

where 8, = (UTU,)"UT{F — Z,(ZTZ,)*ZTYY with Y = (y1,...,yr)"
Uy = (uy, ..., ur)T, Zy = {Zs(v1), ..., Zo(vp)}T, Py = U (UTU,) UL, and Z
(F — P)Z,
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Table 6.1: Rejection Rates For Example 6.2.1

T q o0y 6=0 06=01 6=03 06=06
30 3 01 0.083 0.158 0.55 0.966
60 4 0.1 0.025 0.175 0.766 1.000
100 5 0.1 0.033 0.166 0.941 1.000
30 3 0.2 0.091 0.1 0.191 0.55
60 4 0.2 0.025 0.066 0.291 0.791
100 5 0.2 0.041 0.075 0.35 0.941

30 3 025 0.1 0.1 0.183 0.408
60 4 0.25 0.025 0.05 0.2 0.591
100 5 0.25 0.041 0.066 0.233 0.825

Table 6.2: Rejection Rates For Example 6.2.2

T q¢ o0 ¢=0 ¢=005 ¢=0.15 ¢=0.25
30 3 0.1 0.05 0.158 0.733 1.000
60 4 0.1 0.083 0.233 0.941 1.000
100 5 0.1 005  0.391 1.000 1.000
30 3 02 005 0.083 0.233 0.566
60 4 0.2 0.083 0.108 0.491 0.833
100 5 0.2 0041  0.125 0.716 0.975
30 3 03 005  0.058 0.158 0.308
60 4 0.3 0075 0.116 0.233 0.541
100 5 0.3 005  0.083 0.391 0.8

For Examples 6.2.1 and 6.2.2, we need to find L§, an approximation to the
95-th percentile of Ly. Using the same arguments as in the discussion of
( ), we can show that a reasonable approximation to the 95th
percentile is
Xloos — T
- VeT
where A7 o5 is the 95th percentile of the chi-squared distribution with 7 degrees
of freedom. For this example, the critical values L§ at a = 0.05 were equal to
1.77, 1.74, and 1.72 for T equal to 30, 60, and 100 respectively.
The simulation results below were performed 1200 times and the rejection
rates are tabulated in Tables 6.1 and 6.2 below.
Both Tables 6.1 and 6.2 support Theorem 6.2.1. Tables 6.1 and 6.2 also show

that the rejection rates seem relatively insensitive to the choice of ¢, but are
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sensitive to the values of d, ¢ and oy. The power increased as ¢ or ¢ increased
while the power decreased as o( increased. Similarly, we compute the rejection
rates for the case where both the distributions of e; and yy in Example 6.2.1 are
replaced by U(—0.5,0.5) and U(—1, 1) respectively. Our simulation results show
that the performance of Ly under the normal errors is better than that under the

uniform errors.

Example 6.2.3 In this ezample, we consider the Canadian lynz data. This data
set is the annual record of the number of Canadian lynx trapped in the MacKenzie
River district of North-West Canada for the years 1821 to 1934. ( ) fit-
ted an eleven th-order linear Gaussian autoregressive model to y, = logy,(number
of lynx trapped in the year (1820 4 t)) — 2.9036 for t = 1,2,...,114 (T = 114),
where the average of logy, (trapped lynz) is 2.9036.

In the following, we choose y,,1 and y, as the candidates of the regressors
and apply Theorem 6.2.1 to test whether the real data set should be fitted by the

second-order linear autoregressive model of the form

Ynt2 = Pryns1 + Bolp + €10, 1 <n < T (6.2.13)

or the second-order additive autoregressive model of the form

Ynt2 = B3Ynt1 + 9(yn) + €20, 1 <n < T,

where (31, B, and (3 are unknown parameters, g is an unknown function, and ey,
and e,,, are assumed to be i.i.d. random error with mean zero and finite variance.
For Example 6.2.3, we choose the series functions z;(v) = v and {z;(v) =
cos((j — 1)mv) : 2 < j < gq}. Our previous research (see
( )) on selecting the truncation parameter g suggests using ¢ = 2 for this
example. Similar to Example 6.2.1, the critical value at o = 0.05 for L7 with
T = 114 was 0.6214. With o2 in (6.2.9) replaced by its estimator 52 = 0.0419, the
value of L7 was 3.121. Thus the linear model (6.2.13) does not seem appropriate
for the lynx data. This is the same as the conclusion reached by

( ) through a Bayesian approach.
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6.3 Optimum Linear Subset Selection

In Section 6.2, we discussed model (6.2.1). In applications, we need to determine
which subset of X; should become the U; before using the model (6.2.1) to fit
a given set of data. In this section, we construct a CV criterion to select the
U;. In the meantime, we apply this CV criterion to estimate semiparametric
regression functions and to model nonlinear time series data. Additionally,

we illustrate the consistent CV criterion by simulated and real examples.

6.3.1 A Consistent CV Criterion

Let (Y%, X;) be (r 4+ 1)-dimensional strictly stationary processes with X; =
(X1, ..., X)T and r = p+ d. We write

K = m(Xt) + €t,

where m(z) = E(Y;|X; = z) and ¢, = Y; — E(Y4|X;). For any A C A =
{1,2,...,r}, we partition X into two subvectors U4 and V;4, where U, 4 consists
of {Xy,1 € A} and V;4 consists of {Xy;,7 € A— A}. We use p = #A to denote
the cardinality of A and d = r—p. We call a d-dimensional function ¢(z1, ..., z4)
completely nonlinear if for any 1 < ¢ < d, ¢ is a nonlinear function of x; with all
other z’s fixed.

Before proposing our consistency criterion, we need to make the following

assumption.

Assumption 6.3.1 Suppose that the true unknown regression function is

m<Xt) = Ut:iloﬁAo + ng(‘/;on)

for some Ay C A with #Ay > 1, where (B4, is a constant vector and ga, is a

non-stochastic and completely nonlinear function.

Following Assumption 6.3.1, we have

Ao (U) = J14, (U) — 924 (U)Tﬁon

where g14,(v) = E(Yi|Via, = v) and goa, (v) = E(Usay|Via, = v).
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First, for any given § and A C A, we define the following leave-one-out

estimators by

T
,/g\lt(‘/;Aa h) - Z WSA(‘/t/h h)}/:%
s= 1s;£t
§2t<VtA7 h) = Z WSA ‘/;fA7 UsA7
s=1,s#t
and
5:(Via, B) = G1e(Via, h) — Goe(Via, h)" B, (6.3.1)
where

WSA(VZA,h)ZKd(VtA sA)/{ Z Kd(VtA Via )}’

I=1,1#t
in which K, is a multivariate kernel function and h is a bandwidth parameter.
Then, we define the kernel-based least squares (LS) estimator B(h,A) by

minimizing
Z{Y;f tAﬁ h A) (V;A7B(h7 A))}2
For any given A C A with |A| > 1, the LS estimator 3(h, A) is

B(h, A) = {ZhA}+ZUtA HY: — g1e(Vaa, b))},

t=1
where Uja(h) = Ui — Got(Via, h) and S(h, A) = S Ua(h)Usa(h)T.
For any given A C A, we define the following CV function by

1 & ~ R .
OV (h, A) = = > Y = UaBB(h, A) = Gu(Via, B(h, A))}*, (6.3.2)
t=1
Remark 6.3.1 Analogous to ( ), we avoid using a weight

function by assuming that the density of X, satisfies Assumption 0.6.5(ii) in
Section 6.0.

Let Ay and h denote the estimators of A, and h, respectively, which are
obtained by minimizing the CV function CV'(h, A) over h € Hy and A C A,
where Hp = Hrpg = {hoin(T, d), hanax (T, d)} With 0 < Ao (T, d) < hmax (T, d) < 1
for all T and d > 1.

The main result of this section is as follows.
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Theorem 6.3.1 Assume that Assumptions 6.5.1, 6.6.1, and 6.6.4- 6.6.7 listed
i Section 6.6 hold. Then

Tlim Pr(Ag = Ay) =1

Remark 6.3.2 This theorem shows that if some partially linear model within
the context tried is the truth, then the C'V function will asymptotically find it.
Recently, ( ) considered using a smoothing spline to approz-
imate the nonparametric component and obtained a similar result for the i.1.d.

case. See their Proposition 1.

The proof of Theorem 6.3.1 is postponed to Section 6.6.

Similar to (6.3.1), we define the following estimators of gi,(), goa,(+), and

ng(') by
L 1 K+ ((v—V ~)/h)Y,
gl(v;h’AO) _ ~ Z do((/\ s /9)/ ) :
Th 0 s=1 (UahaAO)
o 1 T K-((v—V~)/MU ~
Go(v;h, Ag) = —==>_ il s OA)/ ) sho (6.3.3)
T hdo s=1 f(va thO)
and

where dy = r — | A| and

~ K Vi )/h). (6.3.4)

1
U;h = —=
i T &=

We now define the estimator of m(X;) by
m(Xta /];M A\O) = UZZX\QB(E’ A\U) + ‘/g\(V’\ ) /];M A\O)

The following result ensures that the prediction error o (}\L /Alo) converges to

the true variance o2 = E{Y; — m(X;)}? in large sample case.

Theorem 6.3.2 Under the conditions of Theorem 6.3.1, we have as T — 0o

o~

5%(h, Ay) Z{Yt m(Xy; h, Ag)Y? —7 o2,
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The proof of Theorem 6.3.2 is mentioned in Section 6.6.
In the following, we briefly mention the application of Theorem 6.3.1 to semi-
parametric regression and nonlinear time series models.

Consider the partially linear model (6.2.1) given by
Y, = U/ B+9(V) + e, (6.3.5)

For a sequence of independent observations {(U, V;) : t > 1}, model (6.3.5) is
a semiparametric regression model. For Y, = v, Uy = (Yi—eys - - - ,yt_cp)T and
Vi = (Y1—dy»-- - Yt—d,), model (6.3.5) is a partially linear autoregressive
model. In applications, we need to find the linear regressor U; before applying
the model (6.3.5) to fit real data sets. Obviously, Theorem 6.3.1 can be applied

to the two cases.

6.3.2 Simulated and Real Examples

In this section, we apply Theorems 6.3.1 to determine a partially linear ARX

model and to fit some real data sets.

Example 6.3.1 Consider the model given by
Y = O.Qyt_l + 0~1yt—2 + 0.2 sin(mct) + et,t = 27 3, ceey T, (636)

where x; = 0.5xy_1 + &4, e, and €, are mutually independent and identically dis-
tributed over uniform (—0.5,0.5), x1, yo and y; are mutually independent and

identically distributed over uniform (—1,1), and both ¢, and e; are independent

Of (371, Yo, yl)

In this example, we consider using the following kernel function
d
Ky(uy,ug, ... ug) = H K (u;),
i=1
where d = 1,2, 3,

15/16)(1 — u2)2 if [u| <1
otherwise

K(u):{é

and Hy = [T77/30, 1.17-1/8].
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Table 6.3: Frequencies of selected linear subsets in 100 replications
for Example 6.2.3

Linear subsets | T=51 | T=101 | T=201
A={1,2} 86 90 95
A={1,3} 7 5 3
A={2,3} 5 4 2

A={1,2,3} 2 1 -

Select y;_1, y;—2 and x; as the candidates of the regressors. In this example,
A = {1,2,3}. Let A be the linear subset of A. Through computing the CV
function given in (6.3.2), we obtain the results listed in Table 6.3.

In Table 6.3, A = {1,2} means that y;_; and y;_» are the linear regressors,
A = {1,3} means that y;_; and x; are the linear regressors, A = {2,3} means
that y;—o and z; are the linear regressors, and A = {1, 2,3} means that (6.3.6) is
a linear ARX model.

In Example 6.3.2, we select y,.2 as the present observation and both ¥,

and y, as the candidates of the regressors, n =1,2,...,T.

Example 6.3.2 In this example, we consider using Theorem 0.5.1 to fit the
sunspots data (Data I) and the Australian blowfly data (Data II). For Data I,
first normalize the data X by X* = {X-—mean(X)}/{var(X)}'/? and define
Y = the normalized sunspot number in the year (1699 + t), where 1 < t < 289
(T = 289), mean(X) denotes the sample mean and var(X) denotes the sample
standard deviation. For Data II, we take a log transformation of the data by
defining y = log,, (blowfly population) first and define y; = log,,(blowfly popula-
tion number at time t) fort =1,2,...,361 (T = 361).

In the following, we only consider the case where A = {1,2} and apply the
consistent CV criterion to determine which model among the following possible

models (6.3.7)—(6.3.8) should be selected to fit the real data sets,

(I) Ynr2 = Bitn + g2(Yns1) + €1, (6.3.7)
(I[) Yn+2 = [Polnt1 + 91(yn) + e, (6.3.8)
where (3, and (5 are unknown parameters, ¢g; and g are unknown and nonlinear

functions, and ey, and es,, are assumed to be i.i.d. random errors with zero mean

and finite variance.
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Table 6.4: The minimum CV values for Example 6.3.1

Models | CV-Data I | CV-Data II
I 0.1914147 0.04251451
1T 0.1718859 | 0.03136296

Our experience suggests that the choice of the kernel function is much less
critical than that of the bandwidth. In the following, we choose the kernel function
K(z) = (27) Y2 exp(—2?/2) and h € Hy = [T~7/3° 1.1T7-/9].

Through computing the CV function defined by (6.3.2) for Example 6.3.2, we
can obtain the following minimum CV values listed in Table 6.4.

For the two data sets, when selecting y,,+1 and v, as the candidates of the

regressors, Table 6.4 suggests using the prediction equation

Z/\TH-Q = BQ(}\@C)ynJ,-l + gl (yn)7 n = 17 27 ) (639>

where §1(yn) = G2 (Y, hac) — Ba(hac)i (4o, m appears to be nonlinear,

A {Z K e}/ {

and 7120 = 0.2666303 and 0.3366639, respectively.

}2_1,2,

In the following, we consider the case where A = {1,2,3} and apply the
consistent CV criterion to determine which model among the following possi-
ble models (6.3.10)—(6.3.15) should be selected to fit the real data sets given in
Examples 6.3.3 and 6.3.4 below,

M6

(M1) Y, = BiXn+ BoXio + 93(Xis) + e, (6.3.10)
(M2) Y, = B3Xu + g2(Xeo) + 54 Xy3 + e, (6.3.11)
(M3) Yy = gi(Xu) + s X2 + P6Xe3 + €3, (6.3.12)
(M4) Vi = B Xn + Gi(Xu) + ea, (6.3.13)
(M5) Y, = [sXpo+ Ga(Xo) + €51, (6.3.14)
(M6) ( )

Y, = [oXis+ G3(Xa) + eqr,

_ T _ T _ T
where X; = (XtQaXtS) , Xop = (th,th) , Xap = (thaXt2) , B; are unknown
parameters, (g;,G;) are unknown and nonlinear functions, and e;; are assumed

to be 1.1.d. random errors with zero mean and finite variance.
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Analogously, we can compute the corresponding CV functions with K and h

chosen as before for the following examples.

Example 6.3.3 In this example, we consider the data, given in Table 5.1 of

( ), representing 21 successive days of operation of a plant
oxidizing ammonia to nitric acid. Factor xy is the flow of air to the plant. Factor
To 1S the temperature of the cooling water entering the countercurrent nitric oxide
absorption tower. Factor x3 is the concentration of nitric acid in the absorbing
liquid. The response, y, is 10 times the percentage of the ingoing ammonia that
18 lost as unabsorbed nitric oxides; it is an indirect measure of the yield of nitric
acid. From the research of ( ), we know that the trans-
formed response log,,(y) depends nonlinearly on some subset of (1,22, x3). In
the following, we apply the above Theorem 6.5.1 to determine what is the true

relationship between log,,(y) and (z1, xe, x3).

Example 6.3.4 We analyze the transformed Canadian lynx data y, = log,,(number
of lynx trapped in the year (1820 +t)) for 1 <t < T = 114. The research of
(199/) has suggested that the subset (y;—1,Yi—3,Yi—¢) should be selected
as the candidates of the regressors when estimating the relationship between the
present observation y; and (Yi—1,Ys—2,---,Yi—6). In this example, we apply the

consistent C'V criterion to determine whether y; depends linearly on a subset of

(yt—b Yt—3, yt—ﬁ)-

For Example 6.3.3, let Y; = logyo(y:), X1 = 241, X2 = Tpo, and Xy3 = 243
for t = 1,2,...,T. For Example 6.3.4, let Y; = yi16, Xi1 = Yras, Xi2 = Yir3,
and X3 =y, fort =1,2,...,T — 6. Through minimizing the corresponding CV
functions, we obtain the following minimum CV and the CV-based 3(h¢) values
listed in Tables 6.5 and 6.6, respectively.

For Example 6.3.3, when selecting (6.3.11), (6.3.12) or (6.3.15) to fit the
data, Table 6.6 shows that the factor x3’s influence can be negligible since the
CV-based coefficients 34@2(;), 36(530) and 39(7160) are relatively smaller than
the other coefficients. This conclusion is the same as that of
( ), who analyzed the data by using classical linear regression models. Table

6.5 suggests using the following prediction equation

~ o~

Uy = Bs(?lzc)l”ﬂ + Ga(x2) + Balhoc)xys, t =1,2,..., 21,
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Table 6.5: The minimum CV values for Examples 6.3.2 and 6.3.3

Models

CV-Example 6.3.2

CV-Example 6.3.3

1)

W
\_/\_/\_/\_/\_/

(M

(M2
(M
(M
(M5
(M6

0.008509526
0.005639502
0.005863942
0.007840915
0.007216028
0.01063646

0.06171114
0.05933659
0.07886344
0.06240574
0.08344121
0.07372809

Table 6.6: The CV-based [(h¢

) values for Examples 6.3.2 and 6.3.3

B(he)-Value | Example 6.3.2 | Example 6.3.4
51 (hyc) 0.01590177 0.9824141
Ba(hyc) 0.0273703 -0.4658888
Bs(hac) 0.01744958 0.9403801
Bi(hoc) -0.003478075 | 0.03612305
Bs(hsc) 0.04129525 -0.4313919
Be(hsc) | -0.001771901 | 0.02788928
Br(hac) 0.01964107 0.9376097
Bs(hse) 0.04329919 -0.423475
Bo(hec) | -0.003640449 | 0.03451025

149
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where §2($t2) = @2(%2, BQC) - {33(320), 34(520)}T§1 ($t2, ?LQC) appears to be non-

linear,

21 21

Gilwe, ) = {3 K(E0 2} [ K(FEE) =12,

s=1 s=1

Zos =Yy, Ziy = (251, 252)7, and hoc = 0.6621739.
For the Canadian lynx data, when selecting y,,.5, ¥,+3, and y,, as the candi-
dates of the regressors, Tables 6.5 and 6.6 suggest using the following prediction

equation

Tnse = B3(hac)ynss + Go(Unss) + Bulhoc)yn,n = 1,2,...,108,  (6.3.16)

where §2(yn+3> = §2(yn+3, ?ch) - {Bs(ﬁzc), B4(EQC>}T§1(yn+37 EQC) appears to be

nonlinear,

108 108

Gi(ars ) = {3 K(%””—;ym)zm}/{;lf((%%—}?w’)}, i=1,2,

m=1

Zom = Ym+6, 21m = (Yms, Ym)®, and ?LQC = 0.3312498.

The research by ( ) and ( ) has suggested that
the fully nonparametric autoregressive model of the form v, = g(y;—1, ..., yi—r)+es
is easier to understand than the threshold autoregressive approach proposed by

( ). It follows from equations (6.3.9) and (6.3.16) that for the Cana-
dian lynx data, the sunspots data and the Australian blowfly data, the above
partially linear autoregressive model of the form (6.3.5) is more appro-

priate than the fully nonparametric autoregressive model.

6.4 Optimum Bandwidth Selection

6.4.1 Asymptotic Theory

As mentioned in ( ), some nonlinear phenomena cannot be fitted by lin-
ear ARMA models and therefore the fully nonparametric autoregressive function
approach is recommended to use in practice. But in some cases, the fully non-
parametric autoregressive function approach will lose too much information on
the relationship between {y;} and {y;—;,7 > 1} and neglect some existing linear

dependencies among them. A reasonable approach to modelling the nonlinear
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time series data is to use the partially linear additive autoregressive model
p q
Ye = ; Bilt—e; + jz_:l 95 (Ye-a;) + e,
where ¢t > max(c,,d;), 1 <1 <...<¢, <1, 1<dy <...<d, <r,and ¢; # d;
foralll1<i:<pand1<j<gq.

There are a number of practical motivations for the study of the above model.
These include the research of population biology model and the Mackey-Glass sys-
tem (Glass and Mackey, 1988). Recently,

( ) suggested studying the model

Yt—d
— + e
14+ yf, '

Y =ayi—1+b
For k = 10 this is a discretized version of the Mackey-Glass delay differential equa-
tion, originally developed to model the production and loss of white blood cells.
It can also be interpreted as a model for population dynamics. If 0 < a < 1 and
b > 0 and if {y; } denotes the number of adults, then a is the survival rate of adults
and d is the time delay between birth and maturation. The {by,_q(1 + y¥ ;)7 '}
accounts for the recruitment of new adults due to births d years in the past,
which is non-linear because of decreased fecundity at higher population levels.
In addition, the development in partially linear (semiparametric) regression has
established a solid foundation for partially linear time series analysis.
For simplicity, we only consider a partially linear autoregressive model of the

form

Y= Py—1+ 9(yr—2) + e, t=3,4,...,T (6.4.1)

where 3 is an unknown parameter-of-interest, ¢ is an unknown function over
R' = (—00,), {e; : t > 3} is a sequence of i.i.d. random errors with Fe; = 0
and Fe? = 0% < oo, and {e; : t > 3} is independent of (y,ys).

For identifiability, we assume that the (3, g) satisfies

E{y: — Byt — g(yi2)}* = fﬂ“}} Ely: — ayi 1 — f(yi2)}>.

It follows from (6.4.1) that

9(We-2) = E{(ye — Bye—1)|ye—2}

= E(plyi—2) — BE(W-1|vi—2) = 91(Yi—2) — Bga(y—2)-
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The natural estimates of g; (i = 1,2) and ¢ can be defined by

T
§1,h(yt—2) = ZWs,h<yt—2>y37
s=3
T
Gon(Wi2) = D Wen(yi—2)ys1,
s=3

and

Gn(Yi—2) = Gun(Yi—2) — BGan(ye—2),

where {W(+)} is a probability weight function depending on yi,ya, ..., yr—2 and
the number T of observations.

Based on the model y; = By—1 + Gn(yi—2) + €, the kernel-weighted least
squares (LS) estimator 3(h) of § can be defined by minimizing

T
Z{yt — Bys—1 — §h(yt—2)}2-
t=3

We now obtain

R T

By =5 = (L) {Ewer+ S wanlu-)}, (6:4:2)

=3 =3
where u; = 11 — Go.n(Ye—2) and gn(yi—2) = 9(ye—2) — Gn(Y—2)-
In this section, we only consider the case where the {W,(-)} is a kernel

weight function

Wan(w) = Kn(w = ya2) /3 K(w = -2),

where Kj,(-) = h"'K(-/h), K : R — R is a kernel function satisfying Assumption
6.6.8 below and

h=hre€ Hpr = [(117"'*1/57017 blfrfl/ﬁ’ﬂrcl]7

in which the absolute constants a;, b; and c; satisfy 0 < a; < b < oo and
O0<c < 1/20
A mathematical measurement of the proposed estimators can be obtained by

considering the average squared error (ASE)

1

D(h) = T3 _3[{3(h)yt—1 + G (ye—2)} — {By-1 + 9(ye—2)  w(ye—2),
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-~

where G5 (-) = Gia(-) — B(h)g2n(-) and w is a weight function. It follows from the
ASE (see Lemma 6.6.7 (i) below) that the theoretically optimum bandwidth is

1/5 Unfortunately, this optimization procedure has the draw-

proportional to n~
back that it involves functionals of the underlying distribution. In this section, we
will propose a practical selection procedure and then discuss adaptive estimates.

We now have the main results of this section.

Theorem 6.4.1 Assume that Assumption 6.0.8 holds. Let Ee; = 0 and Ee? =
0% < o0o. Then the following holds uniformly over h € Hr

VT{B(h) — B} —* N(0,0%3?),

where 05 = E{yi—1 — E(Yi—1|y1—2) }*.

Theorem 6.4.2 Assume that Assumption 6.6.8 holds. Let Ee; = 0 and Fej <
00. Then the following holds uniformly over h € Hrp

VT{5(h)? — 6°} —* N(0, Var(e?)),

where 5(h)? = 1/T S G — B Gi-1}2, o1 = Y1 — Gon(Ye—2), and G =
Yy — §1,h(yt—2)~

Remark 6.4.1 (i) Theorem 6.4.1 shows that the kernel-based estimator of (3
is asymptotically normal with the smallest possible asymptotic variance (
(1955)).

(ii) Theorems 6.4.1 and 6.4.2 only consider the case where {e;} is a sequence
of i.i.d. random errors with Ee; = 0 and Ee? = 0 < co. As a matter of fact,
both Theorems 6.4.1 and 6.4.2 can be modified to the case where Fe; = 0 and
Ee? = f(y;_1) with some unknown function f > 0. For this case, we need to

construct an estimator for f. For example,

~

fT(Z/) = ZS WT,t(y){yt — B(h)ye—1 — §;(Z/t72)}27

where {Wry(y)} is a kernel weight function, B(h) is as defined in (6.4.2) and

~

G5 (Yi—2) = G1a(yi—2) — B(h)Go.n(yi—2). Similar to the proof of Theorem 6.4.1, we
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can show that fT(y) is a consistent estimator of f. Then, we define a weighted
LS estimator B(h) of B by minimizing

T -~
Jr(e—1) "y — Byi—1 — Gn(ye—2) ¥,
=3

where Gp(yi—2) s as defined in (6.4.2).
Some additional conditions on f are required to establish the corresponding

results of Theorems 6.4.1 and 6.4.2.

Remark 6.4.2 A generalization of model (6.4.1) is

p
Yt = Z Bsli—s + g(yt—p—l) +e = %Tﬂ + g(yt—p—l) +e, tZ2p+2, (6-4-3)

s=1
where xy = (Y1, Yrp)’, B = (B1, -, Bp)" is a vector of unknown param-
eters, and the g and {e;} are as defined in (6./.1). For this case, we need to
modify the above equations (see §4.2 of Chapter III of
(1959) ) and the kernel-weighted LS estimator of 5 can be defined as

N T n T
B=(> uul) ¥ uv,
t=p+2 t=p+2

where

Vi = Yy — go(yt—p—l); U =x — G(yt—p—1)7

G() = a0 GO a() = X Wan()ys—i

s=p+2
fori=0,1,...,p, in which
T
sth(') = Kh( - ys—p—l)/{ Z Kh( — yl_p_l)}.
l=p+2
Under similar conditions, the corresponding results of Theorems 6./.1 and 6.4.2

can be established.

Remark 6.4.3 Theorems 6./.1 and 0.4.2 only establish the asymptotic results
for the partially linear model (6.4.1). In practice, we need to determine whether

model (6.4.1) is more appropriate than

Yo = [i(Ye-1) + ay—2 + €, (6.4.4)
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where fy is an unknown function over R', a is an unknown parameter and {e;} is
a sequence of i.i.d. random errors with mean zero and finite variance. In this case,
we need to modify the above estimation equations and to estimate the regression
function of E(y;—o|yi—1), which has been discussed in §5.2.4 of (1990) and

(1953). They both have discussed the estimators of E(yi|yi+;) forj > 1.
Therefore, similar results for (6.4.4) can also be obtained. Section 6.4.2 below

provides estimation procedures for both (6.4.1) and (6.4.4).

In the following section, we apply a cross-validation (CV) criterion to con-

struct an asymptotically optimal data-driven bandwidth and adaptive data-driven

estimates.
Let us define N =T — 2,
D) = gy YU+ 5in-2)) — (s + o))t
- %Zl[{m)ym F 0} — {Byns + g wlm),  (6.45)
and

Z Yn+2 — yn—i—l + ./g\l,n(yn) - 5<h)§2,n(yn)}]2w(yn)7 (646>

where 3(h) is as defined in (6.4.2) with g, (-) replaced by Ghn(-) = Gin(-) = BG2n(-),

in which

gi,n(') = ./g\z,n( s N 1 Z Kh ym+3 /fhn( )
m#n
and
Funl) = 55 3 Bl = ) (647
m#n

Definition 6.4.1 A data-driven bandwidth h is asymptotically optimal if

D —~
b
lnfhEHT D(h>

CROSS-VALIDATION (CV): Select h, denoted by h¢, that achieves

CV(he) = inf CV(h). (6.4.8)

hEHN+2
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Theorem 6.4.3 Assume that the conditions of Theorem 6.4.1 hold. Then the

data-driven bandwidth ?LC 15 asymptotically optimal.

Theorem 6.4.4 Assume that the conditions of Theorem 6.4.1 hold. Then under
the null hypothesis Hy : 3 =0

Fy(he) = T{B(hc)Y o507 —* X*(1), (6.4.9)

as T — oo. Furthermore, under Hy : 3 # 0, we have ﬁ’(ﬁc) — 00 as T — oo.

Theorem 6.4.5 Assume that the conditions of Theorem 6./.1 hold. Then under
the null hypothesis H, : 0% = 03

Fy(he) = T{5(he)? — 02} {Var(e})} ™t — x2(1), (6.4.10)

as T — oo. Furthermore, under Hj : 02 # o2, we have F(h¢) — 0o as T — oo.

Remark 6.4.4 Theorems 0.4.5-0.4.5 show that the optimum data-driven band-
width he s asymptotically optimal and the conclusions of Theorems 6.4.1 and
0.4.2 remain unchanged with h replaced by he. It follows from Theorems 6.4./

2

and 6./.5 that when h is proportional to n='/°, both B and 0* are \/n—consistent.

In addition, it follows from Lemma 6.6.7(i) that the nonparametric estimate gy

is of n=%° rate of mean squared error (MSE) when h is proportional to n=/°,

6.4.2 Computational Aspects

In this subsection, we demonstrate how well the above estimation procedure works

numerically and practically.
Example 6.4.1 Consider model (6.4.1) given by
Y = ﬁyt—l + g(yt—Q) + €t = 3747 "'7T7 (6411)

where {e; : t > 3} is independent and uniformly distributed over (—0.5,0.5), y;
and yy are mutually independent and identically distributed over (—1,1), (y1,y2)
is independent of {e; : t > 3}, and (B,g) is chosen from one of the following

models.
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Model 1. 3 =0.25 and g(y) = y/2(1 + y*) .
Model 2. 3 = 0.25 and g(y) = 1/4sin(7y).

In this section, we conduct a small sample study for the two models.

Choose the quartic kernel function

~f (15/16)(1 —w?)? ifful <1
K(u) = { 0 otherwise

and the weight function

{1 i<t
W)= 0 otherwise

First, because of the form of g, the fact that the process {y:} is strictly

stationary follows from §2.4 of ( ) (also Theorem 3.1 of
( )). Second, by using Lemma 3.4.4 and Theorem 3.4.10 of
( ). (also Theorem 7 of §2.4 of ( ), we

obtain that the {y;} is f-mixing and therefore a-mixing. Thus, Assumption 6.6.1
holds. Third, it follows from the definition of K and w that Assumption 6.6.8
holds.

(i). Based on the simulated data set {y; : 1 <t < T}, compute the following

estimators
Gun(yn) = {zl Kn(Un = Ym)ymo2} /{ > Kilyn - Ym)
Go.n(yn) = {E_:l Kn(Yn = Ym)ymi1 } /{ 2_:1 Kn(Yn — ) },
1

gn(Yn) = GLu(Yn) — Zﬁz,h(yn)a

Giaw) = {0 Enlvn = vm)vmes} /{2 Knlyn —vm) },

m#n m#n
N N
§2,n(yn) = { Z Kh(yn - ym)ym+1}/{ Z Kh(yn - ym)}a
m#n m#n
and
~ N 1.
Gn(Yn) = G1.n(Yn) = 3920 (), (6.4.12)

where Kj,(-) = h'K(-/h), h € Hyyo = [(N +2)77/3 L1(N + 2)7V9], and
1<n<N\.
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(ii). Compute the LS estimates 3(h) of (6.4.2) and 8(h) of (6.4.6)

B(h> -B= (Z Ui+2>71{z Up+42€6n42 + Z un+2§h(yn)} (6.4.13)

n=1 n=1
and

N -1 N N
= (X v20) {D vnszeniz + D vnsaba(yn)} (6.4.14)
n=1 n=1

n=1

where wny2 = Ynt1 — G2n(Yn), Gu(Yn) = 9(Yn) — Gn(Yn)s Ytz = Ynt1 — G2,n(Yn),
(iii). Compute

D(h) = {7 (20) — m(2)}*

hE

i
I

[{B(R)tnr2 + Gin(ya)} = {Bynsr + 9(ya)})?

1

S
I

(h)un+2 + §1,h(yn)}2

[]=
—
R)

Il
2= Z= ==
M=

S
Il

ZH

B(h)tnsz + Gia(Wn) HBYns1 + 9(un) }

|
2 |

1 N
Z{ﬁyn+1 + g(yn) }?
Dy, + D2h + Dsp, (6.4.15)

where the symbol “=” indicates that the terms of the left-hand side can be
represented by those of the right-hand side correspondingly.

Thus, Dy, and Dy, can be computed from (6.4.6)—(6.4.15). Ds;, is indepen-
dent of h. Therefore the problem of minimizing D(h) over Hy o is the same as

that of minimizing Dy + Dsj,. That is

hp = arg hergng(Dlh + Doy). (6.4.16)
(iv). Compute
1 & _ )
OV = 5 3 {toss = Tina(en)}

= 7thn Zn szhn Zn)yn+2+Nzyn+2
OV () + CV(h)y + OV (R (6.4.17)
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Table 6.7: Simulation results for Model 1 in Example 6.4.1

N [The—hp| |1 B(hc) —0.25] | | B(hc) — 0.25| | ASE(hc)
100 0.08267 0.09821 0.09517 0.00451
200 0.07478 0.07229 0.07138 0.00229
300 0.08606 0.05748 0.05715 0.00108
400 0.05582 0.05526 0.05504 0.00117
500 0.07963 0.05025 0.05013 0.00076

Table 6.8: Simulation results for Model 2 in Example 6.4.1

N [The—hp | |1 B(he) —0.25] | | B(hc) — 0.25| | ASE(hc)
100 0.08952 0.07481 0.07367 0.05246
200 0.08746 0.06215 0.06189 0.02635
300 0.09123 0.05243 0.05221 0.01573
400 0.09245 0.05138 0.05093 0.01437
500 0.09561 0.05042 0.05012 0.01108

Hence, CV(h); and CV (h)y can be computed by the similar reason as those
of Dy, and Dsyy,. Therefore the problem of minimizing C'V'(h) over Hy .o is the
same as that of minimizing CV'(h); + CV (h),. That is

he = arg min {CV(h); + CV (h)s}. (6.4.18)

EHN 2

(v). Under the cases of T'= 102,202, 302, 402, and 502, compute

~ o~

lhe = R, 1B(he) = Bl, 1B(he) — 8], (6.4.19)

and
ASE(he) = + >3, (1) — o)) (6.4.20)

The following simulation results were performed 1000 times using the Splus
functions ( ( )) and the means are tabulated in Tables

6.7 and 6.8.

Remark 6.4.5 Table 6.7 gives the small sample results for the Mackey-Glass
system with (a,b,d, k) = (1/4,1/2,2,2) (84 of
( )). Table 6.8 provides the small sample results for Model 2 which
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contains a sin function at lag 2. Trigonometric functions have been used in the
time series literature to describe periodic series. Both Tables 6.7 and 6.8 show that

when the bandwidth parameter was proportional to the reasonable candidate T—/5,

the absolute errors of the data-driven estimates B(h¢), B(he) and ASE(h¢) de-
creased as the sample size T increased, and |B(he) —0.25] < |B(he) —0.25] for all
the sample sizes. Thus, the C'V -based Bc and the adaptive data-driven estimator

~ o~

B(he) are recommended to use in practice.

Example 6.4.2 In this ezample, we consider the Canadian lynz data. This data
set is the annual record of the number of Canadian lynx trapped in the MacKenzie
River district of North-West Canada for the years 1821 to 1934. (1977)
fitted an eleventh-order Gaussian autoregressive model to y, = log,,(number of
lynx trapped in the year (1820+1t)) fort =1,2,...,114 (T' = 114). It follows from
the definition of (y;, 1 <t < 114) that all the transformed values y, are bounded

by one.

Several models have already been used to fit the lynx data. ( )
proposed the eleventh-order Gaussian autoregressive model to fit the data. See
also ( ). More recently, ( ) used a second-order

additive autoregressive model of the form

Ye = 91(Yr-1) + g2(ve—2) + e (6.4.21)

to fit the data, where g; and go are smooth functions. The authors estimated
both ¢g; and gy through using a Bayesian approach and their conclusion is that
the estimate of g; is almost linear while the estimate of g, is nonlinear. Their
research suggests that if we choose either model (6.4.22) or model (6.4.23) below
to fit the lynx data, model (6.4.22) will be more appropriate.

Yo = Biyi-1 + ga(yi—2) + e, (6.4.22)
Yo = G1(Yi-1) + Bayr—2 + e, (6.4.23)
(6.4.24)

where () and (5 are unknown parameters, g; and go are unknown functions, and
ey and ey are assumed to be 1i.d. random errors with zero mean and finite

variance.
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Our experience suggests that the choice of the kernel function is much less
critical than that of the bandwidth . For Example 6.4.1, we choose the kernel
function K (z) = (2m)~ /2 exp(—?/2), the weight function w(x) = I 4(x), h €
Hypy = [0.3-11477/30 1.1 - 1147Y/6]. For model (6.4.22), similar to (6.4.6), we
define the following C'V function (N =T — 2) by

Cvl ]1[ Z (yn+2 - 51 )yn—H + {:q\l,n(yn) - Bl(h)§2,n(yn)}])27

n=1

where

Bi(h) = {i\’: vl,nwl,n}/{i\f: Uin}? Vi;n = Ynt1 — §2,n(yn)>
n=1

n=1
Win = Ynt2 — ./g\l,n<yn)7
N N
Ginn) = {3 Kl —vm)ymisi}/{ D Knlyn—vm)},
m=1,#n m=1,#n
fori=1,2, and K,(-) = 1/hK(-/h).
For model (6.4.23), we have
N ~ ~
CVa(h Z Ytz = {Gn1 (Y1) = Bo(W)Gnp(Yns1) + Ba(R)yn})?,
n:l
where
N
{Z VU2 nw2n}/{z U% } Van = Yn = Gn2(Unt1),
n=1
Wan = Ynt2 — gn,l(yn+1)7
N N
Gni(Yns1) = { Z Kn(Ynt1 — ym+1)ym+2i(2—i)}/{ Z Kin(Ynt1 — ym+1)}
m=1,#n m=1,#n
fori=1,2.

Through minimizing the CV functions C'V;(h) and CVa(h), we obtain

CVi(hie) = inf CVi(h) = 0.0468 and CVy(hye) = inf CV,(h) = 0.0559

h€H114 h€Hy14

respectively. The estimates of the error variance of {ey;} and {es;} were 0.04119
and 0.04643 respectively. The estimate of the error variance of the model of

( ) was 0.0437, while the estimate of the error variance of the model
of ( ) was 0.0421 which is comparable with our variance
estimate of 0.04119. Obviously, the approach of Wong and Kohn cannot provide
explicit estimates for f; and f, since their approach depends heavily on the Gibbs
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sampler. Our CPU time for Example 6.4.2 took about 30 minutes on a Digital
workstation. Time plot of the common-log-transformed lynx data (part (a)), full
plot of fitted values (solid) and the observations (dashed) for model (6.4.22) (part
(b)), partial plot of the LS estimator (1.354y,.1) against y, 1 (part (c)), partial
plot of the nonparametric estimate (g2) of g2 in model (6.4.22) against ¥, (part
(d)), partial plot of the nonparametric estimate of g; in model (6.4.23) against
Yn+1 (part (e)), and partial plot of the LS estimator (—0.591y,,) against y, (part
(f)) are given in Figure 6.1 on page 188.

For the Canadian lynx data, when selecting y;_; and y;_o as the candidates

of the regressors, our research suggests using the following prediction equation

Unt2 = 1.354yn 11 + G2(yn), n=1,2,..., (6.4.25)
where
§2(yn) = §1(yn, El()) - 1354@2(%7%10)
and
N N
GiWnh) = { D" Kn(n = vm)Wmes—i} /{ D En(yn — )}
m=1 m=1

in which i = 1,2 and hic = 0.1266. Part (d) of Figure 6.1 shows that g, appears
to be nonlinear.

We now compare the methods of ( ), ( ) and
our approach. The research of ( ) suggests that for the lynx
data, the second-order additive autoregressive model (6.4.25) is more reasonable
than the threshold autoregressive method proposed by ( ). It follows
from (6.4.25) that for the lynx data the partially linear autoregressive model of
the form (6.4.1) is easier to implement in practice than the second-order additive

autoregressive model of ( ).

Remark 6.4.6 . This section mainly establishes the estimation procedure for
model (0.4.1). As mentioned in Remarks 0.4.2 and 6.4.3, however, the estima-
tion procedure can be extended to cover a broad class of models. Section 6.4.2
demonstrates that the estimation procedure can be applied to both simulated and

real data examples. A software for the estimation procedure is available upon
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request. This section shows that semiparametric methods can not only retain
the beauty of linear regression methods but provide 'models’ with better predictive

power than is available from nonparametric methods.

6.5 Other Related Developments

In Sections 6.2-6.4, we have discussed the parametric and nonparametric tests,
the optimum linear subset selection and the optimal bandwidth parameter se-
lection for model (6.4.1). In this section, we summarize recent developments in a
general class of additive stochastic regression models including model (6.2.1).

Consider the following additive stochastic regression model

Yi=m(Xy) +e = zp:lgi(Uti) + g(Vi) + e, (6.5.1)
where X, = (U, VT, U, = (U, ..., Up)", Vi, = (Vig,...,Via)T, and g; are
unknown functions on R'. For Y; = yirr, Uy = Viy = ys1ri and ¢;(Uy) = BiUy,
model (6.5.1) is a semiparametric AR model discussed in Section 6.2. For Y; =
Yivry Ui = Yror—i and g = 0, model (6.5.1) is an additive autoregressive
model discussed extensively by ( ). Recently, Masry and
Tjpstheim (1995, 1997) discussed nonlinear ARCH time series and an additive
nonlinear bivariate ARX model, and proposed several consistent estimators. See

( ), ( ) and ( ) for recent
developments in nonlinear and nonparametric time series models. Recently,

( ) considered the case where g = 0 in (6.5.1) and discussed
the lag selection and order determination problem. See Tjgstheim and Auestad
(1994a, 1994b) for the nonparametric autoregression case and Cheng and Tong
(1992, 1993) for the stochastic dynamical systems case. More recently,

( ) proposed an adaptive test statistic for testing additivity
for the case where each g; in (6.5.1) is an unknown function in R'. Asymptotic
theory and power investigations of the test statistic have been discussed
under some mild conditions. This research generalizes the discussion of

( ) and ( ) for testing additivity and
linearity in nonlinear autoregressive models. See also

( ) for Bootstrap tests in nonparametric time series regression.
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Further investigation of (6.5.1) is beyond the scope of this monograph. Recent

developments can be found in Gao, Tong and Wolff (1998a, b).

6.6 The Assumptions and the Proofs of Theo-
rems

6.6.1 Mathematical Assumptions

Assumption 6.6.1 (i) Assume that {e;} is a sequence of i.i.d. random pro-
cesses with Ee; = 0 and Ee? = 02 < 0o, and that e, are independent of X,

for all s > t.

(ii) Assume that X; are strictly stationary and satisfy the Rosenblatt mizing

condition
sup{|P(AN B) — P(A)P(B)| : A€ O, B € 7%, } < Cy exp(—Cak)

for all 1,k > 1 and for constants {C; > 0 : i = 1,2}, where {Q]} denotes
the o-field generated by {X; :1 <t < j}.

Let ¢(™) be the m-order derivative of the function g and M be a constant,
Gn(S) = {9 19" (s) = g™ ()| < M|s = &'},

where m is an integer, s, s’ € S, a compact subset of R4, 0 < M < oo, and || - ||

denotes the Euclidean norm.

Assumption 6.6.2 For g € G,,(S) and {z;(-) : j = 1,2,...} given above, there

exists a vector of unknown parameters v = (v, . .. ,vq)T

Co (0 < Cy < ) independent of T

such that for a constant

q
q2(m+1)E{Z Z](V;g)/y] — g(‘/t)}Q ~ O()

j=1
where the symbol” ~ 7 indicates that the ratio of the left-hand side and the right-
hand side tends to one as T — o0, ¢ = [ZOTQ("LL)H], in which 0 < ly < 00 is a

constant.

Assumption 6.6.3 (i) Z is of full column rank q, {z(-) : 1 < i < ¢} is a

sequence of continuous functions with sup, sup;s; |z;(v)| < oo.
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(ii) Assume that d? = E{z;(V;)*} ewist with the absolute constants d? satisfying
0<d%§---§d3<ooandthat
E{z(V1)z;(Vi)} = 0 and E{z,(Vo)z(Vi)} = 0
foralli#j, k>1 and s #t.

(iii) Assume that ¢ = E{U32} exist with the constants ¢ satisfying 0 < ¢ <
-+ < 3 < oo and that the random processes {Uy - t > 1} and {z(V;) : k >

1} satisfy the following orthogonality conditions
E{Un’Utj} =0 and E{UszUt]Zk(V;)Zk(W)} =0
foralli#j, k>1 and s #t.
Assumption 6.6.4 There exists an absolute constant My > 4 such that for all
t>1
sup B{|Y; — E(Y;|X,)[*"| X, = 2} < cc.
Assumption 6.6.5 (i) K, is a d—dimensional symmetric, Lipschitz continuous

probability kernel function with [ ||u||>K4(u)du < oo, and has an absolutely

integrable Fourier transform, where || - || denotes the Euclidean norm.

(11) The distribution of X, is absolutely continuous, and its density fx is bounded

below by cy and above by dy on the compact support of fx.

(iii) The density function fy.a of random vector Viy has a compact support on

which all the second derivatives of fv.a, g1a and gaa are continuous, where

g14(v) = E(Y3|Via = v) and goa(v) = E(Upa|Via = v).

Assumption 6.6.6 The true regression function Ul Bay+9a,(Via,) is unknown

and nonlinear.

Assumption 6.6.7 Assume that the lower and the upper bands of Hr satisfy
A i (T, )T OO = a1 and lim e (T, )T = by,

where dy = r — |Ag|, the constants ay, by and ¢, only depend on (d,dy) and satisfy

0<a; <b <ooand0<c <1/{4(4+dp)}.
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Assumption 6.6.8 (i) Assume that y, are strictly stationary and satisfy the

Rosenblatt mixing condition.

(i1) K is symmetric, Lipschitz continuous and has an absolutely integrable Fourier

transform.
(iii) K is a bounded probability kernel function with [°° u?K (u)du < oc.

(iv) Assume that the weight function w is bounded and that its support S is

compact.

(v) Assume that {y;} has a common marginal density f(-), f(-) has a compact
support containing S, and g;(-) (i = 1,2) and f(-) have two continuous

derivatives on the interior of S.

(vi) For any integer k > 1, Ely|* < oo.

Remark 6.6.1 (i) Assumption 0.6.1(i) can be replaced by a more complicated

condition that includes the conditional heteroscedasticity case. Details can

be found in ( ).

(11) Assumption 0.6.1(ii) is quite common in such problems. See, for example,
(C.8) in (1992). However, it would be possible, but with
more tedious proofs, to obtain the above Theorems under less restrictive

assumptions that include some algebraically decaying rates.

(111) As mentioned before, Assumptions 6.6.2 and 6.6.3 provide some smooth
and orthogonality conditions. In almost all cases, they hold if g(-) satisfies
some smoothness conditions. In particular, they hold when Assumption
0.0.1 holds and the series functions are either the family of trigonometric
series or the Gallant’s (1981) flexible Fourier form. Recent developments

i nonparametric series regression for the i.1.d. case are given in

(1991) and (1995)

Remark 6.6.2 (i) Assumption 0.6.5(ii) guarantees that the model we consider
15 tdentifiable, which implies that the unknown parameter vector (34, and
the true nonparametric component ga,(Via,) are uniquely determined up to

a set of measure zero.
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(11) Assumption 6.6.0 is imposed to exclude the case where ga,(-) is also a linear

function of a subset of Xy = (Xu, ..., Xp)T.

(111) Assumption 0.6.8 is similar to Assumptions 6.6.1 and 6.6.5. For the sake
of convenience, we list all the necessary conditions for Section 6.4 in the

separate assumption—Assumption 6.0.8.

6.6.2 Technical Details

Proof of Theorem 6.2.1

For simplicity, let C; (0 < |C;| < o0) denote positive constants which may
have different values at each appearance throughout this section. Before proving

Theorem 6.2.1, we state a lemma, whose proof can be found in Lemma A.1 of

( )-
Lemma 6.6.1 Assume that the conditions of Theorem 6.2.1 hold. Then

1 1
C% +op(01(p)) < Amin(TUTU) < )‘maX(TUTU) < 6129 +op(01(p))

1 1
d% + OP()\2(q>> S )\mm(TZTZ) S /\maX(TZTZ) S dg + OP(/\Q(Q))

where ¢2 = EUZ, and for alli=1,2,....,p and j =1,2,... q

/\i{%UTU —1i(p)} = 0r(5:(p)),

)\j{%ZTZ — ()} = op(Xa(q)),

where
Ii(p) = diag(c, ..., c}) and I,(q) = diag(ds, ..., d})

are pXp and q X q diagonal matrices respectively, Amin(B) and Apax(B) denote the
smallest and largest eigenvalues of matriz B, {\;(D)} denotes the i—th eigenvalue
of matriz D, and 6;(p) > 0 and Xa(q) > 0 satisfy as T — oo, max{di(p), \2(q)} -

max{p,q} — 0 as T — oco.

The Proof of Theorem 6.2.1. Here we prove only Theorem 6.2.1(i) and the
second part follows similarly. Without loss of generality, we assume that the
inverse matrices (Z72Z)~!, (UTU)~! and (UTU) " exist and that @2 = d2 = --- =

d? =1 and of = 1.
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By (6.2.7) and Assumption 6.6.2, we have

(Z"2)PF = )= (2" 2) " PZHF - U00) 0" Y e + )

= (ZT2) V2 zTe+ (2T 2) Y2 2T5 — (2T 2) VR ZTU(UTU) U e
—(ZTz) V2Tt U O TS
Lir + Ior + I3y + Iur, (6.6.1)

where e = (e1,...,er)t, 6 = (61,...,67)T, and &; = g(V;) — Z(V;)TH.

In view of (6.6.1), in order to prove Theorem 6.2.1, it suffices to show that
(2¢)"Y2(ef Pe — q) —* N(0,1) (6.6.2)
and for i = 2, 3,4
I Ly = op(¢*'?) and I5 Iy = op(¢*/?). (6.6.3)
Before proving (6.6.2), we need to prove

el Pe = Z Ag1Cs€s + OP(ql/z), (6.6.4)

1<s,t<T

where ag = 1/T >0 2:(Vy)z(V).
In order to prove (6.6.4), it suffices to show that

g Ple" (P — Ry)e| = op(1), (6.6.5)

where Py = {ast}1<s <7 is a matrix of order T' x T'.

Noting that Lemma 6.6.1 holds and

1 2
TZTZ}Iz(q)’lZTe

A VAN A RIS
1 1
x e Z{L(q) — TZTZ}(ZTZ)’l{Iz(q) - TZTZ}ZTe

C
T2

" 2(2" 2 La(a)

IN

< Amax] (I2(q) — ;ZTZ)Q}(GTZZTe)Q,

in order to prove (6.6.5), it suffices to show that

M(Q)T g V2(Z7e)T (Z%e) = 0p(1), (6.6.6)
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which follows from Markov inequality and

PLLT VA (Z T (ZTe) > 2} < e Ia(@)T g PES S Vel

i=1 t=1

< O\(q)T'q?qT
= CXa(q)q"* = o(1)

using Assumptions 6.6.1 and 6.6.3. Thus, the proof of (6.6.4) is completed.
Noting (6.6.4), in order to prove (6.6.2), it suffices to show that as T — oo

T
q 2 (Z ager — q) —p 0 (6.6.7)
t=1
and
T
> Wr —* N(0,1), (6.6.8)
=2

where Wy, = (2/¢)"/? Y12} agese, forms a zero mean martingale difference.

Now applying a central limit theorem for martingale sequences (see Theorem

1 of Chapter VIII of ( )), we can deduce

T
S Wiy —* N(0,1)

t=2
if
T
STEWZ Q1) —p 1 (6.6.9)
t=2
and
T
ST E{WZI(|Wr| > )| 1} —p 0 (6.6.10)
t=2
for all ¢ > 0.

It is obvious that in order to prove (6.6.9) and (6.6.10), it suffices to show

that as T — oo

-
|
—

2 o 2 2

=3 N akel—1—p 0, (6.6.11)
]

9 T

- Z AgtApi€s€r —p 0, (6.6.12)
4= r#s

and

T t—1 4
7 Z E (Z astes> — 0. (6.6.13)
t=2 s=1
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The left-hand side of (6.6.11) is

2 T t—1 2 T t—1
=3 ad(el—1)+ (—ZZait - 1). (6.6.14)
qi=2s=1 qi=2s=1
Also, the first term in (6.6.14) is
2 SET)IEIALY SPUATERE)
13T = T ’
2 q 1 T t—1
+ 3 {m XY (Ve Vel — 1)
qzyéjzl t=2 s=1
94 1T 94 4
= —Z{—ZZZ(W) Mlt }—F-Z Z Mlij; (6615)
4= T t=2 4= j=1,%#1i
where fi;(V, Vi) = 2i(V5) 2;(Vs) (Vi) 2 (V2).
The second term in (6.6.14) is
1 L1 g 2 1 Z
- =N a(V)P =1t 282D z(V)r -1
PSSR )
1.4 q 1 T T
-2 2 722wz (V)s(V) (V)
qiz1j=1,#i " t=1s=1
1.4 1.2 4
=-> Mi+-Y > My (6.6.16)
qi=1 4321 j=1,+#i
Analogously, the left-hand side of (6.6.12) is
4 q 1 T 1 t—1r—1
- Z ol Z ZZ(W)Q X = Z Z Zz(‘/s)zz(‘/r)eser
qi=1 T t=2 r=2s=1
4 q q 1 T t—1r—1
+_Z Z _QZ gl](%a%u%)
qiz1j=1,2i '~ t=2r=2s=1
4417 41 4
= — Z — ZZZG/;) Mgt( ) + — Z Z Mgij, (6617)
15T = 9 i=1j=1+i

where g;;(Vs, Vi, Vi) = 2i(Vi)eszi (Vi) erzi(Vi) 2 (V2).

Using Assumptions 6.6.1-6.6.3 and applying the martingale limit results of
Chapters 1 and 2 of ( ), we can deduce fori =1,2, 7 =1,2,3
and s,r > 1

and

max |M,t( )| =op(1). (6.6.18)
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Thus, equations (6.6.11) and (6.6.12) follows from (6.6.14)-(6.6.18). Now, we
begin to prove (6.6.13). Obviously,
=1 q 1O & A
(; astes) T4{,§:15§:1ZZ Yeszi (Vs } < F;{; zi(V, es} (6.6.19)
using Assumption 6.6.3(1i).
For any fixed ¢ > 1

t—1 A T t-1
ZE{Z Desh = OIS B{a(Ve)!
s=1 t=2 s=1
T t-1 -1
+Co Y E{z(V;,)%e2 (Vo) el
t=2 s1=1 s9=1,#s1
= Jar + Jier.

Applying Assumptions 6.6.1(i) and 6.6.3(iii) again, we have for j = 1,2
Jiyr < C3T°. (6.6.20)

Thus, (6.6.19)—(6.6.20) imply (6.6.13). We have therefore proved equations (6.6.11)—
(6.6.13). As a result, equation (6.6.8) holds. In the following, we begin to prove
(6.6.7).

For any 1 < < ¢, define

_ 1 d Vi 2
Gii = f;{%( t)

Using Assumptions 6.6.1 and 6.6.3, and applying Lemma 3.2 of

( ), we have for any given € > 0

P(|gil > eq7'?)

< Cyig exp(—Cng/Qq_l/Q) — 0

1/2
P(max [¢u] > eq /%) <

s.
|MQ
_

as T — oo, where C; are constants.

Thus

1H<lla<X |¢n‘ - OP(qil/Q)'

Therefore, using Assumptions 6.6.1 and 6.6.3, and applying Cauchy-Schwarz in-

equality, we obtain

iatte? Zatt — 1) +tr[Z{1/TL(q) "} 2" — P]
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= Zatt — 1) +trll(q)"{1/TZ"Z — Lx(q)}]

- Zatt _]— +Z¢u_0P 1/2)

where tr(B) denotes the trace of matrix B.
The proof of (6.6.2) is consequently completed. Before proving (6.6.3), we
need to prove for T" large enough

1

)\maX(TZZT) - OP(qil/Q)a

which follows from

T q
P{YS > a(Vo)z(Vll| > eTq 2}
t=1s=11:=1
q1/2 T q
< B[ XY a()a(Vil
€ N s=t1i=1
q1/2 q T T
< T SB[ a(V)a(Vild,

using Assumption 6.6.3(ii) and the fact that [ = (Iy,...,Ir)T is any identical
vector satisfying >~ , 12 = 1. Thus

TP < Auax{(Z72) Y67 2275 < %Amax(ZZT)(ST(S = op(q'?).
We now begin to prove

I Isr = op(q'?).

It is obvious that

DI = SLUUTO) Ut PUUTD) 0 e
S )\max(UTPU) max{(UT ) } ﬁ(UT[/j)ilﬁTe
C
<

TAmax{(ZTZ)‘1}AmaX(UTZZTU)eTﬁ(ﬁTU)—IUTe. (6.6.21)

Similar to the proof of (6.6.4), we can prove

~

SLTUTT) U e = Cip+ op(p'/?) (6.6.22)
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using Assumptions 6.6.2 and 6.6.3.
In order to estimate the order of (6.6.21), it suffices to estimate

1

Amax{T(ZTU)T(ZTU)}.

Analogous to the proof of Lemma 6.6.1, we have for 1 <i <p

)\i{%(ZTU)T(ZTU)} <2 max |dy| = op(e(p)Tq), (6.6.23)

1<i#5<p

where

- {3 a3 U0

llsl

denote the (i, j) elements of the matrix 1/T(ZTU)"(ZTU) and ¢(p) satisfies
e(p) =0

as T — oo.

Therefore, equations (6.6.21), (6.6.22) and (6.6.23) imply
LirIsr < op(e(p)ap) = op(q"?)

when e(p) = (p/q) "

Analogously, we can prove the rest of (6.6.2) similarly and therefore we finish
the proof of Theorem 6.2.1(i).
Proofs of Theorems 6.3.1 and 6.3.2

Technical lemmas
Lemma 6.6.2 Assume that Assupmtions 6.5.1, 6.6.1, and 6.6./-6.6.0 hold,
jlgrolo max hain(T,d) = 0 and Th_rggo mjn Panax (T, d)TY 4D = o0,
Then
Jim Pr(Ay C Ag) =1

Lemma 6.6.3 Under the conditions of Theorem 6.5.1, we have for every given
A

CV(A) = inf CV(h,A) =52+ CL (AT YD L op(T~Y D) (6.6.24)

heHr

where 62 = 1/T X1, €2 and Cy(A) is a positive constant depending on A.
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The following lemmas are needed to complete the proof of Lemmas 6.6.2 and

6.6.3.

Lemma 6.6.4 Under the conditions of Lemma 6.6.2, we have for every given A

and any given compact subset G of R¢

sup sup |[g1 (v b, A) — g1, (0)]] = 0p(T11),

hEHT veG

sup sup |§2(U; hv A) — g24, (U)l = OP(T_1/4)a
heHr veG

sup sup | f(v; b, A) — fa,(v)] = 0p(T /4.
hEHT veG

where §; and f are defined in (6.3.3) and (6.5.]).

Proof. The proof of Lemma 6.6.4 follows similarly from that of Lemma 1 of

(1992).

Lemma 6.6.5 Under the conditions of Lemma 6.6.2, for every given A, the
following holds uniformly over h € Hrp

B(h, A) = Ba, = Op(T712). (6.6.25)

Proof. The proof of (6.6.25) follows directly from the definition of 3(h, A) and
the conditions of Lemma 6.6.5.

Proofs of Lemmas 6.6.2 and 6.6.3

Let
_ 1 &
D1 (h, A) = ? Z{glt(‘/;fh h’) - gle (‘/tAo)}27
_ 1 ;
Dy(h, A) = = > AG26(Vias h) — 920 (Vi) HG2e (Veas 1) — 9245 (Viao )}
t=1

where gle(‘/tAo) = E(}/t‘v:‘,Ao) and gQAo(‘/tAo) = E(UtAO“/tAO)'

Obviously,
D(h,A) = Z ULB(h, A) = UL Ba Y + = Z{gt Via, B(h, A)) = gao(Vian)}*
;z — U7, By Hu Vi, Bl A)) — g1y (Viay)}
= Di(h,A)+ Dy(h, A) + Ds3(h, A).
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Similarly, we can prove
Dy(h, A) = Di(h, A) + B4, Da(h, A)Ba, + 0p(Ds(h, A)).

and for i = 1,3 and every given A C A

D;(h, A)
SUp Dy~ o

From the definition of CV(h, A), we have

CV(h,A) = TZT: Y = ULB(h, A) = Gi(Via, B(h, A))}
_ ;i D(h, A) + R(h, A), (6.6.26)
where _
%i UL Bao + 9o (Viao)} — {ULBA + Gi(Via, B(R, A))Yes

t=1

satisfies for every given A C A

o B A)
netty D(h, A)

Thus, we have for every given h € Hr and A C A

= Op(l).

CV (h, A) TZet + D(h, A) + op(D(h, A)).

t=1
In order to prove Lemma 6.6.2, it suffices to show that there exists a h* € Hp

such that for any h € Hy, A # Ay and A C A — Ay
CV(h*, Ag) < CV(h, A),

which can be proved by comparing the corresponding terms of C'V(h, Ag) and
CV(h,A). The detail is similar to the proof of Theorem 1 of
( ). Thus, the proof of Lemma 6.6.2 is finished.

According to Lemma 6.6.2, we need only to consider those A satisfying
A C Ay and A # Ayp. Under the conditions of Lemma 6.6.2, we can show
that there exist two constants Cp(A) and C1(A) depending on A such that
hy = Co(A)T~Y @4 ¢ Hp and for every given A C A

CV(A) = inf CV(h,A) = CV(hj, A)

= G2+ C (AT YDy op(T =4/, (6.6.27)
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which implies Lemma 6.6.3. The proof of (6.6.27) is similar to that of Lemma 8

of ( ).
Proof of Theorem 6.3.1

According to Lemma 6.6.2 again, we only need to consider those A satisfying

A C Ay and A # Ag. Thus, by (6.6.24) we have as T' — oo

4(d—dg)

Pr{CV(A) > CV(Ay)} = Pr {01<A>T<4+d>(4fdo>
4(d—dp)
—Cy(Ag) + op(TT R ) > 0} Y (6.6.28)
Equation (6.6.28) implies limy_o Pr(Ay = Ag) = 1 and therefore we complete
the proof of Theorem 6.3.1.

Proof of Theorem 6.3.2
Analogous to (6.6.26), we have

~ ~

{Yi = U5 B(h. Ag) = §(V,5,. )}

e

e e e

—_

1= 1M

Sl )

1 & o~
+ 7 2 AUt Bay — U3, B(h, Ao)}?
t=1

-~

+

o, 2 M.
{ng(‘/;fA()) - g(‘/;;\\o’ h)}2 + f ;{Utaoﬁz‘\o - Ug\oﬁ(ha AO)}et

H
Il
—_

{Utjz:loﬁAo - UtTZOB(Bﬂ A\O)}{QAO (%Ao) - §(Vtgoa h)}

~~
Il
—

™=

+
Nl Nl N
M=

{940(Viay) — GV, 1) Yey

I
I

+ A(h, Ay).

@.‘
Il
—

Il
N =
M=

It follows that as T" — oo

1 T
7 Y e —p ap. (6.6.29)
t=1

By applying Lemmas 6.6.4 and 6.6.5, it can be shown that

~ o~

A(h, Ag) —p 0. (6.6.30)

Therefore, the proof of Theorem 6.3.2 follows from (6.6.29) and (6.6.30).
Proofs of Theorems 6.4.1-6.4.5

Technical Lemmas
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Lemma 6.6.6 Assume that Assumption 6.6.8 holds. Then as T — oo

Sup Sup [fa(@) = f(x)] = op(1),

where the sup, is taken over all values of x such that f(z) > 0 and

~

1 T
== Kp(- —y—2).
fu() T_2t§:3 n(- = Yi-2)
Proof. Lemma 6.6.6 is a weaker version of Lemma 1 of ( ).

Lemma 6.6.7 (i) Assume that Assumption 0.0.8 holds. Then there erists a
sequence of constants {C;; : 1 <1i < 2,1 <j <2} such that

Lt = 5 S Ann) = o))

1
"Nh
M;i(h) = %;{@,h(yn)—gi(yn)}ZnHw(yn):oP(Li(h)) (6.6.32)

uniformly over h € Hy, where Zn o = Ynt1 — E(Yn+1|Yn)-
(ii) Assume that Assumption 6.6.8 holds. Then fori=1,2

1 X B
sup < 3~ {Gin(un) = g:(um)}* = op(N717%), (6.6.33)
heHy IV =

e }Nj Gi — g; Zpio = op(N7Y2 4
sup ) {Gin(Yn) = 9i(Yn)} Zn+2 = op( ). (6.6.34)
heHr 4V p—1

Proof. (i) In order to prove Lemma 6.6.7, we need to establish the following fact

Gin(Yn) — 9i(Yn) = {Gin(yn) — gZ(yn)}?((j:))

{./g\z‘,h(yn) = 9i(Yn) H{f (yn) — ﬁz(yn)}
f(yn) '

Note that by Lemma 6.6.6, the second term is negligible compared to the first.

n (6.6.35)

Similar to the proof of Lemma 8 of ( ), replacing Lemma 1
of ( ) by Lemma 6.6.6, and using (6.6.35), we can obtain the
proof of (6.6.31). Using the similar reason as in the proof of Lemma 2 of

( ), we have for i = 1,2

Lih) = 3 Yo dalye) = Bual) o) = op(Lh). (6630
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It follows from (6.4.7) that for i = 1,2

1 & 1

N Z{Q\i,h(yn> - gz<yn)}Zn+2w(yn) = N Z{@,n(yn) - gz(yn>}Zn+2w(yn)
n=1 n=1

1 X ~
+N > AGin(Yn) = Gin(Yn) } Znr2w(yn),
n=1

where

~ o~ _ K(0)(Nh) Y ynts—i — Gin(yn)}
o) =) = = o) O

Observe that
Ynt2 = GLn(Un) = €nt2 + Btngz + 91(Un) — G1.0(Yn) — B{92(Yn) — Gon(yn)}
and
Ynt1 = G2.h(Yn) = Uns2 = Znyo + 92(Yn) — J2,0(Yn)- (6.6.38)

In order to prove (6.6.32), in view of (6.6.36)—(6.6.38), it suffices to show that
fori=1,2

% i{@’"(%) = 9i(Yn)} Zn2w(yn) = op(Li(h)) (6.6.39)

and 7
% i{@,h(yn) = Gin(Yn) } Znr2w(yn) = op(Li(h)). (6.6.40)
The proof of (6.6.39) follows from that of (5.3) of (1992).

The proof of (6.6.40) follows from Cauchy-Schwarz inequality, (6.6.36)—(6.6.38),
Lemma 6.6.6, (6.6.31) and

2 Zuwaw(ya) = Op(1), (6.6.41)

==

which follows from the fact that w is bounded and
1 % 2 2
— Y Z: o —poO (6.6.42)
N — +2 2

using the standard ergodic theorem, where

a§ = E{yns1 — E(yn+1|yn)}2
= E?/?Hl — E{E*(Yns1lyn)} < 2Eyi+1 <
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using Assumption 6.6.8(vi).
(ii) Lemma 6.6.7(ii) is a weaker version of Lemma 6.6.7(i). Similar to the
proof of Lemma 8 of ( ) and the proof of (5.3) of
( ), and using the fact that Assumption 6.6.8 still holds when the
compact support of the weight function w is the same as that of the density f,

we can prove both (6.6.33) and (6.6.34).

Lemma 6.6.8 Let {Z,;, k > 0} be a sequence of random variables and {$2, x—1}
be an increasing sequence of o-fields such that {Z,x} is measurable with respect
to Qui, and E(Zp,|Qpp—1) =0 for 1 <k <n. If as n — oo,

(i) Sk BE(Z% Q1) — a3(> 0) in probability;

(ii) for every by > 0, the sum S p_y E{Z2,1(|Znk| > b2)|Qn i1} converges in

probability to zero; then as n — oo
Z an H 0 a2)

Proof. See Theorem 1 of Chapter VIII in ( ).

Lemma 6.6.9 Assume that Assumption 6.6.8 holds. Then

1 T
lim — sup Y u; = o3 (6.6.43)

T—o0 T heHTt 3

i probability.

Proof. Observe that

1L, 1 &, 18
N = =N 224 2N (g3 202t n74)
T tzzg t T 1; t T ; t
1T
= 7 > Z¢ + Rp(h),
t=3
where gorn = g2(yi—2) — J2,n(Yi—2) and
T
Rr(h) = TZ 2(Ye—2) = Gon(yi—2)}’
t=3
9 T
fz 2(Ye—2) — Gon(We—2) Hye1 — E(We1lye—2)}

17(h) + Rar(h).
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In view of (6.6.42), in order to prove (6.6.43), it suffices to show that for
i=1,2
hseuI?T Rir(h) = op(1),
which follows from Lemma 6.6.7(ii).
Proofs of Theorems 6.4.1 and 6.4.4
By (6.4.2), in order to prove Theorem 6.4.1, it suffices to show that as T — oo

T
T2 Zie, —* N(0,0%05%), (6.6.44)
t=3
T
D AG2n(yi—2) = g2(y—2)}er = op(T'?), (6.6.45)
t=3
T
S {Gn(vi-2) — 9(We-2)} 20 = 0p(T"?), (6.6.46)
t=3

and
§{§2,h(yt72) — 92(Ye—2) HOn(We—2) — 9(ye—2)} = Op(Tl/Z) (6.6.47)

uniformly over h € Hp, where

9(Yi—2) — Gn(Yi—2) = 91(Wi—2) — Gip(Wi—2) — B{92(ye—2) — Go.n(yi—2)}. (6.6.48)

Write €241 for the o-field generated by {yi, yo; €3, -+, e;}. The variable { Z;e, }
is a martingale difference for €.

By (6.6.42) we have as T' — o0

Ztet |Qt} —p 0'2 2. (6649)

M’ﬂ

t=3

Observe that for every given by > 0

— Z Ztet |Zt€t| > b2T1/2)|Qt}

1 T
< 3" E{(Zie) (€2 > bTY?) |04} + = ZE{ (Zie)1(Z} > bTV?)|}
t=3
1 T
= ST ZEEEI(ef > b, TV?) + — ZZ2 2[(ZF > b, TV?). (6.6.50)
t=3 t 3

Because of (6.6.42), the first sum converges to zero in probability. The second
sum converges in L! to zero because of Assumption 6.6.8. Thus, by Lemma, 6.6.8

we obtain the proof of (6.6.45).
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The proofs of (6.6.45) and (6.6.46) follow from (6.6.34). The proof of (6.6.47)
follows from (6.6.33) and Cauchy-Schwarz inequality. The proof of Theorem 6.4.4
follows immediately from that of Theorem 6.4.1 and the fact that he € Hy defined
n (6.4.8).

Proofs of Theorems 6.4.2 and 6.4.5
In order to complete the proof of Theorem 6.4.2, we first give the following

decomposition of & (h)?

1 & ~
a(h)z = T Z{yt — B(h)ye—1 — 572(%72)}2
t=3
B 1 T T 2 1 T L
o D 2GR DGR OIS D
2 z 2 z
+Tzetut{5 5 }+ Zetgth TZ hut{ﬁ 5 )}
t= t=3
6
= Zth, (6.6.51)
j=1

where g n = g(4-2) — Gn(Y-2)-
By (6.6.42) and Theorem 6.4.1 we have

sup |Jon| < op(T7V?). (6.6.52)
heHr

Also, by (6.6.48) and Lemma 6.6.7(ii) we get

sup |Jsn| < op(T13). (6.6.53)

heHr

Similar to the proof of (6.6.34), we obtain for i = 1,2

% Z e{Gin(Yi—2) — gi(y—2)} < OP(T_l/Q) (6.6.54)

uniformly over h € Hr.

By Theorem 6.4.1, Lemma 6.6.7(ii), (6.6.48) and (6.6.52) we have

Jan = —{ﬂ B(h [ZetZt+Z€t{92 Yi—2) — Gon (Y- 2)}}

t=3 t=3

= op(T™Y?), (6.6.55)

Jsn = %Z ee{g(—2) — Gn(ye—2)} = op(T™/?), (6.6.56)
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and

Jon = —{6 6 }Zut{g Yi2) — Gn(Yi—2) }
= —{ﬁ 6 }ZZt{g Ye2) — Gn(yi—2)}

{5 ﬂ }ZZt{g yt 2) —gh(yt 2)}{92(yt 2) — 0o, h(yt 2)}

t=3

= op(T7?) (6.6.57)

using the Cauchy-Schwarz inequality.
Therefore, the proof of Theorem 6.4.2 follows from (6.6.51)—(6.6.57) and

VT (Jin — 0?) —*£ N(0, Var(e?)) (6.6.58)

as T'— oo.

The proof of Theorem 6.4.4 follows from that of Theorem 6.4.2 and the fact
that h € Hp defined in (6.4.8).
Proof of Theorem 6.4.3

Before proving Theorem 6.4.3, we need to make the following notation

m(20) = Bynrt + 9(Yn)s Tn(z0) = BA)Ynr1 + G5 (Yn),

and

mh,n(2n> = E(h)ynﬂ + ﬁi,n(yn), (6'6'59>

where 2, = (Yn, Yns1)” and gi . (-) = Gin(-) — B(R)G2n(-).
Observe that

D(h) = % S {z0) = () PG (6.6.60)
and
- }Vz{y = () P05, (6.6.61)

In order to prove Theorem 6.4.5, noting (6.6.60) and (6.6.61), it suffices to show
that

sup =op(1) (6.6.62)
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and
D(k) = D) — [CV(h) = CV ()]
h’hlseulg)NM D) =op(1), (6.6.63)
where
D(h) = 1. 5~ naz0) = () o). (6.6.64)

We begin proving (6.6.63) and the proof of (6.6.62) is postponed to the end
of this section.

Observe that the following decomposition

D(h) + % i €2 yw(yn) = OV (h) + 20(h), (6.6.65)
where
C) = 37 () = m)}ensanlyn).

In view of (6.6.65), in order to prove (6.6.63), it suffices to show that

hes;p % = op(1). (6.6.66)

Observe that

C(h) = % z_:l{/ﬁ\lh’n(zn) — m(zn)}en+2w(yn)
— %nzzl Zn+2€n+2w<yn){ﬁ(h) — p} + %nz:l{gln(yn) — g1(Yn) }ensow(yn)

~(B0) = 8}y DGl — o) e o)

37 Gl = 92l ) ensann)

(6.6.67)

1

-
2
=

Similar to the proof of Theorem 6.4.1, we can show that
B(h) — B = Op(N/?) (6.6.68)

uniformly over h € Hy o, where 5(h) is as defined in (6.4.5).
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Thus, noting that {Z, 2€e,12w(y,)} is a martingale difference, using the sim-
ilar reason as the proof of (6.6.42), and applying Lemma 6.6.7(i), we have
C1(h)]
sup ————— =op(1). 6.6.69
h€H1E7)+2 D(h) P( ) ( )
Therefore, noting (6.6.67)—(6.6.69), in order to prove (6.6.66), it suffices to
show that for ¢ = 1,2

| o 14Gin(yn) — 6i(Yn) Yens2w(yn)|
su L ’ =op(1), 6.6.70
hEHz€+2 ND(h) P( ) ( )
which follows from Lemma 6.6.7(i) and
1
D(h) = Gy + Coh* 4+ op{D(h)}, (6.6.71)

where C; (i = 1,2) are some positive constants.

Observe that

D(h) = Z{/mh(zn) = m(za) w0 (yn)

1

N

= % S B ni1 + Grnyn) = BU)G2n(Yn)} = {Byns1 + 9(yn) Hw(yn)
¥ 2 Zaeaw) (B0 = 8+ 5 Y {analm) — )} 0l)

B D 1Ba0(0) — 920 ()

R N
HB) = 8 3181 0m) = 91 () Zos ()
n=1
R N
B~ BB = S (o) — 92 (4)} Zorol)
n=1
R N
—ﬂ(h); > A2 (yn) = 92(y) HG11 () — 91 (yn) b (yn)
n=1
= 26: Di(h) (6.6.72)
i=1
Using (6.6.41) and Theorem 6.4.1, we have
sup |Di(h)] = Op(N71). (6.6.73)
h€Hy 42
By Theorem 6.4.1 and Lemma 6.6.7(i), we obtain for i = 2,3

Da(h) = op(Ds(h)) and Ds(h) = op(Ds(h)), (6.6.75)
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where C;; and (5 are real positive constants.

185

Therefore, applying Cauchy-Schwarz inequality to Dg(h) and using (6.6.31)

again, we complete the proof of (6.6.71).
We now prove (6.6.62). By the definition of D(h), we have

N

D) =y D {nalze) = m(e) Pt
= ]1[ Zl[{ﬁ(h)yn—i-l + G10(Yn) — B(h)/g\ln(yn)} —{BYn1 + g(yn)}]Qw(yn)
= %ngl Zg+2w(yn)(5(h) - 5)2 + %;{gl,n(yn) - gl(yn>}2w(yn>

B 3 (B lm) — o))

(B0 = 5} g S ldnalon) — 1) o)

2

N Z{§2n(yn) - 92(?Jn)}Zn+2w(yn)

n=1

—{B(h) = BY5(h)

=) 3 3= ) = (0 M) — 90 o)

I
N
>
=

Firstly, by (6.6.72) and (6.6.76) we obtain

Du(h) =~ Du(h) = 3 Z2 sl 13(h) — B HGM) - 5)
+H{B(h) = BY].

Similar to the proof of Theorem 6.4.1, we can prove

B(h) — B(h) = op(N7/?),

Thus, (6.6.41) and Theorem 6.4.1 imply
|D1(h) — Dy(h)|

su =op(1).
h€H1I\rD+2 D(h) P< )
Secondly, by the similar reason as the proof of Lemma 2 of
( ) we have for i = 1,2
AD;(h
sup IAD(R)] =op(1),

ety D(h)

(6.6.76)

(6.6.77)

(6.6.78)

(6.6.79)

(6.6.80)
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where
AD Z:l {gzn Yn) — (yn)}Q - {gi,h<yn) - gi(yn)}z]w(yn)'
Thus

= op(1). (6.6.81)
On the other hand, observe that

Dy(h) = Dy(h) = B(h)*ADx(h) + {3(R) = B(R)HG(R) + 5(h)} Da(h).(6.6.82)
Hence, by Theorem 6.4.1, (6.6.68), (6.6.74), (6.6.78), and (6.6.80) we get
[ Ds(h) — Ds(h)| _
hesllilfl)+2 D) = op(1). (6.6.83)
Thirdly, by (6.6.32) and (6.6.36)—(6.6.41), we obtain for i = 4,5
| Di(h) — Di(h)]
it D)

— 0p(1), (6.6.84)

D) = Dah) = {5 = BY 35 3 (00e) = 1)} Zore )

B~ B 5 3 @1 (0) — 010} Zoao()

n=1

D5(h> - D5(h> = _{B( ) 6}5 Z{QQn yn §2,h(yn)}Zn+2w(yn)

—{B(h) — ()}{ﬁ() B(h) - B}

2

XN Z{§2,n yn) - 92<yn)}Zn+2w(yn)' (6'6'85)

Finally, note that the following decomposition

De(h) — De(h) = — 2%’

+ Z{gl,h(yn) -0 (yn)}{§2,n(yn) - §2,h(yn>}

[Z{gln Yn) = G0 (Un) HG2n (W) — Gon(ya)}

n=1

+ 3 4G10(Yn) = G1.4(vn) H(9a) = 92(50)} ()

n=1

RELONLIL)S, 3= (31 (om) = 910m)}H(320m) — 92(am) )

Ey(h) + Ex(h) + E3(h) + Es(h). (6.6.86)
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Thus, applying Cauchy-Schwarz inequality, using Lemma 6.6.7(i) and equa-
tions (6.6.36)—(6.6.41), we have for i = 1,2, 3,4

= op(1). (6.6.87)

Therefore, the proof of (6.6.62) follows from (6.6.76)—(6.6.87).
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Figure 6.1: Canadian lynx data. Part (a) is a time plot of the common-log-
transformed lynx data. Part (b) is a plot of fitted values (solid) and the observa-
tions (dashed). Part (c) is a plot of the LS estimate against the first lag for model
(6.4.22). Part (d) is a plot of the nonparametric estimate against the second lag
for model (6.4.22). Part (e) is a plot of the nonparametric estimate against the
first lag for model (6.4.23) and part (f) is a plot of the LS estimate against the
second lag for model (6.4.23).



APPENDIX: BASIC LEMMAS

In this appendix, we state several famous results including Abel’s inequality
and Bernstein’s inequality and then prove some lemmas which are often used
in the previous chapters.

Abel’s Inequality. Let {&,,n > 1} be a sequence of real numbers such that Y &,
converges, and let {n,} be a monotone decreasing sequence of positive constants.

Then

(i 3-6) < 36 < (s 36

Bernstein’s Inequality. Let Vi, ..., V, be independent random variables with

zero means and bounded ranges: |V;| < M. Then for each n > 0,

|ZV\>7; ) < 2exp|—n? /{2 (ZVarV+Mn)H

Lemma A.1 Suppose that Assumptions 1.3.1 and 1.3.3 (iii) hold. Then
1I£l?“<>%|G ank Tk)| - (CTL> fOT’jZO,...,p7
where Go(+) = g(+) and G,(-) = hy(-) forl=1,...,p.

Proof. We only present the proof for g(-). The proofs of the other cases are

similar. Observe that

Zwm —g(t) = Zwm }+{Zwm —1}g(t)
- ;wm@){gm — GOM(T ] > )
#3 wndto(T) ~ oYL~ < )
+{§;wm(t) —1}g(t).

189
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By Assumption 1.3.3(b) and Lipschitz continuity of g(-),

> en({(T) — gOHIT: ~ 1] > ) = Olen) (A1)
and
> n(t)o(T) = oM (T~ 1] < &) = Ofe). (A2)

(A.1)-(A.2) and Assumption 1.3.3 complete our proof.
Lemma A.2 [If Assumptions 1.5.1-1.5.3 hold. Then

lim n ' XTX =¥

n—oo

Proof. Denote h,s(T;) = hs(T;) — Sp_q wak(T;) Xps. Tt follows from X, =
ho(T}) +u;s that the (s,m) element of XTX (s,m = 1,...,p) can be decomposed

as:
Z UjsUjm + ZEnS(TJ)UJm + Zﬁnm<7})u38 + ZEM(TJ)Enm(TJ)
7j=1 7j=1 j=1 7j=1
def n 3
= 2 wistym + 3 R,
7j=1 q=1
The strong laws of large number imply that lim, .., 1/n 3%, wu! = 3 and
Lemma A.1 means R®) = o(n). Using Cauchy-Schwarz inequality and the
above arguments, we can show that R() = o(n) and R} = o(n). This com-

pletes the proof of the lemma.

As mentioned above, Assumption 1.3.1 (i) holds when (X;,T;) are i.i.d. ran-
dom design points. Thus, Lemma A.2 holds with probability one when (X, T;)
are i.i.d. random design points.

Next we shall prove a general result on strong uniform convergence of weighted

sums, which is often applied in the monograph. See ( ) for its proof.

Lemma A.3 (Liang, 1999) Let Vi, ..., V, be independent random variables with
EV; = 0 and finite variances, and sup;<;<, E|V;|" < C < oo (r > 2). Assume
that {axs, k,i =1...,n} is a sequence of real numbers such that sup,<; y<,, |ar| =
O(n™P1) for some 0 < p; < 1 and 3°5_, aj; = O(nP?) for ps > max(0,2/r — py).
Then

1<i<n

max‘z akin‘ =O(n"*logn) for s=(p1—p2)/2, a.s.
k=1
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Lemma A.3 considers the case where {ay;, k,7 = 1...,n} is a sequence of
real numbers. As a matter of fact, the conclusion of Lemma A.3 remains un-
changed when {a;, k,i = 1...,n} is a sequence of random variables satisfying
SUDy<; k<n |Oki] = O(n7P1) as. and Y7, aj; = O(nP?) a.s. for some 0 < p; < 1
and py > max(0,2/r — py). Thus, we have the following useful results: Let r = 3,
Vi = ek or ug, aj; = wy;(T;), p1 = 2/3 and p, = 0. We obtain the following

formulas, which plays critical roles throughout the monograph.

mgx‘ank(Ti)ek‘ = O(Tfl/3 logn), a.s. (A.3)
= =1
and
r£1<anx‘z wnk(Ti)ukl‘ = O(n Y3logn) forl=1,...,p. (A.4)
=" =1

Lemma A.4 Let Vi,...,V, be independent random variables with EV; = 0 and
SUp,<;<, BV < 00. Assume that Assumption 1.3.3 with b, = Cn=3/*(logn)~*!

holds. Then for n large enough, we have I, = o(n'/?) a.s., where

1= (T)(V! — BVI)(V! — EV)),

i=1 j#i

in which V; = ViI(|Vy] < i'/%).

Proof. See ( ) for its proof.
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