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Preface

During the past two decades or so, there has been a lot of interest in
both theoretical and empirical analysis of nonlinear time series data.
Models and methods used have been based initially on parametric non-
linear or nonparametric time series models. Such parametric nonlinear
models and related methods may be too restrictive in many cases. This
leads to various nonparametric techniques being used to model nonlinear
time series data. The main advantage of using nonparametric methods
is that the data may be allowed to speak for themselves in the sense of
determining the form of mathematical relationships between time series
variables. In modelling nonlinear time series data one of the tasks is to
study the structural relationship between the present observation and
the history of the data set. The problem then is to fit a high dimensional
surface to a nonlinear time series data set. While nonparametric tech-
niques appear to be feasible and flexible, there is a serious problem: the
so-called curse of dimensionality. For the independent and identically
distributed case, this problem has been discussed and illustrated in the
literature.

Since about twenty years ago, various semiparametric methods and mod-
els have been proposed and studied extensively in the economics and
statistics literature. Several books and many papers have devoted their
attention on semiparametric modelling of either independent or depen-
dent time series data. The concentration has also been mainly on esti-
mation and testing of both the parametric and nonparametric compo-
nents in a semiparametric model. Interest also focuses on estimation and
testing of conditional distributions using semiparametric methods. Im-
portant and useful applications include estimation and specification of
conditional moments in continuous–time diffusion models. In addition,
recent studies show that semiparametric methods and models may be ap-
plied to solve dimensionality reduction problems arising from using fully
nonparametric models and methods. These include: (i) semiparametric
single–index and projection pursuit modelling; (ii) semiparametric addi-
tive modelling; (iii) partially linear time series regression modelling; and
(iv) semiparametric time series variable selection.
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Although semiparametric methods in time series have recently been men-
tioned in several books, this monograph hopes to bring an up–to–date de-
scription of the recent development in semiparametric estimation, speci-
fication and selection of time series data as discussed in Chapters 1–4. In
addition, semiparametric estimation and specification methods discussed
in Chapters 2 and 3 are applied to a class of nonlinear continuous–time
models with real data analysis in Chapter 5. Chapter 6 examines some
newly proposed semiparametric estimation procedures for time series
data with long–range dependence. While this monograph involves only
climatological and financial data in Chapters 1 and 4–6, the newly pro-
posed estimation and specifications methods are applicable to model sets
of real data in many disciplines. This monograph can be used to serve as
a textbook to senior undergraduate and postgraduate students as well as
other researchers who are interested in the field of nonlinear time series
using semiparametric methods.

This monograph concentrates on various semiparametric methods in
model estimation, specification testing and selection of nonlinear time
series data. The structure of this monograph is organized as follows: (a)
Chapter 2 systematically studies estimation problems of various param-
eters and functions involved in semiparametric models. (b) Chapter 3
discusses parametric or semiparametric specification of various condi-
tional moments. (c) As an alternative to model specification, Chapter 4
examines the proposed parametric, nonparametric and semiparametric
model selection criteria to show how a time series data should be mod-
elled using the best available model among all possible models. (d) Chap-
ter 5 considers some of the latest results about semiparametric methods
in model estimation and specification testing of continuous–time models.
(e) Chapter 6 gives a short summary of recent semiparametric estima-
tion methods for long–range dependent time series and then discusses
some of the latest theoretical and empirical results using a so–called
simultaneous semiparametric estimation method.

While the author of this monograph has tried his best to reflect the
research work of many researchers in the field, some other closely re-
lated studies may be inevitably omitted in this monograph. The author
therefore apologizes for any omissions.

I would like to thank anyone who has encouraged and supported me
to finish the monograph. In particular, I would like to thank Vo Anh,
Isabel Casas, Songxi Chen, Iréne Gijbels, Chris Heyde, Yongmiao Hong,
Maxwell King, Qi Li, Zudi Lu, Peter Phillips, Peter Robinson, Dag
Tjøstheim, Howell Tong and Qiying Wang for many helpful and stimu-
lating discussions. Thanks also go to Manuel Arapis, Isabel Casas, Chao-
hua Dong, Kim Hawthorne and Jiying Yin for computing assistance as
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well as to Isabel Casas and Jiying Yin for editorial assistance. I would
also like to acknowledge the generous support and inspiration of my col-
leagues in the School of Mathematics and Statistics at The University
of Western Australia. Since the beginning of 2002, my research in the
field has been supported financially by the Australian Research Council
Discovery Grants Program.

My final thanks go to my wife, Mrs Qun Jiang, who unselfishly put my
interest in the top priority while sacrificing hers in the process, for her
constant support and understanding, and two lovely sons, Robert and
Thomas, for their cooperation. Without such support and cooperation,
it would not be possible for me to finish the writing of this monograph.

Jiti Gao
Perth, Australia

30 September 2006



CHAPTER 1

Introduction

1.1 Preliminaries

This monograph basically discusses semiparametric methods in model
estimation, specification testing and selection of nonlinear time series
data. We use the term semiparametric for models which are semipara-
metric partially linear models or other semiparametric regression models
as discussed in Chapters 2–6, in particular Chapters 2 and 5. We also
use the word semiparametric for methods which are semiparametric es-
timation and testing methods as discussed in Chapters 2–6, particularly
in Chapters 3 and 6. Meanwhile, we also use the term nonparametric
for models and methods which are either nonparametric models or non-
parametric methods or both as considered in Chapters 2–5.

1.2 Examples and models

Let (Y,X) be a d+ 1–dimensional vector of time series variables with Y
being the response variable and X the vector of d–dimensional covari-
ates. We assume that both X and Y are continuous random variables
with π(x) as the marginal density function of X, f(y|x) being the condi-
tional density function of Y given X = x and f(x, y) as the joint density
function. Let m(x) = E[Y |X = x] denote the conditional mean of Y
given X = x. Let {(Yt, Xt) : 1 ≤ t ≤ T} be a sequence of observa-
tions drawn from the joint density function f(x, y). We first consider a
partially linear model of the form

Yt = E[Yt|Xt] + et = m(Xt) + et = Uτt β + g(Vt) + et, (1.1)

where Xt = (Uτt , V
τ
t )τ , m(Xt) = E[Yt|Xt], and et = Yt−E[Yt|Xt] is the

error process and allowed to depend on Xt. In model (1.1), Ut and Vt are
allowed to be two different vectors of time series variables. In practice, a
crucial problem is how to identify Ut and Vt before applying model (1.1)
to model sets of real data. For some cases, the identification problem can
be solved easily by using empirical studies. For example, when modelling
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2 INTRODUCTION

electricity sales, it is natural to assume the impact of temperature on
electricity consumption to be nonlinear, as both high and low tempera-
tures lead to increased consumption, whereas a linear relationship may
be assumed for other regressors. See Engle et al. (1986). Similarly, when
modelling the dependence of earnings on qualification and labour market
experience variables, existing studies (see Härdle, Liang and Gao 2000)
show that the impact of qualification on earnings to be linear, while the
dependence of earnings on labour market experience appears to be non-
linear. For many other cases, however, the identification problem should
be solved theoretically before using model (1.1) and will be discussed in
detail in Chapter 4.

Existing studies show that although partially linear time series modelling
may not be capable of reducing the nonparametric time series regression
into a sum of one-dimensional nonparametric functions of individual
lags, they can reduce the dimensionality significantly for some cases.
Moreover, a feature of partially linear time series modelling is that it
takes the true structure of the time series data into account and avoids
neglecting some existing information on the linearity of the data.

We then consider a different partially linear model of the form

Yt = Xτ
t β + g(Xt) + et, (1.2)

where Xt = (Xt1, · · · , Xtd)
τ is a vector of time series, β = (β1, · · · , βd)τ

is a vector of unknown parameters, g(·) is an unknown function and
can be viewed as a misspecification error, and {et} is a sequence of
either dependent errors or independent and identically distributed (i.i.d.)
errors. In model (1.2), the error process {et} is allowed to depend on
{Xt}. Obviously, model (1.2) may not be viewed as a special form of
model (1.1). The main motivation for systematically studying model
(1.2) is that partially linear model (1.2) can play a significant role in
modelling some nonlinear problems when the linear regression normally
fails to appropriately model nonlinear phenomena. We therefore suggest
using partially linear model (1.2) to model nonlinear phenomena, and
then determine whether the nonlinearity is significant for a given data
set (Xt, Yt). In addition, some special cases of model (1.2) have already
been considered in the econometrics and statistics literature. We show
that several special forms of models (1.1) and (1.2) have some important
applications.

We present some interesting examples and models, which are either spe-
cial forms or extended forms of models (1.1) and (1.2).

Example 1.1 (Partially linear time series error models): Consider a
partially linear model for trend detection in an annual mean temperature
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series of the form

Yt = Uτt β + g

(
t

T

)
+ et, (1.3)

where {Yt} is the mean temperature series of interest, Ut = (Ut1, · · · , Utq)τ
is a vector of q–explanatory variables, such as the southern oscillation
index (SOI), t is time in years, β is a vector of unknown coefficients for
the explanatory variables, g(·) is an unknown smooth function of time
representing the trend, and {et} represents a sequence of stationary time
series errors with E[et] = 0 and 0 < var[et] = σ2 <∞. Recently, Gao and
Hawthorne (2006) have considered some estimation and testing problems
for the trend function of the temperature series model (1.3).

Applying an existing method from Härdle, Liang and Gao (2000) to two
global temperature series (http://www.cru.uea.ac.uk/cru/data/), Gao
and Hawthorne (2006) have shown that a nonlinear trend looks feasible
for each of the temperature series. Figure 1 of Gao and Hawthorne (2006)
shows the annual mean series of the global temperature series from 1867–
1993 and then from 1867–2001.

1860 1880 1900 1920 1940 1960 1980
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Figure 1.1 The light line is the global temperature series for 1867–1993, while
the solid curve is the estimated trend.

Figure 1.1 shows that the trend estimate appears to be distinctly non-
linear. Figure 1.2 displays the partially linear model fitting to the data
set. The inclusion of the linear SOI component is warranted by the in-
terannual fluctuations of the temperature series. Figures 1.1 and 1.2 also
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Figure 1.2 The solid line is the global temperature series for 1867–1993, while
the dashed line is the estimated series.

show that the smooth trend component captures the nonlinear complex-
ity inherent in the long term underlying trend. The mean function fitted
to the data is displayed in Figure 1.3. The estimated series for the up-
dated series is similar in stucture to that for the truncated series from
1867–1993. The hottest year on record, 1998, is represented reasonably.
Similar to Figures 1.1 and 1.2, a kind of nonlinear complexity inherent
in the long term trend is captured in Figure 1.3.

In addition, model (1.3) may be used to model long–range dependent
(LRD) and nonstationary data. Existing studies show that there are
both LRD and nonstationary properties inherited in some financial and
environmental data (see Anh et al. 1999; Mikosch and Starica 2004) for
example. Standard & Poor’s 500 is a market–value weighted price of 500
stocks. The values in Figure 1.4 are from January 2, 1958 to July 29,
2005.

The key findings of such existing studies suggest that in order to avoid
misrepresenting the mean function or the conditional mean function of
a long–range dependent data, we should let the data ‘speak’ for them-
selves in terms of specifying the true form of the mean function or the
conditional mean function. This is particularly important for data with
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Figure 1.3 The solid line is the global temperature series for 1867–2001, while
the broken line is the estimated series.

Figure 1.4 S&P 500: January 2, 1958 to July 29, 2005.
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long–range dependence, because unnecessary nonlinearity or complexity
in mean functions may cause erroneous LRD. Such issues may be ad-
dressed using a general model specification procedure to be discussed in
Chapter 3 below.

Example 1.2 (Partially linear autoregressive models): Let {ut} be a
sequence of time series variables, Yt = ut, Ut = (ut−1, . . . , ut−q)τ , and
Vt = (vt1, . . . , vtp)

τ be a vector of time series variables. Now model (1.1)
is a partially linear autoregressive model of the form

ut =

q∑

i=1

βiut−i + g(vt1, . . . , vtp) + et. (1.4)

When {vt} is a sequence of time series variables, Vt = (vt−1, . . . , vt−p)τ ,
Yt = vt, and Ut = (ut1, . . . , utq)

τ be a vector of time series variables,
model (1.1) is a partially nonlinear autoregressive model of the form

vt =

q∑

i=1

αiuti + g(vt−1, . . . , vt−p) + et. (1.5)

In theory, various estimation and testing problems for models (1.4) and
(1.5) have already been discussed in the literature. See for example,
Robinson (1988), Tjøstheim (1994), Teräsvirta, Tjøstheim and Granger
(1994), Gao and Liang (1995), Härdle, Lütkepohl and Chen (1997), Gao
(1998), Härdle, Liang and Gao (2000), Gao and Yee (2000), and Gao,
Tong and Wolff (2002a, 2002b), Gao and King (2005), and Li and Racine
(2006).

In practice, models (1.4) and (1.5) have various applications. For exam-
ple, Fisheries Western Australia (WA) manages commercial fishing in
WA. Simple Catch and Effort statistics are often used in regulating the
amount of fish that can be caught and the number of boats that are
licensed to catch them. The establishment of the relationship between
the Catch (in kilograms) and Effort (the number of days the fishing ves-
sels spent at sea) is very important both commerically and ecologically.
This example considers using a time series model to fit the relationship
between catch and effort.

The historical monthly fishing data set from January 1976 to December
1999 available to us comes from the Fisheries WA Catch and Effort
Statistics (CAES) database. Existing studies from the Fisheries suggest
that the relationship between the catch and the effort does not look linear
while the dependence of the current catch on the past catch appears to
be linear. This suggests using a partially linear model of the form

Ct = β1Ct−1 + . . .+ βqCt−q + g(Et, Et−1, . . . , Et−p+1) + et, (1.6)
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where {et} is a sequence of random errors, Ct and Et represent the catch
and the effort at time t, respectively, and g(·) is a nonlinear function. In
the detailed computation, we use the transformed data Yt = log10(Ct)
and Xt = log10(Et) satisfying the following model

Yt+r = β1Yt+r−1 + . . .+ βqYt+r−q + g(Xt+r, . . . , Xt+r−p+1) + et, (1.7)

where r = max(p, q) and {et} is a random error with zero mean and
finite variance.

Gao and Tong (2004) proposed a semiparametric variable selection pro-
cedure for model (1.1) and then applied the proposed semiparametric
selection method to produce the corresponding plots in Figure 1 of their
paper.

Model (1.1) also covers the following important classes of partially linear
time series models as given in Example 1.3 below.

Example 1.3 (Population biology model): Consider a partially linear
time series model of the form

Yt = βYt−1 + g(Yt−τ ) + et, (1.8)

where |β| < 1 is an unknown parameter, g(·) is a smooth function such
that {Yt} is strictly stationary, τ ≥ 2 is an integer, and {et} is a sequence
of strictly stationary errors. When g(x) = bx

1+xk , we have a population
biology model of the form

Yt = βYt−1 +
bYt−τ

1 + Y kt−τ
+ et, (1.9)

where 0 < β < 1, b > 0, τ > 1 and k ≥ 1 are parameters. The motivation
for studying this model stems from the research of population biology
model and the Mackey–Glass system. The idea of a threshold is very
natural to the study of population biology because the production of eggs
(young) per adult per season is generally a saturation–type function of
the available food and food supply is generally limited. Here {Yt} denotes
the number of adult flies in day t, a is the daily adult survival rate, d is
the time delay between birth and maturation, and bYt−τ

1+Y k
t−τ

accounts for

the recruitment of new adults due to births d years in the past, which
is nonlinear because of decreased fecundity at higher population levels.
Such a class of models have been discussed in Gao (1998) and Gao and
Yee (2000).

Example 1.4 (Environmetric model): Consider a partially linear model
of the form

Yt =

q∑

i=1

βiYt−i + g(Vt) + et, (1.10)
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where {Yt} denotes the air quality time series at t period, and {Vt}
represents a vector of many important factors such as wind speed and
temperature. When choosing a suitable vector for {Vt}, we need to take
all possible factors into consideration on the one hand but to avoid the
computational difficulty caused by the spareness of the data and to pro-
vide more precise predictions on the other hand. Thus, for this case only
wind speed, temperature and one or two other factors are often selected
as the most significant factors. Such issues are to be addressed in Chapter
4 below.

When the dimension of {Vt} is greater than three, we may suggest using
a partially linear additive model of the form

Yt =

q∑

i=1

βiYt−i +

p∑

j=1

gj(Vtj) + et, (1.11)

where each gj(·) is an unknown function defined over R
1 = (−∞,∞).

Model estimation, specification and selection for models in Examples
1.1–1.4 are to be discussed in Chapters 2–4 below.

Example 1.5 (Semiparametric single–index model): Consider a gener-
alized partially linear time series model of the form

Yt = Xτ
t θ + ψ(Xτ

t η) + et, (1.12)

where (θ, η) are vectors of unknown parameters, ψ(·) is an unknown
function over R

1, and {et} is a sequence of errors. The parameters and
function are chosen such that model (1.12) is identifiable. While model
(1.12) imposes certain additivity conditions on both the parametric and
nonparametric components, it has been shown to be quite efficient for
modelling high–dimensional time series data. Recent studies include Car-
roll et al. (1997), Gao and Liang (1997), Xia, Tong and Li (1999), Xia
et al. (2004), and Gao and King (2005).

In recent years, some other semiparametric time series models have also
been discussed as given below.

Example 1.6 (Semiparametric regression models): Consider a linear
model with a nonparametric error model of the form

Yt = Xτ
t β + ut with ut = g(ut−1) + ǫt, (1.13)

where Xt and β are p–dimensional column vectors, {Xt} is stationary
with finite second moments, Yt and ut are scalars, g(·) is an unknown
function and possibly nonlinear, and is such that {ut} is at least station-
ary with zero mean and finite variance i.i.d. innovations ǫt. Model (1.13)
was proposed by Hidalgo (1992) and then estimated by a kernel-based
procedure.
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Truong and Stone (1994) considered a nonparametric regression model
with a linear autoregressive error model of the form

Yt = g(Xt) + ut with ut = θut−1 + ǫt, (1.14)

where {(Xt, Yt)} is a bivariate stationary time series, θ, satisfying |θ| < 1,
is an unknown parameter, g(·) is an unknown function, and {ǫt} is a
sequence of independent errors with zero mean and finite variance 0 <
σ2 <∞. Truong and Stone (1994) proposed a semiparametric estimation
procedure for model (1.14).

Example 1.7 (Partially linear autoregressive conditional heteroscedas-
ticity (ARCH) models): For the case where d = 1, {Yt} is a time series,
Xt = Yt−1, and {et} depends on Yt−1, model (1.2) is a partially linear
ARCH model of the form

Yt = βYt−1 + g(Yt−1) + et, (1.15)

where {et} is assumed to be stationary, both β and g are identifiable, and
σ2(y) = E[e2t |Yt−1 = y] is a smooth function of y. Hjellvik and Tjøstheim
(1995), and Hjellvik, Yao and Tjøstheim (1998), Li (1999), and Gao and
King (2005) all considered testing for linearity in model (1.15). Granger,
Inoue and Morin (1997) have considered some estimation problems for
the case of β = 1 in model (1.15).

Example 1.8 (Nonlinear and nonstationary time series models): This
example considers two classes of nonlinear and nonstationary time series
models. The first class of models is given as follows:

Yt = m(Xt) + et with Xt = Xt−1 + ǫt, (1.16)

where {ǫt} is a sequence of stationary errors. The second class of models
is defined by

Yt = Yt−1 + g(Yt−1) + et. (1.17)

Recently, Granger, Inoue and Morin (1997) considered the case where
g(·) of (1.17) belongs to a class of parametric nonlinear functions and
then discussed applications in economics and finance. In nonparametric
kernel estimation of m(·) in (1.16) and g(·) of (1.17), existing studies
include Karlsen and Tjøstheim (1998), Phillips and Park (1998), Karlsen
and Tjøstheim (2001), and Karlsen, Myklebust and Tjøstheim (2006).
The last paper provides a class of nonparametric versions of some of
those parametric models proposed in Engle and Granger (1987). Model
(1.16) corresponds to a class of parametric nonlinear models discussed
in Park and Phillips (2001).

Compared with nonparametric kernel estimation, nonparametric spec-
ification testing problems for models (1.16) and (1.17) have just been
considered in Gao et al. (2006). Specifically, the authors have proposed



10 INTRODUCTION

a novel unit root test procedure for stationarity in a nonlinear time se-
ries setting. Such a test procedure can initially avoid misspecification
through the need to specify a linear conditional mean. In other words,
the authors have considered estimating the form of the conditional mean
and testing for stationarity simultaneously. Such a test procedure may
also be viewed as a nonparametric counterpart of those tests proposed
in Dickey and Fuller (1979), Phillips (1987) and many others in the
parametric linear time series case.

Example 1.9 (Semiparametric diffusion models): This example involves
using model (1.2) to approximate a continuous-time process of the form

drt = µ(rt)dt+ σ(rt)dBt, (1.18)

where µ(·) and σ(·) are respectively the drift and volatility functions of
the process, and Bt is standard Brownian motion. Since there are incon-
sistency issues for the case where both µ(·) and σ(·) are nonparametric,
we are mainly interested in the case where one of the functions is para-
metric. The first case is where µ(r, θ) is a known parametric function
indexed by a vector of unknown parameters, θ ∈ Θ (a parameter space),
and σ(r) is an unknown but sufficiently smooth function.

The main motivation for considering such a class of semiparametric dif-
fusion models is due to: (a) most empirical studies suggest using a simple
form for the drift function, such as a polynomial function; (b) when the
form of the drift function is unknown and sufficiently smooth, it may be
well–approximated by a parametric form, such as by a suitable polyno-
mial function; (c) the drift function may be treated as a constant function
or even zero when interest is on studying the stochastic volatility of {rt};
and (d) the precise form of the diffusion function is very crucial, but it
is quite problematic to assume a known form for the diffusion function
due to the fact that the instantaneous volatility is normally unobserv-
able. The second case is where σ(r, ϑ) is a positive parametric function
indexed by a vector of unknown parameters, ϑ ∈ Θ (a parameter space),
and µ(r) is an unknown but sufficiently smooth function. As pointed
out in existing studies, such as Kristensen (2004), there is some evidence
that the assumption of a parametric form for the diffusion function is
also reasonable in such cases where the diffusion function is already pre–
specified, the main interest is, for example, to specify whether the drift
function should be linear or quadratic.

Model (1.18) has been applied to model various economic and financial
data sets, including the two popular interest rate data sets given in
Figures 1.5 and 1.6.

Recently, Arapis and Gao (2006) have proposed some new estimation
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Figure 1.5 Three-month T-Bill rate, January 1963 to December 1998.

and testing procedures for model (1.18) using semiparametric methods.
Such details, along with some other recent developments, are discussed
in Chapter 5 below.

Example 1.10 (Continuous–time models with long–range dependence):
Recent studies show that the standard Brownian motion involved in
(1.18) needs to be replaced by a fractional Brownian motion when data
exhibit long–range dependence. Comte and Renault (1996, 1998) pro-
posed using a continuous–time model of the form

dZ(t) = −αZ(t)dt+ σdBβ(t), Z(0) = 0, t ∈ (0,∞), (1.19)

where Bβ(t) is general fractional Brownian motion given by Bβ(t) =∫ t
0

(t−s)β
Γ(1+β)dB(s), and Γ(x) is the usual Γ function. Gao (2004) then dis-

cussed some estimation problems for the parameters involved. More re-
cently, Casas and Gao (2006) have systematically established both large
and finite sample results for such estimation problems. Some of these
results are discussed in Chapter 6 below.

More recently, Casas and Gao (2006) have proposed a so–called simul-
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Figure 1.6 Seven-Day Eurodollar Deposit rate, June 1, 1973 to February 25,
1995.

taneous semiparametric estimation procedure for a class of stochastic
volatility models of the form

dY (t) = V (t)dB1(t) and dZ(t) = −αZ(t)dt+ σdBβ(t), (1.20)

where V (t) = eZ(t), Y (t) = ln(S(t)) with S(t) being the return process,
B1(t) is a standard Brownian motion and independent of B(t). The
paper by Casas and Gao (2006) has established some asymptotic theory
for the proposed estimation procedure. Both the proposed theory and the
estimation procedure are illustrated using simulated and real data sets,
including the S&P 500 data. To show why the S&P 500 data may show
some kind of long–range dependence, Table 1.1 provides autocorrelation
values for several versions of the compounded returns of the S&P 500
data.

Chapter 6 below discusses some details about both the estimation and
implementation of model (1.20).
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data lag1 2 5 10 20 40 70 100

T = 500
Wt 0.0734 -0.0458 0.0250 0.0559 -0.0320 -0.0255 0.0047 0.0215

|Wt|1/2 -0.0004 0.1165 0.1307 0.0844 0.0605 -0.0128 0.0430 -0.0052
|Wt| 0.0325 0.1671 0.1575 0.1293 0.092 -0.0141 0.0061 -0.0004
|Wt|2 0.0784 0.2433 0.1699 0.1573 0.1117 -0.0094 -0.0283 0.0225

T = 2000
Wt 0.0494 -0.0057 -0.0090 0.0142 0.0012 -0.0209 0.0263 0.0177

|Wt|1/2 -0.0214 -0.0072 0.0826 0.0222 0.0280 -0.0040 0.0359 0.0001
|Wt| -0.0029 0.0187 0.0997 0.0258 0.0505 0.0036 0.0422 -0.0020
|Wt|2 0.0401 0.0562 0.1153 0.0275 0.0668 0.0018 0.0376 -0.0045

T = 10000
Wt 0.1580 -0.0224 0.0122 0.0125 0.0036 0.0079 0.0028 0.0071

|Wt|1/2 0.1161 0.0813 0.1196 0.0867 0.0789 0.0601 0.0775 0.0550
|Wt| 0.1223 0.0986 0.1326 0.0989 0.0944 0.0702 0.0879 0.0622
|Wt|2 0.1065 0.1044 0.1281 0.0937 0.0988 0.0698 0.0847 0.0559

T = 16127
Wt 0.0971 -0.0362 0.0054 0.0180 0.0036 0.0222 -0.0061 0.0041

|Wt|1/2 0.1783 0.1674 0.1879 0.1581 0.1567 0.1371 0.1252 0.1293
|Wt| 0.2044 0.2012 0.2215 0.1831 0.1835 0.1596 0.1439 0.1464
|Wt|2 0.1864 0.2018 0.2220 0.1684 0.1709 0.1510 0.1303 0.1321

Table 1.1 Autocorrelation of Wt, |W |ρ for ρ = 1
2
, 1, 2 for the S&P 500 where Wt = ln

(
St

St−1

)
with {St} be the S&P 500 daily

values.
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1.3 Bibliographical notes

Recent books on parametric linear and nonlinear time series include Tong
(1990), Granger and Teräsvirta (1993), Tanaka (1996), Franses and Van
Dijk (2000), Galka (2000), Chan (2002), Fan and Yao (2003), Kantz and
Schreiber (2004), Tsay (2005), and Granger, Teräsvirta and Tjøstheim
(2006).

In addition, nonparametric methods have been applied to model both
independent and dependent time series data as discussed in Fan and
Gijbels (1996), Hart (1997), Eubank (1999), Pagan and Ullah (1999),
Fan and Yao (2003), Granger, Teräsvirta and Tjøstheim (2006), and Li
and Racine (2006).

Applications of semiparametric methods and models to time series data
have been discussed in Fan and Gijbels (1996), Pagan and Ullah (1999),
Härdle, Liang and Gao (2000), Fan and Yao (2003), Ruppert, Wand and
Carroll (2003), Granger, Teräsvirta and Tjøstheim (2006), and Li and
Racine (2006).



CHAPTER 2

Estimation in Nonlinear Time Series

2.1 Introduction

This chapter considers semiparametric modelling of nonlinear time se-
ries data. We first propose an additive partially linear modelling method.
A semiparametric single–index modelling procedure is then considered.
Both new estimation methods and implementation procedures are dis-
cussed in some detail. The main ideas are to use either a partially linear
form or a semiparametric single–index form to approximate the condi-
tional mean function rather than directly assuming that the true condi-
tional mean function is of either a partially linear form or a semipara-
metric single–index form.

2.1.1 Partially linear time series models

In time series regression, nonparametric methods have been very pop-
ular both for prediction and characterizing nonlinear dependence. Let
{Yt} and {Xt} be the one–dimensional and d–dimensional time series
data, respectively. For a vector of time series data {Yt, Xt}, the condi-
tional mean function E[Yt|Xt = x] of Yt on Xt = x may be estimated
nonparametrically by the Nadaraya–Watson (NW) estimator when the
dimensionality d is less than three. When d is greater than three, the
conditional mean can still be estimated using the NW estimator, and
an asymptotic theory can be constructed. In practice, however, because
of the so–called curse of dimensionality, this may not be recommended
unless the number of data points is extremely large.

There are several ways of circumventing the curse of dimensionality in
time series regression. Perhaps the two most commonly used are semi-
parametric additive models and single–index models. In time series re-
gression, semiparametric additive fitting can be thought of as an ap-
proximation of conditional quantities such as E[Yt|Yt−1, . . . , Yt−d], and
sometimes (Sperlich, Tjøstheim and Yang 2002) interaction terms are in-
cluded to improve this approximation. An advantage of using the semi-

15



16 ESTIMATION IN NONLINEAR TIME SERIES

parametric additive approach is that a priori information concerning
possible linearity of some of the components can be included in the
model. More specifically, we will look at approximating the conditional
mean function m(Xt) = m(Ut, Vt) = E[Yt|Ut, Vt] by a semiparametric
(partially linear) function of the form

m1(Ut, Vt) = µ+ Uτt β + g(Vt) (2.1)

such that E [Yt −m1(Ut, Vt)]
2

is minimized over a class of semipara-
metric functions of the form m1(Ut, Vt) subject to E[g(Vt)] = 0 for
the identifiability of m1(Ut, Vt), where µ is an unknown parameter,
β = (β1, . . . , βq)

τ is a vector of unknown parameters, g(·) is an unknown
function over R

p, both Ut = (Ut1, . . . , Utq)
τ and Vt = (Vt1, . . . , Vtp)

τ

may be vectors of time series variables.

Motivation for using the form (2.1) for independent data analysis can be
found in Härdle, Liang and Gao (2000). As for the independent data case,
estimating g(·) in model (2.1) may suffer from the curse of dimensionality
when g(·) is not necessarily additive and p ≥ 3. Thus, this chapter
proposes two different estimation methods. The first estimation method
deals with the case where m(x) is itself an additive partially linear form
and each of the nonparametric components is approximated by a series
of orthogonal functions. For the independent data case, the orthogonal
series estimation method has been used as an alternative to some other
nonparametric estimation methods, such as the kernel method. Recent
monographs include Eubank (1999). As shown in Gao, Tong and Wolff
(2002a), this method provides some natural parametric approximations
to additive partially linear forms.

2.1.2 Semiparametric additive time series models

The main ideas of proposing the second method are taken from Gao, Lu
and Tjøstheim (2006), who have established an estimation procedure for
semiparametric spatial regression. The second method applies to the case
where m(x) is approximated by (2.1) and then proposes approximating
g(·) by ga(·), an additive marginal integration projector as detailed in the
following section. When g(·) itself is additive, i.e., g(x) =

∑p
i=1 gi(xi),

the form of m1(Ut, Vt) can be written as

m1(Ut, Vt) = µ+ Uτt β +

p∑

i=1

gi(Vti) (2.2)

subject to E [gi(Vti)] = 0 for all 1 ≤ i ≤ p for the identifiability of
m1(Ut, Vt) in (2.2), where gi(·) for 1 ≤ i ≤ p are all unknown one–
dimensional functions over R

1.
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Our method of estimating g(·) or ga(·) is based on an additive marginal
integration projection on the set of additive functions, but where unlike
the backfitting case, the projection is taken with the product measure of
Vtl for l = 1, · · · , p (Nielsen and Linton 1998). This contrasts with the
smoothed backfitting approach of Mammen, Linton and Nielsen (1999)
to the nonparametric regression case. Marginal integration, although
inferior to backfitting in asymptotic efficiency for purely additive models,
seems well suited to the framework of partially linear estimation. In fact,
in previous work (Fan, Härdle and Mammen 1998; Fan and Li 2003, for
example) in the independent regression case marginal integration has
been used, and we do not know of any work extending the backfitting
theory to the partially linear case. Marginal integration techniques are
also applicable to the case where interactions are allowed between the
the Vtl–variables (cf. also the use of marginal integration for estimating
interactions in ordinary regression problems).

2.1.3 Semiparametric single–index models

As an alternative to (2.2), we assume that m(x) = E[Yt|Xt = x] =
m2(Xt) is given by the semiparametric single–index form

m2(Xt) = Xτ
t θ + ψ(Xτ

t η). (2.3)

When we partition Xt = (Uτt , V
τ
t )τ and take θ = (βτ , 0, · · · , 0)τ and

η = (0, · · · , 0, ατ )τ , form (2.3) becomes the generalized partially linear
form

m2(Xt) = Uτt β + ψ(V τt α). (2.4)

Various versions of (2.3) and (2.4) have been discussed in the econo-
metrics and statistics literature. Recent studies include Härdle, Hall and
Ichimura (1993), Carroll et al. (1997), Gao and Liang (1997), Xia, Tong
and Li (1999), and Gao and King (2005).

In Sections 2.2 and 2.3 below, some detailed estimation procedures for
m1(Ut, Vt) and m2(Xt) are proposed and discussed extensively. Sec-
tion 2.2 first assumes that the true conditional mean function m(x) =
E[Yt|Xt = x] is of the form (2.2) and develops an orthogonal series es-
timation method for the additive form. Section 2.3 then proposes an
additive marginal integration projection method to estimate form (2.1)
without necessarily assuming the additivity in (2.2).
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2.2 Semiparametric series estimation

In this section, we employ the orthogonal series method to estimate
each nonparametric function in (2.2). By approximating each gi(·) by
an orthogonal series

∑ni

j=1 fij(·)θij with {fij(·)} being a sequence of
orthogonal functions and {ni} being a sequence of positive integers, we
have an approximate model of the form

Yt = µ+ Uτt β +

p∑

i=1

ni∑

j=1

fij(Vti)θij + et, (2.5)

which covers some natural parametric time series models. For example,
when Utl = Ut−l and Vti = Yt−i, model (2.5) becomes a parametric
nonlinear additive time series model of the form

Yt = µ+

q∑

l=1

Ut−lβl +
p∑

i=1

ni∑

j=1

fij(Yt−i)θij + et. (2.6)

To estimate the parameters involved in (2.5), we need to introduce the
following symbols. For 1 ≤ i ≤ p, let

θi = (θi1, · · · , θini)
τ , θ = (θτ1 , · · · , θτp)τ ,

Fi = Fini = (Fi(V1i), . . . , Fi(VTi))
τ , F = (F1, F2, . . . , Fp),

U =
1

T

T∑

t=1

Ut, Ũ =
(
U1 − U, · · · , UT − U

)τ
,

Y =
1

T

T∑

t=1

Yt, Ỹ =
(
Y1 − Y , · · · , YT − Y

)τ
,

P = F (F τF )
+
F τ , Û = (I − P )Ũ , Ŷ = (I − P )Ỹ , (2.7)

and n = (n1, · · · , np)τ and A+ denotes the Moore–Penrose inverse of A.

Using the approximate model (2.6), we define the least squares (LS)
estimators of (β, θ, µ) by

β̂ = β̂(n) =
(
Ûτ Û

)+
Ûτ Ŷ ,

θ̂ = (F τF )
+
F τ
(
Ỹ − Ũ β̂

)
,

µ̂ = Y − U
τ
β̂. (2.8)

Equation (2.8) suggests estimating the conditional mean functionm(Xt) =
E[Yt|Xt] by

m̂(Xt;n) = µ̂+ Uτt β̂ +

p∑

i=1

Fi(Vti)
τ θ̂i(n), (2.9)
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where θ̂i(n) is the corresponding estimator of θi.

It follows from (2.9) that the prediction equation depends on not only
the series functions {fij : 1 ≤ j ≤ ni, 1 ≤ i ≤ p} but also n, the
vector of truncation parameters. It is mentioned that the choice of the
series functions is much less critical than that of the vector of truncation
parameters. The series functions used in this chapter need to satisfy
Assumptions 2.2 and 2.3 in Section 2.5. The assumptions hold when each
fij belongs to a class of trigonometric series used by Gao, Tong and Wolff
(2002a). Therefore, a crucial problem is how to select k practically. Li
(1985, 1986, 1987) discussed the asymptotic optimality of a generalized
cross–validation (GCV) criterion as well as other model selection criteria.
Wahba (1990) provided a recently published survey of nonparametric
smoothing spline literature up to 1990. Gao (1998) applied a generalized
cross–validation criterion to choose smoothing truncation parameters
for the time series case. In this section, we apply a generalized cross–
validation method to choose k and then determine the estimates in (2.9).

In order to select n, we introduce the following mean squared error:

D̂(n) =
1

T

T∑

t=1

{m̂(Xt;n) −m(Xt)}2 . (2.10)

Let g
(mi)
i be the mi–order derivative of the function gi and M0i be a

constant,

Gmi(Si) =
{
g :
∣∣∣g(mi)
i (s) − g

(mi)
i (s′)

∣∣∣ ≤M0i|s− s′|, s, s′ ∈ Si ⊂ R
1
}
,

where each mi ≥ 1 is an integer, 0 < M0i <∞ and each Si is a compact
subset of R

1. Let also NiT = {piT , piT + 1, . . . , qiT }, in which piT =[
aiT

di
]
, qiT = [biT

ci ], 0 < ai < bi < ∞, 0 < di < ci <
1

2(mi+1) are

constants, and [x] ≤ x denotes the largest integer part of x.

Definition 2.1. A data-driven estimator n̂ = (n̂1, . . . , n̂p)
τ is asymptot-

ically optimal if

D̂(n̂)

infn∈NT
D̂(n)

→p 1,

where n ∈ NT = {n = (n1, . . . , np)
τ : ni ∈ NiT }.

Definition 2.2. Select n, denoted by n̂G = (n̂1G, . . . , n̂pG)τ , that achieves

GCV(n̂G) = inf
n∈NT

GCV(n) = inf
n∈NT

σ̂2(n)
[
1 − 1

T

∑p
i=1 ni

]2 ,

where σ̂2(n) = 1
T

∑T
t=1 {Yt − m̂(Xt;n)}2.
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We now have the following asymptotic properties for D̂(n) and n̂G.

Theorem 2.1. (i) Assume that Assumptions 2.1–2.2(i), 2.3 and 2.4
listed in Section 2.5 hold. Then

D̂(n) =
σ2

T

p∑

i=1

ni +
1

T
E [∆τ∆] + op

(
D̂(n)

)
, (2.11)

where ∆ =
∑p
i=1 [Fiθi −Gi], Gi = (gi(V1i), . . . , gi(VTi))

τ and {Fi(·)} is
as defined before.

(ii) In addition, if Assumption 2.2(ii) holds, then we have

D̂(n) =
σ2

T

p∑

i=1

ni +

p∑

i=1

Cin
−2(mi+1)
i + op(D̂(n)) (2.12)

uniformly over n ∈ NT , where σ2 = E[e2t ] < ∞ and each mi is the
smoothness order of gi.

Theorem 2.2. (i) Under the conditions of Theorem 2.1(i), n̂G is asymp-
totically optimal.

(ii) Under the conditions of Theorem 2.1(ii), we have

D̂(n̂G)

D̂(n̂D)
− 1 = op(T

−τ ) (2.13)

and
p∑

i=1

∣∣∣∣
n̂iG
n̂iD

− 1

∣∣∣∣ = op
(
T−τ) , (2.14)

where n̂iD is the i–th component of n̂D = (n̂1D, . . . , n̂pD)τ that minimises

D̂(n) over NT , 0 < τ = min(τ1 − ǫ1, τ2 − ǫ2), in which τ1 = 1
2dmin, τ2 =

1
2 − 2cmax, both ǫ1 and ǫ2 satisfying 0 < ǫ1 < τ1 and 0 < ǫ2 < τ2 are
arbitrarily small, dmin = min1≤i≤p di and cmax = max1≤i≤p ci.

The proofs of Theorems 2.1 and 2.2 are relegated to Section 2.5.

We now define the adaptive and simultaneous estimation procedure as
follows:

(i) solve the LS estimator θ̂(n);

(ii) define the prediction equation by (2.9);

(iii) solve the GCV-based n̂G; and

(iv) define the following adaptive and simultaneous prediction equation
m̂ (Xt; n̂G).
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If σ2 is unknown, it will be estimated by σ̂2 (n̂G).

Furthermore, we have the following asymptotic normality.

Corollary 2.1. Under the conditions of Theorem 2.1(i), we have as
T → ∞ √

T
(
σ̂2(n̂G) − σ2

)
→ N

(
0, var(e21)

)
.

The proof of Corollary 2.1 is relegated to Section 2.5.

Remark 2.1. Theorem 2.1 provides asymptotic representations for the
average squared error D̂(n). See Härdle, Hall and Marron (1988) for an
equivalent result in nonparametric kernel regression. In addition, Theo-
rem 2.2(i) shows that the GCV based n̂G is asymptotically optimal. This
conclusion is equivalent to Corollary 3.1 of Li (1987) in the model selec-
tion problem. However, the fundamental difference between our discus-
sion in this section and Li (1987) is that we use the GCV method to de-
termine how many terms are required to ensure that each nonparametric
function can be approximated optimally, while Li (1987) suggested using
the GCV selection criterion to determine how many variables should be
employed in a linear model. Due to the different objectives, our con-
ditions and conclusions are different from those of Li (1987), although
there are some similarities.

Remark 2.2. Theorem 2.2(ii) not only establishes the asymptotic opti-
mality but also provides the rate of convergence. This rate of convergence
is equivalent to that of bandwidth estimates in nonparametric kernel re-
gression. See Härdle, Hall and Marron (1992). More recently, Hurvich
and Tsai (1995) have established a similar result for a linear model se-
lection. Moreover, it follows from Theorem 2.2(ii) that the rate of conver-
gence depends heavily on di and ci. Let di = 1

2mi+3 and ci = 1
2mi+3 + ηi

for arbitrarily small ηi > 0. Then the rate of convergence will be of order

min

(
min
1≤i≤p

(
1

2(2mi + 3)

)
, max

1≤i≤p

(
2mi − 1

2(2mi + 3)

))
− ǫ

for some arbitrarily small ǫ > 0. Obviously, if each gi is continuously
differentiable, then the rate of convergence will be close to 1

10 − ǫ. This
is equivalent to Theorem of Hurvich and Tsai (1995). As a result of the
Theorem, the rate of convergence can be close to 1

2 . See also Theorem 1
and Remark 2 of Härdle, Hall and Marron (1992).

Remark 2.3. In this chapter, we assume that the data set {(Yt, Xt) : t ≥
1} satisfies model (2.2) and then propose the orthogonal series method to
model the data set. In practice, before applying the estimation procedure
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to model the data, a crucial problem is how to test the additivity. Some
related results for additive nonparametric regression have been given by
some authors. See, for example, Gao, Tong and Wolff (2002b).

To illustrate the above estimation procedure, we now include two simu-
lated and real examples for a special case of model (2.2) with µ = β = 0.
Let Vt = (Vt1, Vt2, Vt3)

τ = (Yt−1, Yt−2,Wt)
τ , where {Wt} is to be speci-

fied below.

Example 2.1: Consider the model given by

Yt = 0.25Yt−1 + 0.25
Yt−2

1 + Y 2
t−2

+
1

8π
W 2
t + et, t = 3, 4, ..., T, (2.15)

where {et} is uniformly distributed over (−0.5π, 0.5π), Y1 and Y2 are
mutually independent and uniformly distributed over

[
1

128 , 2π − 1
128

]
,

(Y1, Y2) is independent of {et : t ≥ 3},
Wt = 0.25Wt−1 − 0.25Wt−2 + ǫt, (2.16)

in which {ǫt} is uniformly distributed over (−0.5π, 0.5π), X1 and X2 are
mutually independent and uniformly distributed over

[
1

128 , 2π − 1
128

]
,

and (X1, X2) is independent of {ǫt : t ≥ 3}.
First, it follows from Lemma 3.1 of Masry and Tjøstheim (1997) that
both the stationarity and the mixing condition are met. See also Chapter
4 of Tong (1990), §2.4 of Tjøstheim (1994) and §2.4 of Doukhan (1995).
Thus, Assumption 2.1(i) holds. Second, it follows from (2.15) and (2.16)
that Assumption 2.1(ii) holds immediately. Third, let

g1(x) = 0.25x,

g2(x) = 0.25
x

1 + x2
,

g3(x) =
1

8π
x2. (2.17)

Since {gi : 1 ≤ i ≤ 3} are continuously differentiable on R
1, there

exist three corresponding periodic functions defined on [0, 2π] that are
continuously differentiable on [0, 2π] and coincide with {gi : 1 ≤ i ≤ 3}
correspondingly (see Hong and White 1995, p.1141). Similarly to §3.2 of
Eastwood and Gallant (1991), we can show that there exist the following
three corresponding trigonometric polynomials

g∗1(x) =

n1∑

j=1

sin(jx)θ1j ,

g∗2(x) =

n2∑

j=1

sin(jx)θ2j ,
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g∗3(x) =

n3∑

j=1

cos(jx)θ3j (2.18)

such that Assumptions 2.2(i) and 2.2(ii) are satisfied and the same con-
vergence rate can be obtained as in the periodic case. Obviously, it fol-
lows from (2.18) that Assumption 2.2(i) holds. Fourth, Assumption 2.3
is satisfied due to (2.18) and the orthogonality of trigonometric series.
Finally, Assumption 2.4 holds due to the fact that supt≥1 |Yt| ≤ 2π.

We now define g∗1 , g
∗
2 and g∗3 as the corresponding approximations of g1,

g2 and g3 with

x ∈ S =

[
1

128
, 2π − 1

128

]
and hi ∈ NiT =

{
[aiT

di ], . . . , [biT
ci ]
}
,

(2.19)
in which i = 1, 2, 3,

di =
1

2mi + 3
and ci =

1

2mi + 3
+

2mi − 1

6(2mi + 3)
.

In the following simulation, we consider the case where ai = 1, bi = 2
and mi = 1 for i = 1, 2, 3. Let

F1(x) = (sin(x), sin(2x), . . . , sin(n1x))
τ ,

F2(x) = (sin(x), sin(2x), . . . , sin(n2x))
τ ,

F3(x) = (cos(x), cos(2x), . . . , cos(n3x))
τ .

For the cases of T = 102, 252, 402, 502, and 752, we then compute D̂(n),
σ̂2(n), GCV(n) and the following quantities: for i = 1, 2, 3,

di(n̂iG, n̂iD) =
n̂iG
n̂iD

− 1, d4(n̂G, n̂D) =
D̂(n̂G)

D̂(n̂D)
− 1,

ASEi(n̂G) =
1

N

N∑

n=1

{
F
in̂iG

(Zni)
τ θ̂i(ĥG) − gi(Zni)

}2

,

ASE4(n̂G) =
1

N

N∑

n=1

{
3∑

i=1

(
F
in̂iG

(Zni)
τ θ̂
in̂iG

− gi(Zni)
)}2

,

VAR(n̂G) =
∣∣σ̂2(n̂G) − σ2

∣∣ ,

where N = T − 2, σ2 = π2

12 = 0.822467, n̂G = (n̂1G, n̂2G, n̂3G)τ , Zn1 =
Yn+1, Zn2 = Yn and Zn3 = Wn+2.

The simulation results below were performed 1000 times and the means
are tabulated in Table 2.1 below.
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Table 2.1. Simulation Results for Example 2.1

N 100 250 400 500 750

NiT {1,. . . ,5} {1,. . . ,6} {1,. . . ,6} {1,. . . ,6} {1,. . . ,7}

d1(n̂1G, n̂1D) 0.10485 0.08755 0.09098 0.08143 0.07943

d2(n̂2G, n̂2D) 0.11391 0.07716 0.08478 0.08964 0.07983

d3(n̂3G, n̂3D) 0.09978 0.08155 0.08173 0.08021 0.08371

d4(n̂G, n̂D) 0.32441 0.22844 0.24108 0.22416 0.22084

ASE1(n̂G) 0.03537 0.01755 0.01123 0.00782 0.00612

ASE2(n̂G) 0.02543 0.01431 0.00861 0.00609 0.00465

ASE3(n̂G) 0.02507 0.01348 0.00795 0.00577 0.00449

ASE4(n̂G) 0.06067 0.03472 0.02131 0.01559 0.01214

VAR(n̂G) 0.05201 0.03361 0.01979 0.01322 0.01086

Remark 2.4. Both Theorem 2.2(ii) and Table 2.1 demonstrate that the

rate of convergence of the GCV based di for 1 ≤ i ≤ 4 is of order T− 1
10 .

In addition, the simulation results for ASEi(n̂G) given in Table 2.1 show

that when ni is of order T
1
5 , the rate of convergence of each ASEi is of

order T− 4
5 .

Example 2.2: In this example, we consider the Canadian lynx data.
This data set is the annual record of the number of Canadian lynx
trapped in the MacKenzie River district of North–West Canada for the
years 1821 to 1934. Tong (1976) fitted an eleventh-order linear Gaussian
autoregressive model to Yt = log10{number of lynx trapped in the year
(1820 + t)} for t = 1, 2, ..., 114 (T = 114). It follows from the definition
of {Yt, 1 ≤ t ≤ 114} that all the transformed values {Yt : t ≥ 1} are
bounded.

We apply the above estimation procedure to fit the real data set listed in
Example 2.2 by the following third–order additive autoregressive model
of the form

Yt = g1(Yt−1) + g2(Yt−2) + g3(Yt−3) + et, t = 4, 5, . . . , T, (2.20)

where {gi : i = 1, 2, 3} are unknown functions, and {et} is a sequence of
independent random errors with zero mean and finite variance.



SEMIPARAMETRIC SERIES ESTIMATION 25

Similarly, we approximate g1, g2 and g3 by

g∗1(u) =

n1∑

j=1

f1j(u)θ1j , g
∗
2(v) =

n2∑

j=1

f2j(v)θ2j , g
∗
3(w) =

n3∑

j=1

f3j(w)θ3j ,

(2.21)
respectively, where f1j(u) = sin(ju) for 1 ≤ j ≤ n1, f2j(v) = sin(jv) for
1 ≤ j ≤ n2, f3j(w) = cos(jw) for 1 ≤ j ≤ n3, and

hj ∈ NjT =
{[
T 0.2

]
, . . . ,

[
2T

7
30

]}
.

Our simulation suggests using the following polynomial prediction

Ŷt =

n̂1G∑

j=1

sin(jYt−1)θ1j +

n̂2G∑

j=1

sin(jYt−2)θ2j +

n̂3G∑

j=1

cos(jYt−3)θ3j , (2.22)

where n̂1G = 5, n̂2G = n̂3G = 6, and the coefficients are given in the
following Table 2.2.

Table 2.2. Coefficients for Equation (2.22)

θ1 = (θ11, . . . , θ15)
τ θ2 = (θ21, . . . , θ26)

τ θ3 = (θ31, . . . , θ36)
τ

11.877 -2.9211 -6.8698
18.015 -5.4998 -7.8529
10.807 -4.9084 -7.1952
4.1541 -3.1189 -4.8019
0.7997 -1.2744 -2.0529

-0.2838 -0.4392

The estimator of the error variance was 0.0418. Some plots for Example
2.2 are given in Figure 2.1 of Gao, Tong and Wolff (2002a).

Remark 2.5. For the Canadian lynx data, Tong (1976) fitted an eleventh–
order linear Gaussian autoregressive model to the data, and the estimate
of the error variance was 0.0437. Figure 2.1 shows that when using equa-
tion (2.20) to fit the real data set, the estimator of g1 is almost linear
while the estimators of both g2 and g3 appear to be nonlinear. This find-
ing is the same as the conclusion reached by Wong and Kohn (1996),
who used a Bayesian based iterative procedure to fit the real data set.
Their estimator of the error variance was 0.0421, which is comparable
with our variance estimator of 0.0418. Moreover, our estimation proce-
dure provides the explicit equation (2.22) and the CPU time for Example
2.2 just took about 2 minutes. By contrast, Wong and Kohn (1996) can
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only provide an iterative estimation procedure for each gi since their
approach depends heavily on the Gibbs sampler.

Remark 2.6. Both Examples 2.1 and 2.2 demonstrate that the explicit
estimation procedure can not only provide some additional information
for further diagnostics and statistical inference but also produce mod-
els with better predictive power than is available from linear models.
For example, model (2.22) is more appropriate than a completely linear
model for the lynx data as mentioned in Remark 2.2. Moreover, model
(2.22) not only can be calculated at a new design point with the same
convenience as in linear models, but also provides the individual coeffi-
cients, which can be used to measure whether the individual influence
of each Yt−3+i for i = 0, 1, 2 can be negligible.

This section has assumed that the true conditional mean function is of a
semiparametric additive model of the form (2.2) and then developed the
orthogonal series based estimation procedure. As discussed in the next
section, we may approximate the true conditional mean function by the
additive form (2.2) even if the true conditional mean function may not
be expressed exactly as an additive form.

2.3 Semiparametric kernel estimation

As mentioned above (2.1), we are approximating the mean function
m(Ut, Vt) = E[Yt|Ut, Vt] by minimizing

E [Yt −m1(Ut, Vt)]
2

= E [Yt − µ− Uτt β − g(Vt)]
2

(2.23)

over a class of functions of the form m1(Ut, Vt) = µ+ Uτt β + g(Vt) with
E[g(Vt)] = 0. Such a minimization problem is equivalent to minimizing

E [Yt − µ− Uτt β − g(Vt)]
2

= E
[
E
{

(Yt − µ− Uτt β − g(Vt))
2 |Vt

}]

over some (µ, β, g). This implies that g(Vt) = E [(Yt − µ− Uτt β)|Vt] and
µ = E[Yt − Uτt β] with β being given by

β = Σ−1E [(Ut − E[Ut|Vt]) (Yt − E[Yt|Vt])] (2.24)

provided that the inverse Σ−1 = (E [(Ut − E[Ut|Vt]) (Ut − E[Ut|Vt])τ ])−1

exists. This also shows that m1(Ut, Vt) is identifiable under the assump-
tion of E[g(Vt)] = 0.

We now turn to estimation assuming that the data are available for
(Yt, Ut, Vt) for 1 ≤ t ≤ T . Since the definitions of the estimators to
be used later are quite involved notationally, we start by outlining the
main steps in establishing estimators for µ, β and g(·) in (2.1) and then
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gl(·), l = 1, 2, · · · , p in (2.2). In the following, we give an outline in three
steps.

Step 1: Estimating µ and g(·) assuming β to be known.

For each fixed β, since µ = E[Yt]−E[Uτt β] = µY − µτUβ, the parameter

µ can be estimated by µ̂(β) = Y − U
τ
β, where µY = E[Yt], µU =

(µ
(1)
U , · · · , µ(q)

U )τ = E[Ut], Y = 1
T

∑T
t=1 Yt and U = 1

T

∑T
t=1 Ut.

Moreover, the conditional expectation

g(x) = g(x, β) = E [(Yt − µ− Uτt β)|Vt = x]

= E [(Yt − E[Yt] − (Ut − E[Ut])
τβ)|Vt = x] (2.25)

can be estimated by standard local linear estimation (Fan and Gijbels
1996) with ĝT (x, β) = â0(β) satisfying

(â0(β), â1(β)) = arg min
(a0, a1)∈R1×Rp

(2.26)

×
T∑

t=1

(
Ỹt − Ũτt β − a0 − aτ1(Vt − x)

)2
Kt(x, b),

where Ỹt = Yt − Y , Ũt = (Ũ
(1)
t , · · · , Ũ (q)

t )τ = Ut − U and Kt(x, b) =∏p
l=1K

(
Vtl−xl

bl

)
, with b = bT = (b1, · · · , bp), bl = bl,T being a sequence

of bandwidths for the l-th covariate variable Vtl, tending to zero as T
tends to infinity, and K(·) is a bounded kernel function on R

1.

Step 2: Marginal integration to obtain g1, · · · , gp of (2.2).

The idea of the marginal integration estimator is best explained if g(·)
is itself additive, that is, if

g(Vt) = g(Vt1, · · · , Vtp) =

p∑

l=1

gl(Vtl).

Then, since E [gl (Vtl)] = 0 for l = 1, · · · , p, for k fixed

gk(xk) = E [g(Vt1, · · · , xk, · · · , Vtp)] .
An estimate of gk is obtained by keeping Vtk fixed at xk and then taking
the average over the remaining variables Vt1, · · · , Vt(k−1), Vt(k+1), · · · , Vtp.
This marginal integration operation can be implemented irrespective of
whether or not g(·) is additive. If the additivity does not hold, the
marginal integration amounts to a projection on the space of addi-
tive functions of Vtl, l = 1, · · · , p taken with respect to the product
measure of Vtl, l = 1, · · · , p, obtaining the approximation ga(x, β) =∑p
l=1 Pl,ω(Vtl, β), which will be detailed below with β appearing linearly
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in the expression. In addition, it has been found convenient to introduce
a pair of weight functions (wk, w(−k)) in the estimation of each com-
ponent, hence the index w in Pl,w. The details are given in Equations
(2.32)–(2.36) below.

Step 3: Estimating β.

The last step consists in estimating β. This is done by weighted least
squares, and it is easy since β enters linearly in our expressions. In fact,
using the expression of g(x, β) in Step 1, we obtain the weighted least

squares estimator β̂ of β in (2.34) below. Finally, this is re–introduced
in the expressions for µ̂ and P̂ resulting in the estimates in (2.35) and
(2.36) below. In the following, steps 1–3 are written correspondingly in
more detail.

Step 1: To write our expression for (â0(β), â1(β)) in (2.26), we need to
introduce some more notation.

Xt = Xt(x, b) =

(
(Vt1 − x1)

b1
, · · · , (Vtp − xp)

bp

)τ
,

and let bπ =
∏p
l=1 bl. We define for 0 ≤ l1, l2 ≤ p,

γT,l1l2 = (Tbπ)
−1

T∑

t=1

(Xt(x, b))l1 (Xt(x, b))l2 Kt(x, b), (2.27)

where (Xt(x, b))l = (Vtl−xl)
bl

for 1 ≤ l ≤ p. We then let (Xt(x, b))0 ≡ 1
and define

λT,l(β) = (Tbπ)
−1

T∑

t=1

(
Ỹt − Ũτt β

)
(Xt(x, b))l Kt(x, b) (2.28)

and where, as before, Ỹt = Yt − Ȳ and Ũt = Ut − Ū .

Note that λT,l(β) can be decomposed as

λT,l(β) = λ
(0)
T,l −

q∑

s=1

βsλ
(s)
T,l, for l = 0, 1, · · · , p, (2.29)

in which λ
(0)
T,l = λ

(0)
T,l(x, b) = (Tbπ)

−1
∑T
t=1 Ỹt (Xt(x, b))l Kt(x, b),

λ
(s)
T,l = λ

(s)
T,l(x, b) = (Tbπ)

−1
T∑

t=1

Ũts (Xt(x, b))l Kt(x, b), 1 ≤ s ≤ q.

We can then express the local linear estimates in (2.26) as

(â0(β), â1(β) ⊙ b)
τ

= Γ−1
T ΛT (β), (2.30)
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where ⊙ is the operation of the component-wise product, i.e., a1 ⊙ b =
(a11b1, · · · , a1pbp) for a1 = (a11, · · · , a1p) and b = (b1, · · · , bp),

ΛT (β) =

(
λT,0(β)
ΛT,1(β)

)
, ΓT =

(
γT,00 ΓT,01
ΓT,10 ΓT,11

)
, (2.31)

where ΓT,10 = ΓτT,01 = (γT,01, · · · , γT,0p)τ and ΓT,11 is the p× p matrix
defined by γT,l1 l2 with l1, l2 = 1, · · · , p, in (2.27). Moreover, ΛT,1(β) =
(λT,1(β), . . . , λT,p(β))τ with λT,l(β) as defined in (2.28). Analogously for

ΛT , we may define Λ
(0)
T and Λ(s) in terms of λ(0) and λ(s). Then taking

the first component with c = (1, 0, · · · , 0)τ ∈ R1+p,

ĝT (x;β) = cτΓ−1
T (x)ΛT (x, β)

= cτΓ−1(x)Λ
(0)
T (x) −

q∑

s=1

βsc
τΓ−1(x)Λ

(s)
T (x)

= H
(0)
T (x) − βτHT (x),

whereHT (x) = (H
(1)
T (x), · · · , H(q)

T (x))τ withH
(s)
T (x) = cτΓ−1

T (x)Λ(s)(x),

1 ≤ s ≤ q. Clearly, H
(s)
T (x) is the local linear estimator of H(s)(x) =

E
[(
U

(s)
t − µ

(s)
U

)
|Vt = x

]
, 1 ≤ s ≤ q.

We now define U
(0)
t = Yt and µ

(0)
U = µY such that H(0)(x) = E[(U

(0)
t −

µ
(0)
U )|Vt = x] = E[Yt − µY |Vt = x] and H(x) = (H(1)(x), · · · , H(q)(x))τ =

E[(Ut − µU )|Vt = x]. It follows that g(x, β) = H(0)(x) − βτH(x), which
equals g(x) under (2.1) irrespective of whether g itself is additive.

Step 2: Let w(−k)(·) be a weight function defined on R
p−1 such that

E
[
w(−k)(V

(−k)
t )

]
= 1, and wk(xk) = I[−Lk,Lk](xk) defined on R

1 for

some large Lk > 0, with

V
(−k)
t = (Vt1, · · · , Vt(k−1), Vt(k+1), · · · , Vtp),

where IA(x) is the conventional indicator function. In addition, we take

Vt(xk) = (Vt1, · · · , Vt(k−1), xk, Vt(k+1), · · · , Vtp).

For a given β, consider the marginal projection

Pk,w(xk, β) = E
[
g(Vt(xk);β)w(−k)

(
V

(−k)
t

)]
wk(xk). (2.32)

It is easily seen that if g is additive as in (2.2), then for −Lk ≤ xk ≤
Lk, Pk,w(xk, β) = gk(xk) up to a constant since it is assumed that

E
[
w(−k)(V

(−k)
t )

]
= 1. In general, ga(x, β) =

∑p
l=1 Pl,w(xl, β) is an addi-

tive marginal projection approximation to g(x) in (2.1) up to a constant
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in the region x ∈ ∏p
l=1[−Ll, Ll]. The quantity Pk,w(xk, β) can then be

estimated by the locally linear marginal integration estimator

P̂k,w(xk, β) = T−1
T∑

t=1

ĝT (Vt(xk);β) w(−k)
(
V

(−k)
t

)
wk(xk)

= P̂
(0)
k,w(xk) −

q∑

s=1

βsP̂
(s)
k,w(xk) = P̂

(0)
k,w(xk) − βτ P̂Uk,w(xk),

where P̂Uk,w(xk) =
(
P̂

(1)
k,w(xk), · · · , P̂ (q)

k,w(xk)
)τ

, in which

P̂
(s)
k,w(xk) =

1

T

T∑

t=1

H
(s)
T (Vt(xk)) w(−k)

(
V

(−k)
t

)
wk(xk)

is the estimator of

P
(s)
k,w(xk) = E

[
H(s)(Vt(xk))w(−k)

(
V

(−k)
t

)]
wk(xk)

for 0 ≤ s ≤ q and PUk,w(xk) =
(
P

(1)
k,w(xk), · · · , P (q)

k,w(xk)
)τ

is estimated

by P̂Uk,w(xk).

We add the weight function wk(xk) = I[−Lk, Lk](xk) in the definition of

P̂
(s)
k,w(xk), since we are interested only in the points of xk ∈ [−Lk, Lk]

for some large Lk. In practice, we may use a sample centered version of

P̂
(s)
k,w(xk) as the estimator of P

(s)
k,w(xk). Clearly, we have

Pk,w(xk, β) = P
(0)
k,w(xk) − βτPUk,w(xk).

Thus, for every β, g(x) = g(x, β) of (2.1) (or rather the approximation
ga(x, β) if (2.2) does not hold) can be estimated by

̂̂g(x, β) =

p∑

l=1

P̂l,w(xl, β) =

p∑

l=1

P̂
(0)
l,w (xl) − βτ

p∑

l=1

P̂Ul,w(xl). (2.33)

Step 3: We can finally obtain the least squares estimator of β by

β̂ = arg min
β∈Rq

T∑

t=1

(
Ỹt − Ũτt β − ̂̂g(Vt, β)

)2

= arg min
β∈Rq

T∑

t=1

(
Ŷ ∗
t −

(
Û∗
t

)τ
β
)2
, (2.34)

where Ŷ ∗
t = Ỹt−

∑p
l=1 P̂

(0)
l,w (Vtl) and Û∗

t = Ũt−
∑p
l=1 P̂

U
l,w(Vtl). Therefore,

β̂ =

(
T∑

t=1

Û∗
t

(
Û∗
t

)τ
)−1( T∑

t=1

Ŷ ∗
t Û

∗
t

)
and µ̂ = Y − β̂τU. (2.35)
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We then insert β̂ in â0(β) = ĝm,n(x, β) to obtain â0(β̂) = ĝm,n(x, β̂).
In view of this, the locally linear projection estimator of Pk(xk) can be
defined by

̂̂
P k,w(xk) =

1

T

T∑

t=1

ĝT (Vt(xk); β̂) w(−k)
(
V

(−k)
t

)
(2.36)

and for xk ∈ [−Lk, Lk] this would estimate gk(xk) up to a constant when
(2.2) holds. To ensure E[gk(Vtk)] = 0, we may rewrite

ĝk(xk) =
̂̂
P k,w(xk) − µ̂P (k)

for the estimate of gk(xk) in (2.2), where µ̂P (k) = 1
T

∑T
t=1

̂̂
P k,w(Vtk).

For the proposed estimators, β̂, and
̂̂
P k,w(·), we establish some asymp-

totic distributions in Theorems 2.3 and 2.4 below under certain technical
conditions. To avoid introducing more mathematical details and symbols
before we state the main results, we relegate such conditions and their
justifications to Section 2.5 of this chapter.

We can now state the asymptotic properties of the marginal integration
estimators for both the parametric and nonparametric components. Let

U∗
t = Ut − µU −∑p

l=1 P
U
l,w(Vtl), Y

∗
t = Yt − µY −∑p

l=1 P
(0)
l,w (Vtl) and

Rt = U∗
t (Y ∗

t − U∗
t
τβ).

Theorem 2.3. Assume that Assumptions 2.5–2.9 listed in Section 2.5
hold. Then as T → ∞

√
T
[
(β̂ − β) − µβ

]
→D N(0,Σβ) (2.37)

with µβ =
(
BUU

)−1
µB and Σβ =

(
BUU

)−1
ΣB

((
BUU

)−1
)τ

, where

BUU = E [U∗
1U

∗
1
τ ], µB = E[R0] and ΣB = E [(R0 − µB) (R0 − µB)

τ
].

Furthermore, when (2.2) holds, we have

µβ = 0 and Σβ =
(
BUU

)−1
ΣB

((
BUU

)−1
)τ
, (2.38)

where ΣB = E [R0R
τ
0 ] with Rt = U∗

t εt, and εt = Yt − m1(Ut, Vt) =
Yt − µ− Uτt β − g(Vt).

Remark 2.7. Note that
p∑

l=1

P
(0)
l,w (Vtl) − βτ

p∑

l=1

PUl,w(Vtl) =

p∑

l=1

(
P

(0)
l,w (Vtl) − βτPUl,w(Vtl)

)

=

p∑

l=1

Pl,w(Vtl, β) ≡ ga(Vt, β).
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Therefore Y ∗
t − U∗

t
τβ = εt + g(Vt) − ga(Vt, β), where g(Vt) − ga(Vt, β)

is the residual due to the additive approximation. When (2.2) holds, it
means that g(Vt) in (2.1) has the expressions

g(Vt) =

p∑

l=1

gl(Vtl) =

p∑

l=1

Pl,w(Vtl, β) = ga(Vt, β)

and H(Vt) =
∑p
l=1 P

U
l,w(Vtl), and hence Y ∗

t − U∗
t
τβ = εt. As β mini-

mizes L(β) = E [Yt −m1(Ut, Vt)]
2
, we have L′(β) = 0 and E [ǫtU

∗
t ] =

E [ǫij (Ut − E[Ut|Vt])] = 0 when (2.2) holds. This implies E [Rt] = 0
and hence µβ = 0 in (2.37) when the marginal integration estimation
procedure is employed for the additive form of g(·).
In both theory and practice, we need to test whether H0 : β = β0 holds
for a given β0. The case where β0 ≡ 0 is an important one. Before we
state the next theorem, some additional notation is needed. Let

B̂UU =
1

T

T∑

t=1

Û∗
t (Û∗

t )τ , Ẑ∗
t = Z̃t −

p∑

l=1

P̂Ul,w(Vtl),

µ̂B =
1

T

T∑

t=1

R̂t, R̂t = Û∗
t

(
Ŷ ∗
t −

(
Û∗
t

)τ
β̂
)
,

µ̂β =
(
B̂UU

)−1

µ̂B , Σ̂β =
(
B̂UU

)−1

Σ̂B

((
B̂UU

)−1
)τ

,

in which Σ̂B is a consistent estimator of ΣB , defined simply by

Σ̂B =

{
1
T

∑T
t=1(R̂t − µ̂B)(R̂t − µ̂B)τ if (2.1) holds,

1
T

∑T
t=1 R̂tR̂

τ
t if (2.2) holds.

It can be shown that both µ̂β and Σ̂β are consistent estimators of µβ
and Σβ , respectively.

We now state a corollary of Theorem 2.3 to test hypotheses about β.

Corollary 2.2. Assume that the conditions of Theorem 2.3 hold. Then
as T → ∞

Σ̂
−1/2
β

√
T
[
(β̂ − β) − µ̂β

]
→D N(0, Iq),

T
[
(β̂ − β) − µ̂β

]τ
Σ̂−1
β

[
(β̂ − β) − µ̂β

]
→D χ2

q.

Furthermore, when (2.2) holds, we have as T → ∞,

Σ̂
−1/2
β

√
T
(
β̂ − β

)
→D N(0, Iq),

(√
T (β̂ − β)

)τ
Σ̂−1
β

(√
T (β̂ − β)

)
→D χ2

q.
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The proof of Theorem 2.3 is relegated to Section 2.5 while the proof of
Corollary 2.2 is straightforward and therefore omitted.

Next we state the following theorem for the nonparametric component.

Theorem 2.4. Assume that Assumptions 2.5–2.9 listed in Section 2.5
hold. Then for xk ∈ [−Lk, Lk],

√
T bk

(
̂̂
P k,w(xk) − Pk,w(xk) − bias1k

)
→D N(0, var1k), (2.39)

where

bias1k =
1

2
b2k µ2(K)

∫
w(−k)(x

(−k))f(−k)(x
(−k))

∂2g(x, β)

∂x2k
dx(−k)

and

var1k = J

∫
V (x, β)

[w(−k)(x(−k))f(−k)(x(−k))]2

f(x)
dx(−k)

with J =
∫
K2(u)du, µ2(K) =

∫
u2K(u)du,

g(x, β) = E
[(
Yij − µ− Zτijβ

)
|Xij = x

]
,

and V (x, β) = E
[(
Yij − µ− Zτijβ − g(x, β)

)2 |Xij = x
]
.

Furthermore, assume that (2.2) holds and that E
[
w(−k)(X

(−k)
ij )

]
= 1.

Then as T → ∞
√
T bk (ĝk(xk) − gk(xk) − bias2k) →D N(0, var2k), (2.40)

where

bias2k =
1

2
b2k µ2(K)

∂2gk(xk)

∂x2k
,

var2k = J

∫
V (x, β)

[w(−k)(x(−k))f(−k)(x(−k))]2

f(x)
dx(−k)

with V (x, β) = E
[(
Yij − µ− Zτijβ −∑p

k=1 gk(xk)
)2 |Xij = x

]
.

The proof of Theorem 2.4 is relegated to Section 2.5. Theorems 2.3
and 2.4 may be applied to estimate various additive models such as
model (2.2). In the following example, we apply the proposed estimation
procedure to determine whether a partially linear time series model is
more appropriate than either a completely linear time series model or a
purely nonparametric time series model for a given set of real data.

Example 2.3: In this example, we continue analyzing the Canadian lynx
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data with yt = log10{number of lynx trapped in the year (1820 + t)} for
t = 1, 2, ..., 114 (T = 114). Let q = p = 1, Ut = yt−1, Vt = yt−2 and
Yt = yt in model (2.1). We then select yt as the present observation and
both yt−1 and yt−2 as the candidates of the regressors.

Model (2.1) reduces to a partially linear time series model of the form

yt = βyt−1 + g(yt−2) + et. (2.41)

In addition to estimating β and g(·), we also propose to choose a suitable
bandwidth h based on a nonparametric cross–validation (CV) selection
criterion. For i = 1, 2, define

ĝi,t(·) = ĝi,t(·, h)

=
1

T − 3

∑T
s=3,s 6=tK

(
·−ys−2

h

)
ys+1−i

π̂h,t(·)
, (2.42)

where π̂h,t(·) = 1
T−3

∑T
s=3,s 6=tK

(
·−ys−2

h

)
.

We now define a new LS estimate β̃(h) of β by minimizing

T−3∑

t=1

{yt − βyt−1 − ĝ1,t(yt−2) − βĝ2,t(yt−2)}2 .

The CV selection function is then defined by

CV (h) =
1

T − 3

T∑

t=3

{
yt −

[
β̃(h)yt−1 + ĝ1,t(yt−2) − β̃(h)ĝ2,t(yt−2)

]}2

.

(2.43)

For Example 2.3, we choose

K(x) =
1√
2π
e−

x2

2 and H114 = [0.3 · 114−
7
30 , 1.1 · 114−

1
6 ].

Before selecting the bandwidth interval H114, we actually calculated the
following CV function CV(h) over all possible intervals. Our compu-
tation indicates that H114 is the smallest possible interval, on which
CV(h) can attain their smallest value. Similarly, we conducted a simula-
tion study for the case where K is a uniform kernel before choosing the
standard normal kernel. Our simulation results also show that for the
lynx data, nonparametric normal kernel estimation procedures can pro-
vide more stable simulation results. Example 3 of Yao and Tong (1994)
also suggests using the standard normal kernel in the nonparametric
fitting of the lynx data.
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Through minimising the CV functions CV (h), we obtain CV(ĥC) =
infh∈H114 CV (h) = 0.04682. The estimate of the error variance of en was
0.04119. In comparison, the estimate of the error variance of the model
of Tong (1976) was 0.0437, while the estimate of the error variance of
the model of Wong and Kohn (1996) was 0.0421, which is comparable
with our variance estimate of 0.04119. Some plots for Example 2.3 are
given in Figure 2.1 of Gao and Yee (2000).

For the lynx data set, when selecting yt−1 and yt−2 as the candidates of
the regressors, our research suggests using the prediction equation

ŷt = 1.354 yt−1 + g̃1(yt−2), t = 3, 4, . . . , (2.44)

where
g̃1(yt−2) = ĝ1(yt−2, ĥC) − 1.354 ĝ2(yt−2, ĥC)

and

ĝi(yt−2, h) =

∑T
s=3K

(
yt−2−ys−2

h

)
ys+1−i

∑T
u=3K

(
yt−2−yu−2

h

) ,

in which i = 1, 2 and ĥC = 0.1266. The research by Gao and Yee (2000)
clearly shows that g̃1(·) appears to be nonlinear.

2.4 Semiparametric single–index estimation

Consider a semiparametric single–index model of the form

Yt = Xτ
t θ + ψ(Xτ

t η) + et, t = 1, 2, · · · , T, (2.45)

where {Xt} is a strictly stationary time series, both θ and η are vec-
tors of unknown parameters, ψ(·) is an unknown function defined over
R1, and {et} is a sequence of strictly stationary time series errors with
E[et|Xt] = 0 and E[e2t |Xt = x] = σ2(x) when our interest is on the es-
timation of the conditional mean function. Throughout this chapter, we
assume that there is some positive constant parameter σ > 0 such that
P
(
σ2(Xt) = σ2

)
= 1. As pointed out in Xia, Tong and Li (1999), model

(2.45) covers various special and important cases already discussed ex-
tensively in the literature.

In order to estimate the unknown parameters and function involved in
(2.45), we introduce the following notation:

ψ1η(u) = E [Yt|Xτ
t η = u] , ψ2η(u) = E [Xt|Xτ

t η = u] ,

W (η) = E [(Xt − ψ2η(X
τ
t η)) (Xt − ψ2η(X

τ
t η))

τ
] ,

V (η) = E [(Xt − ψ2η(X
τ
t η)) (Yt − ψ1η(X

τ
t η))

τ
] ,

S(θ, η) = E [Yt − ψ1η(X
τ
t η) − θτ (Xt − ψ2η(X

τ
t η))] . (2.46)
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The following theorem shows that model (2.45) is identifiable under some
mild conditions; its proof is the same as that of Theorem 2 of Xia, Tong
and Li (1999).

Theorem 2.5. Assume that ψ(·) is twice differentiable and that the
marginal density function of {Xt} is a positive function on an open
convex subset in R

d. Then the minimum point of S(θ, η) with θ ⊥ η
is unique at η and θ = θη = W+(η)V (η), where θ ⊥ η denotes that θ
and η are orthogonal and W+(η) is the Moore–Penrose inverse.

We now start to estimate the identifiable parameters and function. Let
X ⊂ R

1 be the union of a number of open convex sets such that the
marginal density, π(·), of {Xt} is greater than M > 0 on X for some
constant M > 0. We first estimate ψ1η(·) and ψ2η(·) by

ψ̂1η(u) =

∑
Xt∈X K̃h(X

τ
t η − u)Yt∑

Xt∈X K̃h(Xτ
t η − u)

,

ψ̂2η(u) =

∑
Xt∈X K̃h(X

τ
t η − u)Xt∑

Xt∈X K̃h(Xτ
t η − u)

, (2.47)

where K̃h(·) = K̃(·/h), K̃(·) is a kernel function, and h is a bandwidth
parameter. Let

Ỹtη = Yt − ψ̂1η(X
τ
t η), X̃tη = Xt − ψ̂2η(X

τ
t η),

ST (θ, η;h) =
∑

Xt∈X

(
Ỹtη − X̃τ

tηθ
)2
. (2.48)

By minimising ST (θ, η;h) over (θ, η, h), we may find the least–squares
type of estimators for the parameters. First, given (η, h), the correspond-
ing estimator of θ is given by

θ̂(η, h) =

( ∑

Xt∈X
X̃tηX̃

τ
tη

)+ ∑

Xt∈X
X̃tηỸtη. (2.49)

We then estimate (η, h) by (η̂, ĥ) through minimising

ŜT (η, h) =
∑

Xt∈X

(
Ỹtη − X̃τ

tη θ̂(η, h)
)2
. (2.50)

The nonparametric estimator of ψ(·) is finally defined by

ψ̂(u) = ψ̂
1η̂

(u) − ψ̂
1η̂

(u)τ θ̂(η̂, ĥ). (2.51)
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When σ2 = E[e2t ] is unknown, it is estimated by

σ̂2 =
1

T̃
ŜT (η̂, ĥ) =

1

T̃

∑

Xt∈X

(
Ỹ
tη̂

− X̃τ

tη̂
θ̂(η̂, ĥ)

)2
, (2.52)

where T̃ = # {Xt : Xt ∈ X}.
To establish the main theorem of this section, we need to introduce the
following notation:

A1T (η) =
∑

Xt∈X
X̃tηψ

′(Xτ
t η)et, A2T (η) =

∑

Xt∈X
X̃tηet,

B1(η) = E
[
X̃tηX̃

τ
tη

]
, B2(η) = E

[
X̃tηX̃

τ
tηψ

′(Xτ
t η)
]
,

B3(η) = E
[
X̃tηX̃

τ
tη (ψ′(Xτ

t η))
2
]
,

C1(η) =
1

T̃
var
[
A2T (η) −B2(η)B

+
3 (η)A1T (η)

]
,

C2(η) =
1

T̃
var
[
A1T (η) −B1(η)B

+
3 (η)A2T (η)

]
, (2.53)

and C3 = E
[(
e2t − σ2

)2]
.

Theorem 2.6. Assume that Assumption 2.10 listed in Section 2.5 holds.
Then as T̃ → ∞

√
T̃
(
θ̃ − θ

)
→D N

(
0, C+

1 (η)
)
,

√
T̃ (η̃ − η) →D N

(
0, C+

2 (η)
)
,

√
T̃
(
σ̃2 − σ2

)
→D N (0, C3) ,

ĥ

h0
→P 1, (2.54)

where h0 is the theoretically optimal bandwidth in the sense that it min-
imizes

MISE(h) =

∫
E
[
ψ̂(xτη) − ψ(xτη)

]2
π(x)dx.

In addition,

sup
x∈X

∣∣∣ψ̂ (xτ η̂) − ψ (xτ η̂)
∣∣∣ = O

(√
T− 4

5 log(T )

)
almost surely.

Before the proof of Theorem 2.6 is given in Section 2.5, we examine the
finite–sample performance of Theorem 2.6 in Example 2.4 below.

Example 2.4: Consider a nonlinear time series model of the form

yt = 0.3xt + 0.4xt−1 + e−2(0.8xt−0.6xt−1)
2

+ 0.1ǫt (2.55)
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with xt = 0.8xt−1 + ξt + 0.5ξt−1, where {ǫt} and {ξt} are mutually
independent random errors drawn from N(0, 1). Model (2.55) may be
written as

yt = λ cos(ζ)xt + λ sin(ζ)xt−1 + e−2(sin(ζ)xt−cos(ζ)xt−1)
2

+ 0.1ǫt (2.56)

with α = 0.6435 and λ = 0.5.

For sample sizes n = 50, 100 and 200, the simulation was replicated
500 times. We choose X such that (0.8,−0.6)x ∈ [−1.5, 1.5], where x

is a vector, and use the Epanechnikov kernel. We minimize ŜT (η, h)
within α ∈ [0.2, 1.3], η = (cos(ζ),− sin(ζ))τ and h ∈ [0.01, 0.2]. Table

2.3 provides the estimates of ζ̂, θ̂ and η̂.

Table 2.3. Means and Standard Deviations, in parentheses, of
Estimators for Different Sample Sizes T

T ζ̂ θ̂
50 0.6414 (0.0338) 0.2993 (0.0058)

0.4008 (0.0084)
100 0.6442 (0.0076) 0.3002 (0.0041)

3.9970 (0.0042)
200 0.6436 (0.0040) 0.2999 (0.0027)

0.4000 (0.0033)

Table 2.3 is taken from the first part of Table 1 of the paper by Xia,
Tong and Li (1999). Some other results have also been included in the
paper.

2.5 Technical notes

Before we complete the proofs of the theorems, we first need to introduce
the following assumptions and definitions.

2.5.1 Assumptions

Assumption 2.1. (i) Assume that the process {(Xt, Yt) : 1 ≤ t ≤ T}
is strictly stationary and α–mixing with the mixing coefficient α(T ) ≤
Cαη

T , where 0 < Cα <∞ and 0 < η < 1 are constants.

(ii) Let et = Yt − E[Yt|Xt]. Assume that {et} satisfies for all t ≥ 1,

E[et|Ωt−1] = 0, E[e2t |Ωt−1] = E[e2t ] and E[e4t |Ωt−1] <∞
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almost surely, where Ωt = σ{(Xs+1, Ys) : 1 ≤ s ≤ t} is a sequence of
σ–fields generated by {(Xs+1, Ys) : 1 ≤ s ≤ t}.
Assumption 2.2. (i) For gi ∈ Gmi

(Si) and {fij(·) : j = 1, 2, . . .} given
above, there exists a vector of unknown parameters θi = (θi1, . . . , θini)

τ

such that for a sequence of constants {Bi : 1 ≤ i ≤ p} (0 < Bi < ∞
independent of T ) and large enough T

sup
xi∈Si

|Fi(xi)τθi − gi(xi)| ≤ Bin
−(mi+1)
i (2.57)

uniformly over ni ∈ NiT and 1 ≤ i ≤ p, where NiT = {piT , piT +
1, . . . , qiT }, in which piT = [aiT

di ], qiT = [biT
ci ], 0 < ai < bi < ∞,

0 < di < ci <
1

2(mi+1) are constants, and [x] ≤ x denotes the largest

integer part of x.

(ii) Furthermore, there exists a sequence of constants {Ci : 1 ≤ i ≤ p}
(0 < Ci <∞ independent of T ) such that for large enough T

n
2(mi+1)
i E {Fi(Vti)τθi − gi(Vti)}2 ≈ Ci (2.58)

uniformly over hi ∈ NiT and 1 ≤ i ≤ p, where the symbol “ ≈ ” indicates
that the ratio of the left–hand side and the right–hand side tends to one
as T → ∞.

Assumption 2.3. (i) {Fi} is of full column rank ni ∈ NiT as T large
enough, {fij : 1 ≤ j ≤ ni, 1 ≤ i ≤ p} are continuous functions with
supx supi,j≥1 |fij(x)| ≤ c0 <∞.

(ii) Assume that for all 1 ≤ i, j ≤ p and s 6= t

E[fij(Xsi)fij(Xti)] = 0

and for all t ≥ 1

E [fij(Xti)flm(Xtl)] =

{
c2ij if i = l and j = m
0 if (i, j, l,m) ∈ IJLM ,

where IJLM = {(i, j, l,m) : 1 ≤ i, l ≤ p, 1 ≤ j ≤ ni, 1 ≤ m ≤ nl} −
{(i, j, l,m) : 1 ≤ i = l ≤ p, 1 ≤ j = m ≤ ni}.
Assumption 2.4. There are positive constants {Ci : i ≥ 1} such that
for i = 1, 2, . . .

sup
x
E(|Yt|i|Xt = x) ≤ Ci <∞.

Assumption 2.5. Assume that the joint probability density function
πs(v1, · · · , vs) of (Vt1 , · · · , Vts) exists and is bounded for s = 1, · · · , 2r−1,
where r is some positive integer such that Assumption 2.6(ii) below
holds. For s = 1, we write π(v) for π1(v1), the marginal density function
of Vt.
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Assumption 2.6. (i) Let U∗
t = Ut − µU −∑p

l=1 P
U
l,w(Vtl) and BUU =

E [U∗
1 (U∗

1 )
τ
]. The inverse matrix of BUU exists. Let Y ∗

t = Yt − µY −∑p
l=1 P

(0)
l,w (Vtl) and Rt = U∗

t (Y ∗
t − U∗

t
τβ). Assume that matrix ΣB =

E [(R1 − µB)(R1 − µB)τ ] is finite.

(ii) Suppose that there is some λ > 2 such that E
[
|Yt|λr

]
< ∞ for r as

defined in Assumption 2.5.

Assumption 2.7. (i) The functions g(·) in (2.1) and gl(·) for 1 ≤ l ≤ p in
(2.2) have bounded and continuous derivatives up to order 2. In addition,
the function g(·) has a second–order derivative matrix g′′(·) (of dimension
p× p), which is uniformly continuous on R

p.

(ii) For each k, 1 ≤ k ≤ p, the weight function {w(−k)(·)} is uni-

formly continuous on R
p−1 and bounded on the compact support S

(−k)
w

of w(−k)(·). In addition, E
[
w(−k)

(
X

(−k)
ij

)]
= 1. Let SW = SW,k =

S
(−k)
w × [−Lk, Lk] be the compact support of W (x) = W (x(−k), xk) =
w(−k)

(
x(−k)

)
· I[−Lk,Lk](xk). In addition, let infx∈SW

π(x) > 0 hold.

Assumption 2.8. K(x) is a symmetric and bounded probability density
function on R

1 with compact support, CK , and finite variance such that
|K(x) −K(y)| ≤M |x− y| for x, y ∈ CK and 0 < M <∞.

Assumption 2.9. (i) Let bπ be as defined before. The bandwidths sat-
isfy

lim
T→∞

max
1≤l≤p

bl = 0, lim
T→∞

Tb1+2/r
π = ∞ and lim inf

T→∞
Tb

2(r−1)a+2(λr−2)
(a+2)λ

π > 0

for some integer r ≥ 3 and some λ > 2 being the same as in Assumptions
2.5 and 2.6.

Assumption 2.10. (i) The functions ψη(u), ψ1η(u), ψ2η(u) and πη(u)
have bounded, continuous second derivatives on U = {u = xτη : x ∈
R
d}, where πη(u) is the marginal density function of u = xτη.

(ii) There is some constant cπ > 1 such that c−1
π < π(x) < cπ for all

x ∈ X . In addition, π(x) has bounded second derivative on x ∈ X .

(iii) For each given η, the conditional density functions fXτ
1 τ |v(u, v) and

f(Xτ
1 τ,X

τ
l
η)|(v1,v2)(u1, ul|v1, vl) are bounded for all l > 1.

(iv) K̃(·) is supported on the interval (−1, 1) and is a symmetric prob-
ability density function with a bounded derivative. Furthermore, the
Fourier transformation of K̃(·) is absolutely integrable.

Assumption 2.1 is quite common in such problems. See Doukhan (1995)
for the advantages of the geometric mixing. However, it would be possi-
ble, but with more tedious proofs, to obtain Theorems 2.1–2.3 under less
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restrictive assumptions that include some algebraically decaying rates.
If {et} is i.i.d. and {et} is independent of {Xt}, then Assumption 2.1(i)
requires only that the process {Xt} is strictly stationary and α-mixing,
and Assumption 2.1(ii) yields E[et] = 0 and E[e4t ] <∞. This is a natural
condition in nonparametric autoregression. See, for example, Assump-
tion 2.1 of Gao (1998). For the heteroscedastic case, we need to modify
both Assumptions 2.1(i) and 2.1(ii). See, for example, Conditions (A2)
and (A4) of Hjellvik, Yao and Tjøstheim (1998).

Assumption 2.2(i) is imposed to exclude the case that each gi is already
a linear combination of {fij : 1 ≤ j ≤ ki}. For the case, model (2.2)
is an additive polynomial regression. The choice of ki is a model se-
lection problem, which has already been discussed by Li (1987). The
purpose of introducing Assumptions 2.2(i) and 2.2(ii) is to replace the
unknown functions by finite series sums together with vectors of un-
known param-eters. Equation (2.57) is a standard smoothness condition
in approx-imation theory. See Corollary 6.21 of Schumaker (1981) for
the B-spline approximation, Chapter IV of Kashin and Saakyan (1989)
for the trigonometric approximation, Theorem 0 of Gallant and Souza
(1991) for the flexible Fourier form, and Chapter 7 of DeVore and Lorentz
(1993) for the general orthogonal series approximation. If Assumption
2.2(ii) holds, then (2.58) is equivalent to

h
2(mi+1)
i

∫
[Fi(ui)

τθi − gi(ui)]
2
pi(ui)dui ≈ Ci, (2.59)

where {pi(ui)} denotes the marginal density function of Vti. Equation
(2.59) is a standard smoothness condition in approximation theory. See
Theorems 3.1 and 4.1 of Agarwal and Studden (1980) for the B–spline
approximation and §3.2 of Eastwood and Gallant (1991) for the trigono-
metric approximation. This chapter extends existing results to the case
where {Vti} is a strictly stationary process.

Assumption 2.3 is a kind of orthogonality condition, which holds when
the process {Xt} is strictly stationary and the series {fij : 1 ≤ j ≤
ki, 1 ≤ i ≤ p} are either in the family of trigonometric series or of
Gallant’s (1981) flexible Fourier form. For example, the orthogonality
condition holds when {Vt1} is strictly stationary and distributed uni-
formly over [−1, 1] and f1j(Vt1) = sin(jπVt1) or cos(jπVt1). Moreover,
the orthogonality condition is a natural condition in nonparametric series
regression. Assumption 2.4 is required to deal with this kind of problem.
Many authors have used similar conditions. See, for example, (C.7) of
Härdle and Vieu (1992).

Assumptions 2.5–2.8 are relatively mild in this kind of problem and can
be justified in detail. Assumption 2.6(i) is necessary for the establish-
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ment of asymptotic normality in the semiparametric setting. As can be
seen from Theorem 2.4, the condition on the existence of the inverse ma-

trix,
(
BUU

)−1
, is required in the formulation of that theorem. Moreover,

Assumption 2.6(i) corresponds to those used for the independent case.
Assumption 2.6(ii) is needed as the existence of moments of higher than
second order is required for this kind of problem when uniform conver-
gence for nonparametric regression estimation is involved. Assumption
2.7(ii) is required due to the use of such a weight function. The continu-
ity condition on the kernel function imposed in Assumption 2.8 is quite
natural and easily satisfied.

Assumption 2.9 requires that when one of the bandwidths is propor-
tional to T− 1

5 , the optimal choice under a conventional criterion, the
other bandwidths need to converge to zero with a rate related to T− 1

5 .
Assumption 2.9 is quite complex in general. However, it holds in some
cases. For example, when we choose p = 2, r = 3, λ = 4, a = 31, k = 1,
b1 = T− 1

5 , and b2 = T− 2
5+η for some 0 < η < 1

5 , both (i) and (ii) hold.
For instance,

lim inf
T→∞

Tb
2(r−1)a+2(λr−2)

(a+2)λ
π = lim inf

T→∞
T

19
55+

12
11η = ∞ > 0.

and
lim
T→∞

Tb
1+ 2

r
π = lim

T→∞
T

5
3η = ∞.

Similarly to the independent case (Fan, Härdle and Mammen 1998, Re-
mark 10), we assume that all the nonparametric components are only two
times continuously differentiable and thus the optimal bandwidth bk is
proportional to T− 1

5 . As a result, Assumption 2.9 basically implies p ≤ 4.
For example, in some cases the assumption of p ≤ 4 is just sufficient
for us to use an additive model to approximate the conditional mean
E [Yt|Yt−1, Yt−2, Yt−3, Yt−4] by g1(Yt−1)+g2(Yt−2)+g3(Yt−3)+g4(Yt−4)
with each gi(·) being an unknown function. Nevertheless, we may ensure
that the marginal integration method still works for the case of p ≥ 5 and
achieves the optimal rate of convergence by using a high–order kernel of
the form∫
K(x)dx = 1,

∫
xiK(x)dx = 0 for 1 ≤ i ≤ I−1 and

∫
xIK(x) 6= 0

(2.60)
for I ≥ 2 as discussed in Hengartner and Sperlich (2003) for the inde-
pendent case, where I is the order of smoothness of the nonparametric
components. This shows that in order to achieve the rate–optimal prop-
erty, we will need to allow that smoothness increases with dimensions.
This is well-known and has been used in some recent papers for the in-
dependent case (see Conditions A5, A7 and NW2–NW3 of Hengartner
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and Sperlich 2003).To ensure that the conclusions of the main results
hold for this case, we need to slightly modify Assumptions 2.7–2.9. The
details are similar to Assumptions 3.4’–3.6’ of Gao, Lu and Tjøstheim
(2006).

Assumption 2.10 is quite common in this kind of problem. Its justifica-
tion may be available from the appendix of Xia, Tong and Li (1999).

2.5.2 Proofs of Theorems

This section provides the proofs of Theorems 2.3 and 2.4. The detailed
proofs of the other theorems are referred to the relevant papers.

Proofs of Theorems 2.1 and 2.2: The detailed proofs are similar to
those of Theorems 2.1 and 2.2 of Gao, Tong and Wolff (2002a).

Proof of Corollary 2.1: The proof follows from that of Theorem 2.2.

Proof of Theorem 2.3: We note that

β̂ − β =

(
1

T

T∑

t=1

Û∗
t

(
Û∗
t

)τ
)−1(

1

T

T∑

t=1

Û∗
t (Ŷ ∗

t − Û∗
t β)

)

≡
(
BUUT

)−1
BUYT .

Denote by H
(s)
a (x) ≡∑p

l=1 P
(s)
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∑p
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U
l,w(xl) the ad-

ditive approximate versions to H(s)(x) = E
[(
U

(s)
t − µ

(s)
U

)
|Vt = x

]
and

H(x) = E [(Ut − µU ) |Vt = x], respectively. We then define H
(s)
a,T (x) ≡

∑p
l=1 P̂

(s)
l,w (xk) and Ha,T (x) ≡ ∑p

l=1 P̂
U
l,w(xl) as the corresponding esti-

mators of H
(s)
a (x) and Ha(x). Then, we have

BUUT =
1

T

T∑

t=1

(
Ũt −Ha(Vt) +Ha(Vt) −Ha,T (Vt)

)

×
(
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=
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(
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(
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T

T∑

t=1

∆Ha
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BUUT,l ,
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where Ũ∗
t = Ũt −Ha(Vt) and ∆Ha

t = Ha(Vt) −Ha,T (Vt). Moreover,

BUYT =
1

T

T∑

t=1

(
Ũt −Ha(Vt) +Ha(Vt) −Ha,T (Vt)

)

×
(
Ỹt −H(0)

a (Vt) +H(0)
a (Vt) −H
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− 1
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×
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=
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U∗
t ǫ

∗
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1
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t (∆

(0)
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τ
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+
1
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∆Ha
t ǫ∗t +

1

T
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∆Ha
t

[
∆

(0)
t −

(
∆Ha
t

)τ
β
]

≡
4∑

j=1

BUYT,j , (2.61)

where ǫ∗t = Y ∗
t −U∗

t
τβ, U∗

t and Y ∗
t = Ỹt−H(0)

a (Vt) are as defined before,

and ∆
(s)
t ≡ H

(s)
a (Vt) −H

(s)
a,T (Vt). So, to prove the asymptotic normality

of β̂, it suffices to show that

BUUT
P→ BUU and

√
T
(
BUYT − µB

)
→DN(0,ΣB), (2.62)

where BUU , µB and ΣB are as defined in Theorem 2.3. To this end, we
need to have

T∑

t=1

(
P̂

(s)
k,w(Vtk) − P

(s)
k,w(Vtk)

)2
= oP (

√
T ), 0 ≤ s ≤ q, (2.63)

which follows from
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xk∈[−Lk,Lk]

∣∣∣P̂ (s)
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for some integer r ≥ 3 and Tb5k = O(1),

√
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(Tb
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T (Tb
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8
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= C

(
T

−
2r−1
1+2r b

−
4(2+r)
1+2r

k + Tb
8
k
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→ 0,
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b
2
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blbk + b
2
k +OP (1)

(
1√
T

))2

→ 0.

The proof of (2.63) is similar to that of Lemma 6.3 of Gao, Lu and
Tjøstheim (2006).

Thus

T∑

t=1

(
∆

(s)
t

)2
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Therefore, using the Cauchy-Schwarz inequality, it follows that the (i, j)-
th element of BUUT,4

BUUT,4 (i, j) =
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T
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s ∆
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t )2
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and similarly

BUUT,2 (i, j) = oP (1) and BUUT,3 (i, j) = oP (1).

Now, since BUUT,1 → E [U∗
1U

∗
1
τ ] in probability, it follows from (2.61) that

the first limit of (2.62) holds with BUU = E [U∗
1U

∗
1
τ ].

To prove the asymptotic normality in (2.62), by using the Cauchy–
Schwarz inequality and (2.65), we have

√
T

4∑

k=2

BUYT,k = oP (1);

therefore, the second limit of (2.62) follows from (2.61) and

√
T
(
BUYT,1 − µB

)
=

1√
T

T∑

t=1

[U∗
t ǫ

∗
t − µB ]→DN(0,ΣB)
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with µB = E[Rt] and ΣB = E [R0R
τ
t ], where Rt = U∗

t ǫ
∗
t .

The proof of the asymptotic normality follows directly from the conven-
tional central limit theorem for mixing time series. When (2.2) holds,
the proof of the second half of Theorem 2.3 follows trivially.

Proof of Corollary 2.2: Its proof follows from that of Theorem 2.3.

Proof of Theorem 2.4: Note that

̂̂
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where g∗∗(x) = E [Y ∗∗
t |Vt = x] with Y ∗∗

t = c0 (Yt − µY ) +Cτ1 (Ut − µU ),
and similarly
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where g∗∗T (x) is the local linear estimator of g∗∗(x), as defined before

with Ỹ ∗∗
t = c0Ỹt + Cτ1 Ũt instead of Ỹt there. Therefore, similarly to the

proof of Lemma 6.5 of Gao, Lu and Tjøstheim (2006), the distribution
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of
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Tbk
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s=0
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(s)
k,w(xk)

)
(2.66)

is asymptotically normal.

Now taking c0 = 0 in (2.66) shows that P̂Uk,w(xk) → PUk,w(xk) in proba-
bility, which together with Theorem 2.3 leads to

√
T bk PT,2(xk) =

√
Tbk (β̂ − β)τ P̂Uk,w(xk)

= OP (
√
bk) = oP (1). (2.67)

On the other hand, taking c0 = 1 and C1 = −β in (2.66), we have
√
Tbk PT,1(xk) =

√
Tbk

[
P̂

(0)
k,w(xk) − P

(0)
k,w(xk)

]

−
√
Tbk β

τ
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P̂Uk,w(xk) − PUk,w(xk)
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are asymptotically normally distributed with Y ∗∗
t = Yt−µY−βτ (Ut−µU )

and g∗∗(x) = E(Y ∗∗
t |Vt = x). This finally yields Theorem 2.4.

Proofs of Theorems 2.5 and 2.6: The detailed proofs are the same
as those of Theorems 2 and 4 of Xia, Tong and Li (1999), respectively.

2.6 Bibliographical notes

Further to the nonparametric kernel estimation method discussed in
this chapter, some related methods have been considered in Linton and
Härdle (1996), Linton (1997. 2000, 2001), Li and Wooldridge (2002), Xia
et al. (2002), Yang (2002), Yang and Tschernig (2002), Huang and Yang
(2004), Horowitz and Mammen (2004), Linton and Mammen (2005),
Yang (2006), and others.

Using orthogonal series and spline smoothing methods in econometrics
and statistics has a long history. Eumunds and Moscatelli (1977), Wahba
(1978), Agarwal and Studden (1980), and Gallant (1981) were among the
first to use spline smoothing and trigonometric approximation methods
in nonparametric regression. Since their studies for the fixed designs
and independent errors, several authors have extended such estimation
methods to nonparametric and semiparametric regression models with
both random designs and time series errors. Recent extensions include
Eubank (1988), Härdle (1990), Andrews (1991), Gao and Liang (1995),
Fan and Gijbels (1996), Gao and Liang (1997), Gao and Shi (1997),
Gao (1998), Eubank (1999), Shi and Tsai (1999), Gao, Tong and Wolff
(2002a, 2002b), Fan and Li (2003), Hyndman et al. (2005), and others.
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In addition to nonparametric kernel, orthogonal series and wavelet meth-
ods, some other nonparametric methods, such as the empirical likelihood
method and profile likelihood method proposed for estimating nonpara-
metric and semiparametric regression models with independent designs
and errors, could also be applicable to nonparametric and semiparamet-
ric time series regression. Recent studies include Cai, Fan and Li (2000),
Cai, Fan and Yao (2000), Chen, Härdle and Li (2003), Fan and Huang
(2005), and Fan and Jiang (2005).

This chapter has concentrated on the case where both {Xt} and {et} are
stationary time series. Recent studies show that it is possible to apply the
kernel method to deal with the case where {Xt} may not be stationary.
To the best of our knowledge, Granger, Inoue and Morin (1997) , Karlsen
and Tjøstheim (1998), and Phillips and Park (1998) were among the first
to apply the kernel method to estimate the conditional mean function
of Yt given Xt = x when {Xt} is nonstationary. Further studies have
been given in Karlsen and Tjøstheim (2001) and Karlsen, Myklebust
and Tjøstheim (2006).



CHAPTER 3

Nonlinear Time Series Specification

3.1 Introduction

Let (Y,X) be a d + 1–dimensional vector of random variables with Y
the response variable and X the vector of d–dimensional covariates. We
assume that both X and Y are continuous random variables with π(x)
as the marginal density function of X, f(y|x) being the conditional den-
sity function of Y given X = x and f(x, y) as the joint density function.
Let µj(x) = E[Y j |X = x] denote the j–th conditional moment of Y
given X = x. Let {(Yt, Xt) : 1 ≤ t ≤ T} be a sequence of observa-
tions drawn from the joint density function f(x, y). As the three density
functions may not be known parametrically, various nonparametric es-
timation methods have been proposed in the literature (see Silverman
1986; Wand and Jones 1995; Fan and Gijbels 1996; Fan and Yao 2003;
and others).

In recent years, nonparametric and semiparametric techniques have been
used to construct model specification tests for µj(x). Interest focuses on
tests for a parametric form versus a nonparametric form, tests for a semi-
parametric (partially linear or single–index) form against a nonparamet-
ric form, and tests for the significance of a subset of the nonparametric
regressors. Härdle and Mammen (1993) were among the first to develop
consistent tests for parametric specification by employing the kernel re-
gression estimation technique. There have since been many advances.
By contrast, there are only several papers available to the best of our
knowledge in the field of parametric specification of density functions.
Aı̈t-Sahalia (1996b) was among the first to propose specifying marginal
density functions parametrically. Pritsker (1998) evaluated the perfor-
mance of Aı̈t–Sahalia’s test and concluded that the usage of asymptotic
normality as the first–order approximation to the distribution of the
proposed test may significantly contribute to the poor performance of
the proposed test in the finite–sample analysis. Gao and King (2004)
proposed a much improved test than the Aı̈t–Sahalia’s test for para-
metric specification of marginal density functions. More recently, Chen

49
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and Gao (2005) developed an empirical–likelihood driven test statis-
tic for parametric specification of the conditional density function of
f(y|x) with application in diffusion process specification. Hong and Li
(2005) proposed using two nonparametric transition density–based tests
for continuous–time diffusion models.

Apart from using such test statistics based on nonparametric kernel,
nonparametric series, spline smoothing and wavelet methods, there are
various test statistics constructed and studied based on empirical dis-
tributions. Such studies include Andrews (1997), Stute (1997), Stute,
Thies and Zhu (1998), Whang (2000), Stute and Zhu (2002, 2005), Zhu
(2005), and others. A different class of test statistics based on the so–
called pseudo–likelihood ratio and generalized likelihood ratio have also
been studied extensively mainly for cases of fixed designs and indepen-
dent errors. Recent studies in this field include Fan and Huang (2001),
Fan and Yao (2003), Fan and Zhang (2003), Chen and Fan (2005), Fan
and Huang (2005), Fan and Jiang (2005), and others.

Since the literature on nonparametric and semiparametric specification
testing is huge, we concentrate on parametric specification testing of the
conditional mean function µ1(x) = E[Y |X = x] and the conditional
variance function σ2(x) = µ2(x)−µ2

1(x) in this chapter. The rest of this
chapter is organised as follows. Section 3.2 discusses existing tests for
conditional mean functions and then demonstrates that various existing
nonparametric kernel tests can be decomposed with each of the lead-
ing terms being a quadratic form of dependent time series. Section 3.3
briefly considers semiparametric testing for conditional variance func-
tions. Some general semiparametric testing problems are also discussed
in Section 3.4. Section 3.5 presents an example of implementation. Math-
ematical assumptions and proofs are relegated to Section 3.6.

3.2 Testing for parametric mean models

Consider a nonlinear time series model of the form

Yt = m(Xt) + et, t = 1, 2, . . . , T, (3.1)

where {Xt} is a sequence of strictly stationary time series variables,
{et} is a sequence of independent and identically distributed (i.i.d.) er-
rors with E[et] = 0 and 0 < E[e2t ] = σ2 < ∞, m(·) is an unknown
function defined over Rd = (−∞,∞)d for d ≥ 1, and T is the number of
observations. Moreover, we assume that {Xs} and {et} are independent
for all 1 ≤ s ≤ t ≤ T and that the distribution of {et} may be unknown
nonparametrically or semiparametrically.
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To avoid the so–called curse of dimensionality problem, this chapter
mainly considers the case of 1 ≤ d ≤ 3. For higher dimensional cases,
Section 3.4 discusses several dimension reduction procedures.

In recent years, nonparametric and semiparametric techniques have been
used to construct model specification tests for the mean function of
model (3.1). Interest focuses on tests for a parametric form versus a non-
parametric form, tests for a semiparametric (partially linear or single–
index) form against a nonparametric form, and tests for the significance
of a subset of the nonparametric regressors.

Among existing nonparametric and semiparametric tests, an estima-
tion based optimal choice of either a bandwidth value, such as cross–
validation selected bandwidth, or a truncation parameter based on a
generalized cross–validation selection method is used in the implemen-
tation of each of the proposed tests. Nonparametric tests involving the
second approach of choice of either a set of suitable bandwidth values
for the kernel case or a sequence of positive integers for the smoothing
spline case include Fan (1996), Fan, Zhang and Zhang (2001), Horo-
witz and Spokoiny (2001), Chen and Gao (2004, 2005), and Arapis and
Gao (2006). The practical implementation of choosing such sets or se-
quences is, however, problematic. This is probably why Horowitz and
Spokoiny (2001) developed their theoretical results based on a set of
suitable bandwidths on the one hand but choose their practical band-
width values based on the assessment of the power function of their test
on the other hand.

Recently, some new approaches have been discussed to support such a
power-based bandwidth selection procedure. On the issue of size correc-
tion, to the best of our knowledge, the only available paper on parametric
specification of model (3.1) is given by Fan and Linton (2003), who de-
veloped an Edgeworth expansion for the size function of their test. Some
other related studies include Nishiyama and Robinson (2000), Horowitz
(2003), and Nishiyama and Robinson (2005), who established some use-
ful Edgeworth expansions for bootstrap distributions of partial–sum type
of tests for improving the size performance.

More recently, Gao and Gijbels (2006) have discussed a sound approach
to choosing smoothing parameters in nonparametric and semiparamet-
ric testing. The main idea is to find an Edgeworth expansion of the
asymptotic distribution of the test concerned. Due to the involvement
of such smoothing parameters in the Edgeworth expansion, the authors
have been able to explicitly express the leading terms of both the size
and power functions and then determine how the smoothing parameters
should be chosen according to certain requirements for both the size and
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power functions. For example, when a significance level is given, the au-
thors have chosen the smoothing parameters such that the size function
is controlled by the significance level while the power function is maxi-
mized. Both novel theory and methodology are established. In addition,
the authors have then developed an easy implementation procedure for
the practical realization of the established methodology. In the rest of
this section, we discuss the main results given in Gao and Gijbels (2006).

The main interest of this section is to test

H01 : m(x) = mθ0(x) versus

H11 : m(x) = mθ1(x) + CT∆(x) for all x ∈ R
d, (3.2)

where θ0, θ1 ∈ Θ with Θ being a parameter space of Rd, CT is a sequence
of real numbers and ∆(x) is a continuous function over R

d.

Under H01, model (3.1) becomes a semiparametric time series model of
the form

Yt = mθ0(Xt) + et (3.3)

when the distribution of {et} is unknown nonparametrically or semi-
parametrically.

3.2.1 Existing test statistics

Härdle and Mammen (1993) introduced the L2–distance between a non-
parametric kernel estimator of m(·) and a parametric counterpart. More
precisely, let us denote the nonparametric estimator of m(·) by m̂h(·)
and the parametric estimator of mθ(·) by m̃

θ̂
(·) and consider

m̂h(x) =

∑T
t=1Kh(x−Xt)Yt∑T
t=1Kh(x−Xt)

m̃
θ̂
(x) =

∑T
t=1Kh(x−Xt)mθ̂

(Xt)
∑T
t=1Kh(x−Xt)

, (3.4)

where θ̂ is a
√
T–consistent estimator of θ0 under H01, Kh(·) = 1

hdK
( ·
h

)
,

with K(·) being the probability kernel density function and h being the
bandwidth parameter.

Härdle and Mammen (1993) proposed using a test statistic of the form

MT1(h) = Th
d
2

∫ {
m̂h(x) − m̃

θ̂
(x)
}2

w(x)dx

= Th
d
2

∫



[∑T
t=1Kh(x−Xt)

(
Yt −m

θ̂
(Xt)

)]2

T 2π̂2(x)


w(x)dx
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= Th
d
2

T∑
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m
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, (3.5)

where π̂(x) = 1
T

∑T
t=1Kh(x−Xt) is the kernel density estimator of the

marginal density function, π(x), of {Xt}, and w(·) is some nonnegative
weight function. The first term on the right–hand side of (3.5) is the
leading term of MT1(h). Moreover, under H01 the asymptotic normality
of MT1(h) follows from a central limit theorem for such a quadratic
representation of the first term.

Since π̂(x) is an asymptotically consistent estimator of π(x), we may
replace π̂(x) by π(x) in MT1(h). This implies a test statistic of the form
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d
2

T∑

s=1

T∑

t=1

(∫
Kh(x−Xs)Kh(x−Xt)w(x)dx

)
es

×
[
m
θ̂
(Xt) −m(Xt)

]

+ Th
d
2

T∑

t=1

T∑

t=1

(∫
Kh(x−Xs)Kh(x−Xt)w(x)dx

)

×
[
m
θ̂
(Xs) −m(Xs)

]
·
[
m
θ̂
(Xt) −m(Xt)

]
, (3.6)

as studied in Kreiss, Neumann and Yao (2002), where w(·) is a nonneg-
ative weight function probably depending on π(·).

Kreiss, Neumann and Yao (2002) established the asymptotic normality
of MT2(h) based on the leading quadratic term in (3.6). In the imple-
mentation, they developed a wild–bootstrap procedure for finding an
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approximate critical value. The choice of h is also based on an optimal
estimation selection criterion.

As an alternative to MT1(h), Horowitz and Spokoiny (2001) used a dis-
crete approximation to MT1(h) of the form

MT3(h) =

T∑

t=1

(
m̂h(Xt) − m̃

θ̂
(Xt)

)2
, (3.7)

where {Xt} is only a sequence of fixed designs. They further considered
a multiscale normalized version of the form

MT3 = max
h∈H3T

MT3(h) − M̂T (h)

V̂T (h)
, (3.8)

where H3T is a set of suitable bandwidths,

M̂T (h) =

T∑

t=1

(
T∑

s=1

Wh(Xs, Xt)

)
σ̂2
T (Xt),

and

V̂ 2
T (h) = 2

T∑

s=1

T∑

t=1

(
T∑

ℓ=1

Wh(Xℓ, Xs)Wh(Xℓ, Xt)

)2

σ̂2
T (Xs)σ̂

2
T (Xt),

in which Wh(·, Xt) = Kh(·−Xt)∑T

u=1
Kh(·−Xu)

and σ̂2
T (Xs) is a consistent esti-

mator of the variance function σ2(Xt) = E[e2t ]. Horowitz and Spokoiny
(2001) then showed that MT3 is asymptotically consistent with an op-
timal rate of convergence for testing. Theoretically, certain conditions
are imposed on H3T for the technical proofs on the one hand, but their
practical bandwidth values are chosen based on the assessment of the
power function of their test (in simulations) on the other hand. This
was part of the motivation used in Gao and Gijbels (2006) to propose
a radical approach to optimally choosing the suitable bandwidth based
on the assessment of the power function of the test under consideration.

As can be seen from the construction of MTi(h) for i = 1, 2, 3, a sec-
ondary estimation procedure is normally required for σ2(·) and some
other higher–order moments when the variance function is not con-
stant. To avoid such a secondary estimation procedure, Chen, Härdle
and Li (2003) proposed a test statistic based on empirical likelihood
ideas. As shown in their paper, the first–order approximation of their
test is asymptotically equivalent to

MT4(h) = Thd
∫
[
m̂h(x) − m̃

θ̂
(x)
]2

V (x)
dx
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= Thd
∫
[∑T

t=1Kh(x−Xt)
(
Yt −m

θ̂
(Xt)

)]2

T 2π̂2(x)V (x)
dx,

where V (x) = σ2(x)
π(x)

∫
K2(u)du. As shown in Fan and Gijbels (1996),

1
ThdV (x) behaves as the asymptotic variance of the Nadaraya–Watson
estimator.

Applying a recently developed central limit theorem for degenerate U–
statistics, Chen, Härdle and Li (2003) derived the asymptotic normality
of their test. With respect to the choice of h in practice, they suggested
choosing h based on any bandwidth selector which minimizes the mean
squared error of the nonparametric curve estimation.

Recently, Chen and Gao (2004) combined the scheme of Horowitz and
Spokoiny (2001) with the empirical likelihood feature of Chen, Härdle
and Li (2003) to propose a novel kernel test statistic for testing (3.2).
Their experience shows that the choice of HT3 in the finite–sample case
can be quite arbitrary and even problematic.

So far we have briefly established the first group of nonparametric kernel
test statistics based on the L2-distance function between a nonparamet-
ric kernel estimator and a parametric counterpart of the mean function.
In addition, we have also mentioned that under H01 the leading term of
each of the tests MTi(h) for 1 ≤ i ≤ 4 is of a quadratic form

PT (h) =

T∑

t=1

T∑

s=1

es w(Xs)Lh(Xs −Xt)w(Xt) et, (3.9)

where Lh(·) = 1

T
√
hd
L
( ·
h

)
, L(x) =

∫
K(y)K(x + y)dy, and w(·) is a

suitable weight function probably depending on either π(·), σ2(·) or both.

In the following, we construct the second group of nonparametric kernel
test statistics using a different distance function. We now rewrite model
(3.1) into a notational version of the form under H01

Y = mθ0(X) + e, (3.10)

where X is assumed to be random and θ0 is the true value of θ under
H01. Obviously, E[e|X] = 0 under H01. Existing studies (Zheng 1996;
Li and Wang 1998; Li 1999; Fan and Linton 2003) have proposed using
a distance function of the form

E [eE (e|X)π(X)] = E
[(
E2(e|X)

)
π(X)

]
, (3.11)

where π(·) is the marginal density function of X.

This would suggest using a normalized kernel–based sample analogue of



56 NONLINEAR TIME SERIES SPECIFICATION

(3.11) of the form

LT (h) =
h

d
2

T

T∑

s=1

T∑

t=1

ês Kh(Xs −Xt) êt

=
h

d
2

T

T∑

s=1

T∑

t=1

es Kh(Xs −Xt) et

+
2h

d
2

T

T∑

s=1

T∑

t=1

es Kh(Xs −Xt)
[
m(Xt) −m

θ̂
(Xt)

]

+
h

d
2

T

T∑

s=1

T∑

t=1

Kh(Xs −Xt)
[
m(Xs) −m

θ̂
(Xs)

]

×
[
m(Xt) −m

θ̂
(Xt)

]
, (3.12)

where êt = Yt−mθ̂
(Xt). It can easily be seen that under H01 the leading

term of LT (h) is of a quadratic form

QT (h) =
h

d
2

T

T∑

s=1

T∑

t=1

es Kh(Xs −Xt) et

=
1

T
√
hd

T∑

s=1

T∑

t=1

es K

(
Xs −Xt

h

)
et. (3.13)

Various versions of (3.12) have been used in Fan and Li (1996), Zheng
(1996), Li and Wang (1998), Li (1999), Fan and Linton (2003), Gao
and King (2005), and others. Recently, Zhang and Dette (2004) com-
pared both large and finite–sample properties of MT1(h), LT (h) and the
main test proposed in Fan, Zhang and Zhang (2001). Their large sam-
ple study shows that the main conditions required to impose on h are
limT→∞ h = 0 and limT→∞ Thd = ∞, which are the minimal conditions
for establishing asymptotic normality. Their finite–sample study is then

based on the choice h ∼ T− 2
4d+1 .

In summary, Equations (3.9) and (3.13) can be generally written as

RT (h) =

T∑

s=1

T∑

t=1

es φT (Xs, Xt) et

=

T∑

s=1

φT (Xs, Xs)e
2
s +

T∑

s=1

T∑

t=1, 6=t
φT (Xs, Xt)eset, (3.14)

where the quantity φT (·, ·) always depends on the sample size T , the
bandwidth h and the kernel function K.
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As briefly discussed below, the leading term of each of some other ex-
isting nonparametric kernel tests can also be represented by a quadratic
form of the type (3.14). Thus, it is of general interest to study asymptotic
distributions and their Edgeworth expansions for such quadratic forms.
To present the main idea of establishing Edgeworth expansions for such
quadratic forms, we concentrate on QT (h) and LT (h) in Sections 3.2.2
and 3.2.3 below. This is because the main technology for establishing
an Edgeworth expansion for the asymptotic distribution of any of such
tests is the same as that for QT (h), although more technicalities may be
needed for some individual cases.

3.2.2 Asymptotic distributions and expansions

The aim of this section is to get clear theoretical insights into the problem
of smoothing parameter selection in the testing context. In this section,
we establish some novel results in theory before we will discuss how to
realize such theoretical results in practice.

Before we establish an Edgeworth expansion for the asymptotic distri-
bution of Qn(h) defined in (3.13), we need to introduce the following
notation: Let µk = E[ek1 ] for 1 ≤ k ≤ 6 and νl = E[πl(X1)] (1 ≤ l ≤ 3);

σ2
T = (µ4 − µ2

2)
K2(0)

Thd
+ 2µ2

2ν2

∫
K2(u)du and

κT =

√
hd
(
µ2
3K

2(0)
Thd +

4µ3
2ν3
3 K(3)(0)

)

σ3
T

, (3.15)

where K(3)(·) is the three–time convolution of K(·) with itself, νl =
E[πl(X1)] =

∫
πl+1(x)dx where π(·) is the marginal density function.

The proof of Theorem 3.1 below is relegated to Section 3.5 of this chap-
ter.

Theorem 3.1. Suppose that Assumption 3.1 listed in Section 3.5 below
holds. Then

sup
x∈R1

∣∣∣∣P
(
QT (h) − E[QT (h)]

σT
≤ x

)
− Φ(x) + κT (x2 − 1) φ(x)

∣∣∣∣ ≤ Chd,

(3.16)
where φ(x) and Φ(x) denote the respective probability density function
and cumulative distribution function of the standard normal random
variable, and 0 < C <∞ is an absolute constant.
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It follows from Theorem 3.1 that as h→ 0 and Thd → ∞

sup
x∈R1

∣∣∣∣P
(
QT (h) − E[QT (h)]

σT
≤ x

)
− Φ(x) + κT (x2 − 1) φ(x)

∣∣∣∣→ 0.

(3.17)
This shows that Theorem 3.1 is of importance and usefulness in itself,
since existing central limit theorems established in both the economet-
rics and statistics literature have implied only the standard asymptotic
normality for the normalized version of QT (h) in (3.13).

To study both the size and power properties of L̂T (h) = LT (h)−E[LT (h)]√
var[LT (h)]

,

we first need to find an approximate α–level critical value for L̂T (h). For
each given h, we define a stochastically normalized version of the form

LT (h) =

∑T
s=1

∑T
t=1, 6=x ês Kh(Xs −Xt) êt√

2
∑T
s=1

∑T
t=1 ê

2
s K

2
h(Xs −Xt) ê2t

. (3.18)

As pointed out in existing literature (such as, Zheng 1996; Li and Wang
1998; Fan and Linton 2003; Casas and Gao 2005; Arapis and Gao 2006),
the version LT (h) has three main features: (i) it appears to be more
straightforward computationally; (ii) it is invariant to σ2 = µ2

2 = E[e2t ];
and (iii) there is no need to estimate any moments higher than σ2. When

σ2 is unknown, it is estimated by σ̂2
T = 1

T

∑T
t=1 ê

2
t .

In addition, it can be easily shown that LT (h) = L̂T (h)+ oP (1) for each
given h. Thus, we may use the distribution of LT (h) to approximate

that of L̂T (h). Let leα (0 < α < 1) be the 1 − α quantile of the exact

finite–sample distribution of L̂T (h). Because leα may not be evaluated in
practice, we therefore choose either a nonrandom approximate α–level
critical value, lα, or a stochastic approximate α–level critical value, l∗α,
by using the following simulation procedure:

• Since LT (h) is invariant to σ2, we generate Y ∗
t = m

θ̂
(Xt) + e∗t for

1 ≤ t ≤ T , where {e∗t } is a sequence of independent and identically
distributed random samples drawn from a prespecified distribution,
such as N(0, 1). Use the data set {(Xt, Y

∗
t ) : 1 ≤ t ≤ T} to estimate

θ̂ by θ̂∗ and compute LT (h). Let lα be the 1 − α quantile of the
distribution of

L
∗
T (h) =

∑T
s=1

∑T
t=1, 6=s ê

∗
s Kh(Xs −Xt) ê

∗
t√

2
∑T
s=1

∑T
t=1 ê

∗2
s K2

h(Xs −Xt) ê∗2t

,

where ê∗s = Y ∗
s − m

θ̂∗
(Xs). In the simulation process, the original
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sample XT = (X1, · · · , XT ) acts in the resampling as a fixed design
even when {Xt} is a sequence of random variables.

• Repeat the above step M times and produce M versions of L
∗
T (h) de-

noted by L
∗
T,m(h) for m = 1, 2, . . . ,M . Use the M values of L

∗
T,m(h)

to construct their empirical distribution function. The bootstrap dis-
tribution of L

∗
T (h) given WT = {(Xt, Yt) : 1 ≤ t ≤ T} is defined by

P ∗
(
L
∗
T (h) ≤ x

)
= P

(
L
∗
T (h) ≤ x|WT

)
. Let l∗α (0 < α < 1) satisfy

P ∗
(
L
∗
T (h) ≥ l∗α

)
= α and then estimate lα by l∗α.

Note that both lα = lα(h) and l∗α = l∗α(h) depend on h. Let L̂∗
T (h)

be the corresponding version of L̂T (h) when the bootstrap resamples
are used. Note also that the above simulation is based on the so–called
regression bootstrap simulation procedure discussed in the literature,
such as Li and Wang (1998), Kreiss, Neumann and Yao (2002), and
Franke, Kreiss and Mammen (2002). When Xt = Yt−1, we may also
use a recursive simulation procedure, which is another commonly-used
simulation procedure in the literature. See, for example, Hjellvik and
Tjøstheim (1995), Franke, Kreiss and Mammen (2002), and others. In
addition, we may also use a wild bootstrap to generate a sequence of
resamples for {e∗t }.
Since the choice of a simulation procedure does not affect the establish-
ment of the main results of this chapter, they are thus stated based on
the proposed simulation procedure.

We now have the following results; their proofs are given in Section 3.5
of this chapter.

Theorem 3.2. (i) Suppose that Assumptions 3.1 and 3.2 listed in Section
3.5 below hold. Then under H01

sup
x∈R1

∣∣∣P ∗(L̂∗
T (h) ≤ x) − P (L̂T (h) ≤ x)

∣∣∣ = O
(√

hd
)

(3.19)

holds in probability with respect to the joint distribution of WT ; and

P
(
L̂T (h) > l∗α

)
= α+O

(√
hd
)
. (3.20)

(ii) Suppose that Assumptions 3.1–3.3 listed in Section 3.5 below hold.
Then under H11

lim
T→∞

P
(
L̂T (h) > l∗α

)
= 1. (3.21)

For a similar test statistic, Li and Wang (1998) established some results
weaker than (3.19). Fan and Linton (2003) considered some higher–order
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approximations to the size function of the test discussed in Li and Wang
(1998).

3.2.3 Size and power functions

For each h we define the following size and power functions

αT (h) = P
(
L̂T (h) > lα|H01 holds

)
and

βT (h) = P
(
L̂T (h) > lα|H11 holds

)
. (3.22)

Correspondingly, we define (α∗
T (h), β∗

T (h)) with lα replaced by l∗α.

As discussed in Gao and Gijbels (2006), the leading term of each of the
existing nonparametric kernel test statistics is of a quadratic form of
{et}. The main objective of their paper is to represent the asymptotic
distribution of each of such tests by an Edgeworth expansion through
using various asymptotic properties of quadratic forms of {et}. The au-
thors have then been able to study large and finite-sample properties of
both the size and power functions of such nonparametric kernel tests. Let
K(·) be the probability kernel density function and h be the bandwidth
involved in the construction of a nonparametric kernel test statistic de-
noted by L̂T (h). In order to implement the kernel test in practice, the
authors have also proposed a novel bootstrap simulation procedure to
approximate the 1−α quantile of the distribution of the kernel test by a
bootstrap simulated critical value lα. In theory, Gao and Gijbels (2006)
have shown that

αT (h) = 1 − Φ(lα − ST ) − κT (1 − (lα − ST )2) φ(lα − ST )

+ o
(√

hd
)
, (3.23)

βT (h) = 1 − Φ(lα −RT ) − κT (1 − (lα −RT )2) φ(lα −RT )

+ o
(√

hd
)
, (3.24)

where ST = p1
√
hd, RT = p2 T C2

T

√
hd, κT = p3

√
hd, Φ(·) and φ(·)

denote, respectively, the cumulative distribution and density function of
the standard Normal random variable, and all pi’s are positive constants.

To choose a bandwidth ĥew such that βT (ĥew) = maxh∈HT (α) βT (h) is
our objective, where HT (α) = {h : α − cmin < αT (h) < α + cmin} for

some small cmin > 0. Gao and Gijbels (2006) have shown that ĥew is pro-

portional to
(
T C2

T

)− 3
2d when ∆(·) is a fixed function not depending on

T . Such established relationship between CT and ĥew shows us that the
choice of an optimal rate of ĥew depends on that of an order of CT . For
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example, the optimal rate of ĥew is proportional to T− 3
2d when H11 is a

global alternative with CT ≡ c for some constant c. If CT is chosen pro-

portional to T− d+12
6(d+4) for a local alternative under H11, then the optimal

rate of ĥew is proportional to T− 1
d+4 , which is the order of a nonpara-

metric cross–validation estimation–based bandwidth frequently used for
testing purposes. When considering a local alternative with CT being
proportional to T− 1

2

√
loglogT , the optimal rate of ĥew is proportional

to (loglogT )
− 3

2d .

In addition to establishing the main results for (3.2) associated with
model (3.1), the authors have then discussed various ways of extending
their theory and methodology to optimally choose continuous smoothing
parameters in some other testing problems, such as testing for nonpara-
metric significance, additivity and partial linearity, in various nonpara-
metric and semiparametric regression models. The authors have finally
mentioned extensions to choose discrete smoothing parameters, such as
the number of terms involved in nonparametric series tests and the num-
ber of knots in spline–smoothing tests.

3.2.4 An example of implementation

As pointed out in Section 3.1, the implementation of each of existing
nonparametric and semiparametric kernel tests involves either a single
bandwidth chosen optimally for estimation purposes or a set of band-
width values. In this section, we show how to implement the proposed
test LT (h) based on ĥew defined in Section 3.2.3 and then compare the
finite–sample performance of the proposed choice with that of two alter-
native versions: (i) the test coupled with a cross–validation bandwidth
choice, and (ii) the test associated with an asymptotic critical value.

To assess the finite–sample performance of L̂T (h), a normalized version
of LT (h) of (3.12), we consider a nonlinear heteroscedastic time series
model of the form

Yt = m(Yt−1) + σ(Yt−1)ǫt, t = 1, · · · , T, (3.25)

where both m(·) and σ(·) > 0 are chosen such that {Yt} is strictly
stationary, {ǫt} is a sequence of independent and identically distributed
Normal random errors generated from N(0, 1), and {Ys} and {ǫt} are
mutually independent for all s ≤ t. We consider a semiparametric model
in this example. That is, when specifying m(·) parametrically, we assume
that σ(·) is already specified parametrically.
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Under H01, we generate a sequence of positive resamples {Yt} from

Yt = α0 + β0Yt−1 + σ0
√
|Yt−1| ǫt with ǫt ∼ N(0, 1), 1 ≤ t ≤ T, (3.26)

where Y0 = 0.079 and the initial parameters are chosen as α0 = 0.096,
β0 = −0.27 and σ0 = 0.19. For such a linear autoregressive model,
various probabilistic requirements, such as strict stationarity and mixing
conditions, are satisfied automatically.

Under H11, we generate a sequence of positive resamples from

Yt = α0 + β0Yt−1 + CT ∆(Yt−1) + σ0
√
|Yt−1| ǫt, 1 ≤ t ≤ T, (3.27)

where ∆(·) and CT are both to be chosen.

In the implementation of L̂T (h) as well as its bootstrapping version, we

set ∆(·) ≡ 1 and CT = T− 1
2

√
loglog(T ). In addition, we choose K(·) as

the standard normal density function.

The theory and methodology proposed in Gao and Gijbels (2006) sug-

gests using an optimal bandwidth ĥew of the form

ĥew =

(
27

8
√
π

) 1
4

(
σ̂2
T

T

T∑

t=1

|Yt−1|
) 3

2

· (loglog(T ))
− 3

2 , (3.28)

where σ̂2
T is a

√
T–consistent estimator of σ2

0 .

In order to compare the size and power properties of the proposed test
L̂T (h) with the most relevant alternatives, we introduce the following
simplified notation:

α10 = P
(
L̂T

(
ĥew

)
> l∗α

(
ĥew

)
|H01 holds

)
,

β10 = P
(
L̂T

(
ĥew

)
> l∗α

(
ĥew

)
|H11 holds

)
,

α11 = P
(
L̂T

(
ĥcv

)
> l∗α

(
ĥcv

)
|H01 holds

)
,

β11 = P
(
L̂T

(
ĥcv

)
> l∗α

(
ĥcv

)
|H11 holds

)
,

α12 = P
(
L̂T

(
ĥcv

)
> zα|H01 holds

)
,

β12 = P
(
L̂T

(
ĥcv

)
> zα|H11 holds

)
, (3.29)

where ĥcv is given by

ĥcv = 1.06 · T− 1
5 ·

√√√√ 1

T − 1

T∑

t=1

(Yt − Y )2 with Y =
1

T

T∑

t=1

Yt,
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which is an optimal bandwidth based on a cross–validation density es-
timation method (see Silverman 1986). The reason for choosing ĥcv is
that such an estimation-based optimal bandwidth has been commonly
used in such autoregressive model specification (Hong and Li 2005).

In the implementation of the simulation procedure, we consider cases
where the number of replications of each of the sample versions of α1j

and β1j for j = 0, 1, 2 was M = 1000, each with B = 250 number of
bootstrapping resamples, and the simulations were done for data sets of
sizes n = 400, 500 and 600.

In our finite–sample study, we use z0.01 = 2.33 at the 1% level, z0.05 =
1.645 at the 5% level and z0.10 = 1.28 at the 10% level. The detailed
results are given in Tables 3.1–3.3 below.

Table 3.1. Rejection rates at the 1% significance level

Sample Size Null Hypothesis Is True Null Hypothesis Is False

T α10 α11 α12 β10 β11 β12

400 0.014 0.011 0.026 0.134 0.012 0.029
500 0.011 0.016 0.030 0.156 0.015 0.030
600 0.011 0.010 0.024 0.140 0.018 0.034

Table 3.2. Rejection rates at the 5% significance level

Sample Size Null Hypothesis Is True Null Hypothesis Is False

T α10 α11 α12 β10 β11 β12

400 0.053 0.055 0.071 0.230 0.053 0.066
500 0.063 0.056 0.068 0.246 0.054 0.066
600 0.044 0.048 0.062 0.231 0.057 0.075

Table 3.3. Rejection rates at the 10% significance level

Sample Size Null Hypothesis Is True Null Hypothesis Is False

T α10 α11 α12 β10 β11 β12

400 0.103 0.112 0.110 0.303 0.096 0.093
500 0.104 0.107 0.105 0.307 0.099 0.098
600 0.096 0.104 0.103 0.291 0.101 0.100

Tables 3.1–3.3 report some comprehensive simulation results for both the
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sizes and power values of the proposed tests for models (3.26) and (3.27).

In each case, the test based on ĥew has much better properties than
the corresponding version based on the CV bandwidth ĥcv commonly
used in the literature for testing purposes. By comparing the use of a
simulated critical value based on the CV optimal bandwidth and the
use of an asymptotic critical value in each case, columns 3 and 4 show
that there are some severe size distortions particularly when using an
asymptotic critical value at the 1% significance level. The corresponding
power values are almost comparable with the corresponding sizes as can
be seen from columns 6 and 7 in Table 3.1.

While at both the 5% and 10% significance levels there is much less
size distortion, the corresponding power values become quite different.
For example, at the 5% level, Table 3.2 shows that in each case the
test based on ĥew in column 5 is much more powerful than either that
based on the CV bandwidth ĥcv in column 6 or the test associated with
the use of an asymptotic critical value in column 7. Similar features
are observable for the 10% case. This further supports our view that
the use of an estimation–based optimal bandwidth is not optimal for
testing purposes. In addition, the use of an asymptotical normal test
is not practically applicable particularly when the sample size is not
sufficiently large.

We finally would like to stress that the proposed tests based on the
power–optimal bandwidths have not only stable sizes even at a medium
sample size of T ≤ 600, but also reasonable power values even when the
“distance” between the null and the alternative has been made delib-
erately close at the rate of

√
T−1 loglog(T ) = 0.0556 for T = 600 for

example. We can expect that the tests would have bigger power values
when the “distance” is made wider. Overall, Tables 3.1–3.3 show that
the established theory and methodology is implementable and workable
in the finite–sample case.

Remark 3.1. The paper by Gao and Gijbels (2006) has addressed the
issue of how to appropriately choose bandwidth parameters when using
nonparametric and semiparametric kernel–based tests. Both the size and
power properties of such tests have been studied. The established the-
ory and methodology has shown that an appropriate bandwidth can be
optimally chosen after appropriately balancing the size and power func-
tions. Furthermore, the novel methodology has resulted in an explicit
representation for such an optimal bandwidth in the finite–sample case.

The finite–sample studies show that the use of an asymptotically nor-
mal test associated with an estimation based optimal bandwidth may
not make such a test practically applicable due to poor size and power
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properties. However, the performance of such a test can be significantly
improved when it is coupled with a power–based optimal bandwidth as
well as a bootstrap simulated critical value.

3.3 Testing for semiparametric variance models

Specification testing of conditional variance functions is particularly rel-
evant when the conditional mean function is already specified, and the
interest is on the conditional variance function. Recent papers such as
Dette (2002), and Casas and Gao (2005), among others, are concerned,
for example, with testing for a constant conditional variance function.

Consider a semiparametric heteroscedastic model of the form

Yt = mθ0(Xt) + et = mθ0(Xt) + σ(Xt)ǫt, (3.30)

where mθ0(·) is a known parametric function indexed by θ0, a vector of
unknown parameters, σ(·) > 0 may be an unknown function, and {ǫt}
is a sequence of i.i.d. errors with E[ǫt] = 0 and E[ǫ2t ] = 1.

We are now interested in testing

H02 : σ2(x) = σ2
ϑ0

(x) versus H12 : σ2(x) = σ2
ϑ1

(x)+C2T∆2(x), (3.31)

for all x ∈ R
d and some ϑ0 and ϑ1, where ϑ0 may be different from θ0,

C2T and ∆2(·) are defined similarly to CT and ∆(·). The key difference
here is that we need to choose suitable C2T and ∆2(x) such that σ2(x)
is positive uniformly in x ∈ R

d.

Before proposing a test statistic for (3.31), we rewrite model (3.30) into
a notational version of the form under H02,

Yt = mθ0(Xt) + et with et = σϑ0
(Xt)ǫt,

e2t = σ2
ϑ0

(Xt) + ηt with ηt = σ2
ϑ0

(Xt)(ǫ
2
t − 1), (3.32)

where {ηt} satisfies E[ηt] = 0 and E[η2t ] = E
[
σ4
ϑ0

(Xt)
]
E
[
(ǫ2t − 1)2

]

under H02.

Equation (3.32) shows that σ2
ϑ0

(·) may be viewed as the conditional

mean function of e2t , which may be estimated by ê2t =
(
Yt −m

θ̂
(Xt)

)2
.

Similarly to the construction of LT (h), we thus suggest using a kernel–
based test of the form

L0T (h) =
T∑

s=1

T∑

t=1, 6=s
η̂s L2

(
Xs −Xt

h2

)
η̂t, (3.33)

where η̂s = ê2s − σ2

ϑ̂
(Xs), in which ϑ̂ is a

√
T–consistent estimator of
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ϑ0, L2(·) is a probability kernel density function and h2 is a bandwidth
parameter.

As an alternative to (3.32), model (3.32) can be written as

log (Yt −mθ0(Xt))
2

= log
(
σ2
ϑ0

(Xt)
)

+ log(ǫ2t )

= µǫ + log
(
σ2
ϑ0

(Xt)
)

+ ζt, (3.34)

where µǫ = E
[
log(ǫ2t )

]
and ζt = log(ǫ2t )−µǫ. Thus, the function σ2

ϑ0
(Xt)

is involved as the conditional mean function of model (3.34). A test
statistic similar to L0T (h) may be constructed.

When Xt = Yt−1, a normalized version of L0T (h) may be applied for dif-
fusion specification in continuous–time models. Existing studies include
Aı̈t-Sahalia (1996b), Fan and Zhang (2003), Gao and King (2004), Chen
and Gao (2005), and Hong and Li (2005).

Also, simple calculations imply that for sufficiently large T

var[L0T (h)] = σ2
T (1 + o(1)), (3.35)

where σ2
T = 2µ2

2

∫
K2(u)du with µ2 = E[η21 ].

For the implementation of L0T (h) in practice, in order to avoid nonpara-
metrically estimating any unknown quantity we estimate σ2

T under H02

by σ̂2
T = 2µ̂2

2

∫
K2(u)du with

µ̂2 =
2

T

T∑

t=1

σ2

ϑ̂0
(Xt).

We then propose using a normalized version of the form

L̂0T (h) =

∑T
s=1

∑T
t=1, 6=t η̂s L2

(
Xs−Xt

h2

)
η̂t

σ̂T

=

∑T
t=1

∑T
s=1, 6=t ηs L2

(
Xs−Xt

h2

)
ηt

σ0
· σ0
σ̂T

+
1

σ̂T

T∑

t=1

T∑

s=1, 6=t
L2

(
Xs −Xt

h2

)

×
(
mθ(Xs) −m

θ̂
(Xs)

)2 (
mθ(Xt) −m

θ̂
(Xt)

)2

+
1

σ̂T

T∑

t=1

T∑

s=1, 6=t
L2

(
Xs −Xt

h2

)

×
(
σ2(Xs) − σ2

ϑ̂0
(Xs)

)(
σ2(Xt) − σ2

ϑ̂0
(Xt)

)
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+ oP

(
L̂0T (h)

)
, (3.36)

where σ2
0 = 2µ2

0

∫
K2(u)du with µ0 = 2E

[
σ4
ϑ0

(X1)
]

under H02.

The following result establishes that L̂0T (h) is asymptotically normal
under H02; its proof is mentioned in Section 3.5 of this chapter.

Theorem 3.3. Suppose that Assumptions 3.1 and 3.4 listed in Section
3.5 hold. Then under H02

lim
T→∞

P
(
L̂0T (h) ≤ x

)
= Φ(x). (3.37)

As pointed out in the literature, such asymptotically normal tests may
not be very useful in practice, in particular when the size of the data is
not sufficiently large. Thus, the conventional α–level asymptotic critical
value, lacv, of the standard normality may not be useful in applications.
Part of the contribution of this chapter is a proposal of approximating
lacv by a bootstrap simulated critical value.

Let l0α (0 < α < 1) be the 1 − α quantile of the exact finite–sample

distribution of L̂0T (h). Since l0α may be unknown in practice, we suggest
approximating l0α by a simulated α–level critical value, l∗0α, using the
following simulation procedure:

1. For each t = 1, 2, . . . , T , generate Y ∗
t = m

θ̂
(Xt) + σ

ϑ̂0
(Xt) e

∗
t , where

the original sample XT = (X1, · · · , XT ) acts in the resampling as
a fixed design, {e∗t } is independent of {Xt} and sampled identically
distributed from N(0, 1).

2. Use the data set {(Xt, Y
∗
t ) : t = 1, 2, . . . , T} to re-estimate (θ, ϑ0).

Let (θ̂∗, ϑ̂∗0) denote the pair of the resulting estimates. Define L̂∗
0T (h)

be the version of L̂0T (h) with (Xt, Yt) and (θ̂, ϑ̂0) being replaced by

(Xt, Y
∗
t ) and (θ̂∗, ϑ̂∗0) in the calculation.

3. Repeat the above steps many times and then obtain the empirical
distribution of L̂∗

0T (h). The bootstrap distribution of L̂∗
0T (h) given

WT = {(Xt, Yt) : 1 ≤ t ≤ T} is defined by P ∗
(
L̂∗
0T (h) ≤ x

)
=

P
(
L̂∗
0T (h) ≤ x|WT

)
. Let l∗0α satisfy P ∗

(
L̂∗
0T (h) ≥ l∗0α

)
= α and then

estimate l0α by l∗0α.

We then have the following theorem; its proof is mentioned in Section
3.5 of this chapter.

Theorem 3.4. (i) Suppose that Assumptions 3.1 and 3.4 listed in Section
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3.5 hold. Then under H02 the following equation

sup
x∈R1

∣∣∣P ∗(L̂∗
0T (h) ≤ x) − P (L̂0T ≤ x)

∣∣∣ = O
(√

hd
)

(3.38)

holds in probability with respect to the joint distribution of WT , and
under H02

P
(
L̂0T (h) > l∗0α

)
= α+O

(√
hd
)
. (3.39)

(ii) Assume that Assumptions 3.1, 3.4 and 3.5 listed in Section 3.5 hold.
Then under H12

lim
T→∞

P
(
L̂0T (h) > l∗0α

)
= 1. (3.40)

The conclusions of Theorem 3.4 are similar to those of Theorem 3.2.

3.4 Testing for other semiparametric models

As we pointed out before, we will need to consider using a dimension
reduction procedure when the dimensionality of {Xt} is greater than
three. In this section, we discuss how to choose a suitable bandwidth
parameter when we consider testing for an alternative model. Our alter-
native forms for m(·) include nonparametric subset regression, partially
linear regression, additive regression and semiparametric single–index
regression.

3.4.1 Testing for subset regression

Assume that we can write the model as

Yt = m(Xt) + et = m(Ut, Vt) + et, (3.41)

where Xt = (Uτt , V
τ
t )τ , and Ut and Vt are subsets of Xt. In this section,

we are interested to test whether the null hypothesis

H03 : E[Yt|Xt] − E[Yt|Ut] = 0 (3.42)

holds almost surely with respect to the distribution of {Xt}.
As for nonparametric regression estimation, we estimate

m1(Ut) = E[Yt|Ut] by m̂1(Ut) =

T∑

s=1

w1stYs,

where w1st =
K1(Us−Ut

h )∑T

v=1
K1(Us−Uv

h )
, in which K1(·) is a probability kernel

function.
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This suggests using a test statistic of the form

L1T (h) =

T∑

s=1

T∑

t=1

Ŷs K

(
Xs −Xt

h

)
Ŷt, (3.43)

where Ŷs = [Ys − m̂1(Us)]f̂1(Us) with f̂1(Us) = 1
Thdu

∑T
t=1K1

(
Us−Ut

h

)
,

in which du is the dimensionality of Ui.

Existing results include Fan and Li (1996), Lavergne and Vuong (1996,
2000), Li (1999), Lavergne (2001), Gao and King (2005), and others.
Meanwhile, such testing issues have also been treated in the model
selection literature. Recent studies include Fan and Li (2001, 2002),
González–Manteiga, Quintela–del–Ŕıo and Vieu (2002), and others.

3.4.2 Testing for partially linear regression

The interest here is to test

H04 : m(x) = uτβ + g(v) versus

H14 : m(x) = uτβ + g(v) + C4T∆4(x) (3.44)

for all x ∈ R
d, where C4T and ∆4(·) are similar to what has been defined

before, and u and v are subvectors of x = (uτ , vτ )τ .

Similarly to (3.43), we construct the following test statistic

L2T (h) =

T∑

s=1

T∑

t=1

Ŷs K

(
Xs −Xt

h

)
Ŷt, (3.45)

where

Ŷs = Ys − Uτs β̂ − ĝ(Vs), β̂ = (Ũτ Ũ)+Ũτ Ỹ , ĝ(Vs) =

T∑

t=1

w2st(Yt − Uτt β̂),

in which Ũ = (I −W2)U , U = (U1, . . . , Un)
τ , Ỹ = (I −W2)Y , W2 =

{w2st} is a T × T matrix with w2st =
K2(Vs−Vt

h )∑T

u=1
K2(Vs−Vu

h )
with K2(·) being

a kernel function. The form of L2T (h) is similar to some existing results,
such as those given in Fan and Li (1996), Li (1999), Härdle, Liang and
Gao (2000), Gao and King (2005), and others.

3.4.3 Testing for single–index regression

One of the most efficient dimension reduction procedures is semipara-
metric single–index modeling. We thus look at testing

H05 : m(x) = ψ(xτθ) versus H15 : m(x) = ψ(xτθ)+C5T∆5(x) (3.46)
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for all x ∈ R
d, where ψ(·) is an unknown function over R

1, and θ is a
vector of unknown parameters. For each given θ, estimate ψ(·) by

ψ̂(Xτ
t θ) =

T∑

s=1

w3stYs, (3.47)

where w3st =
K3

(
(Xs−Xt)

τ θ
h

)
∑T

u=1
K3

(
(Xs−Xu)τ θ

h

) with K3(·) being a kernel function

defined over R
1. The parameter θ is then estimated by

θ̂ = arg min
θ∈Θ

T∑

t=1

(
Yt − ψ̂(Xτ

t θ)
)2
, (3.48)

where Θ is chosen such that the true value of θ is identifiable. This
suggests using a test statistic of the form

L3T (h) =

T∑

s=1

T∑

t=1

Ŷs K3

(
(Xs −Xt)

τ θ̂

h

)
Ŷt, (3.49)

where Ŷt =
(
Yt − ψ̂(Xτ

t θ̂)
)
f̂3(X

τ
t θ̂), in which

f̂3(X
τ
s θ̂) =

1

Th

T∑

t=1

K3

(
(Xs −Xt)

τ θ̂

h

)
.

For the hypotheses in (3.46), there are only few results available in the
literature, such as those by Fan and Li (1996), Gao and Liang (1997),
Li (1999), Stute and Zhu (2005), and others.

3.4.4 Testing for partially linear single–index regression

As a natural extension, we may consider testing

H06 : m(x) = xτθ + ψ(xτη) versus

H16 : m(x) = xτθ + ψ(xτη) + C6T∆6(x) (3.50)

for all x ∈ R
d, where both θ and η are vectors of unknown parameters,

and ψ(·) is an unknown function. Interest has been on the estimation of
both the parameters and the function in the literature, such as Carroll et
al. (1997), Xia, Tong and Li (1999), and Xia et al. (2004). To the best of
our knowledge, little has been done on testing the hypotheses in (3.50).

Modifying L3T (h) in (3.49), we propose using a test statistic of the form

L4T (h) =

T∑

s=1

T∑

t=1

Ỹs K3

(
(Xs −Xt)

τ η̂

h

)
Ỹj , (3.51)
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where θ̂, η̂ and ψ̂(·) are some consistent estimators as constructed in
Chapter 2, and

Ỹt =
(
Yt −Xτ

t θ̂ − ψ̂(Xτ
t η̂)
)
f̂4(X

τ
t η̂),

in which f̂4(X
τ
s η̂) = 1

Th

∑T
t=1K3

(
(Xs−Xt)

τ η̂
h

)
.

3.4.5 Testing for additive regression

The interest here is to test whether m(x) can be decomposed into a sum
of p one–dimensional functions as follows:

H07 : m(x) =

d∑

j=1

mj(xj) versus

H17 : m(x) =
d∑

j=1

mj(xj) + C7T∆7(x), (3.52)

for all x ∈ R
d, where xj is the j–th element of x = (x1, · · · , xd)τ .

Assume that each mj(·) is estimated by m̂j(Xtj) =
∑T
s=1WTs(Xtj)Ys,

in which {WTs(·)} is a sequence of weight functions as constructed in
Chapter 2.

We then suggest using a test statistic of the form

L5T (h) =

T∑

s=1

T∑

t=1

Ŷs K

(
Xs −Xt

h

)
Ŷt, (3.53)

where Ŷt =
(
Yt −

∑p
j=1 m̂j(Xtj)

)
Nt, in which Nt is chosen to eliminate

any random denominator involved in the estimation of m̂j(·), such as a
kind of density estimator used in LiT (h) for i = 1, 3, 4. For testing H07

in (3.52), existing results include Gozalo and Linton (2001), Gao, Tong
and Wolff (2002b), Sperlich, Tjøstheim and Yang (2002), Gao and King
(2005), and others.

It can be shown that the leading term of each of these tests LiT (h)
for 1 ≤ i ≤ 5 is of a quadratic form. Thus, we will be able to apply
the established theory to study the power function of each of the tests
for choosing a suitable h. When there are several different bandwidths
involved in the construction of the tests, the study of the power function
of each of the tests becomes slightly more complicated than that for
the case where only one bandwidth h is involved. For example, we will
need to calculate partial derivatives of the power function with respect
to individual bandwidth variables.
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3.5 Technical notes

This section lists the necessary assumptions for the establishment and
the proofs of the main results given in this chapter.

3.5.1 Assumptions

Assumption 3.1. (i) Assume that {et} is a sequence of i.i.d. continuous
random errors with E[et] = 0, E[e2t ] = σ2 <∞ and E[e6t ] <∞.

(ii) {Xt} is a sequence of strictly stationary time series variables. In
addition, we assume that {Xt} is α–mixing with the mixing coefficient
α(t) defined by

α(t) = sup{|P (A ∩B) − P (A)P (B)| : A ∈ Ωs1, B ∈ Ω∞
s+t} ≤ Cαα

t

for all s, t ≥ 1, where 0 < Cα <∞ and 0 < α < 1 are constants, and Ωji
denotes the σ–field generated by {Xk : i ≤ k ≤ j}.
(iii) We assume that {Xs} and {et} are independent for all s ≤ t. Let π(·)
be the marginal density such that

∫
π3(x)dx < ∞, and πτ1,τ2,···,τl(·) be

the joint probability density of (X1+τ1 , . . . , X1+τl) (1 ≤ l ≤ 4). Assume
that πτ1,τ2,···,τl(·) for all 1 ≤ l ≤ 4 do exist and are continuous.

(iv) Assume that the univariate kernel function K(·) is a symmetric
and bounded probability density function. In addition, we assume the
existence of both K(3)(·), the three–time convolution of K(·) with itself,

and K
(2)
2 (·), the two–time convolution of K2(·) with itself.

(v) The bandwidth parameter h satisfies both

lim
T→∞

h = 0 and lim
T→∞

Thd = ∞.

Assumption 3.2. (i) Let H01 be true. Then θ0 ∈ Θ and

lim
T→∞

P
(√

T ||θ̂ − θ0|| > B1L

)
< ε1

for any ε1 > 0 and some B1L > 0.

(ii) Let H11 be true. Then there is a θ1 ∈ Θ such that

lim
T→∞

P
(√

T ||θ̂ − θ1|| > B2L

)
< ε2

for any ε2 > 0 and some B2L > 0.

(iii) There exist some absolute constants ε3 > 0, ε4 > 0, and 0 <
B3L, B4L <∞ such that the following

lim
T→∞

P
(√

T ||θ̂∗ − θ̂|| > B3L|WT

)
< ε3
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holds in probability, where θ̂∗ is as defined in the Simulation Procedure
above Theorem 3.2.

(iv) Let mθ(x) be differentiable with respect to θ and ∂mθ(x)
∂θ be contin-

uous in both x and θ. In addition,

0 < E

[∣∣∣∣
∣∣∣∣
∂mθ(X1)

∂θ
|θ=θ0

∣∣∣∣
∣∣∣∣
2

π(X1)

]
<∞,

where the notation E[f(X1, θ0)] denotes the conventional expectation
for some function f(·, θ0) when X1 is random, and || · ||2 denotes the
Euclidean norm.

Assumption 3.3. Under H11, we have

lim
T→∞

T
√
hd C2

T = ∞ and 0 < E
[
∆2(X1)π(X1)

]
<∞.

Assumption 3.4. (i) There exist some absolute constants ε1 > 0 and
0 < A1L <∞ such that

lim
T→∞

P
(√

T ||θ̂ − θ|| > A1L

)
< ε1.

(ii) Let H02 be true. Then ϑ0 ∈ Θ and

lim
T→∞

P
(√

T ||ϑ̂0 − ϑ0|| > B1L

)
< ε2

for any ε2 > 0 and some B1L > 0.

Let H02 be false. Then there is a ϑ1 ∈ Θ such that

lim
T→∞

P
(√

T ||ϑ̂0 − ϑ1|| > B2L

)
< ε3

for any ε3 > 0 and some B2L > 0.

(iii) There exist some absolute constants ε4 > 0, ε5 > 0, and 0 <
B3L, B4L <∞ such that both

lim
T→∞

P
(√

T ||ϑ̂∗0 − ϑ̂0|| > B3L|WT

)
< ε4 and

lim
T→∞

P
(√

T ||θ̂∗ − θ̂|| > B4L|WT

)
< ε5

hold in probability, where ϑ̂∗0 and θ̂∗ are as defined in the Simulation
Procedure above Theorem 3.2.

(iv) Let mθ(x) and σϑ(x) be twice differentiable with respect to θ and
ϑ, respectively. In addition, the following quantities are assumed to be
finite:

C̃1(m) = E

[∣∣∣∣
∣∣∣∣
∂mθ(X1)

∂θ

∣∣∣∣
∣∣∣∣
4
]

and C̃2(σ
2) = E

[∣∣∣∣
∣∣∣∣
∂σ2

ϑ(X1)

∂ϑ
|ϑ=ϑ0

∣∣∣∣
∣∣∣∣
2
]
.
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Assumption 3.5. Let limT→∞ T
√
h C2

2T = ∞ and 0 < C1(D) =
E
[
D2

2(X1)
]
<∞.

The first three parts of Assumption 3.1 are quite natural in this kind of
problem. We believe that the main results of this chapter remain true
when {et} is a sequence of strictly stationary and α–mixing errors. Since
dealing with such dependent errors involves much more technicalities, we
impose the i.i.d. conditions on {et} throughout this chapter. Assump-
tion 3.1(iv) is to ensure the existence of quantities associated with K(·).
As pointed out throughout this chapter, Assumption 3.1(v) imposes the
minimal conditions on h such that the asymptotic normality is the lim-
iting distribution of each of the proposed tests.

Assumption 3.2 is for some technical proofs and derivatives. Many well–
known parametric functions and estimators do satisfy Assumption 3.2.
Assumption 3.3 imposes some mild conditions to ensure that both classes
of global and local alternatives are included. For the global case where
CT ≡ c (constant), the first part of Assumption 3.3 follows from As-
sumption 3.1(iv). For local alternatives, numerous choices of CT → 0
satisfy the first part of Assumption 3.3. Assumption 3.4 is similar to
Assumption 3.2, and Assumption 3.5 is analogous to Assumption 3.3.

3.5.2 Technical lemmas

It follows from (3.15) that

κT =

√
hd
(
µ2
3K

2(0)
Thd +

4µ3
2ν3
3 K(3)(0)

)

σ3
T

. (3.54)

We impose the very natural condition that limT→∞ Thd = ∞ and obtain
the following approximations:

σ2
T = (µ4 − µ2

2)
K2(0)

Thd
+ 2µ2

2ν2

∫
K2(u)du

≈ 2µ2
2ν2

∫
K2(u)du ≡ σ2

0 ,

κT = σ−3
T

√
hd
(

4µ3
2ν3
3

K(3)(0) + µ2
3

K2(0)

Thd

)

≈
√
hd σ−3

0 · 4µ3
2ν3
3

K(3)(0), (3.55)

where the symbol “ ≈ ” means that both sides are asymptotically iden-
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tical. Let

a1 =
4K(3)(0)µ3

2ν
3

3σ3
0

=

√
2K(3)(0)

3

(√∫
K2(u)du

)−3

c(π) (3.56)

with c(π) =

∫
π3(x)dx(√∫
π2(x)dx

)3 .

It then follows from (3.55) and (3.56) that

κT ≈ a1
√
hd (3.57)

using limT→∞ Thd = ∞.

In order to establish some useful lemmas without including non–essential
technicality, we introduce the following simplified notation:

ast =
1

T
√
hdσ0

K

(
Xs −Xt

h

)
,

NT (h) =

T∑

t=1

T∑

s=1, 6=t
es ast et, (3.58)

ρ(h) =

√
2K(3)(0)

∫
π3(u)du

3

(√∫
π2(u)du

∫
K2(v)dv

)−3 √
hd,

where σ2
0 = 2µ2

2 ν2
∫
K2(v)dv with ν2 = E[π2(X1)] and µ2 = E[e21], and

K(3)(·) denotes the three–time convolution of K(·) with itself. We now
have the following lemma.

Lemma 3.1. Suppose that the conditions of Theorem 3.2 hold. Then for
any h

sup
x∈R1

∣∣P (NT (h) ≤ x) − Φ(x) + ρ(h) (x2 − 1) φ(x)
∣∣ = O

(
hd
)
. (3.59)

Proof: The proof is based on a nontrivial application of Theorem 1.1 of
Götze, Tikhomirov and Yurchenko (2004). As the proof is quite general
and useful in itself, it is relegated to Theorem A.2 of the appendix at
the end of this book.

Recall NT (h) =
∑T
t=1

∑T
s=1, 6=t es ast et as defined in (3.58) and let

LT (h)

σ0
=

h
d
2

Tσ0

T∑

s=1

T∑

t=1, 6=i
ês Kh(Xs −Xt) êt

=
h

d
2

Tσ0

T∑

s=1

T∑

t=1, 6=s
es Kh(Xs −Xt) et
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+
h

d
2

Tσ0

T∑

s=1

T∑

t=1, 6=i
Kh(Xs −Xt)

×
[
m(Xs) −m

θ̂
(Xs)

] [
m(Xt) −m

θ̂
(Xt)

]

+
2h

d
2

Tσ0

T∑

s=1

T∑

t=1, 6=s
es Kh(Xs −Xt)

[
m(Xt) −m

θ̂
(Xt)

]

= NT (h) + ST (h) +DT (h), (3.60)

where NT (h) = h
d
2

Tσ0

∑T
s=1

∑T
t=1, 6=s es Kh(Xs −Xt) et,

ST (h) =
h

d
2

Tσ0

T∑

s=1

T∑

t=1, 6=s
Kh(Xs −Xt) (3.61)

×
[
m(Xs) −m

θ̂
(Xs)

] [
m(Xt) −m

θ̂
(Xt)

]
,

DT (h) =
2h

d
2

Tσ0

T∑

s=1

T∑

t=1, 6=s
es Kh(Xs −Xt)

[
m(Xt) −m

θ̂
(Xt)

]
.

We then define N∗
T (h), S∗

T (h) and D∗
T (h) as the corresponding versions

of NT (h), ST (h) and DT (h) involved in (3.60) with (Xt, Yt) and θ̂ being

replaced by (Xt, Y
∗
t ) and θ̂∗, respectively.

Lemma 3.2. Suppose that the conditions of Theorem 3.2(i) hold. Then
the following

sup
x∈R1

∣∣P ∗ (N∗
T (h) ≤ x) − Φ(x) + ρ(h) (x2 − 1) φ(x)

∣∣ = OP
(
hd
)

(3.62)

holds in probability.

Proof: Since the proof follows similarly from that of Lemma 3.1 using
some conditioning arguments given WT = {(Xt, Yt) : 1 ≤ t ≤ T}, we do
not wish to repeat the details.

Lemma 3.3. (i) Suppose that the conditions of Theorem 3.2(ii) hold.
Then under H01

E [ST (h)] = O
(√

hd
)

and E [DT (h)] = o
(√

hd
)
. (3.63)

(ii) Suppose that the conditions of Theorem 3.2(ii) hold. Then under H01

E∗ [S∗
T (h)] = OP

(√
hd
)

and E∗ [D∗
T (h)] = oP

(√
hd
)

(3.64)

in probability with respect to the joint distribution of WT , where E
∗[·] =

E[·|WT ].
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(iii) Suppose that the conditions of Theorem 3.2(i) hold. Then under H01

E [ST (h)] − E∗ [S∗
T (h)] = OP

(√
hd
)

and

E [DT (h)] − E∗ [D∗
T (h)] = oP

(√
hd
)

(3.65)

in probability with respect to the joint distribution of WT .

Proof: As the proofs of (i)–(iii) are quite similar, we need only to prove
the first part of (iii). In view of the definition of {ast} of (3.58) and
(3.61), we have

ST (h) =

T∑

t=1

T∑

s=1, 6=t

(
m(Xs) −m

θ̂
(Xs)

)
ast

(
m(Xt) −m

θ̂
(Xt)

)
,

S∗
T (h) =

T∑

t=1

T∑

s=1, 6=t

(
m(Xs) −m

θ̂∗
(Xs)

)
ast

(
m(Xt) −m

θ̂∗
(Xt)

)
.

Ignoring the higher–order terms, it can be shown that the leading term
of S∗

T (h) − ST (h) is represented approximately by

S∗
T (h) − ST (h) = (1 + oP (1))

T∑

t=1

T∑

s=1, 6=t
ast (3.66)

×
(
m
θ̂
(Xs) −m

θ̂∗
(Xs)

)(
m
θ̂
(Xt) −m

θ̂∗
(Xt)

)
.

Using (3.66), Assumption 3.2 and the fact that

E[ast] =
1

T
√
hdσ0

E

[
K

(
Xs −Xt

h

)]

=

√
hd

Tσ0

∫
K(u)du

∫
π2(v)dv

=

√
hd

Tσ0

∫
π2(v)dv, (3.67)

we can deduce that

E[ST (h)] − E∗[S∗
T (h)] = OP

(√
hd
)
, (3.68)

which completes an outline of the proof.

Lemma 3.4. Suppose that the conditions of Theorem 3.2(ii) hold. Then
under H11

lim
T→∞

E [ST (h)] = ∞ and lim
T→∞

E [DT (h)]

E [ST (h)]
= 0. (3.69)
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Proof: In view of the definitions of ST (h) and DT (h), we need only to
show the first part of (3.69). Observe that for θ1 defined in Assumption
3.2(ii),

ST (h) =

T∑

t=1

T∑

s=1, 6=t

(
m(Xs) −m

θ̂
(Xs)

)
ast

(
m(Xt) −m

θ̂
(Xt)

)

=
T∑

t=1

T∑

s=1, 6=t
(m(Xs) −mθ1(Xs)) ast (m(Xt) −mθ1(Xt))

+

T∑

t=1

T∑

s=1, 6=t

(
mθ1(Xs) −m

θ̂
(Xs)

)
ast

(
mθ1(Xt) −m

θ̂
(Xt)

)

+ oP (ST (h)) . (3.70)

In view of (3.70), using Assumption 3.2(ii), in order to prove (3.69) it
suffices to show that as T → ∞ and h→ 0,

E




T∑

t=1

T∑

s=1, 6=t
(m(Xs) −mθ1(Xs)) ast (m(Xt) −mθ1(Xt))


→ ∞.

(3.71)

Simple calculations imply that as T → ∞ and h→ 0

E




T∑

t=1

T∑

s=1, 6=t
(m(Xs) −mθ1(Xs)) ast (m(Xt) −mθ1(Xt))




= C2
T E




T∑

t=1

T∑

s=1, 6=t
∆(Xs)ast∆(Xt)




= σ−1
0 (1 + o(1)) C2

T

√
hd T

∫
K(u)du

∫
∆2(v)π2(v)dv

= σ−1
0 (1 + o(1)) T C2

T

√
hd
∫

∆2(v)π2(v)dv → ∞ (3.72)

using Assumption 3.3, where σ0 is as defined in (3.58).

3.5.3 Proof of Theorem 3.1

The proof follows directly from Theorem A.1 in the appendix.
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3.5.4 Proof of Theorem 3.2

Proof of (3.19) of Theorem 3.2: Recall from (3.60) and (3.61) that

L̂T (h) = (NT (h) + ST (h) +DT (h)) · σ0
σT

, (3.73)

L̂∗
T (h) = (N∗

T (h) + S∗
T (h) +D∗

T (h)) · σ0
σ∗
T

, (3.74)

where

σ2
T = 2µ̂2

2ν̂2

∫
K2(u)du with µ̂2 =

1

T

T∑

t=1

(
Yt −m

θ̂
(Xt)

)2
,

σ∗2
T = 2µ̂∗2

2

∫
K2(u)du with µ̂∗

2 =
1

n

T∑

t=1

(
Yt −m

θ̂∗
(Xt)

)2
,

and ν̂2 = 1
T

∑T
t=1 π̂(Xt) with π̂(·) being defined as before.

In view of Assumption 3.2 and Lemmas 3.1–3.3, we may ignore any terms
with orders higher than

√
hd and then consider the following approxi-

mations:

L̂T (h) = NT (h) + E [ST (h)] + oP (
√
hd) and

L̂∗
T (h) = N∗

T (h) + E∗ [S∗
T (h)] + oP

(√
hd
)
. (3.75)

Let s(h) = E[ST (h)] and s∗(h) = E∗ [S∗
T (h)]. We then apply Lemmas

3.1 and 3.2 to obtain that

P
(
L̂T (h) ≤ x

)
= P

(
NT (h) ≤ x− s(h) + oP

(√
hd
))

= Φ(x− s(h)) − ρ(h)((x− s(h))2 − 1)

× φ(x− s(h)) + o
(√

hd
)

and

P ∗
(
L̂∗
T (h) ≤ x

)
= P ∗

(
N∗
T (h) ≤ x− s∗(h) + oP

(√
hd
))

= Φ(x− s∗(h)) − ρ(h)((x− s∗(h))2 − 1)

× φ(x− s∗(h)) + oP

(√
hd
)

(3.76)

hold uniformly over x ∈ R
1.

Theorem 3.2(i) follows consequently from (3.65) and (3.76).

Proof of (3.20) of Theorem 3.2: In view of the definition that

P ∗
(
L̂∗
T (h) ≥ l∗α

)
= α
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and the conclusion from Theorem 3.2(i) that

P
(
L̂T (h) ≥ l∗α

)
− P ∗

(
L̂∗
T (h) ≥ l∗α

)
= OP

(√
hd
)
, (3.77)

the proof of

P
(
T̂n(h) ≥ l∗α

)
= α+O

(√
hd
)

follows unconditionally from the dominated convergence theorem.

Proof of (3.21) of Theorem 3.2: Theorem 3.2(ii) follows consequently
from Lemma 3.4 and equations (3.75)–(3.76).

3.5.5 Proofs of Theorem 3.3 and 3.4

The proof of Theorem 3.3 follows from an application of Theorem A.1
in the appendix. Similarly to the proof of Theorem 3.2, we may prove
Theorem 3.4. The detailed proofs are available from Casas and Gao
(2005).

3.6 Bibliographical notes

The literature on nonparametric and semiparametric specification is
huge. Härdle and Mammen (1993) have developed consistent tests for a
parametric specification by employing the kernel estimation technique.
Wooldridge (1992), Yatchew (1992), Gozalo (1993), Samarov (1993),
Whang and Andrews (1993), Horowitz and Härdle (1994), Hjellvik and
Tjøstheim (1995), Fan and Li (1996), Hart (1997), Zheng (1996), Hjel-
lvik, Yao and Tjøstheim (1998), Li and Wang (1998), Dette (1999), Li
(1999), Dette and Von Lieres und Wilkau (2001), Kreiss, Neumann and
Yao (2002), Chen, Härdle and Li (2003), Fan and Linton (2003), Zhang
and Dette (2004), Gao and King (2005), and others have developed
kernel–based consistent tests for various parametric or semiparametric
forms (partially linear or single-index) versus nonparametric alternatives
for either the independent case or the time series case.

In the same period, Eubank and Spiegelman (1990), Eubank and Hart
(1992), Shively, Kohn and Ansley (1994), Chen, Liu and Tsay (1995),
Hong and White (1995), Jayasuriya (1996), Hart (1997), Eubank (1999),
Härdle, Liang and Gao (2000), Gao, Tong and Wolff (2002b), Li, Hsiao
and Zinn (2003), and others have studied series–based consistent tests for
a parametric regression model versus nonparametric and semiparametric
alternatives. Other related studies include Robinson (1989), Aı̈t–Sahalia,
Bickel and Stoker (2001), Gozalo and Linton (2001), Sperlich, Tjøstheim
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and Yang (2002), Fan and Yao (2003), Fan and Zhang (2003), Gao and
King (2005), and others.

This chapter has concentrated on the case where there is no structural
break (change–point) in the conditional moments of Yt given Xt = x.
When there are structural breaks, nonparametric and semiparametric
counterparts of existing parametric tests, such as Andrews (1993), King
and Shively (1993), Andrews and Ploberger (1994), Stock (1994), Hansen
(2000a, 2000b), and Ling and Tong (2005), have been constructed. Re-
cent papers include Delgado and Hidalgo (2000), Grégoire and Hamrouni
(2002), Gijbels and Goderniaux (2004), Gao, Gijbels and Van Bellegem
(2006), and others.

Our discussion in this chapter has also been focused on the case where
{Xt} is a stationary time series while {et} is a sequence of independent
random errors. As briefly mentioned in Example 1.8 and discussed in
detailed in Gao et al. (2006), the proposed test statistics may be extended
to the case where {Xt} is a nonstationary time series.





CHAPTER 4

Model Selection in Nonlinear Time
Series

4.1 Introduction

One task in modelling nonlinear time series data is to study the struc-
tural relationship between the present observation and the history of
the data set. Since Tong (1990), which focuses mainly on parametric
models, nonparametric techniques have been used extensively to model
nonlinear time series data (see Auestad and Tjøstheim 1990; Tjøstheim
1994; Chapter 6 of Fan and Gijbels 1996; Härdle, Lütkepohl and Chen
1997; Gao 1998; Chapter 6 of Härdle, Liang and Gao 2000; Fan and Yao
2003 and the references therein). Although nonparametric techniques
appear feasible, there is a serious problem: the curse of dimensionality.
For the independent and identically distributed case, this problem has
been discussed and illustrated in several monographs and many papers.
In order to deal with the curse of dimensionality problem for the time
series case, several nonparametric and semiparametric approaches have
been discussed in Chapters 2 and 3, including nonparametric time series
single–index and projection pursuit modelling and additive nonparamet-
ric and semiparametric time series modelling. In addition to such non-
parametric and semiparametric approaches to modelling nonlinear time
series, variable selection criteria based on nonparametric techniques have
also been discussed in the literature.

As mentioned in Section 3.4.1 of Chapter 3, some variable selection is-
sues have been treated as model specification issues in the literature.
To examine the similarity and difference between variable selection and
model specification, we provide the following example.

Example 4.1: Consider a nonlinear time series model of the form

Yt = m(Xt) + et = m(Ut, Vt) + et, (4.1)

where Xt = (Uτt , V
τ
t )τ with Ut and Vt being the subsets of Xt. As has

been discussed in Section 3.4.1 of Chapter 3, the form of m(·, ·) may

83
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be specified through testing a null hypothesis. For example, in order
to test whether {Ut} is a significant subset, existing results from the
econometrics literature suggest testing whether the hypothesis

P (E[Yt|Ut, Vt] = E[Yt|Ut]) = 1 (4.2)

holds. In the statistics literature, interest has been on selecting an opti-
mum subset, Xtc , of Xt such that

P (E[Yt|Xt] = E[Yt|Xtc ]) = 1. (4.3)

The main similarity is that both methods focus on finding the true form
of the conditional mean function. The main difference is that unlike the
model specification method, the variable selection method may be able
to treat each of the components of Xt equally without assuming that
{Vt} is less significant. As a result, the variable selection method may be
more expensive computationally than the model specification method.

Similarly, before using model (1.1) in practice, we should consider iden-
tifying a suitable pair (β, g) such that

P (E[Yt|Xt] = Uτt β + g(Vt)) = 1. (4.4)

Such identifiability issue has been addressed in Chen and Chen (1991)
and Gao, Anh and Wolff (2001). This chapter thus assumes that the
semiparametric form is the true form of the conditional mean function,
and the main interest then focuses on a semiparametric selection of the
optimum subsets of both Ut and Vt.

In theory, we may suggest using any of existing dimension reduction
methods to deal with the dimensionality reduction problem. In practice,
however, we need to check whether the method used is appropriate for
a given set of data before using it. Although partially linear time series
modelling may not be capable of reducing the nonparametric time se-
ries regression into a sum of one–dimensional nonparametric functions
of individual lags, it can reduce the dimensionality significantly for some
cases. Moreover, partially linear time series models take the true struc-
ture of the time series data into account and avoid neglecting existing
information about linearity of the data. This chapter proposes combin-
ing semiparametric time series modelling and nonparametric time series
variable selection to deal with the dimensionality reduction problem.
We assume that a time series data set {(Yt, Ut, Vt) : t ≥ 1} satisfies a
partially linear time series model of the form

Yt = Uτt β + g(Vt) + et, t = 1, · · · , T. (4.5)

In model (4.5), the linear time series component is Uτt β and g(Vt) is
called the nonparametric time series component.
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Model (4.5) covers some existing nonlinear time series models. In theory,
model (4.5) can be used to overcome the dimensionality problem, but
in practice model (4.5) itself may suffer from the curse of dimensional-
ity. Thus, before using model (4.5) we need to determine whether both
the linear and nonparametric components are of the smallest possible
dimension. For the partially linear model case, the conventional non-
parametric cross–validation model selection function simply cannot take
the linear component into account but treats each linear regressor as a
nonparametric regressor. As a result, this selection may neglect existing
information about the linear component and therefore cause a model
misspecification problem. Therefore, we need to consider a novel exten-
sion of existing parametric and nonparametric cross–validation model
selection criteria to the semiparametric time series setting.

This chapter discusses two different variable selection criteria. The first
one, as established by Gao and Tong (2004), proposes using a semipara-
metric leave–Tv–out cross–validation function (abbreviated as semipara-
metric CVTv model selection function) for the choice of both the para-
metric and nonparametric regressors, where Tv > 1 is a positive inte-
ger satisfying Tv → ∞ as the number of observations, T → ∞. The
reason for proposing the CVTv function rather than the conventional
CV1 function is that it yields consistency. The proposed semiparamet-
ric cross–validation (CV) model selection procedure has the following
features:

(i) It provides a general model selection procedure in determining asymp-
totically whether both the linear time series component and the nonpara-
metric time series component are of the smallest possible dimension. The
procedure can select the true form of the linear time series component.
Moreover, it can overcome the curse of dimensionality arising from using
nonparametric techniques to estimate g(·) in (4.5).

(ii) It extends the leave–Tv–out cross–validation (CVTv) selection crite-
rion for linear parametric regression (Shao 1993; Zhang 1993) and the
leave–one–out cross–validation (CV1) selection criterion (Vieu 1994; Yao
and Tong 1994) for purely nonparametric regression to the semipara-
metric time series setting. As a result, we also extend the conventional
nonparametric CV1 function to a kind of nonparametric CVTv function.

(iii) It is applicable to a wide variety of models, which include additive
partially linear models for both the independent and time series cases.
As a result, the proposed model selection procedure is capable of select-
ing the most significant lags for both the parametric and nonparametric
components. Both the methodology and theoretical techniques devel-
oped in Gao and Tong (2004) can be used to improve statistical model
building and forecasting.
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The second selection procedure proposed in Dong, Gao and Tong (2006)
is the so–called semiparametric penalty function method by incorpo-
rating the leave–one–out cross–validation method with the parametric
penalty function method. This chapter then discusses a semiparametric
consistent selection procedure suitable for the choice of optimum sub-
sets in a partially linear time series model. The semiparametric penalty
function method is implemented using the full set of the data, and simu-
lations show that it works well for both small and medium sample sizes.

4.2 Semiparametric cross–validation method

Although concepts like Akaike (Akaike 1973) information criterion (AIC)
and maximum likelihood do not carry over to the nonparametric situa-
tion in a straightforward fashion, it makes sense to talk about prediction
error and cross–validation in the general framework. The equivalence of
AIC and CV criterion for the parametric autoregressive model selection
was alluded to by Tong (1976) and established by Stone (1977). Since
then, many other authors have studied the behavior of the CV criterion
in nonparametric regression for both the independent and time series
cases.

Before establishing a general framework for the semiparametric time
series case, we need to introduce some notation.

Let Aq = {1, . . . , q}, Dp = {1, . . . , p}, A denote all nonempty subsets
of Aq and D denote all nonempty subsets of Dp. For any subset A ∈
A, UtA is defined as a column vector consisting of {Uti, i ∈ A}, and
βA is defined as a column vector consisting of {βi, i ∈ A}. For any
subset D ∈ D, VtD is a column vector consisting of {Vti, i ∈ D}. We
use dE = |E| to denote the cardinality of a set E. Let A1 = {A : A ∈
A such that at least one nonzero component of β is not in βA},
A2 = {A : A ∈ A such that βA contains all nonzero components of β},
D1 = {D : D ∈ D such that E [Yt|XtD] = E[Yt|Xt]},
D2 = {D : D ∈ D such that E [Uτt β|XtD] = E[Uτt β|Xt]},
B1 = {(A,D) : A ∈ A2 and D ∈ D1 ∩ D2}. (4.6)

Obviously, the subsets A ∈ A1 and D ∈ Dc
1 = D − D1 correspond to

incorrect models. When (A,D) ∈ B1,

E[Yt|UtA, VtD] = (UtA − E[UtA|VtD])
τ
βA + E[Yt|VtD]

= (Ut − E[Ut|Vt])τ β + E[Yt|Vt]
= E[Yt|Ut, Vt].
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This implies that the correct models correspond to (A0, D0) ∈ B1 such
that both A0 andD0 are of the smallest dimension. In order to ensure the
existence and uniqueness of such a pair (A0, D0), we need to introduce
some conditions.

Assumption 4.1. (i) Assume that

∆A,D = E {UtA − E[UtA|VtD]} {UtA − E[UtA|VtD]}τ

is a positive definite matrix with order dD × dD for each given pair of
A ∈ A and D ∈ D.

(ii) Let B0 = {(A0, D0) ∈ B1, such that |A0|+ |D0| = min(A,D)∈B1
[|A|+

|D|]}. Assume that (A0, D0) is the unique element of B0 and denoted by
(A∗, D∗).

Assumption 4.2. Assume that there is a unique pair (β∗, g∗) such that
the true and compact version of model (4.17) is defined by

Yt = UτtA∗
β∗ + g∗(VtD∗) + et, (4.7)

where et = Yt − E[Yt|Ut, Xt].

In order to ensure that model (4.7) is identifiable, we need to impose the
following condition to exclude the case where φ∗ is also a linear function
in Xtj for j ∈ Dp −D∗.

Assumption 4.3. Define θj(Xtj) = E[g∗(XtD∗
)|Xtj ] for j ∈ Dp −D∗.

There exists an absolute constant M0 > 0 such that

min
j∈Dp−D∗

min
α,β

E [θj(Xtj) − α− βXtj ]
2 ≥M0.

Assumption 4.1(i) requires the definite positivity of the matrix even
when both Ut and Vt are dependent time series. When Ut and Vt are
independent, ∆A,D = E {UtA − E[UtA]} {UtA − E[UtA]}τ . Clearly, A1

consists of incorrect subsets A, and the subsets in A2 may be inefficient
because of their unnecessarily large sizes. The optimum pair (A∗, D∗)
belongs to B0, that is, both the parametric and nonparametric regressors
are of the smallest dimension. Assumption 4.1(ii) postulates both the
existence and uniqueness of (A∗, D∗). It might be possible that there
exists another pair (A∗, D∗) such that |A∗| + |D∗| = |A∗| + |D∗|. This
makes our discussion more complicated. Since it is not a likely case in
practice, we discard it.

Assumption 4.2 requires the uniqueness of the pair (β∗, g∗). In other
words, Assumption 4.2 also implies that if there is another pair (β∗, φ∗)
such that

UτtA∗
β∗ + g∗(VtD∗

) = UτtA∗
β∗ + g∗(VtD∗

) almost surely,
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then β∗ = β∗ and g∗ = g∗. Thus, Assumption 4.2 guarantees that the
true regression function UτtA∗

β∗ + g∗(VtD∗) is identifiable, i.e., β∗ and g∗
are uniquely determined up to a set of measure zero.

Assumption 4.3 is imposed to exclude the case where g∗(·) has a known
parametric linear component. This is just for considerations of rigour.
Conventionally, the nonparametric component of a partially linear model
is always viewed as a completely nonparametric and nonlinear function.

To establish our procedure for estimating A∗ and D∗, consider, for each
given pair A ∈ A and D ∈ D, a partially linear model of the form

Yt = UτtAβA + gD(VtD) + et(A,D), (4.8)

where et(A,D) = Yt−E [Yt|UtA, XtD], βA is as defined before, and gD(·)
is an unknown function on R

|D|. The definition of et(A,D) implies that
gD(XtD) = E [Yt|VtD] − βτAE [UtA|VtD].

In order to estimate βA and gD(·), we need to introduce some additional
notation:

ĝ1t(D) =

T∑

s=1

WD(t, s)Ys, ĝ2t(A,D) =

T∑

s=1

WD(t, s)UsA,

Zt(D) = Yt − ĝ1t(D), Z(D) = (Z1(D), . . . , ZT (D))τ ,

Wt(A,D) = UtA − ĝ2t(A,D),

W (A,D) = (W1(A,D), . . . ,WT (A,D))τ ,

g1(Xt) = E[Yt|Xt], g2(Xt) = E[Ut|Xt],

Wt = Ut − g2(Vt), W = (W1, . . . ,WT )τ , (4.9)

where

WD(t, s) =
KD((VtD − VsD)/h)

∑T
l=1KD((VtD − VlD)/h)

,

in which T is the number of observations, KD is a multivariate kernel
function defined on R

|D|, and h is a bandwidth parameter satisfying

h ∈ HTD =
[
aDT

− 1
4+|D|

−cD , bDT
− 1

4+|D|
+cD

]
,

where the constants aD, bD and cD satisfy 0 < aD < bD < ∞ and
0 < cD < {2(4 + |D|)}−1

.

Obviously, there are (2p − 1) × (2q − 1) possible pairs for (A,D). The
selection of (A,D) is then carried out by using the data {(Yt, Ut, Vt) :
t = 1, . . . , T} satisfying

Yt = Uτt β + g(Vt) + et

as defined in (4.5). Using (4.8) and (4.9), the least squares estimator of
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βA is (see (1.2.2) of Härdle, Liang and Gao 2000)

β̂(A,D) = (W (A,D)τW (A,D))
+
W (A,D)τZ(D), (4.10)

where (·)+ is the Moore–Penrose inverse.

Using model (4.8) fitted based on the data {(Yt, Ut, Vt) : t = 1, . . . , T},
the mean squared prediction error is

LT (A,D) =
1

T

T∑

t=1

[
Zt(D)−Wt(A,D)τ β̂(A,D)

]2

=
1

T

(
Z(D)−W (A,D)β̂(A,D)

)τ (
Z(D)−W (A,D)β̂(A,D)

)

=
1

T
Eτ

R(A,D)E +
1

T
G̃(D)τR(A,D)G̃(D)

+
1

T
(Wβ)τR(A,D)(Wβ) + ∆T (A,D), (4.11)

where

E = (e1, . . . , eT )
τ
,

P (A,D) = W (A,D) (W (A,D)τW (A,D))+ W (A,D)τ ,

R(A,D) = IT − P (A,D), G̃(D) = (g̃1(D), . . . , g̃T (D))τ ,

g̃t(D) = g1(Xt)− ĝ1t(D), IT is the identity matrix of order T ×T , and the
remainder term is

∆T (A,D) =
2

T
EτR(A,D)G̃(D) +

2

T
G̃τ (D)R(A,D)(Wβ)

+
2

T
EτR(A,D)(Wβ).

It follows from (4.11) that the overall expected mean squared error is

MT (A,D) = E [LT (A,D)] =

(
1 − |A|

T

)
σ2
0

+ PT (A,D) +NT (A,D) + op(MT (A,D)), (4.12)

where σ2
0 = E[e2t ], PT (A,D) = 1

T E [(Wβ)τR(A,D)(Wβ)], and

NT (A,D) =
1

T
E
[
G̃(D)τR(A,D)G̃(D)

]
.

Equations (4.11) and (4.12) not only reflect the error in model selection
and estimation, but also motivate us to generalize the cross–validation
method proposed by Shao (1993) for the parametric case to the semi-
parametric time series case. Suppose that we split the data set into two
parts, {(Yt, Ut, Vt) : t ∈ S} and {(Yt, Ut, Vt) : t ∈ Sc}, where S is a
subset of {1, . . . , T} containing Tv integers and Sc is its complement
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containing Tc integers, Tv + Tc = T . Model (4.8) is fitted using the data
{(Yt, Ut, Vt) : t ∈ Sc}, called the construction data, and the prediction
error is assessed using the data {(Yt, Ut, Vt) : t ∈ S}, treated as if they
were future values.

Similarly to (4.10), using the construction data we can estimate βA by

β̂c(A,D) = (Wc(A,D)τWc(A,D))
+
Wc(A,D)τZc(D), (4.13)

where Wc(A,D) = (Wi1,c(A,D), . . . ,WiTc ,c
(A,D))τ and

Zc(D) = (Zi1,c(D), . . . , ZiTc ,c
(D))τ ,

in which for t ∈ Sc or t ∈ S,

Wt,c(A,D) = UtA − ĝc2t(A,D), ĝc2t(A,D) =
∑

s∈Sc

WD(t, s)UsA,

Zt,c(D) = Yt − ĝc1t(D), ĝc1t(D) =
∑

s∈Sc

WD(t, s)Ys.

For t ∈ S, let Ẑct (A,D) = Wt,c(A,D)τ β̂c(A,D). The average squared
prediction error is then defined by

CV(A,D;h) = CV(A,D;h, Tv) = CVS(A,D;h, Tv)

=
1

Tv

∑

t∈S

(
Zt,c(D) − Ẑct (A,D)

)2
w(Vt), (4.14)

where the weight function w(·) is employed to trim off some extreme val-
ues of Vt involved in the nonparametric estimator of the density function
of Vt in the denominator.

The CV(A,D;h) function is called the semiparametric leave–Tv–out
cross–validation function, abbreviated as semiparametric CVTv function.
As can be seen from its construction, the parametric and nonparametric
counterparts are both special cases. In other words, we extend not only
the parametric CVTv proposed by Shao (1993) but also the conventional
nonparametric CV1 function to the semiparametric CVTv function. As
the semiparametric CV1 is asymptotically inconsistent in the selection of
A, we adopt the following Monte Carlo CVTv in the selection of (A,D).

Randomly draw a collection R of n subsets of {1, . . . , T} that have size
Tv and select a model by minimizing

MCCV(A,D;h) =
1

n

∑

S∈R
CVS(A,D;h, Tv) (4.15)

=
1

nTv

∑

S∈R

∑

t∈S

(
Zt,c(D) − Ẑct (A,D)

)2
w(Vt);



SEMIPARAMETRIC CROSS–VALIDATION METHOD 91

we call it the semiparametric MCCV(Tv) function. Let

(Â, D̂, ĥ) = arg min
{A∈A, D∈D, h∈Hc

TD
}
MCCV(A,D;h), (4.16)

where

Hc
TD =

[
aDT

− 1
4+|D|

−cD
c , bDT

− 1
4+|D|

+cD
c

]
,

in which the constants aD, bD and cD satisfy 0 < aD < bD < ∞ and
0 < cD < {2(4 + |D|)}−1

.

We now state the following main result of this section as established by
Gao and Tong (2004).

Theorem 4.1. Assume that Assumptions 4.1–4.3 and 4.5–4.8 listed in
Section 4.5 hold. Then

lim
T→∞

P
(
Â = A∗, D̂ = D∗

)
= 1 and

ĥ

h∗
→p 1

as T → ∞, where h∗ = c∗T
− 1

4+|D∗|
c and c∗ is a positive constant.

Theorem 4.1 shows that if a given data set (Yt, Ut, Vt) satisfies a model
of form (4.5), the proposed semiparametric CVTv selection procedure
suggests that we need only to consider the selection of (2q−1)× (2p−1)
possible models of the form (4.5). When Ut and Vt are independent, we
need only to consider the selection of 2p + 2q − 2 possible models. If we
choose to use either a purely nonparametric cross–validation selection
procedure or the completely parametric CVTv selection procedure for
the selection of an optimum set of (Ut, Vt), we need to consider the
selection of 2p+q − 1 possible models. Consequently, in theory we may
cause a model specification problem, since a completely linear model or
a purely nonparametric regression model may be either too simple or too
general for a given time series data. In practice, the computation when
selecting 2p+q − 1 possible models is more expensive than that when
selecting (2q − 1) × (2p − 1) possible models when p and q are large.

Theorem 4.1 covers two important cases. First, we can select the opti-
mum subset of parametric regressors when the nonparametric compo-
nent of (4.5) is already compact. Second, Theorem 4.1 also provides a
consistent selection procedure for the nonparametric component even
when the parametric component is compact. Moreover, the conclusions
of Theorem 4.1 apply to many important special cases. For example, the
case where Ut, Vt and et are all strictly stationary time series is included.
This implies that both the proposed model selection procedure and the
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conclusion of Theorem 4.1 apply to a wide variety of models of the form
(4.5).

In addition, Theorem 4.1 not only extends the model selection method of
Shao (1993) for the fixed design linear model case to the selection of both
parametric and nonparametric regressors in semiparametric time series
regression, but also generalizes the conventional nonparametric CV1
function (see Vieu 1994, 1995; Yao and Tong 1994) for both the indepen-
dent and β–mixing time series cases to the semiparametric MCCV(Tv)
function for the α–mixing time series case.

Theorem 4.1 not only provides the asymptotic consistency of the semi-
parametric CVTv selection procedure, but also shows that if a model of
form (4.5) within the context tried is the truth, then the semiparametric
selection procedure will find it asymptotically.

Before we prove Theorem 4.1 in Section 4.5 below, we discuss some ap-
plications of Theorem 4.1 through using Examples 4.2 and 4.3 in Section
4.4 below.

4.3 Semiparametric penalty function method

Section 4.2 has discussed the proposed semiparametric cross–validation
selection method. As observed in the simulations in both Shao (1993)
and Section 4.2 of this chapter, the number of observations used to fit
the model is, however, quite small (with Tc = 15 in Shao 1993 for the
parametric case and Tc = 69 in Section 4.2 for the semiparametric case),
while the number of observations used to validate the proposed method
is relatively large (with Tv = 25 and Tv = 219, respectively). This may
impede the implementation of the method in practice because the theory
requires Tc → ∞; it is more appropriate to use comparatively more data
to construct the model but comparatively fewer data to validate the
model. In addition to addressing the problem of inconsistency in model
selection such as AIC, Zheng and Loh (1995, 1997) have proposed the
so–called penalty function method for parametric model selection.

In this section, we propose a semiparametric penalty function-based
model selection criterion by incorporating some essential features of the
CV1 selection method for the choice of both the parametric and the non-
parametric regressors in model (4.5). The main objective of this section
is to propose a new selection criterion, establish the associated theory
and demonstrate the key feature of easy implementation of the proposed
semiparametric penalty function method by using two simulated exam-
ples.
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Using Equations (4.8)–(4.10), the residual sum of squares is defined by

RSS(A,D;h) =

T∑

t=1

[
Zt(D) −Wt(A,D)τ β̂(A,D)

]2

=
(
Z(D) −W (A,D)β̂(A,D)

)τ

·
(
Z(D) −W (A,D)β̂(A,D)

)

= EτR(A,D)E + G̃(D)τR(A,D)G̃(D)

+ (Wβ)τR(A,D)(Wβ) + T ∆T (A,D), (4.17)

where the quantities involved are defined as in (4.11).

It may be shown from (4.17) that the following equations hold uniformly
in h ∈ HTD,

RSS(A,D;h) = EτR(A,D)E + G̃(D)τR(A,D)G̃(D)

+ (Wβ)τR(A,D)(Wβ) + oP (RSS(A,D;h)) ,

MT (A,D;h) = E [RSS(A,D;h)] = (T − |A|)σ2 + PT (A,D)

+ NT (A,D) + o (MT (A,D)) , (4.18)

where

PT (A,D) = E [(Wβ)τR(A,D)(Wβ)] and

NT (A,D) = E
[
G̃(D)τR(A,D)G̃(D)

]
.

Before we define our selection procedure, we need to introduce the fol-
lowing penalty function. The penalty function ΛT (A,D) is defined as

ΛT (A,D) : A×D → R
1

satisfying the following assumption.

Assumption 4.4. (i) Let ΛT (∅, ∅) = 0 and ΛT (∅, D) = 0 for any given
D ∈ D.

(ii) For any subsets A1, A2 ∈ A, D1, D2 ∈ D satisfying A2 ⊃ A1, D2 ⊃
D1,

lim
T→∞

inf
ΛT (A1, D1)

ΛT (A2, D2)
< 1.

(iii) For any nonempty sets A and D, we assume that

lim
T→∞

ΛT (A,D) = ∞ and lim
T→∞

ΛT (A,D)

T
= 0.

It should be noted that ΛT (A,D) can be chosen quite generally. ΛT (A,D)
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is defined as a function of sets in theory, but in practice we can define
the penalty function ΛT (A,D) as a function of |A| and |D| satisfying
Assumption 4.4. Obviously, the definition of ΛT (A,D) generalizes the
function hn(k) in Zheng and Loh (1997). Assumption 4.4 regularizes the
penalty function so as to avoid any problem of either over–fitting or
under–fitting.

We now extend the penalty function method from linear model selection
to the partially linear model selection. Define

(Ã, D̃, h̃) = arg min
A∈A,D∈D,h∈HTD

{
RSS(A,D;h) + ΛT (A,D)σ̂2

}
,

(4.19)
where σ̂2 = 1

T−pRSS(Aq, Dp;h) is the usual consistent estimate of

var[et] = σ2. It may also be shown from equation (14) of Zheng and
Loh (1997) that

σ̂2 = σ2 + oP (1) (4.20)

uniformly in h ∈ HTD.

The method discussed here generalizes those criteria proposed in Zheng
and Loh (1995, 1997), Yao and Tong (1994), and Vieu (1994). For ex-
ample, if D∗ is already identified, then the problem will become a model
selection problem for linear models as discussed in Zheng and Loh (1995,
1997). If A is already identified as A∗, and we need only to select D for
(A∗, D), then the model selection will reduce to a purely nonparamet-
ric leave–one–out cross–validation selection problem. This is because,
as shown in Section 2.1 of Gao and Tong (2005), the leading term
1
T RSS(A∗, D;h) is asymptotically equivalent to a CV1(D,h) function
of (D,h) as defined below:

CV1(D,h) =
1

T

T∑

t=1

{
Yt − Uτt β̂(Aq, D) − ĝt(XtD, β̂(Aq, D))

}2

, (4.21)

where ĝt(XtD, β) is as defined before. Thus, in the case where A is al-
ready identified as A∗, we may choose (D,h) as follows:

(D̃, h̃) = arg min
D∈D,h∈HTD

CV1(D,h).

We now state the asymptotic consistency of the proposed selection cri-
terion in Theorem 4.2, which is comparable with Theorem 4.1.

Theorem 4.2. If the Assumptions 4.1–4.4 and 4.5–4.8 listed in Section
4.5 hold, then

lim
T→∞

P
(
Ã = A∗, D̃ = D∗

)
= 1 and
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h̃

h∗
→P 1

as T → ∞, where h∗ = c∗T
− 1

4+|D∗| and c∗ is a positive constant.

Before we prove Theorem 4.2 in Section 4.5 below, we examine some
finite–sample properties of the proposed penalty function selection cri-
terion through Examples 4.4 and 4.5 in Section 4.4 below.

4.4 Examples and applications

This section illustrates Theorem 4.1 using a simulated model in Example
4.2 and a set of real data in Example 4.3. Theorem 4.2 is then illustrated
through using two simulated examples in Examples 4.4 and 4.5.

Example 4.2: Consider a nonlinear time series model of the form

Yt = 0.47Ut−1 − 0.45Ut−2 +
0.5Vt−1 − 0.23Vt−2

1 + V 2
t−1 + V 2

t−2

+ et,

Ut = 0.55Ut−1 − 0.12Ut−2 + δt and

Vt = 0.3 sin(2πVt−1) + 0.2 cos(2πVt−2) + ǫt, t = 3, . . . , T,(4.22)

where δt, ǫt and et are mutually independent and identically distributed
with uniform distributions on (−1, 1), (−0.5, 0.5) and the standard Nor-
mal distribution N(0, 1), respectively, U1, U2, V1, V2 are independent and
identically distributed with uniform distribution on (−1, 1), Us and Vt
are mutually independent for all s, t ≥ 3, and the process {(ηt, ǫt, et)} is
independent of both (U1, U2) and (V1, V2).

For Example 4.2, the strict stationarity and mixing condition can be
justified by using existing results (Masry and Tjøstheim 1995, 1997).
Thus, Assumption 4.4 holds. For an application of Theorem 4.1, let

β = (β1, β2)
τ = (0.47,−0.45)τ and

g(Vt−1, Vt−2) =
0.5Vt−1 − 0.23Vt−2

1 + V 2
t−1 + V 2

t−2

.

In this example, we consider the case where Vt, Vt−1 and Vt−2 are se-
lected as candidate nonparametric regressors and Ut−1 and Ut−2 as can-
didate parametric regressors and then use the proposed semiparametric
MCCV(Tv) function to check if (Ut−1, Ut−2, Vt−1, Vt−2) is the true semi-
parametric set. For this case, there are 23−1 = 7 possible nonparametric
regressors and 22−1 = 3 possible parametric regressors. Therefore, there
are 10 possible candidates for the true model, since Ut and Vt are inde-
pendent.
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Let D0 = {1, 2}, D1 = {0, 1}, D2 = {0, 2}, D3 = {0, 1, 2}, D4 = {0},
D5 = {1}, D6 = {2}, D = {Di : 0 ≤ i ≤ 6}, VtD0 = (Vt−1, Vt−2)

τ ,
VtD1

= (Vt, Vt−1)
τ , VtD2

= (Vt, Vt−2)
τ , VtD3

= (Vt, Vt−1, Vt−2)
τ , VtD4

=
Vt, VtD5

= Vt−1, VtD6
= Vt−2, A0 = {1, 2}, A1 = {1}, A2 = {2}, A =

{Ai : i = 0, 1, 2}, UtA0
= (Ut−1, Ut−2)

τ , UtA1
= Ut−1 and UtA2

= Ut−2.
It follows that both D∗ = D0 and A∗ = A0 are unique. Assumptions
4.1–4.3 therefore hold.

Throughout Example 4.2, we use h ∈ Hc
TD =

[
0.1 · T− 2

9
c , 3 · T− 1

9
c

]
, where

Tc is to be chosen and the weight function w(x) = I[−1,1](x), in which
IA(x) is the indicator function. For the multivariate kernel function K(·)
involved in WD(t, s), define K(u1, . . . , uj) =

∏j
i=1 k(ui) for j = 1, · · · , 3,

where k(u) = 1√
2π
e−

u2

2 . It follows that Assumptions 4.5–4.7 are all sat-

isfied.

In the calculation of MCCV(Tv), we choose n = T , Tv = T − Tc and
Tc =

[
T 3/4

]
, the largest integer part of T 3/4. Assumption 4.8(ii) follows

immediately from the choice of n = T and Tv. Before checking Assump-
tion 4.8(i), we introduce the following notation. Using the independence
between Ut and Vt, we have E[UtAi |XtDj ] = E[UtAi ] for all i = 0, 1, 2
and j = 0, · · · , 6. Thus, we need only to introduce the following notation.
For i = 0, 1, 2, let

ηt(Ai) = UtAi − E[UtAi ],

η(Ai) = (η1(Ai), . . . , ηT (Ai))
τ ,

ηt = ηt(A0), η = (η1, . . . , ηT )τ .

Let αt =
∑2
j=1 ηt(Aj)βj and α = ηβ = (α1, . . . , αT )τ . A detailed

calculation yields that

(ηβ)τ
(
IT − η(Ai)(η(Ai)

τη(Ai))
−1η(Ai)

τ
)
(ηβ)

=

∑T
t=3 η

2
t (Ai)

∑T
t=3 α

2
t −

[∑T
t=3 ηt(Ai)αt

]2

∑T
t=3 η

2
t (Ai)

> 0

with probability one for all i = 1, 2, because P (ηt(Ai) = αt) = 0. This
shows that Assumption 4.8(i) holds. Therefore, Assumptions 4.1–4.3 and
4.5–4.8 all hold.

For the three sample sizes T = 72, 152 and 302, we calculated the relative
frequencies of the selected parametric and nonparametric regressors in
1000 replications. Table 4.1 below reports the results of the simulation
for the semiparametric MCCV(Tv) selection function.
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Table 4.1. The semiparametric MCCV(Tv) function-based relative
frequencies for Example 4.2

Significant Semiparametric Regressor Relative Frequency

T = 72 T = 152 T = 302

{Ut−1, Ut−2, Vt−1, Vt−2} 0.723 0.891 0.984
{Ut−1, Ut−2, Vt, Vt−1, Vt−2} 0.124 0.064 0.011
{Ut−1, Ut−2, Vt−1, Vt} 0.065 0.018 0.003
{Ut−1, Ut−2, Vt−2, Vt} 0.063 0.018 0.002
{Ut−1, Xt−1, Vt−2} 0.012 0.005 0.000
{Ut−2, Xt−1, Vt−2} 0.013 0.004 0.000

We now compare the proposed semiparametric MCCV(Tv) selection
function with the conventional nonparametric CV1 selection function.
For the same Example 4.2, consider the case where Ut−1, Ut−2, Vt, Vt−1

and Vt−2 are selected as candidate nonparametric regressors. For this
case, there are 25 − 1 = 31 possible nonparametric regressors, since we
treat each parametric regressor as nonparametric. As the conventional
nonparametric CV1 function is already consistent, we considered using it
as an alternative to the semiparametric MCCV(Tv) function. To ensure
that the numerical comparison between the semiparametric MCCV(Tv)
method and the nonparametric CV1 model selection can be done in a
reasonable way, we choose the same w, k and h as above and define
K(u1, . . . , uj) =

∏j

i=1
k(ui) for j = 1, · · · , 5 for the multivariate kernel

function involved in WD(t, s). The results based on 1000 replications are
given in Table 4.2.

Table 4.2. The nonparametric CV1-based relative frequencies for
Example 4.2

Significant Nonparametric Regressor Relative Frequency

T = 72 T = 152 T = 302

{Ut−2, Vt−1, Vt−2} 0.473 0.472 0.477
{Ut−1, Vt−1, Vt−2} 0.464 0.470 0.476

{Ut−1, Ut−2, Vt−1, Vt−2} 0.016 0.018 0.016
{Ut−1, Ut−2, Vt, Vt−2} 0.017 0.017 0.016
{Ut−1, Ut−2, Vt, Vt−1} 0.015 0.019 0.014

{Vt−1, Vt−2} 0.013 0.004 0.001
{Vt, Vt−1, Vt−2} 0.002 0.000 0.000
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Table 4.1 shows that MCCV(Tv) can be implemented in practice and
supports the validity of our definition of optimum subset (see Assump-

tion 4.1). The simulation results show that both Â and D̂ can be rea-
sonably good estimators of A∗ and D∗ even when the sample size T
is modest. Unlike the semiparametric MCCV(Tv) function, the conven-
tional nonparametric CV1 function cannot identify the true set of re-
gressors (Ut−1, Ut−2, Vt−1, Vt−2}. This is a reflection of the fact that the
semiparametric MCCV(Tv) selection takes into account the existence
of both the parametric and nonparametric regressors while the non-
parametric CV1 neglects the existence of the parametric component but
treats each parametric regressor as nonparametric. Both the semipara-
metric and nonparametric CV1 selection procedures considered all possi-
ble 10 models for the semiparametric case and all possible 31 models for
the nonparametric case. As many other insignificant regressors had zero
probability being selected, Tables 4.1 and 4.2 provide only the relative
frequencies for the significant regressors. We also recorded the relative
frequencies based on the corresponding nonparametric MCCV(Tv). As
the values were comparable with those given in Table 4.2, we only report
the relative frequencies based on the conventional nonparametric CV1
function. The computation times for the semiparametric selection were
much shorter than those for the nonparametric selection.

Throughout Example 4.2, we point out that Assumptions 4.1–4.3 and
4.5–4.8 are all satisfied. In theory, Assumption 4.8(i) is a very minimal
model identifiability condition. But, it is not easy to verify in practice.
For Example 4.2, however, we have been able to verify the condition.

Example 4.3: Fisheries Western Australia (WA) manages commercial
fishing in Western Australia. Simple Catch and Effort statistics are often
used in regulating the amount of fish that can be caught and the num-
ber of boats that are licensed to catch them. The establishment of the
relationship between the Catch (in kilograms) and Effort (the number
of days the fishing vessels spent at sea) is very important both commeri-
cally and ecologically. This example considers using our model selection
procedure to identify a best possible model for the relationship between
catch and effort.

The monthly fishing data set from January 1976 to December 1999 is
available from the Fisheries WA Catch and Effort Statistics (CAES)
database. Existing studies suggest that the relationship between catch
and effort is nonlinear while the dependence of the current catch on the
past catch appears to be linear. This suggests using a partially linear
model of form

Ct = β1Ct−1 + · · · + βpCt−q + φ(Et−1, Et−2, . . . , Et−p) + ǫt, t = r, · · · ,
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where r = max(p, q), {ǫt} is a random error, and {Ct} and {Et} represent
the catch and the effort at time t. In computation, we use the transformed
data Yt = log10 Ct and Xt = log10Et satisfying the following model

Yt+r = β1Yt+r−1 +. . .+ βqYt+r−q + φ(Xt+r−1, . . . , Xt+r−p) + et, t ≥ 1,
(4.23)

where {et} is a sequence of strictly stationary error processes with zero
mean and finite variance.

Before using model (4.23), we need to choose an optimum and compact
form of it. We consider q = 4 and p = 5 and then find an optimum
model; there are 24 − 1 = 15 different parametric and 25 − 1 = 31
different nonparametric regressors.

Similarly to Example 4.2, we define the parametric candidates UtAi for
1 ≤ i ≤ 15 and the nonparametric candidates VtDj

for 1 ≤ j ≤ 31. It
follows that

Yt+5 = UT

tAi
βAi

+ φDj
(VtDj

) + etij , (4.24)

where βAi and φDj are similar to those of βA and φD, and {etij} is
allowed to be a sequence of strictly stationary error processes with zero
mean and finite variance.

We then use the 288 observations of the data from January 1976 to
December 1999 to select a best possible partially linear model. In the
calculation of the MCCV(Tv) function, we choose n = T = 288, Tc =
[T 3/4] = 69 and Tv = T − Tc = 219. For this example, we consider

using K(u1, . . . , uj) =
∏j
i=1 k(ui) for 1 ≤ j ≤ 9 for the multivariate

kernel function involved in WD(t, s). We use the same k(·) as in Example

4.1, but Hc
TD =

[
0.1 · T− 4

21
c , 3 · T− 2

21
c

]
and the weight function w(x) =

I[2,4](x).

The semiparametric MCCV(Tv) selection procedure then suggests using
a partially linear prediction model of the form

Yt+5 = β̂1Yt+4 + β̂2Yt+3 + φ̂(Xt+4, Xt+3, Xt+1), t = 1, · · · , 288, (4.25)

where β̂1 = 0.4129, β̂2 = −0.3021 and φ̂(·) is a nonparametric estimator.

The corresponding bandwidth chosen by (4.16) is ĥ1 = 0.29305.

We also consider using the nonparametric CV1 function for the same
data for the case where Yt+i for i = 1, · · · , 4 and Xt+j for j = 0, · · · , 4 are
candidate of nonparametric regressors. The nonparametric CV1 selection
function suggests the following nonparametric prediction model

Yt+5 = m̂(Yt+4, Yt+1, Xt+4, Xt+2, Xt+1), t = 1, · · · , 288, (4.26)

where m̂(·) is the usual nonparametric regression estimator as defined

before. The corresponding bandwidth chosen by (4.16) is ĥ2 = 0.14985.
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When we assume that the dependence of Yt+5 on Yt+i for i = 1, · · · , 4 and
Xt+j for j = 0, · · · , 4 is linear, the corresponding parametric MCCV(Tv)
function suggests a linear prediction model of form

Yt+5 = α̂1Yt+4 + α̂2Yt+3 + α̂3Yt+1 + α̂4Xt+3 + α̂5Xt+1, t = 1, · · · , 288,
(4.27)

where α̂1 = 0.3371, α̂2 = −0.2981, α̂3 = 0.0467, α̂4 = −0.2072, and
α̂5 = 0.1061.

For the whole data set, the estimated error variances for the partially
linear model (4.25), the nonparametric model (4.26) and the linear model
(4.27) were 0.01056, 0.02854 and 0.04389, respectively. The complete
calculation for Example 4.3 took about one hour of CPU time on a
PowerBook G4 System.

Example 4.3 shows that if a partially linear model among the pos-
sible partially linear models is appropriate, then the semiparametric
MCCV(Tv) selection procedure is capable of finding it. When using both
the nonparametric CV1 selection criterion and parametric MCCV(Tv)
selection criterion, we obtain two different models for the same data
set. However, the estimated error variance for the partially linear model
is the smallest among those for models (4.25), (4.26) and (4.27). The
findings in Example 4.3 are consistent with existing studies in that the
relationship between the catch and the effort appears to be nonlinear
while the current catch depends linearly on the past catch.

We acknowledge the computing expenses of the CV-based selection pro-
cedure. In our detailed simulation and computing for Examples 4.2 and
4.3, we have used some optimization algorithms, such as vectorised al-
gorithms in the calculation of both the semiparametric MCCV(Tv) and
the nonparametric CV1 functions of many possible candidates. The fi-
nal computing time for each example is not unreasonable, but further
discussion of computing algorithms is beyond the scope of this section.

In the following we illustrate Theorem 4.2 using two simulated examples.
Our simulation results support the asymptotic theory and the use of
the semiparametric penalty function method for partially linear model
selection.

Example 4.4: Consider a nonlinear time series model of the form

Yt = 0.47Ut−1 − 0.45Ut−2 +
0.5Vt−1

1 + V 2
t−1

+ et, (4.28)

where Ut = 0.55Ut−1 − 0.12Ut−2 + δt and Xt = 0.3 sin(2πXt−1) + ǫt, in
which δt, ǫt and et are mutually independent and identically distributed



EXAMPLES AND APPLICATIONS 101

with uniform distributions on (−1, 1), (−0.5, 0.5) and the standard Nor-
mal distribution N(0, 1), respectively, U1, U2, V1, V2 are independent and
identically distributed with uniform distribution on (−1, 1), Us and Vt
are mutually independent for all s, t ≥ 3, and the process {(δt, ǫt, et)} is
independent of both (U1, U2) and (V1, V2).

As model (4.28) is a special case of model (4.22) in Example 4.2, Assump-
tions 4.1–4.3 are satisfied immediately. For an application of Theorem
4.2, let

β = (β1, β2)
τ = (0.47,−0.45)τ and g(Vt−1) =

0.5Vt−1

1 + V 2
t−1

.

To satisfy Assumption 4.4, we use ΛT (A,D) = (|A| + |D|) · T 0.5 as
the penalty function. In addition to the choice of ΛT (A,D), we also
considered choosing several other forms for ΛT (A,D). As the result-
ing simulated frequencies are very similar, we focus only on this choice
throughout the rest of this section.

The choice of both the bandwidth interval HT as well as the kernel
function is the same as in Example 4.2. Meanwhile, Assumptions 4.5–
4.8 hold trivially. For the four sample sizes T = 52, 127, 272 and 552,
we calculated the relative frequencies of the selected parametric and
nonparametric regressors in 1000 replications. Table 4.3 below reports
the results of the simulation.

Table 4.3. Frequencies of semiparametric penalty model selection

Parametric & Nonparametric Set Frequencies

T = 52 T = 127 T = 272 T = 552

{Ut−2, Ut−1, Xt−1} 0.609 0.746 0.873 0.971
{Ut−2, Ut−1, Xt} 0.350 0.235 0.123 0.028
{Ut−2, Xt−1, Xt} 0.024 0.014 0.002 0.001
{Ut−1, Xt−1, Xt} 0.017 0.005 0.002 0.000

Table 4.3 shows that the true set of regressors {Ut−2, Ut−1, Vt−1} is se-
lected with increasing frequencies from 0.554 to 0.970 as the sample size
increases from T = 52 to T = 552. As expected, the other models are
selected less and less frequently as the sample size increases even model
{Ut−2, Ut−1, Vt}, which is one of the closest to the true model, is selected
with decreasing frequencies from 0.390 to 0.030. This lends support to
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the efficacy of combining the penalty function method with the leave–
one–out cross–validation (CV1).

Table 4.3 also shows that the proposed semiparametric model selection
works well numerically when the true model is a partially linear model.
As there are many existing model selection methods in the literature,
in order to demonstrate the necessity of establishing a new model se-
lection, we show in Tables 4.4 and 4.5 below that the proposed model
selection method is much more effective than existing penalty function
model selection methods through comparing the new method dedicated
to partially linear models with the penalty function method for linear
models proposed by Zheng and Loh (1997) and the conventional non-
parametric leave–one–out cross–validation function CV1.

Table 4.4. Frequencies of parametric penalty model selection

Parametric Subset Frequencies

T = 52 T = 127 T = 272 T = 552

{Ut−2, Ut−1, Xt−1} 0.055 0.142 0.383 0.684
{Ut−2, Ut−1} 0.238 0.464 0.525 0.310
{Ut−1, Ut−2, Xt} 0.024 0.013 0.009 0.003
{Ut−2} 0.180 0.096 0.015 0.000
{Ut−1} 0.193 0.112 0.020 0.000
{Xt−1} 0.178 0.101 0.025 0.000
{Xt} 0.067 0.024 0.001 0.000
{Ut−2, Xt−1} 0.019 0.014 0.007 0.000
{Ut−1, Xt−1} 0.022 0.024 0.008 0.000
{Ut−2, Ut−1, Xt−1, Xt} 0.003 0.004 0.005 0.003

Table 4.5. Frequencies of nonparametric model selection

Nonparametric Subset Frequencies

T = 52 T = 127 T = 272 T = 552

{Ut−2, Ut−1, Vt−1} 0.103 0.288 0.464 0.652
{Ut−2, Ut−1, Vt−1, Vt} 0.050 0.103 0.184 0.196
{Ut−2, Ut−1} 0.135 0.205 0.194 0.117
{Ut−2} 0.064 0.022 0.002 0.000
{Ut−1} 0.102 0.035 0.004 0.000
{Vt−1} 0.102 0.048 0.008 0.000
{Vt} 0.059 0.011 0.000 0.000
{Ut−2, Vt−1} 0.053 0.028 0.009 0.000
{Ut−1, Vt−1} 0.058 0.060 0.014 0.002
{Ut−1, Ut−2, Vt} 0.038 0.019 0.092 0.001
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The candidate variables are still {Ut−2, Ut−1, Vt−1, Vt}. Therefore there
are 24 − 1 = 15 models that can be selected. Both the penalty function
method for linear model selection and the CV1 selection procedure con-
sider all possible 15 models. As many other insignificant regressors have
just tiny probabilities of being selected, Tables 4.4 and 4.5 provide only
the relevant frequencies for the significant regressors.

Tables 4.4 and 4.5 imply that both the penalty function method for
linear models and the conventional nonparametric CV1 method are not
very effective for semiparametric models. The highest frequencies that
the true model has been selected are 0.383 and 0.464, respectively when
the sample size is T ≤ 272. Although their performance improves when
the sample size increases to 552, there is still a huge difference between
their performance and the performance of the method proposed here.

Both the theory and Tables 4.4 and 4.5 allow us to draw the intui-tively
obvious conclusion that as far as the selection of a partially linear model
is concerned, methods designed for purely parametric models or fully
nonparametric models are not as effective as a method dedicated to
partially linear models. This further emphasizes the necessity of propos-
ing the new efficient selection method to solve problems that cannot
be solved using existing selection methods for either completely linear
models or fully nonparametric models.

The above simulations are based on the assumption that the true model
is a partially linear time series model, for which our method is designed.
But if the true model is either a purely parametric time series model
or a fully nonparametric time series model, our method also performs
reasonably well. Example 4.5 below considers the case where the true
model is a purely parametric linear model and then applies both the
parametric selection proposed by Zheng and Loh (1995) and our own
semiparametric selection procedure to the model. When using the pro-
posed semiparametric selection method, our preliminary computation
suggests involving the same kernel function and bandwidth interval as
used in Example 4.4 for the simulation in Example 4.5 below.

Example 4.5: Consider a linear time series model of the form

Yt = 0.47Ut−1 − 0.45Ut−2 + 0.5Vt−1 + et, (4.29)

where

Ut = 0.55Ut−1 − 0.12Ut−2 + δt and Vt = 0.3 sin(2πVt−1) + ǫt,

in which δt, ǫt and et are mutually independent and identically dis-
tributed with uniform distributions on (−1, 1), (−0.5, 0.5) and the stan-
dard Normal distribution N(0, 1), respectively, U1, U2, V1, V2 are inde-
pendent and identically distributed with uniform distribution on (−1, 1),
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Us and Vt are mutually independent for all s, t ≥ 3, and the process
{(δt, ǫt, et)} is independent of both (U1, U2) and (V1, V2).

For the four sample sizes T = 52, 127, 272 and 552, we chose the penalty
function ΛT (A,D) = (|A| + |D|) T 0.5 and then calculated the relative
frequencies of the selected parametric and semiparametric regressors in
1000 replications as reported in Tables 4.6 and 4.7 below.

Table 4.6. Frequencies of semiparametric model selection

Parametric & Nonparametric Subset Frequencies

T = 52 T = 127 T = 272 T = 552

{Ut−2, Ut−1, Vt−1} 0.070 0.172 0.432 0.836
{Ut−2, Ut−1, Vt} 0.038 0.040 0.028 0.009
{Ut−2, Xt−1, Vt} 0.002 0.004 0.000 0.000
{Ut−1, Vt−1, Vt} 0.001 0.000 0.000 0.000
{Ut−1, Ut−2, Vt−1, Vt} 0.001 0.001 0.001 0.000
{Ut−2, Vt−1} 0.280 0.293 0.208 0.051
{Ut−2, Vt} 0.147 0.059 0.007 0.000
{Ut−1, Vt−1} 0.310 0.369 0.308 0.104
{Ut−1, Vt} 0.151 0.062 0.016 0.000

Table 4.7. Frequencies of parametric model selection

Parametric Subset Frequencies

T = 52 T = 127 T = 272 T = 552

{Ut−2, Ut−1, Vt−1} 0.086 0.325 0.742 0.942
{Ut−2, Ut−1} 0.213 0.327 0.198 0.035
{Ut−1, Ut−2, Vt} 0.032 0.014 0.006 0.003
{Ut−2} 0.129 0.041 0.003 0.000
{Ut−1} 0.159 0.072 0.004 0.000
{Xt−1} 0.192 0.121 0.012 0.000
{Vt} 0.073 0.006 0.001 0.000
{Ut−2, Vt−1} 0.040 0.019 0.001 0.000
{Ut−1, Vt−1} 0.028 0.038 0.011 0.000
{Xt−1, Vt} 0.013 0.003 0.000 0.000
{Ut−2, Ut−1, Vt−1, Vt} 0.011 0.018 0.022 0.020
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Tables 4.4 and 4.6 show that semiparametric penalty function method
performs similarly to that of the parametric penalty function method for
the cases of T = 52, T = 127 and T = 272. But in the case of T = 552
the former for a linear model is better than the latter for a partially
linear model. While Tables 4.6 and 4.7 show that the parametric linear
penalty function proposed by Zheng and Loh (1995) performs better
than the semiparametric penalty function method for the case where
the true model is a parametric linear model, the performance of the
proposed semiparametric penalty function is comparable with that of the
parametric penalty function method, particularly when T is as medium
as 552.

Section 4.3 has proposed a semiparametric penalty function method for
the choice of optimum regressors for both the parametric and nonpara-
metric components. Our finite–sample simulation studies have shown
that the proposed semiparametric model selection method works quite
well in the case where the true model is actually a partially linear model.
In addition, our simulation results have also suggested that the proposed
semiparametric model selection method is a better choice than either a
corresponding parametric linear model selection method or a conven-
tional nonparametric cross–validation selection procedure when there is
no information about whether the true model is parametric, nonpara-
metric or semiparametric.

4.5 Technical notes

This section lists some technical conditions required to establish and
prove Theorems 4.1 and 4.2.

4.5.1 Assumptions

Assumption 4.5. (i) Assumption 2.1 holds.

(ii) For every D ∈ D, KD is a |D|–dimensional symmetric, Lipschitz
continuous probability kernel function with

∫
||u||2KD(u)du < ∞, and

KD has an absolutely integrable Fourier transform, where || · || denotes
the Euclidean norm.

Assumption 4.6. Let Sw be a compact subset of Rp and w be a weight
function supported on Sw and w ≤ C for some constant C. For every
D ∈ D, let RV,D ⊆ R

|D| = (−∞,∞)|D| be the subset such that VtD ∈
RV,D and SD be the projection of Sω in RV,D (that is, SD = RV,D∩Sω).
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Assume that the marginal density function, fD(·), of VtD, and all the
first two derivatives of fD(·), g1(·) and gA,D(·), are continuous on RV,D,
and on SD the density function fD(·) is bounded below by CD and
above by C−1

D for some CD > 0, where g1(x) = E[Yt|VtD = x] and
gA,D(x) = E[UtA|VtD = x] for every A ∈ A and D ∈ D.

Assumption 4.7. There exist absolute constants 0 < C1 < ∞ and
0 < C2 <∞ such that for any integer l ≥ 1

sup
x

sup
A∈A,D∈D

E
{
|Yt − E[Yt|(UtA, VtD)]|l |VtD = x

}
≤ C1,

sup
x

sup
A∈A,D∈D

E
{
||UtA||l|VtD = x

}
≤ C2.

Assumption 4.8. Let

ηt(A,D) = UtA − E [UtA|VtD] ,

η(A,D) = (η1(A,D), . . . , ηT (A,D))τ ,

ηt = Ut − E[Ut|Vt], η = (η1, . . . , ηT )τ ,

Q(A,D) = η(A,D) (η(A,D)τη(A,D))
+
η(A,D)τ ,

and

P1T (A,D) =
1

T
(ηβ)T [IT −Q(A,D)] (ηβ).

(i) Assume that for each given A ∈ A1 and D ∈ D,

lim inf
T→∞

P1T (A,D) > 0 in probability.

(ii) As T → ∞, Tv

T → 1, Tc = T − Tv → ∞ and T 2

T 2
c n

→ 0.

Assumptions 4.5–4.8 are standard in this kind of problem. See (A.1) of
Cheng and Tong (1993). Due to Assumption 4.6, we need not assume
that the marginal density of {Xt} has a compact support. Assumptions
4.6–4.8 are a set of extensions of some existing conditions to the α–
mixing time series case. See, for example, (A)–(E) of Zhang (1991), (A2)–
(A5) of Cheng and Tong (1993), and (C.2)–(C.5) of Vieu (1994). As
pointed out before, when Ut and Vt are independent, Assumption 4.8(i)
imposes only an asymptotic and minimal model identifiability condition
on the linear component. This means that Assumption 4.8(i) is a natural
extension of condition (2.5) of Shao (1993) to the semiparametric time
series setting. Assumption 4.8(ii) corresponds to conditions (3.12) and
(3.22) of Shao (1993) for the linear model case. In addition, Assumption
4.8(i) is also equivalent to Assumption C of Zhang (1993) for the linear
model case.



TECHNICAL NOTES 107

4.5.2 Technical lemma

This section lists an important technical lemma. As its proof is extremely
technical, we refer it to the technical report by Gao and Tong (2005).
For simplicity of notation, we assume w(Vt) ≡ 1 throughout the proof.

Lemma 4.1. (i) Assume that the conditions of Theorem 4.1 hold. If
A ∈ A1 and D ∈ D, then there exists R1T ≥ 0 such that

MCCV(A,D;h) =
1

Tvn

∑

S∈R

∑

t∈S
e2t+P1T (A,D)+N1T (D,h)+R1T+op(1),

(4.30)
where R1T is independent of (A,D), P1T (A,D) is as defined in Assump-
tion 4.8, and

N1T (D,h) =





c1(D) 1
Tch|D| + c2(D)h4 + op

(
1

Tch|D|

)
+ op(h

4)

if D ∈ D1 and h ∈ Hc
TD; and

E {E[Yt|XtD] − E[Yt|Xt]}2 + op(1)
if D 6∈ D1 and h ∈ Hc

TD,

in which both c1(D) and c2(D) are positive constants depending on D ∈
D1.

(ii) Assume that the conditions of Theorem 4.1 hold. If A ∈ A2 and
D ∈ D, then

MCCV(A,D;h) =
1

Tvn

∑

S∈R

∑

t∈S
e2t +

dA
Tc
σ2
0 +N1T (D,h)

+ op

(
1

Tc

)
, (4.31)

where N1T (D,h) is as defined as above depending on whether D ∈ D1

or not.

The proof of Lemma 4.1 is relegated to Appendix B of Gao and Tong
(2005). As pointed out earlier, P1T (A,D) = P1T (A) depends only on A
when Ut and Vt are independent. For this case, Equations (4.30) and
(4.31) suggest naturally that the selection of A and D can be done
independently.

4.5.3 Proofs of Theorems 4.1 and 4.2

Proof of Theorem 4.1: It follows from existing results in nonpara-
metric regression (Vieu 1994) that for each given D, there exists h̄D =
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cDT
− 1

4+|D|
c such that

N1T (D) = min
h∈Hc

TD

N1T (D,h) =





CDT
− 4

4+|D|
c + op

(
T

− 4
4+|D|

c

)

if D ∈ D1; and

E {E[Yt|XtD] − E[Yt|Xt]}2 + op(1)
if D 6∈ D1,

in which cD and CD are positive constants possibly depending on D.

Let MCCV(A,D) = minh∈Hc
TD

MCCV(A,D;h). In view of (4.30) and
(4.31), it is known that for each given (A,D),

MCCV(A,D) =





1
Tvn

∑
S∈R

∑
t∈S e

2
t + P1T (A,D) +N1T (D)

+R1T + op(1) if A ∈ A1 and D ∈ D; and
1
Tvn

∑
S∈R

∑
t∈S e

2
t + dA

Tc
σ2
0 +N1T (D) + op

(
1
Tc

)

if A ∈ A2 and D ∈ D.

This, along with P1T (A∗, D∗) = 0, implies

MCCV(A,D)−MCCV(A∗, D∗) =





P1T (A,D) +N1T (D)−N1T (D∗)
+op(1) if A ∈ A1 and D ∈ D; and
(dA−dA∗)

Tc
σ2
0 +N1T (D)−N1T (D∗)

+op
(

1
Tc

)
if A ∈ A2 and D ∈ D.

Using the fact that Assumption 4.1(ii) implies |D| > |D∗| for D ∈ D1,
we have for T large enough

T
4

4+|D∗|
c (N1T (D)−N1T (D∗)) = CDT

4(|D|−|D∗|)
(4+|D|)(4+|D∗|)
c − CD∗

+ op

(
T

4(|D|−|D∗|)
(4+|D|)(4+|D∗|)
c

)
> 0 (4.32)

in probability.

On the other hand, for every D ∈ Dc
1 = D − D1 we have for T large

enough

N1T (D) −N1T (D∗) = E (E[Yt|XtD] − E[Yt|Xt])
2

+ op(1) > 0 (4.33)

in probability.

Using Assumption 4.8(i) for A ∈ A1 and the fact that Assumption 4.1(ii)

implies dA > dA∗
for A ∈ A2, the proof of limT→∞ P (Â = A∗, D̂ =

D∗) = 1 then follows from (4.32) and (4.33).

Let ĥ = h̄
D̂

, c∗ = cD∗
and h∗ = h̄D∗

= c∗T
− 1

4+|D∗|
c . Then the proof of

ĥ
h∗

→p 1 follows immediately.
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Proof of Theorem 4.2: Let RSS(A,D) = minh∈HTD
RSS(A,D;h).

We first write RSS(A,D) as

RSS(A,D) =





∑T
t=1 e

2
t + T · P1T (A,D) + T ·N1T (D, h̄D)

+R1T + op(T ) if A ∈ A1, D ∈ D; and∑T
t=1 e

2
t + dAσ

2 + T ·N1T (D, h̄D) + op(1)
if A ∈ A2, D ∈ D.

It follows immediately from P1T (A∗, D∗) = 0 that
RSS(A,D) −RSS(A∗, D∗)

=





T · P1T (A,D) − dA∗
σ2 + T (N1T (D, h̄D) −N1T (D∗, h̄D∗

))
+op(T ) if A ∈ A1, D ∈ D; and
(dA − dA∗)σ

2 + T (N1T (D, h̄D) −N1T (D∗, h̄D∗)) + op(1)
if A ∈ A2, D ∈ D.

In order to complete the proof, we introduce the following symbols:

RSS = RSS(A,D) −RSS(A∗, D∗),

ΛT = ΛT (A,D) − ΛT (A∗, D∗),

N1T = N1T (D, h̄D) −N1T (D∗, h̄D∗),

d(A,A∗) = dA − dA∗
. (4.34)

If A ∈ A2 and D ∈ D, then we have as T → ∞,

1 − P
{
RSS + ΛT σ̂

2 > 0
}

= P
{
(dA − dA∗

)σ2 + T N1T + op(1) + ΛT σ̂
2 ≤ 0

}

= P

{
N1T ≤ −d(A,A∗)

T
σ2 − ΛT

T
σ̂2

}

≤ P

{
N1T ≤ −d(A,A∗)

T
σ2 − ΛT

T
· 1

2
σ2

}
+ o(1)

≤ P

{
N1T ≤ −ΛT (A,D)

T

(
1 − ΛT (A∗, D∗)

ΛT (A,D)

)
· 1

2
σ2

}
+ o(1) → 0

because of N1T > 0 for all A ∈ A1 and either D ∈ D1 or D ∈ D −D1.

If A ∈ A1 and D ∈ D, then we obtain as T → ∞,

1 − P
{
RSS + (ΛT (A,D) − ΛT (A∗, D∗))σ̂

2 > 0
}

= P

{
P1T (A,D) +N1T +

R1T − dA∗σ
2 + ΛT σ̂2

T
+ oP (1) ≤ 0

}

= P

{
P1T (A,D) +N1T ≤ −op(T )

T
+
dA∗σ

2

T
− R1T

T
− ΛT σ̂2

T

}
+ o(1)
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= P

{
P1T (A,D) +N1T ≤ −ΛT (A,D)

T

(
1 − ΛT (A∗, D∗)

ΛT (A,D)

)
· 1

2
σ2

}

+o(1) → 0

because of lim infT→∞ P1T (A,D) > 0 and N1T > 0 for all D ∈ D1 or
D ∈ D −D1.

Consequently, we have as T → ∞,

1 ≥ P (Ã = A∗, D̃ = D∗) ≥ P
{
RSS + ΛT σ̂2 > 0

}
→ 1. (4.35)

This completes the proof of the first part of Theorem 4.2. The second
part is the same as in the proof of Theorem 4.1.
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Cheng and Tong (1992, 1993), Tjøstheim and Auestad (1994a, 1994b),
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Tsai (1999), Yang (1999), Tjøstheim (1999), Tschernig and Yang (2000),
Härdle, Liang and Gao (2000), Vieu (2002), Avramidis (2005), and oth-
ers have established various kernel–based selection criteria in nonpara-
metric regression for both the independent and time series cases.

In addition to such kernel–based selection criteria, some other variable
selection criteria have also been proposed and studied recently by Shi
and Tsai (1999) through involving the spline smoothing method, Fan
and Li (2001, 2002) using the so–called penalized likelihood method,
and Shively and Kohn (1997), Shively, Kohn and Wood (1999), Kohn,
Marron and Yau (2000), Wood et al. (2002), Wong, Carter and Kohn
(2003), Yau and Kohn (2003), and Yau, Kohn and Wood (2003) based
on the Bayesian approach.



CHAPTER 5

Continuous–Time Diffusion Models

5.1 Introduction

This chapter demonstrates how to apply the estimation and specifica-
tion testing procedures discussed in Chapters 2 and 3 to certain model
estimation and specification testing problems in continuous–time mod-
els. While we use two financial data sets to illustrate the applicability
of these estimation and testing procedures to continuous–time models,
both the theory and methodology discussed in this chapter are applica-
ble to model some other nonfinancial data problems. The main material
of this chapter is mainly based on the joint work by Casas and Gao
(2005) and Arapis and Gao (2006).

5.1.1 Parametric models

The application of continuous–time mathematics to the field of finance
dates back to 1900 when Louis Bachelier wrote a dissertation in Bachelier
(1900) on the theory of speculation. Since Bachelier, the continuous–
time approach to pricing assets such as derivative securities has evolved
into a fundamental finance tool. The recent rapid expansion of asset
pricing theory may be largely attributable to the seminal work of Merton
(1973) and Black and Scholes (1973). Their work changed the way in
which finance asset valuation was viewed by practitioners, consequently
laying the foun-dation for the theory of pricing derivative securities.
Many papers have since been written on the valuation of derivatives,
creating important extensions to the original model.

A time series model used extensively in finance is the continuous-time
diffusion, or Itô process. In modeling the dynamics of the short-term
riskless rate process {rt}, for example, the applicable diffusion process
is

drt = µ(rt)dt+ σ(rt)dBt, (5.1)

where µ(·) = µ(·, θ) and σ(·) = σ(·, θ) are the drift and volatility func-
tions of the process, respectively, and can be indexed by θ, a vector

111
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of unknown parameters, and Bt is the standard Brownian motion. The
diffusion function is also referred to as the instantaneous variance. The
model developed by Merton specified the drift and diffusion functions as
constant. This assumption has since been relaxed by most researchers
interested in refining the model in order to describe the behavior of in-
terest rates. The prices generated by such modified models are generally
believed to better reflect those observed in the market.

A vast array of models has been studied in the literature. The sim-
plest model dr = α(β − r)dt + σdB proposed by Vasicek (1977) was
used to derive a discount bond price model. Unlike the model developed
by Merton (1973) and Black and Scholes (1973), whose respective pro-
cess follow Brownian motion with drift and Geometric Brownian Motion
(GBM), Vasicek (1977) utilized the Ornstein-Uhlenbeck process. This
model has the feature of mean-reversion, where the process tends to be
pulled to its long–run trend of β with force α. This force is proportional
to the deviation of the interest rate from its mean. This model speci-
fies the volatility of the interest rate as being constant. By definition,
the volatility function generates the erratic fluctuations of the process
around its trend. Cox, Ingersoll and Ross (CIR) (1985) proposed using
model dr = α(β − r)dt + σr1/2dB to model term–structure. It is the
square root process. Not only does the drift have mean–reversion, but
the model also implies the volatility σ(·), of the process increases at a
rate proportional to

√
r. Thus the diffusion increases at a rate propor-

tional to r. Model dr = α(β − r)dt+ σrdB (see Brennan and Schwartz
1980) was developed to price convertible bonds. It not only possesses the
mean–reversion property, but the model also implies that the instantan-
eous variance σ2(·) of the process increases at a rate proportional to
r2. Model dr = r{κ − (σ2 − κα)r}dt + σr3/2dB is the inverse of the
CIR process discussed in Ahn and Gao (1999) and Aı̈t-Sahalia (1999).
Model dr = κ(α − r)dt + σrρdB is the constant elasticity of volatil-
ity model proposed in Chan et al. (1992). The nonlinear drift model
dr = (α−1r

−1 + α0 + α1r + α2r
2)dt + σr3/2dB was proposed in Aı̈t-

Sahalia (1996a).

As well as the recent developments made in the application of continuous-
time diffusion processes to the finance world, there has also been much
work done in the adoption of statistical methods for the estimation of
these continuous-time models. The main estimation techniques encoun-
tered in the majority of the literature (see Sundaresan 2001) include
maximum likelihood (ML), generalized method of moments (GMM) and,
more recently, nonparametric approaches. ML and GMM both require
us to firstly parameterize the underlying model of interest. That is, we
apply these methods to estimate the parameters of the diffusion process,
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such that they are consistent with the restrictions we have imposed on
the model by the parameterizations. This is comparable to fitting a lin-
ear regression to nonlinear phenomena for reasons of convenience. It thus
seems reasonable that we look for an approach that places the fewest re-
strictions on models so that we have empirical rather than analytical
tractability.

5.1.2 Nonparametric models

Empirical researchers have recently shown that nonparametric methods
may be good alternatives to parametric methods in various cases. Its
only prerequisite is that accurate data are used. Such an approach is
useful when approximating very general distributions, and has the ad-
ditional advantage of not requiring the functional form specification of
the drift and diffusion functions in our model of the short-term risk-
less rate (5.1). By leaving the diffusion process unspecified, the resulting
functional forms specified by this method should result in a process that
follows asset price data closely. This method requires a smooth density
estimator of the marginal distribution π(·) and utilization of a property
of (5.1), similar to that of a normal random variable whose distribu-
tion is explained entirely by its first two moments, to characterize the
marginal and conditional densities of the interest rate process. The first
two moments of the normal distribution are its mean and variance. For
the case of the diffusion process, they are the drift and diffusion func-
tions. Thus, the functions are formed such that they are consistent with
the observed distribution of the available data.

Aı̈t-Sahalia (1996a) was among the first to pioneer the nonparametric
approach. The paper noted, as with Chan et al. (1992) and Ahn and Gao
(1999), that one of the most important features of the process given by
(5.1) in its ability to accurately model the term structure of interest
rates is the specification of the diffusion function σ2(·). By qualifying
the restriction on the drift function µ(·), to the linear parametric class
µ(rt; θ) = β(α − rt), which is consistent with the majority of prior re-
search, the form of the diffusion function is left unspecified and estimated
nonparametrically. Jiang and Knight (1997), however, argued that this
is effectively a semiparametric approach because of the linear restriction
imposed on the drift function. Jiang and Knight (1997) were able to de-
velop an identification and estimation procedure for both the drift and
diffusion functions of a general Itô diffusion process. They too have used
nonparametric kernel estimators of the marginal density function based
on discretely sampled data and the property of the Itô diffusion process,
analogous to that used by Aı̈t-Sahalia (1996a). In contrast to Aı̈t-Sahalia
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(1996a), the drift function is left unspecified. Jiang and Knight (1997)
suggested that the diffusion term can be identified first because it is of
lower order than the drift. It is noted that the diffusion term is of or-
der

√
dt whereas the drift term is of order dt. These estimators as with

that of Aı̈t-Sahalia (1996a) are shown to be pointwise consistent and
asymptotically normal.

Like most existing studies, we apply the Euler first–order scheme to
approximate model (5.1) by a discretized alternative of the form

r(t+1)∆−rt∆ = µ(rt∆)∆+σ(rt∆)·(B(t+1)∆−Bt∆), t = 1, 2, · · · , T, (5.2)

where ∆ is the time between successive observations and T is the size of
observations. In theory, we study asymptotic properties of our nonpara-
metric estimators for the case where ∆ is either varied according to T
or small but fixed. In applications, we look at the case where ∆ is small
but fixed, since most continuous–time models in finance are estimated
with monthly, weekly, daily, or higher frequency observations. For the
case where ∆ is varied according to T , we establish some novel asymp-
totic properties for both the drift and diffusion estimators. Similarly
to existing studies (Bandi and Phillips 2003; Nicolau 2003), we show
that nonparametric estimators may be inconsistent when ∆ is chosen as
fixed. It should be noted that using a higher–order approximate version
rather than (5.2) may not be optimal in terms of balancing biases be-
tween drift and diffusion estimation as studied in Fan and Zhang (2003).
We therefore use the first–order approximate model (5.2) to study our
nonparametric estimation throughout this chapter.

5.1.3 Semiparametric models

Unlike the work by Aı̈t-Sahalia (1996a) and Jiang and Knight (1997), in
order to avoid undersmoothing, Arapis and Gao (2006) have proposed
an improved and simplified nonparametric approach to the estimation
of both the drift and diffusion functions and established the mean in-
tegrated square error (MISE) of each nonparametric estimator for the
case where ∆ is either varied according to T or small but fixed. The
authors have then applied the proposed nonparametric approach to (i)
the Federal Funds rate data, sampled monthly between January 1963
and December 1998 and (ii) the Eurodollar deposit rates, bid-ask mid-
point and sampled daily from June 1, 1973 to February 25, 1995. Three
nonparametric and semiparametric methods for estimating the drift and
diffusion functions are established. For each data set, these estimators
have been computed. Bandwidth selection is both difficult and critical
to the application of the nonparametric approach. After empirical com-
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parisons the authors have suggested for each given set of data, the best
fitting model and bandwidth which produces the most acceptable re-
sults. The authors’ study shows that the imposition of the parametric
linear mean–reverting drift does in fact affect the estimation of the diffu-
sion function. Differences between the three diffusion estimators suggest
the drift function may have a greater effect on pricing derivatives than
what is quoted in the literature.

Furthermore, this chapter considers the following two semiparametric
models:

r(t+1)∆ − rt∆ = µ(rt∆, θ)∆ + σ(rt∆) · (B(t+1)∆ −Bt∆), (5.3)

r(t+1)∆ − rt∆ = µ(rt∆)∆ + σ(rt∆, ϑ) · (B(t+1)∆ −Bt∆), (5.4)

where θ and ϑ are vectors of unknown parameters. Estimation problems
for models (5.3) and (5.4) have been studied in Kristensen (2004). This
chapter thus focuses on semiparametric tests for parametric specification
of the diffusion function in model (5.3) and the drift function of model
(5.4). Two of the most relevant papers to the testing part of the current
chapter are Casas and Gao (2005) and Arapis and Gao (2006).

Other closely related papers include Chen and Gao (2005) and Hong
and Li (2005), who both developed nonparametric specification tests for
transitional densities of continuous–time diffusion models. These two re-
cent studies are motivated by the fact that unlike the marginal density,
the transitional density can capture the full dynamics of a diffusion pro-
cess when interest is on the specification of a diffusion process. Since such
transitional density specification may not directly imply the specification
of the drift function, the test proposed in Arapis and Gao (2006) on the
specification of the parametric drift function is more direct to answer
the question of whether there is any nonlinearity in the drift. The paper
by Arapis and Gao (2006) has the following features. First, it establishes
that the size of the test is asymptotically correct under any model in the
null. Second, it shows that the test is asymptotically consistent when the
null is false. Third, the implementation of the proposed test uses a range
of bandwidth values instead of using an estimation optimal value based
on a cross–validation selection criterion. Fourth, the employment of the
proposed test is based on a simulated p–value rather than an asymptotic
critical value of the standard normality. It should also be pointed out
that the proposed test is applicable to either the case where ∆ is either
varied according to T or the case where ∆ is small but fixed.
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5.2 Nonparametric and semiparametric estimation

The nonparametric approach to density estimation allows modeling of
data where no priori ideas about the data exist. Given T discrete interest
rate observations with sampling interval (equivalently the time between
successive observations) ∆, the kernel density estimate of the marginal
density is given by

π̂(r) =
1

T

T∑

t=1

1

h
K

(
r − rt∆
h

)
, (5.5)

where K(·) is the kernel function and h is the kernel bandwidth. By
comparing the nonparametric marginal density, drift and diffusion es-
timates acquired by use of some existing “good” bandwidth values, we
can suggest the most appropriate bandwidth to use for each of our two
different sets of financial data. Whereas bandwidth selection is critical
for optimal results, the selection of the kernel does not have a signifi-
cant bearing on the overall result (see §3.2.6 of Fan and Gijbels 1996).

We therefore utilize the normal kernel function K(x) = 1√
2π

exp{−x2

2 }
throughout this chapter. Our nonparametric marginal density estimate
is

π̂(r) =
1√

2πhT

T∑

t=1

exp

{−(r − rt∆)2

2h2

}
. (5.6)

Asymptotic consistency results about π̂(·) may be found from Boente
and Fraiman (1988). From the Fokker–Planck equation (see (2.2) of Aı̈t-
Sahalia 1996a), we can obtain

d2

dr2
(σ2(r)π(r)) = 2

d

dr
(µ(r)π(r)). (5.7)

Integrating and rearranging (5.7) yields

µ(r) =
1

2π(r)

d

dr

[
σ2(r)π(r)

]
. (5.8)

Or, alternatively, integrating (5.7) twice yields

σ2(r) =
2

π(r)

∫ r

0

µ(x)π(x)dx (5.9)

using the condition that π(0) = 0. These equations allow us to estimate
the drift, µ(·) given a specification of the diffusion, σ2(·) and marginal
density, π(·), or the diffusion term given the drift and marginal density
estimates.

We now start discussing three estimation methods. The first one is a
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kind of semiparametric estimation as proposed in Aı̈t-Sahalia (1996a).
The estimators of the next two methods rely on various alternative inter-
pretations of the diffusion process. Neither of them place any restrictions
on the drift nor the diffusion functions.

5.2.1 Method 1

For this method, we construct the diffusion function after placing the
common mean–reverting parameterization µ(r; θ) = β(α−r) on the drift,
similarly to the approach taken by Aı̈t-Sahalia (1996a). This restriction
will allow us to see how the diffusion function is affected when compared
with purely nonparametric estimators to be discussed in Methods 2 and
3 below.

The parameters β and α are estimated by the ordinary least squares
(OLS) method and denoted by β̂ and α̂, respectively. This suggests es-
timating µ(r; θ) by

µ̂1(r) = µ(r; θ̂) = β̂(α̂− r). (5.10)

The estimated mean–reverting drift term can now be substituted into
(5.9) together with the normal kernel density estimator for π(·) to con-
struct the first estimator, σ̂2

1(·), of σ2(·) below. More complete mathe-
matical details of this derivation are relegated to Section 5.5.

From (5.9) and (5.10), we define a semiparametric estimator of σ2(r) of
the form

σ̂2
1(r) =

2

π̂(r)

∫ r

0

µ̂3(u)π̂(u)du =
2

π̂(r)

∫ r

0

µ(u; θ̂)π̂(u)du

=
2

T π̂(r)

{
β̂

T∑

t=1

(α̂− rt∆)

[
Φ

(
r − rt∆
h

)
− Φ

(−rt∆
h

)]

+
hβ̂√
2π

T∑

t=1

[
exp

(
− (r − rt∆)2

2h2

)
− exp

(
− r

2
t∆

2h2

)]}
, (5.11)

where Φ(·) is the cumulative distribution function of the standard Nor-
mal random variable.

As can be seen, σ̂2
1(r) has an explicit and computationally straightfor-

ward expression due to the use of the standard Normal kernel function.
Let V̂1(r) = σ̂2

1(r)π̂(r). For the nonparametric estimator V̂1(r), we es-
tablish the following theorem. Its proof is relegated to Section 5.5.

Theorem 5.1. Assume that Assumptions 5.1–5.3 listed in Section 5.5
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below hold. Then

E

{∫ [
V̂1(r) − V (r)

]2
dr

}
= 4h4

∫ (∫ r

0

β(α− u)π′′(u)du

)2

dr

+
4β2

Th

∫ (∫ r

0

∫ r

0

(α− u)(α− v)L

(
u− v

h

)
π(v)dvdu

)
dr.

When h = c T− 1
5 for some c > 0, we have

E

{∫ [
V̂1(r) − V (r)

]2
dr

}
= C1T

− 4
5 + o

(
T− 4

5

)
, (5.12)

where C1 > 0 is a constant.

As expected, asymptotic properties of this kind of semiparametric es-
timator V̂1(r) do not depend on ∆. This is mainly because we need
only to use discrete data rather than the discretized version (5.2). When
both the forms of the drift and diffusion functions are unknown nonpara-
metrically, we need to use the discretized version (5.2) to approximate
model (5.1). The following two methods rely on relationships between
the drift, diffusion and marginal density functions which alternatively
describe the usual diffusion process.

5.2.2 Method 2

The drift and diffusion functions can be alternatively interpreted as

µ(rt) = lim
δ→0

E

[
rt+δ − rt

δ
|rt
]

and (5.13)

σ2(rt) = lim
δ→0

E

[
[rt+δ − rt]

2

δ
|rt
]

(5.14)

for all 0 < t <∞.

Stanton (1997) refered to these right–hand conditional expectations of
(5.13) and (5.14) as the first order approximations to µ(·) and σ2(·). The
author constructed a family of approximations to the drift and diffusion
functions and estimates the approximations nonparametrically. Equa-
tions (5.13) and (5.14) support the use of the approximate alternative
(5.2) to model (5.1) when ∆ is small.

Now, (5.13) suggests estimating µ(·) by

µ̂2(r) =

∑T−1
t=1 K

(
r−rt∆
h

) ( r(t+1)∆−rt∆
∆

)

∑T
t=1K

(
r−rt∆
h

) . (5.15)
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Multiplying the numerator and denominator by 1
Th gives

µ̂2(r) =

1
∆Th

∑T−1
t=1 K

(
r−rt∆
h

) (
r(t+1)∆ − rt∆

)

1
Th

∑T
t=1K

(
r−rt∆
h

) (5.16)

=
1

∆Thπ̂(r)
√

2π

T−1∑

t=1

exp

(
− (r − rt∆)2

2h2

)
·
(
r(t+1)∆ − rt∆

)
,

when K(x) = 1√
2π

exp{−x2

2 }.

Similarly, by (5.14) we estimate σ2(·) by

σ̂2
2(r) =

1

∆Th π̂(r)
√

2π

T−1∑

t=1

exp

(
− (r − rt∆)2

2h2

)
·
(
r(t+1)∆ − rt∆

)2
.

(5.17)

Let m̂2(r) = µ̂2(r)π̂(r),m(r) = µ(r)π(r), V̂2(r) = σ̂2
2(r)π̂(r), and V (r) =

σ2(r)π(r). Since m̂2(r)
π(r) and µ̂2(r) have the same asymptotic property

for the MISE, we only establish the MISE for m̂2(r) below. The same

reason applies to explain why V̂2(r) has been introduced. We now have
the following propositions, and their proofs are relegated to Section 5.5.

Theorem 5.2. Assume that Assumptions 5.1–5.3 listed in Section 5.5
below hold. Then

E

{∫
[m̂2(r) −m(r)]

2
dr

}
=
h4

4

∫
(m′′(r))

2
dr

+
1

Th
· 1

2
√
π

∫ (
µ2(r) + σ2(r)∆−1

)
π(r)dr

+o

(
∆2

Th

)
+ o(h4).

(i) When ∆ is fixed but h = c T− 1
5 for some c > 0, we have

E

{∫
[m̂2(r) −m(r)]

2
dr

}
= C2 · T− 4

5 + o
(
T− 4

5

)
, (5.18)

where C2 > 0 is a constant.

(ii) When ∆ = c1 h
2 and h = c2 T

− 1
7 for some c1 > 0 and c2 > 0, we

have

E

{∫
[m̂2(r) −m(r)]

2
dr

}
= C3 · T− 4

7 + o
(
T− 4

7

)
, (5.19)
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where C3 > 0 is a constant.

Theorem 5.3. Assume that Assumptions 5.1–5.3 listed in Section 5.5
below hold. Then

E

{∫ [
V̂2(r) − V (r)

]2
dr

}
= o

(
1

Th

)
+ o(h4)

+
1

Th
· 1

2
√
π

∫ (
µ4(r) +

3

∆2
σ4(r) +

6

∆
µ2(r)σ2(r)

)
π(r)dr

+

∫ (
∆µ2(r)π(r) +

∆2

2
h2
(
µ2(r)π(r)

)′′
+
h2

2
V ′′(r)

)2

dr.

(i) When ∆ is fixed but h = d T− 1
5 for some d > 0, we have

E

{∫ [
V̂2(r) − V (r)

]2
dr

}
= C4T

− 4
5 + C5∆

2 + o
(
T− 4

5

)
, (5.20)

where C4 > 0 and C5 > 0 are constants.

(ii) When ∆ = d1 h
2 and h = d2 T

− 1
7 for some d1 > 0 and d2 > 0, we

have

E

{∫ [
V̂2(r) − V (r)

]2
dr

}
= C6T

− 4
7 + o

(
T− 4

7

)
, (5.21)

where C6 > 0 is a constant.

Theorems 5.2 and 5.3 show that while m̂2(r) attains the optimal MISE

rate of T− 4
5 , V̂2(r) is not even consistent when ∆ is small but fixed.

When the drift of model (5.1) vanishes (i.e., µ(r) ≡ 0), however, the

optimal MISE rate of T− 4
5 can also be achieved for V̂2(r).

By making use of Equations (5.8) and (5.9) with the pair (µ̂2(r), σ̂
2
2(r)),

we can forego the prior necessities of having to specify either of the
otherwise unknown functions, µ(·) and σ2(·), in order to calculate the
other.

5.2.3 Method 3

This method adopts a similar approach to that taken by Jiang and
Knight (1997). They have estimated σ2(·) by

σ̂2
JK(r) =

∑T−1
t=1 TK

(
rt∆T

−r
h

) (
r(t+1)∆T

− rt∆T

)2

∑T
t=1NK

(
rt∆T

−r
h

) , (5.22)
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which is comparable with σ̂2
2(·), where N is the time length, ∆T depends

on T and ∆T → 0 as T → ∞. Jiang and Knight (1997) estimated the
drift by

µ̂JK(r) =
1

2


dσ̂

2
JK(r)

dr
+ σ̂2

JK(r)

∑T
t=1

1
hK

′
(
rt∆T

−r
h

)

∑T
t=1K

(
rt∆T

−r
h

)


 , (5.23)

but as we shall see, this is unnecessarily complicated and can be simpli-
fied by making use of the normal kernel and the estimators of Method
2.

Multiplying σ̂2
2(·) by our marginal density estimate π̂(·), and differenti-

ating we obtain

d

dr

[
σ̂2
2(r)π̂(r)

]
=

1

Th2∆

T−1∑

t=1

K ′
(
r − rt∆
h

)
(r(t+1)∆ − rt∆)2 (5.24)

because dK(x/h)
dx = h−1K ′(x/h). Now, using (5.8) and K ′(x) = −xK(x),

we have

µ̂3(r) =
1

2π̂(r)

d

dr

[
σ̂2
2(r)π̂(r)

]
(5.25)

=
1

2π̂(r)∆Th2
√

2πh

T−1∑

t=1

e−
(r−rt∆)2

2h2 (rt∆ − r)
(
r(t+1)∆ − rt∆

)2
.

As can be seen from (5.25) with (5.23), the form of µ̂3(r) is simpler than
that of µ̂JK(r). Now to estimate the diffusion function, we utilize (5.9)
and µ̂2(·), as well as the information contained in the marginal density,
π̂(·). So

σ̂2
3(r) =

2

π̂(r)

∫ r

0

µ̂2(u)π̂(u)du (5.26)

=
2

π̂(r)∆Th

T−1∑

t=1

[
r(t+1)∆ − rt∆

] ∫ r

0

K

(
u− rt∆

h

)
du

=
2

π̂(r)∆T

T−1∑

t=1

[
Φ

(
r − rt∆
h

)
− Φ

(
−rt∆

h

)]
·
[
r(t+1)∆ − rt∆

]
.

Equations (5.25) and (5.26) provide some explicit and computationally
straightforward estimators for µ(r) and σ2(r). Let m̂3(r) = µ̂3(r)π̂(r)

and V̂3(r) = σ̂2
3(r)π̂(r). We now have the following propositions, and

their proofs are relegated to Section 5.5.

Theorem 5.4. Assume that Assumptions 5.1–5.3 listed in Section 5.5
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below hold. Then

E

{∫
[m̂3(r) −m(r)]

2
dr

}
= O

(
1

Th

)
+O(h4)

+
∆2

4Th3
· 1

4
√
π

∫ (
µ4(r) +

3σ4(r)

∆2
+

6µ2(r)σ2(r)

∆

)
π(r)dr

+

∫ (
∆

2

d

dr
[µ2(r)π(r)] +

h2

4

d3

dr3
[∆µ2(r)π(r) + σ2(r)π(r)]

)2

dr.

(i) When ∆ is fixed but h = d T− 1
5 for some d > 0, we have

E

{∫
[m̂3(r) −m(r)]

2
dr

}
= C10T

− 2
5 + C11∆

2 + o
(
T− 2

5

)
,

where both C10 > 0 and C11 > 0 are constants.

(ii) When ∆ = c h2 and h = d T− 1
7 for some c > 0 and d > 0, we have

E

{∫
[m̂3(r) −m(r)]

2
dr

}
= C12T

− 4
7 + o

(
T− 2

5

)
, (5.27)

where C12 > 0 is a constant.

Theorem 5.5. Assume that Assumptions 5.1–5.3 listed in Section 5.5
below hold. Then

E

{∫ [
V̂3(r) − V (r)

]2
dr

}
= h4

∫ (∫ r

0

d2

dx2
[µ(x)π(x)]dx

)2

dr

+
4

T
·
∫ (∫ [

µ2(s) +
σ2(s)

∆

]2
Π2(r, s)π(s)ds

)
dr + o(h4),

where Π(r, s) = Φ
(
r−s
h

)
− Φ

(
− s
h

)
.

(i) When ∆ is fixed but h = d T− 1
5 for some d > 0, we have

E

{∫ [
V̂3(r) − V (r)

]2
dr

}
= C13T

− 4
5 + o

(
T− 4

5

)
, (5.28)

where C13 > 0 is a constant.

(ii) When ∆ = c h2 and h = d T− 1
7 for some c > 0 and d > 0, we have

E

{∫ [
V̂3(r) − V (r)

]2
dr

}
= C14T

− 3
7 + o

(
T− 3

7

)
, (5.29)

where C14 > 0 is a constant.

Overall, we suggest using

• h = d T− 1
5 when ∆ is fixed, and ∆ = c h2 and h = d T− 1

7 when ∆ is
varied according to T .
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We may also need to consider the pairs (m̂2, V̂3) and (m̂3, V̂2) separately,

since V̂3 is constructed using m̂2, and m̂3 is based on V̂2. In this case,
we should suggest using

• ∆ = c h and h = d T− 1
6 for Theorems 5.2 and 5.5. In this case, the

resulting rates are

E

{∫
[m̂2(r) −m(r)]

2
dr

}
= C1(1 + o(1))T− 4

6 ,

E

{∫ [
V̂3(r) − V (r)

]2
dr

}
= C2(1 + o(1))T− 4

6 . (5.30)

• ∆ = c h2 and h = d T− 1
9 for Theorem 5.3, and the resulting rate is

E

{∫ [
V̂2(r) − V (r)

]2
dr

}
= C3(1 + o(1))T− 4

9 . (5.31)

• ∆ = c h2 and h = d T− 1
7 for Theorem 5.4, and the resulting rate is

E

{∫
[m̂3(r) −m(r)]

2
dr

}
= C4(1 + o(1))T− 4

7 . (5.32)

This shows that we may consider linking ∆ with h or vice versa for the
case where ∆ is varied according to T when applying a nonparametric
kernel method to estimate a discretized version of a continuous–time
model.

We suggest using the pair (µ̂2(r), σ̂
2
3(r)) in theory. The empirical compar-

isons in Section 5.4 show that the pairs (µ̂2(r), σ̂
2
2(r)) and (µ̂3(r), σ̂

2
3(r))

are both appropriate for the two sets of data. By considering both the
theoretical properties and empirical comparisons of the proposed esti-
mators, however, we would suggest using the pair (µ̂2(r), σ̂

2
3(r)) for the

two sets of data. We also use h = c · T− 1
5 with c to be specified later in

the empirical comparisons below mainly because real data are normally
available in a discrete form and thus ∆ is fixed in practice.

5.3 Semiparametric specification

In this section, we discuss two test statistics for parametric specification
of both the drift and diffusion functions. Both the theory and the imple-
mentation have been established in Casas and Gao (2005) and Arapis
and Gao (2006). To make a relevant application of the proposed tests,
we then examine the large and finite sample performance of a test for
linearity in the drift function through using the two financial data sets.
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5.3.1 Specification of diffusion function

Throughout this section, we consider a semiparametric diffusion model
of the form

drt = µ(rt, θ)dt+ σ(rt)dBt, (5.33)

where µ(r, θ) is a known parametric function indexed by a vector of un-
known parameters, θ ∈ Θ (a parameter space), and σ(r) is an unknown
but sufficiently smooth function. As pointed out in Kristensen (2004),
there is sufficient evidence that the assumption of a parametric form
for the drift function is not unreasonable. In addition, Arapis and Gao
(2006) have shown that when the drift function is unknown nonpara-
metrically, the drift function may be specified parametrically without
knowing the form of σ(·).

Let Yt =
r(t+1)∆−rt∆

∆ , Xt = rt∆, f(x, θ) = µ(x, θ) and g(x) = ∆−1σ2(x).
Model (5.2) suggests approximating model (5.33) by a nonparametric
autoregressive model of the form

Yt = f(Xt, θ) + ǫt with ǫt =
√
g(Xt) et, (5.34)

where {et} is a sequence of independent N(0,1) errors and independent of
{Xs} for all s ≤ t. So E[et|Xt] = E[et] = 0 and var[et|Xt] = var[et] = 1.

The main interest of this section is to test

H051 : g(x) = g(x, ϑ0) versus

H151 : g(x) = g(x, ϑ1) + C51 ·D51(x) (5.35)

for all x ∈ R
1 and some ϑ0, ϑ1 ∈ Θ, where both ϑ0 and ϑ1 are to be

chosen, Θ is a parameter space, C51 is a sequence of real numbers, and
D51(x) is a specified and smooth function. Note that ϑ0 may be different
from the true value, θ0, of θ involved in the drift function.

In order to construct our test for H051, we use (5.34) to formulate a
regression model of the form

ǫ2t = g(Xt) + ηt, (5.36)

where the error process ηt = g(Xt)(e
2
t − 1) is of the following properties:

under H051

E[ηt|Xt] = 0 and E[η2t |Xt] = 2g2(Xt, ϑ0). (5.37)

In general, for any k ≥ 1 we have under H051

E
[
ηkt |Xt

]
= E

[
(e2t − 1)k

]
gk(Xt, ϑ0) ≡ ckg

k(Xt, ϑ0), (5.38)

where ck = E
[
(e2t − 1)k

]
is a known value for each k using the fact that

et ∼ N(0, 1) has all known moments. This implies that all higher–order
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conditional moments of {ηt} will be specified if the second conditional
moment of {ηt} is specified.

Since model (5.34) is a special case of model (3.32), we suggest using a
test statistic of the form

L51(h) = L̂0T (h) (5.39)

as defined in (3.36) in Chapter 3. As a direct application, Theorem 3.6
implies an asymptotically normal test for H051.

5.3.2 Specification of drift function

Throughout this section, we consider a semiparametric diffusion model
of the form

drt = µ(rt)dt+ σ(rt, ϑ)dBt, (5.40)

where σ(r, ϑ) is a positive parametric function indexed by a vector of un-
known parameters, ϑ ∈ Θ (a parameter space), and µ(r) is an unknown
but sufficiently smooth function. As pointed out in existing studies, such
as Kristensen (2004), there is some evidence that the assumption of a
parametric form for the diffusion function is also reasonable in such cases
where the diffusion function is already pre–specified, the main interest
is, for example, to specify whether the drift function should be linear or
quadratic. In Arapis and Gao (2006), the authors have discussed how to
specify the drift function parametrically while the diffusion function is
allowed to be unknown nonparametrically.

Similarly to model (5.34), we suggest approximating model (5.40) by a
semparametric autoregressive model of the form

Yt = f(Xt) +
√
g(Xt, ϑ) et, (5.41)

where f(Xt) = µ(Xt), g(Xt, ϑ) = ∆−1σ2(Xt, ϑ), and {et} is a sequence
of independent Normal errors with E[et|Xt] = E[et] = 0 and var[et|Xt] =
var[et] = 1.

Our interest is then to test

H052 : f(x) = f(x, θ0) versus

H152 : f(x) = f(x, θ1) + C52 ·D52(x) (5.42)

for all x ∈ R
1 and some θ0, θ1 ∈ Θ, where Θ is a parameter space,

C52 is a sequence of real numbers, and D52(x) is a specified and smooth
function. Note that θ0 may be different from the true value, ϑ0, of ϑ
involved in the diffusion function.
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Similarly to the construction of L51(h), we propose using a normalized
version of the form

L52(h) =

∑T
s=1

∑T
t=1, 6=t ǫ̂s K

(
Xs−Xt

h

)
ǫ̂t

σ̂52
, (5.43)

where ǫ̂t = Yt − f(Xt, θ̂0) with θ̂0 being a
√
T–consistent estimator of

θ0, and σ̂2
52 = 2ν̂22

∫
K2(u)du with ν̂2 = 1

T

∑T
t=1 g(Xt, ϑ̂), in which ϑ̂ is a√

T -consistent estimator of ϑ. Since the diffusion function is prespecified
parametrically, we need not involve any nonparametric estimator in σ̂2

52.

Similarly to Theorem 3.6, we may show that L52(h) is an asymptotically
normal test. Such details have been given in Casas and Gao (2005). Since
the details are very analogous, we do not wish to repeat them. Instead,
we focus on testing for linearity in the drift function in the following
section.

5.3.3 Testing for linearity in the drift

To formally determine whether the assumption on linearity in the drift
in Method 1 is appropriate for a given set of data, we consider testing

H053 : µ(r) = µ(r; θ0) = β0(α0 − r) versus

H153 : µ(r) = µ(r; θ1) = γ1 + β1(α1 − r)r (5.44)

for all r ∈ R
+ = (0,∞) and some θ0 = (α0, β0) ∈ Θ, where θ1 =

(α1, β1, γ1) ∈ Θ (a parameter space in R
3) is chosen such that the al-

ternative is different from the null. Equation (5.44) shows that we are
interested in testing for a mean–reverting drift versus a quadratic drift.

We approximate the semiparametric continuous–time diffusion model
drt = β(α− rt) dt+ σ(rt) dBt by a semiparametric time series model of
the form

Yt = β(α−Xt) + σ(Xt)et, (5.45)

where Xt = rt∆, Yt = Xt+1−Xt

∆ , σ(·) > 0 is unknown nonparametrically,

and et =
B(t+1)∆−Bt∆

∆ ∼ N
(
0,∆−1

)
.

We initially suggest a specification test of the form

L53(h) =

∑T
s=1

∑T
t=1,t 6=s ǫ̂s K

(
Xs−Xt

h

)
ǫ̂t√

2
∑T
s=1

∑T
t=1 ǫ̂

2
s K

2
(
Xs−Xt

h

)
ǫ̂2t

, (5.46)

where K(·) is the standard normal density function, h is the bandwidth
parameter, and ǫ̂t = Yt − µ̂1(Xt).
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As can be seen from the proof of Lemma 5.1 below, it may be shown
that under H053

L53(h) =

∑T
s=1

∑T
t=1,t 6=s ǫs K

(
Xs−Xt

h

)
ǫt√

2
∑T
s=1

∑T
t=1 ǫ

2
s K

2
(
Xs−Xt

h

)
ǫ2t

+ oP (1) (5.47)

=

∑T
s=1

∑T
t=1,t 6=s us σ(Xs)K

(
Xs−Xt

h

)
σ(Xt) ut√

2
∑T
s=1

∑T
t=1 u

2
s σ

2(Xs)K2
(
Xs−Xt

h

)
σ2(Xt) u2t

+ oP (1)

for sufficiently large T , where ut =
√

∆et ∼ N(0, 1) is independent of
Xs for all s ≤ t.

As argued in Li and Wang (1998) and Li (1999), the first part of Equation
(5.47) shows that the test statistic L53(h) has the main feature that it
appears to be more straightforward computationally than other kernel–
based tests (see Härdle and Mammen 1993; Hjellvik and Tjøstheim 1995;
Hjellvik, Yao and Tjøstheim 1998), since it is not required to get a con-
sistent estimator of the conditional variance involved. Furthermore, the
second part of Equation (5.47) shows that the leading term of L53(h)
involves an error process {ut} independent of ∆. In addition, it has been
shown in Lemma 5.1 below that as T → ∞, L53(h) converges in distri-
bution to N(0, 1) regardless of whether ∆ is fixed or varied according to
T . This implies that in theory the applicability of the test for testing the
drift depends on neither the structure of the conditional variance nor
the choice of ∆. In practice, L53(h) is computed using monthly, weekly,
daily, or higher frequency observations. Therefore, it is appropriate to
apply the test to our case study once the bandwidth is appropriately
chosen.

It follows from Theorem A.2 in the appendix that L53(h) converges in
distribution to the standard normality when T → ∞. Our experience and
others show that the finite sample performance of L53(h) is not good in
particular when h is chosen based on an optimal estimation procedure,
such as the cross–validation criterion. The main reasons are as follows:
(a) the use of an estimation-based optimal value may not be optimal
for testing purposes; and (b) the rate of convergence of L53(h) to the
asymptotic normality is quite slow even when {et} is now a sequence of
independent and normally distributed errors. With respect to the choice
of a suitable bandwidth for testing purposes, we should propose choosing
a suitable bandwidth based on the assessment of both the size and power
functions of L53(h). Consequently, the issue of choosing ∆ may also be
addressed when using the discretized version (5.2) for continuous–time
model specification.

Since we have not been able to solve such a choice problem for the
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continuous–time diffusion case, we instead propose using the following
two schemes to improve the finite sample performance of L53(h). We first
establish an adaptive version of L53(h) over a set of all possible band-
width values. Second, we use a simulated critical value for computing
the size and power values of the adaptive version of L53(h) instead of
using an asymptotic value of l0.05 = 1.645 at the 5% level. To the best
of our knowledge, both the schemes are novel in this kind of testing for
linearity in the drift under such a semiparametric setting.

We then propose using an adaptive test of the form

L∗ = max
h∈HT

L53(h), (5.48)

where HT =
{
h = hmaxa

k : h ≥ hmin, k = 0, 1, 2, . . .
}
, in which 0 <

hmin < hmax, and 0 < a < 1. Let JT denote the number of elements of
HT . In this case, JT ≤ log1/a(hmax/hmin).

Simulation Scheme: We now discuss how to obtain a simulated critical
value for L∗. The exact α–level critical value, leα (0 < α < 1) is the 1−α
quantile of the exact finite–sample distribution of L∗. Because leα may
not be evaluated in practice, we therefore suggest choosing a simulated
α–level critical value, l∗α, by using the following simulation procedure:

1. For each t = 1, 2, . . . , T , generate Y ∗
t = µ̂1(Xt) + σ̂1(Xt)e

∗
t , where

{e∗t } is sampled randomly from N(0,∆−1) for ∆ to be specified as
either ∆ = 20

250 for the monthly data or ∆ = 1
250 for the daily data,

which µ̂1(·) and σ̂1(·) are as defined in (5.10) and (5.11), respectively.
In practice, a kind of truncation procedure may be needed to ensure
the positivity of σ̂1(·).

2. Use the data set {Y ∗
t : t = 1, 2, . . . , T} to re-estimate θ0. Denote the

resulting estimate by θ̂∗. Compute the statistic L̂∗ that is obtained by
replacing Yt and θ̂ with Y ∗

t and θ̂∗ on the right–hand side of (5.48).

3. Repeat the above steps M times and produce M versions of L̂∗ de-
noted by L̂∗

m for m = 1, 2, . . . ,M . Use the M values of L̂∗
m to con-

struct their empirical bootstrap distribution function, that is, F ∗(u) =
1
M

∑M
m=1 I(L̂

∗
m ≤ u). Let l∗α be the 1 − α quantile of the empirical

bootstrap distribution and then estimate leα by l∗α.

We now state the following results, and their proofs are relegated to
Section 5.5.

Theorem 5.6. Assume that Assumptions 5.1(i), 5.2 and 5.4 listed in
Section 5.5 below hold. Then under H053

lim
T→∞

P (L∗ > l∗α) = α.
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The main result on the behavior of the test statistic L∗ under H053

is that lα is an asymptotically correct α–level critical value under any
model in H053.

Theorem 5.7. Assume that the conditions of Theorem 5.6 listed in Sec-
tion 5.5 below hold. Then under H153

lim
T→∞

P (L∗ > l∗α) = 1.

Theorem 5.7 shows that a consistent test will reject a false H053 with
probability approaching one as T → ∞. It is pointed out that Theorems
5.6 and 5.7 are new in this kind of continuous–time diffusion model
specification.

To implement Theorems 5.6 and 5.7 to real data analysis, we need to
compute the p–value of the test for each given set of data as follows:

1. For either the Fed rate or the Eurodollar rate data, compute

L∗ = max
h∈HT

L53(h) (5.49)

with HT =
{
h = hmaxa

k : h ≥ hmin, k = 0, 1, 2, . . .
}
, where T− 1

5 =

hmin < hmax = 1.1 (loglogT )
−1

, and a = 0.8 based on preliminary
calculations of the size and power values of L53(h) for a range of
bandwidth values.

2. Compute ǫ̂t = Yt − µ̂1(Xt) and then generate a sequence of boot-
strap resamples {ǫ̂∗t } using the wild bootstrap method (see Härdle
and Mammen 1993; Li and Wang 1998) from {ǫ̂t}.

3. Generate Ŷ ∗
t = µ̂1(Xt) + ǫ̂∗t . Compute the corresponding version L̂∗

of L∗ based on {Ŷ ∗
t }.

4. Repeat the above steps N times to find the bootstrap distribution of
L̂∗ and then compute the proportion that L∗ < L̂∗. This proportion
is a simulated p–value of L∗.

With the three methods now constructed, it is of interest to see how
they compare, and more precisely, how the restriction placed on the drift
function affects the estimation of the diffusion. A number of studies note
that the prices of derivatives are crucially dependent on the specification
of the diffusion function (see Aı̈t-Sahalia 1996a), therefore qualifying
parametric restrictions on the drift function. The test statistic L∗ is also
applied to formally test linearity in the drift using the simulated p–value.
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5.4 Empirical comparisons

5.4.1 The data

We now apply the three pairs of estimators constructed previously to
two different financial data. A conclusion regarding which method best
fits each data set will be offered. Also suggested here is an optimal band-
width, based on both the theoretical properties of the MISEs in Theo-
rems 5.1–5.5 and a comparison of a number of common forms used in
the literature.
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Figure 5.1 Three-month T-Bill rate, January 1963 to December 1998.

To analyze the effect the sampling frequency (interval) has on the results,
we use both monthly (low frequency) and daily (high frequency) sampled
data. The three-month Treasury Bill rate data set given in Figure 5.1 is
sampled monthly over the period from January 1963 to December 1998,
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providing 432 observations (i.e. T = 432; source: H–15 Federal Reserve
Statistical Release). The number of working days in a year (excluding
weekends and public holidays) is assumed to be 250 (and 20 working
days per month). This gives ∆ = 20

250 . Chan et al. (1992) offer evidence
that the Fed rates are stationary by showing that the autocorrelations
of month–to–month changes are neither large nor consistently positive
or negative.
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Figure 5.2 Seven-Day Eurodollar Deposit rate, June 1, 1973 to February 25,
1995.

The second data set used in this analysis to compare and contrast the
primary results is the high frequency seven–day Eurodollar deposit rate.
The data are sampled daily from June 1, 1973 to February 25, 1995.
This provides us with T = 5505 observations. Just as for the Fed data,
holidays have not been treated and Monday is taken as the first day after
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Friday as there are no obvious weekend effects (Aı̈t-Sahalia 1996b). Thus,
our sampling interval ∆ = 1

250 . The data are plotted in Figure 5.2.

For the stationarity test of the data sets, Aı̈t-Sahalia (1996a) and Jiang
(1998) rejected the null hypothesis of nonstationarity on the respective
Eurodollarand Fed data based on results of an augmented Dickey–Fuller
nonstationarity test.

5.4.2 Bandwidth choice

The choice of bandwidth is critical in any application of nonparametric
kernel density and regression estimation. Theorems 5.1–5.5 provide some
kind of guidance on how to choose the bandwidth in practice. Overall, we
suggest using h = d T− 1

5 when ∆ is fixed and ∆ = c h2 and h = d T− 1
7

when ∆ → 0. As we deal with the fixed ∆ in our empirical study, the
forms of the bandwidth selectors used are listed below:

h1 = sd × T− 1
5 , h2 =

1

10
× T− 1

5 , h3 =
1

4
× T− 1

5 , h4 = 1.06× sd × T− 1
5 ,

where T is the number of observations and sd is the standard devia-
tion of the data. Thus h1 and h4 can, in this sense, be regarded as
“data-driven” bandwidth choices. Pritsker (1998) stated that h4 is the
MISE–minimizing bandwidth assuming the data came from a normal
distribution with variance s2d. As can be seen from Theorems 5.1–5.5,

the second and third bandwidths can be written as h = c ·T− 1
5 , where c

is a constant chosen to minimize the asymptotic MISE of the estimator
involved. Our detailed graphical comparison shows that h2 is the optimal
one in terms of not only providing a smooth and informative marginal
density estimate (see Figure 5.3), but also possessing the greatest con-
sistency between the three drift and diffusion estimators (see Figure 5.4
for the Fed rate and Figure 5.5 for the Euro data). In addition to such
key figures, we have also produced some other figures for both the drift
and diffusion estimators based on Methods 1–3. For the Euro data, we
also borrowed bandwidth choices used by Aı̈t-Sahalia (1996a, 1996b), as
he has also used this data set.

5.4.3 Results and comparisons for the Fed data

We “plugged-in” the bandwidths h1, h2, h3, h4 of 0.00949, 0.0297, 0.0743
and 0.01, respectively, and estimated the marginal density, drift and dif-
fusion functions for the Fed data. It was found that the optimal band-
width refers to h2 (0.0297). The density estimate produced for h2 shown
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Figure 5.3 A: Nonparametric kernel density estimator for the Fed data with
h2 = 0.0297. B: Nonparametric kernel density estimator for the Euro data
with h2 = 0.01786.

in Figure 5.3(A) appears to contain sufficient information. It is apparent
with this choice of bandwidth, even though the high rate period of 1980–
82 is included in the sample, the amount of information retained has
produced a less accentuated right tail. Its shape and symmetry about
0.055 closely resembles that of a Gaussian density. The densities pro-
duced with the smaller bandwidths were overly informative while larger
bandwidths resulted in smooth quadratic like curves.
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In Figures 5.4–5.13, the pairs of the estimators from the top to the
bottom correspond to (µ̂2, σ̂

2
2), (µ̂3, σ̂

2
3) and (µ̂1, σ̂

2
1).
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Figure 5.4 Nonparametric drift and diffusion estimators for the Fed data with
h2 = 0.01786.

Comparisons of the drift and diffusion estimators give similar results.
The three drift and diffusion estimators constructed using our optimal
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Figure 5.5 Nonparametric drift and diffusion estimators for the Fed data with
h3 = 0.0743.

bandwidth choice are superimposed for comparative purposes in Figure
5.7. The best estimators for the Fed data are given in Figure 5.7. The
drift functions µ̂2(·) and µ̂3(·) inherit similar nonlinearity for interest
rates over the entire range of r. The best linear mean-reverting drift
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Figure 5.6 Nonparametric drift and diffusion estimators for the Fed data with
h1 = 0.00949.

estimate is plotted in the bottom of Figure 5.4 and then Figure 5.7. The
ordinary least squares method gave estimates for the parameters α and
β of µ̂1(·) of 0.07170 and 0.2721, respectively.

Looking now at the diffusion estimators we see σ̂2
2(·) and σ̂2

3(·) especially
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Figure 5.7 The best estimators for the Fed data with h2 = 0.0297. The (×)
refers to µ̂1 and σ̂2

1, (◦) to µ̂2 and σ̂2
2 and (+) to µ̂3 and σ̂2

3.

are very similar. They closely resemble one another over the entire range
of r in both shape and magnitude (see Figures 5.4–5.7). The curvature of
σ̂2
2(·) and σ̂2

3(·) is close to that of a quadratic. This gives some support
for the process of Brennan and Schwartz (1980), whose instantaneous
variance increased at a rate proportional to r2, and to Chan et al. (1992),
who found σ ∝ r1.49.

The best estimator σ̂2
1(·) (see the bottom of Figure 5.4 and then Figure

5.7) is comparable with σ̂2
2(·) and σ̂2

3(·) for low to moderate rates (i.e.,
rates below 12%). It lies above σ̂2

2(·) and σ̂2
3(·) for a greater (negative)

mean–reverting force (µ̂1(·) < µ̂2(·), µ̂3(·)). It appears to be a linearly
increasing function of the level of r (as in Cox, Ingersoll and Ross (CIR)
1985) for rates below 14%, and this is apparent in the bottom of Figure
5.4 and then Figure 5.7.

Given that the two nonparametric drift estimators are unlike the linear
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Figure 5.8 Nonparametric drift and diffusion estimators for the Euro data with
h2 = 0.01786.

mean-reverting specification (with their respective diffusion estimates
σ̂2
2(·) and σ̂2

3(·) differing from σ̂2
1(·)), we suggest here that the mean–

reverting function is not appropriate for these data. Thus, µ̂1(·) does
indeed affect the estimation of the diffusion function and hence the pric-
ing of derivative securities. Based on the above, for the monthly sampled
Federal funds rate data, we believe that µ̂1(·) imposes an unnecessary
restriction that results in the misspecification of the diffusion function.
Either of the pair (µ̂2(·), σ̂2

2(·)) or (µ̂3(·), σ̂2
3(·)) is recommended for this

set of data.
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Figure 5.9 Nonparametric drift and diffusion estimators for the Euro data with
h3 = 0.044.

The specification test L∗ proposed in Section 5.3 was then applied in
order to formally reject linearity in the drift. The null hypothesis H0 :
µ(r) = β(α − r) of linearity is rejected at the 5% significance level. We
obtain a simulated p–value of p ≤ 0.001, which is much smaller than the
5% significance level.
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Figure 5.10 Nonparametric drift and diffusion estimators for the Euro data
with h1 = 0.006413.

5.4.4 Results and comparisons for the Euro data

Now to the Euro data. The forms of h1, . . . , h4 were applied to these
data. In this case, because we have 5505 observations, the bandwidths
were, respectively, 0.006413, 0.01786, 0.044, and 0.0068. We also consider
the bandwidth ha = 0.01347 used by Aı̈t-Sahalia (1996a) for the same
data. The best estimators for the Euro data are given in Figures 5.8
and 5.11. Surprisingly, our optimal bandwidth for the Euro data also
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Figure 5.11 The best estimators for the Euro data with h2 = 0.01786. The (×)
refers to µ̂1 and σ̂2
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corresponds to h2 = 1
10 × T− 1

5 . Similar to the Fed data analysis where
we concluded h1 and h4 severely undersmooth the density estimate, we
infer similar results for the Euro data. With the Euro data consisting
of 5505 observations, it is clear we would obtain a much smaller sample
variance than the Fed data (consisting of 432 observations). Our best
marginal density estimate, drift and diffusion estimators for the Euro
data are reported in Figures 5.3(B) and 5.8. The drift and diffusion
estimators are superimposed for comparative purposes in Figure 5.11. It
is apparent that the two unrestricted drift estimators, µ̂2(·) and µ̂3(·),
inherit very similar nonlinearity over the entire range of r (see Figure
5.11). Both estimators seem to exhibit mean reversion for r > 15%, while
our linear mean–reverting drift estimator µ̂1(·) (see also Figure 5.11) is
unexpectedly comparable with µ̂2(·) and µ̂3(·) for r < 20%. The diffusion
functions constructed using the unrestricted drift closely resemble one
another and are practically indistinguishable for the entire range of r.
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They both increase somewhat linearly for r < 11%, both increase at a
greater rate than r for r > 11% and possess a “hump” at r = 15% where
the instantaneous variance jumps (see Figure 5.11).

For the Euro data, the best OLS estimates of α and β are 0.08308 and
1.596, respectively, which are analogous to the first step OLS estimates
computed by Aı̈t-Sahalia (1996a). We see the Euro data have stronger
mean-reversion than the Fed data (β = 0.2721), which is most likely
the result of more frequent sampling. Aı̈t-Sahalia (1996a) also found β
to be larger for shorter-maturity proxies (seven-day Eurodollar versus
three-month T-bill). We see from Figure 5.11 that the similarity of the
three drift estimators may suggest the mean-reverting specification for
drift is applicable (at least for r < 20%). The similarity of the two
diffusion functions σ̂2

2(·) and σ̂2
3(·) and the deviation of σ̂2

1(·) from these
two estimators may, however, suggest otherwise.

The proposed test L∗ was run on the data. Our detailed simulation
returns a simulated p–value of p ≤ 0.001, which directs us to strongly
reject the null hypothesis of linearity at the 5% significance level. A
likely explanation for this result is that as we have a long and frequently
sampled data set, the use of even the slightest deviant from the actual
drift will result in a compounded error effect or deviation of the specified
model from the actual process. Thus, we suggest the mean-reverting drift
function specification is not appropriate for high frequency data (more
strongly than for the monthly sampled Fed data). To determine whether
the high rate period of 1980–82 was responsible for the strong rejection
of linearity, we also ran the test on the sub–sample and calculated p–
value. The result suggests that linearity in the drift is also rejected for
the subsample. Not only did we run the linearity test on the subsample
of the Euro data, but we also estimated the drift and diffusion estimators
for this set. Here, we “plugged-in” the bandwidth value of hs = 0.01653,
which Aı̈t-Sahalia (1996a) reported was optimal for this subsample. The
resulting drift and diffusion estimators are given in Figure 5.12. The two
unrestricted drift estimators exhibit similar nonlinearities for r < 10%
with mean-reversion for r > 10% while their corresponding diffusion
estimators resemble the quadratic diffusion specification of Brennan and
Schwartz (1980). The diffusion estimator σ̂2

1(·) appears to be comparable
with the constant volatility specification of Vasicek (1977) for r < 12%.
Such a difference in form is evidence against the linear mean–reverting
drift function.

Function estimates computed using the borrowed bandwidth of ha =
0.01347 give results that are slightly suboptimal in our opinion (see Fig-
ure 5.13). A comparison of our diffusion estimator σ̂2

1(·) with the diffu-
sion estimator of Aı̈t-Sahalia (1996a) (see Figure 4 of his paper) for the
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Figure 5.12 Nonparametric drift and diffusion estimators for the Euro sub-
sample with hs = 0.01653.

same data set suggests that the estimator is robust. As with Aı̈t-Sahalia
(1996a), we observe the diffusion function is globally an increasing func-
tion of the level of the interest rate between 0 and 14% and above 14%,
the diffusion function flattens and then decreases.

The above comparisons give similar conclusions for the Euro data as for
the Fed data. We suggest our optimal bandwidth is retrieved with h2 =
1
10 ×T− 1

5 and that the linear mean-reverting specification for the drift is
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Figure 5.13 Nonparametric drift and diffusion estimators for the Euro data
with ha = 0.01347.

not applicable for high-frequency, shorter maturity proxies. Acceptance
of the estimators from the first two methods suggests the CIR (1985)
linear specification for the diffusion may be a good approximation for
r < 11%, while for larger interest rates, the quadratic specification of
Brennan and Schwartz (1980) or the specification of Chan et al. (1992)
may be applicable as the volatility increases at a faster rate than rt. It
may be appropriate to apply these models over the whole range of r.
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5.4.5 Conclusions and discussion

Many different specification tests for the drift and diffusion functions
of the common Itô diffusion process have opened up a new area of re-
search. Some recently published papers empirically compare the plethora
of proposed models.

In this study, we adopted a similar nonparametric approach as Aı̈t-
Sahalia (1996a) and Jiang and Knight (1997) to estimate the diffusion
process. We used two popular short rates: the three–month Treasury Bill
and the seven–day Eurodollar deposit rates. Based on our analysis, we
suggested the use of the bandwidth h = 1

10 × T− 1
5 for both sets of data.

We then demonstrated how the bandwidth choice can have a dramatic
effect on the drift and diffusion estimates. We rejected linearity in the
drift despite theoretic economic justification, both empirically and more
formally with the specification test L∗. Overall, we would suggest using
the pair (µ̂2(r), σ̂

2
3(r)) for the two sets of data.

In summary, the nonparametric specification of the diffusion function
of Method 1 is seen to differ significantly from the diffusion function
estimates of Methods 2 and 3. We thus conclude that restrictions on the
drift have a greater effect on the volatility than what is suggested in the
literature. Our empirical comparisons suggest that σ̂2

1(·) is misspecified
primarily as a result of the assumptions imposed on it. That is, the
assumption of a linear mean–reverting drift has a substantial effect on
the final form of the diffusion. We suggest relaxing the drift assumption.
The unrestricted drift estimates indicate that the fitting of a second–
order polynomial may be more appropriate. It would be interesting to
regenerate these estimators but with a quadratic restriction on the drift.
The results could then be compared with the diffusion function estimates
generated by Methods 2 and 3. Such an exercise is deferred to future
research.

Extended research in this area should include a comparison of the non-
parametric density, drift and diffusion estimators with those implied by
some of the popular parametric models (see Aı̈t-Sahalia 1999). In partic-
ular, to consider our nonparametrically estimated marginal density with,
say, the Gamma density of CIR (1985) applied to the Eurodollar data, or
to review how the unrestricted diffusion estimators actually compare to
the diffusion specifications of CIR (1985), Brennan and Schwartz (1980)
and Chan et al. (1992). Additionally, it would be useful to apply both
the popular existing parametric models and our nonparametric estimates
to price derivatives (e.g., bond options) in an attempt to determine the
accuracy of the prices computed.
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5.5 Technical notes

This section provides some necessary conditions for the establishment of
the theorems as well as their proofs.

5.5.1 Assumptions

Assumption 5.1. (i) Assume that the process {rt} is strictly stationary
and α-mixing with the mixing coefficient α(t) ≤ Cαα

t, where 0 < Cα <
∞ and 0 < α < 1 are constants.

(ii) The bandwidth parameter h satisfies that

lim
T→∞

h = 0 and lim
T→∞

Th3 = ∞.

Assumption 5.2. (i) The marginal density function π(r) is three times
continuously differentiable in r ∈ R

+ = (0,∞). In addition, π(0) = 0.

(ii) The drift and the diffusion functions µ(r) and σ2(r) are three times
continuously differentiable in r ∈ R

+ = (0,∞), and σ(r) > 0 on R
+.

(iii) The integral of µ(v) = 1
σ2(v) exp

(
−
∫ v̄
v

2 µ(x)
σ2(x)dx

)
converges at both

boundaries of R+, where v̄ is fixed in R
+.

(iv) The integral of s(v) = exp
(∫ v̄

v
2 µ(x)
σ2(x)dx

)
diverges at both bound-

aries of R+.

Assumption 5.3. (i) The second derivative of π(r), π′′(r), is square
integrable over R

+.

(ii) The following functions are integrable over R
+ for i = 1, 2:

(rπ′(r))
2

and

(∫ r

0

π′′(u)du

)2

.

(iii) The following functions are integrable over R
+:

µ4(r)π(r), σ4(r)π(r),

(
d2

dr2
[µ(r)π(r)]

)2

,

(
di

dri
[µ2(r)π(r)]

)2

,

(
di

dri
[σ2(r)π(r)]

)2

for i = 1, 2, 3, and (∫ r

0

d2

dx2
[µ(x)π(x)]dx

)2

.
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Assumption 5.4. (i) For ψ(r) = σ2(r) or σ4(r), ψ(r) satisfies the
Lipschitz type condition: |ψ(r + v) − ψ(r)| ≤ Ψ(r)|v| for v ∈ S (any
compact subset of R1), where Ψ(r) is a measurable function such that
E
[
Ψ2(r)

]
<∞.

(ii) Assume that the set HT has the structure of (5.48) with

cmax (loglogT )
−1

= hmax > hmin ≥ T−γ

for some constant γ such that 0 < γ < 1
3 .

Assumptions 5.1–5.4 are natural in this kind of problem. Assumption
5.1(i) assumes the α–mixing condition, which is weaker than the β–
mixing condition. Assumption 5.1(ii) ensures that the theoretically op-
timum value of h = c · T−1/5 can be used. Assumption 5.2 is equivalent
to Assumption A1 of Aı̈t-Sahalia (1996a), requiring the existence and
uniqueness of a strong solution to model (5.1). Assumption 5.3 basically
requires that all the integrals involved in Theorems 5.1–5.6 do exist. As-
sumption 5.4 is used only for the establishment and proof of Theorems
5.6 and 5.7. Similar conditions have been assumed in Assumptions 2 and
6 of Horowitz and Spokoiny (2001).

5.5.2 Proof of Equation (5.11)

Keeping in mind that K
(
x
h

)
= 1√

2π
exp{− x2

2h2 } and

π̂(r) =
1

Th

T∑

t=1

K

(
r −Xt

h

)
,

we now derive our estimator, σ̂2
1(·). Recall that Equation (5.9) implies

σ̂2
1(r) =

2

π̂(r)

∫ r

0

µ(u; θ̂)π̂(u)du.

Now, evaluating the integral on the right of this identity,

∫ r

0

µ(u; θ̂)π̂(u)du =

∫ r

0

β̂ (α̂− u)
1

Th

T∑

t=1

K

(
u−Xt

h

)
du

=
β̂

Th

T∑

t=1

∫ r

0

(α̂− u)K

(
u−Xt

h

)
du

=
β̂

Th

T∑

t=1

∫ r

0

(α̂−Xt +Xt − u)K

(
u−Xt

h

)
du
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=
β̂

Th

T∑

t=1

(∫ r

0

(α̂−Xt)K

(
u−Xt

h

)
du

)

+
β̂

Th

T∑

t=1

(∫ r

0

(Xt − u)K

(
u−Xt

h

)
du

)

=
β̂

Th

T∑

t=1

(
(α̂−Xt)

∫ r

0

K

(
u−Xt

h

)
du

)

− β̂

Th

T∑

t=1

(∫ r

0

[u−Xt]K

(
u−Xt

h

)
du

)

=
β̂

Th

T∑

t=1

(α̂−Xt)h

∫ r−Xt
h

−Xt
h

K(v)dv

− β̂

Th

T∑

t=1

h2
∫ r−Xt

h

−Xt
h

vK(v)dv

=
β̂

T

T∑

t=1


(α̂−Xt)

∫ r−Xt
h

−Xt
h

exp
{
− v2

2

}

√
2π

dv




− β̂

T

T∑

t=1

h

∫ r−Xt
h

−Xt
h

v√
2π

exp
{
− v2

2

}
dv

=
β̂

T

T∑

t=1

(α̂−Xt)

[
Φ

(
r −Xt

h

)
− Φ

(
−Xt

h

)]

− β̂

T

T∑

t=1

hI1t,

where Φ(x) = 1√
2π

∫ x
−∞ exp{−u2

2 }du and

I1t =
1√
2π

∫ r−Xt
h

−Xt
h

v exp

{
−v

2

2

}
dv.

Observe that

I1t =

∫ r−Xt
h

−Xt
h

v√
2π

exp
{
− v2

2

}
dv = − 1√

2π

∫ r−Xt
h

−Xt
h

d
(

exp
{
− v2

2

})

= − 1√
2π

[
exp

{
− (r −Xt)

2

2h2

}
− exp

{
− X2

t

2h2

}]
.
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Therefore,

∫ r

0

µ(u; θ̂)π̂(u)du =
β̂

T

T∑

t=1

{[
α̂−Xt

][
Φ
(r −Xt

h

)
− Φ

(
− Xt

h

)]

+
h√
2π

[
exp

{
− (r −Xt)

2

2h2

}
− exp

{
− X2

t

2h2

}]}

=
β̂

T

T∑

t=1

[
α̂−Xt

][
Φ
(r −Xt

h

)
− Φ

(
− Xt

h

)]

+
β̂ h

T
√

2π

T∑

t=1

[
exp

{
− (r −Xt)

2

2h2

}
− exp

{
− X2

t

2h2

}]
.

This gives

σ̂2
1(r) =

2β̂

T π̂(r)
·
T∑

t=1

[
α̂−Xt

] [
Φ

(
r −Xt

h

)
− Φ

(−Xt

h

)]

+
2β̂

T π̂(r)
· h√

2π

T∑

t=1

[
exp

(
− (r −Xt)

2

2h2

)
− exp

(
−X2

t

2h2

)]
.

5.5.3 Proofs of Theorems 5.2–5.5

As there are some similarities among the proofs of Theorems 5.2–5.5,
we provide only an outline for the proof of Theorems 5.4 and 5.5 in
some detail. However, the details of the other proofs are available upon
request.

Recall that Yt =
r(t+1)∆−rt∆

∆ and observe that Yt = µ(Xt) + σ(Xt)et,

where Xt = rt∆ and et =
B(t+1)∆−Bt∆

∆ . We now have

m̂3(r) = µ̂3(r)π̂(r) =
∆

2Th2

T−1∑

t=1

(Xt − r)

h
K

(
− (Xt − r)

h

)
Y 2
t

=
∆

2Th2

T−1∑

t=1

(Xt − r)

h
K

(
− (Xt − r)

h

)

×
[
2µ(Xt)σ(Xt) + µ2(Xt) + σ2(Xt)ǫ

2
t

]

=
∆

Th2

T−1∑

t=1

(Xt − r)

h
K

(
− (Xt − r)

h

)
µ(Xt)σ(Xt)et

+
∆

2Th2

T−1∑

t=1

(Xt − r)

h
K

(
− (Xt − r)

h

)[
µ2(Xt) + σ2(Xt)e

2
t

]
.
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Thus, a Taylor expansion implies that as h→ 0

E [m̂3(r)] =
−∆

2h2

∫
r − s

h
K

(
r − s

h

)
[µ2(s) + σ2(s)σ2

0 ]π(s)ds

=
−∆

2h

∫
xK(x)

[
µ2(r − xh) + σ2(r − hx)σ2

0

]
π(r − hx)dx

=
−∆

2h

(
−hp′(r) +

h3

6

∫
x4K(x)p(3)(ξ)dx

)

=
∆

2
p′(r) +

∆

4
p(3)(r)h2 + o(h2), (5.50)

where σ2
0 = E[e2t ] = ∆−1, p(r) = µ2(r) + σ2(r)σ2

0 , and ξ lies between
r − hx and r.

This implies

E [m̂3(r)] = m(r) +
∆

2

d

dr
[µ2(r)π(r)]

+
∆

4
p(3)(r)h2 + o(h2). (5.51)

Let Zt =
(
Xt−r
h

)
K
(
−Xt−r

h

)
µ(Xt)σ(Xt)et and

Wt =

(
Xt − r

h

)
K

(
−Xt − r

h

)[
µ2(Xt) + σ2(Xt)e

2
t

]
.

Observe that

m̂3(r) − E [m̂3(r)] =
∆

Th2

T−1∑

t=1

Zt +
∆

2Th2

T−1∑

t=1

(Wt − E[Wt])

≡ I1T + I2T , (5.52)

where the symbol “ ≡ ” denotes that the terms of the left–hand side are
correspondingly identical to those of the right–hand side.

Analogously to (5.50), we obtain that as h→ 0

E[I21T ] =
∆2

T 2h4
(1 + o(1))

T−1∑

t=1

E
[
Z2
t

]
+

T−1∑

t=1

T−1∑

s=1, 6=t
E [ZsZt]

=
∆2σ2

0

Th4

∫ (
s− r

h

)2

K2

(
r − s

h

)
µ2(s)σ2(s)π(s)ds

× (1 + o(1))

=
∆2σ2

0

Th3
q(r)

∫
x2K2(x)dx+

∆2σ2
0

Th
q′′(r)

∫
x4K2(x)dx

× (1 + o(1)), (5.53)
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where q(r) = µ2(r)σ2(r)π(r). Similarly, we can show that as h→ 0

E[I22T ] =
∆2

4Th3
(1 + o(1))

[
µ4(r) + 3σ4(r)σ4

0 + 2µ2(r)σ2(r)σ2
0

]

×
∫
x2K2(x)dx. (5.54)

Equations (5.50)–(5.54) then imply Theorem 5.4. Observe that

E
[
V̂3(r)

]
=

2

h
E

[
µ(Xt)

∫ r

0

K

(
u−Xt

h

)
du

]

=
2

h

∫ r

o

[∫
K

(
u− v

h

)
µ(v)π(v)dv

]
du

= 2

∫ r

0

µ(u)π(u)du+ h2
∫ r

0

d2

du2
[µ(u)π(u)]du

= V (r) + h2
∫ r

0

d2

du2
[µ(u)π(u)]du+ o(h2) (5.55)

using a Taylor expansion.

Let Ψ(Xt) = Φ
(
r−Xt

h

)
− Φ

(−Xt

h

)
. Similarly to (5.53) and (5.54), we

obtain that for sufficiently large T

E
(
V̂3(r) − E

[
V̂3(r)

])2
= E

{
2

T

T−1∑

t=1

(YtΨ(Xt) − E [YtΨ(Xt)])

}2

=
4

T

∫ [
µ2(s) + ∆−1σ2(s)

]
Ψ2(s)π(s)ds

+ o

(
1

T

)
. (5.56)

Theorem 5.5 then follows from (5.55), (5.56) and

E
(
V̂3(r) − V (r)

)2
= E

(
V̂3(r) − E

[
V̂3(r)

])2
+
(
E
[
V̂3(r)

]
− V (r)

)2
.

5.5.4 Technical lemmas

This section lists the key lemmas but provides only an outline of the
proof of each lemma, as the detailed proofs of the lemmas are extremely
technical and therefore omitted here. However, they are available from
the authors upon request. The proof of Lemma 5.1 below follows sim-
ilarly from that of Theorem 3.1(i) of Li (1999). The proofs of Lemmas
5.2–5.6 below follow similarly from those of Lemmas 8, 10, 12 and 13 of
Horowitz and Spokoiny (HS) (2001), respectively. Note that Assumption
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1 of HS (2001) holds automatically since µ(r, θ) of this paper is a linear
function of θ. Also note that Assumption 2 of HS (2001) holds immedi-

ately as θ̂ is the least–squares estimator. In addition, we need not assume
the compactness condition on K as in Assumption 4 of HS (2001). This
is because there is no denominator involved in the numerator part of the
form of L53(h) as can be seen from the proof of Lemma 5.1 below.

Lemma 5.1. Suppose that Assumptions 5.1(i), 5.2 and 5.4(ii) hold.
Then under H053

L53(h) →D N(0, 1)

as T → ∞ and for every given h ∈ HT .

Proof: Let ǫt = σ(Xt)et. Recall Xt = rt∆ and observe that for any
θ ∈ Θ

ǫ̂t = Yt − µ(Xt; θ̂) = ǫt + µ(Xt; θ) − µ(Xt; θ̂)

= ǫt + µ(Xt; θ) − µ(Xt; θ0) + µ(Xt; θ0) − µ(Xt; θ̂)

≡ ǫt + λt(θ) + δt, (5.57)

where λt(θ) = µ(Xt; θ) − µ(Xt; θ0) and δt = µ(Xt; θ0) − µ(Xt; θ̂).

Let S2
53 = 2

∑T
s=1

∑T
t=1 ǫ̂

2
s K

2
(
Xs−Xt

h

)
ǫ̂2t . It then follows from the

definition of L53(h) that for sufficiently large T ,

L53(h) =

∑T
s=1

∑T
t=1,t 6=s ǫ̂s K

(
Xs−Xt

h

)
ǫ̂t√

2
∑T
s=1 ǫ̂

2
s

∑T
t=1K

2
(
Xs−Xt

h

)
ǫ̂2t

=
1

S53

T∑

s=1

T∑

t=1,t 6=s
ǫs K

(
Xs −Xt

h

)
ǫt

+
1

S53

T∑

s=1

T∑

t=1,t 6=s
λs(θ) K

(
Xs −Xt

h

)
λt(θ)

+
1

S53

T∑

s=1

T∑

t=1,t 6=s
δs K

(
Xs −Xt

h

)
δt + oP (LT (h))

=
1

S53

T∑

s=1

T∑

t=1,t 6=s
ǫsK

(
Xs −Xt

h

)
ǫt

+
1

S53

T∑

s=1

T∑

t=1,t 6=s
λs(θ)K

(
Xs −Xt

h

)
λt(θ)

+ oP (L53(h)) (5.58)

using the fact that θ̂ is a
√
T–consistent estimator of θ0.
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Similarly, we may have for sufficiently large T ,

S2
53 = 2

T∑

s=1

T∑

t=1

ǫ̂2s K
2

(
Xs −Xt

h

)
ǫ̂2t

= 2

T∑

s=1

T∑

t=1

ǫ2s K
2

(
Xs −Xt

h

)
ǫ2t

+ 2
T∑

s=1

T∑

t=1

λ2s(θ) K
2

(
Xs −Xt

h

)
λ2t (θ)

+ 2

T∑

s=1

T∑

t=1

δ2s K
2

(
Xs −Xt

h

)
δ2t + oP (S2

T )

= 2
T∑

s=1

T∑

t=1

ǫ2s K
2

(
Xs −Xt

h

)
ǫ2t

+ 2

T∑

s=1

T∑

t=1

λ2s(θ) K
2

(
Xs −Xt

h

)
λ2t (θ) + oP (S2

T ). (5.59)

Analogously to the proof of Theorem 3.1(i) of Li (1999), we may show
that under H053

lim
T→∞

S2
53

σ2
h

= 1 in probability, (5.60)

where

σ2
h = E

[
T∑

s=1

T∑

t=1

ǫ2s K
2

(
Xs −Xt

h

)
ǫ2t

]

= 2σ4
0 T (T − 1)h (1 + o(1))

×
∫ ∞

−∞
K2(u)du

∫
σ4(v)π2(v)dv, (5.61)

in which σ2
0 = E[e2t ].

Since λ(θ0) = 0 under H053, Equations (5.58) and (5.59) imply that
under H053

L53(h) =

∑T
s=1

∑T
t=1,t 6=s ǫs K

(
Xs−Xt

h

)
ǫt√

2
∑T
s=1

∑T
t=1 ǫ

2
s K

2
(
Xs−Xt

h

)
ǫ2t

+ oP (1) (5.62)

=

∑T
s=1

∑T
t=1,t 6=s us σ(Xs)K

(
Xs−Xt

h

)
σ(Xt) ut√

2
∑T
s=1

∑T
t=1 u

2
s σ

2(Xs)K2
(
Xs−Xt

h

)
σ2(Xt) u2t

+ oP (1)
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for sufficiently large T , where ut =
√

∆ et ∼ N(0, 1) is independent of
∆.

Let pst = σ(Xs)K
(
Xs−Xt

h

)
σ(Xt) and φst = us pst ut. Equations (5.57)–

(5.62) imply that under H053

L53(h) =
1

S53

T∑

t=1

T∑

s=1, 6=t
ǫ̂s pst ǫ̂t =

1

σ1h

T∑

t=1

T∑

s=1, 6=t
φst + oP (1) (5.63)

for sufficiently large T , where

σ2
1h =

σ2
h

σ4
0

= 2T (T − 1)h (1 + o(1))

∫ ∞

−∞
K2(u)du

∫
σ4(v)π2(v)dv

is independent of ∆. Note that Theorem A.1 of the appendix is applicable
to such φst. The proof of our Lemma 5.1 then follows similarly from that
of Theorem A.1 of the appendix. The detail is similar to the proof of
Theorem 2.1 of Gao and King (2004).

Before establishing some other lemmas, we need to introduce some ad-
ditional symbols and notation. Define

N0T (h) =
T∑

s=1

T∑

t=1,t 6=s
ǫs K

(
Xs −Xt

h

)
ǫt,

QT (θ) =

T∑

s=1

T∑

t=1,t 6=s
λs(θ) K

(
Xs −Xt

h

)
λt(θ),

D0T (h, θ) = 2

T∑

s=1

T∑

t=1

ǫ2s K
2

(
Xs −Xt

h

)
ǫ2t

+ 2

T∑

s=1

T∑

t=1

λ2s(θ) K
2

(
Xs −Xt

h

)
λ2t (θ).

Let N∗
0T (h) be the version of N0T (h) with {et} replaced by {e∗t }. Define

L0(h) =
N0T (h)

σh
, L∗

0(h) =
N∗

0T (h)

σh
, (5.64)

L̂0(h) = L̂0(h, θ) =
N0T (h) +QT (θ)√

D0T (h, θ)
, (5.65)

where θ ∈ Θ.

In addition, as proposed in the simulation procedure below (5.48), let

L̂∗(h) be the version of L53(h) with Yt and θ̂ replaced by Y ∗
t and θ̂∗ on

the right–hand side of (5.47).
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Lemma 5.2. Suppose that Assumptions 5.1(i), 5.2 and 5.4 hold. Then

L∗ = max
h∈HT

L53(h) = max
h∈HT

L̂0(h, θ) + op(1), (5.66)

L̂∗ = max
h∈HT

L̂∗(h) = max
h∈HT

L∗
0(h) + op(1). (5.67)

Proof: The proof of (5.66) and (5.67) follows from (5.57)–(5.61). The
detail is similar to that of Lemma A.2 of Arapis and Gao (2006).

Lemma 5.3. Let Assumptions 5.1–5.2 and 5.4 hold. Then the asymp-
totic distributions of maxh∈HT

L0(h) and maxh∈HT
L∗
0(h) are identical

under H053.

Proof: The proof follows easily from Lemma 5.2 and the fact that both
{et} and {e∗t } are mutually independent and identically distributed as
N
(
0,∆−1

)
.

Lemma 5.4. Suppose that Assumptions 5.1(i), 5.2 and 5.4(ii) hold.
Then for any x ≥ 0, h ∈ HT and all sufficiently large T

P (L∗
0(h) > x) ≤ exp

(
−x

2

4

)
.

Proof: The proof follows from the fact that L∗
0(h) is asymptotically

normal. The detailed proof is similar to that of Lemma A.4 of Arapis
and Gao (2006).

For 0 < α < 1, define l̃α to be the 1 − α quantile of maxh∈HT
L∗
0(h).

Lemma 5.5. Suppose that Assumptions 5.1(i), 5.2 and 5.4(ii) hold.
Then for large enough T

l̃α ≤ 2
√

log(JT ) − log(α).

Proof: The proof is trivial.

Lemma 5.6. Suppose that Assumptions 5.1(i), 5.2 and 5.4(ii) hold.
Suppose that

lim
T→∞

P

(
QT (θ1)

σh
≥ 2l̃∗α

)
= 1 (5.68)

for some θ1 ∈ Θ and h ∈ HT , where

l̃∗α = max

(
l̃α,

√
2 log(JT ) +

√
2 log(JT )

)
. (5.69)
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Then
lim
T→∞

P (L∗ > l∗α) = 1.

Proof: The proof is similar to that of Lemma A.6 of Arapis and Gao
(2006), in view of the proof of Lemma 13 of Horowitz and Spokoiny
(2001).

5.5.5 Proofs of Theorems 5.6 and 5.7

Proof of Theorem 5.6: The proof follows from Lemmas 5.2 and 5.3.

Proof of Theorem 5.7: Let λ(θ1) = (λ1(θ1), · · · , λT (θ1))
τ . In view of

the definition of QT (θ), we have that for sufficiently large T

QT (θ1) = (1 + oP (1)) Th λ(θ1)
τλ(θ1)

= (1 + oP (1)) C1 T
2h ≥ C2 Th

1/2
√

loglog(T ) (5.70)

hold in probability, where C1 > 0 and C2 > 0 are constants. Equation
(5.70), together with Assumption 5.4(ii) and (5.69), implies (5.68). This
therefore completes the proof of Theorem 5.7.
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(1999), Chapman and Pearson (2000), Gao (2000), Engle (2001), Bandi
and Phillips (2003), Dette and Von Lieres und Wilkau (2003), Fan and
Zhang (2003), Durham (2004), Gao and King (2004), Chen and Gao
(2005), Corradi and Swanson (2005), Fan (2005), Hong and Li (2005),
Jones (2005), and Li, Pearson and Poteshman (2005).

Other closely related studies about nonparametric and semiparametric
estimation and testing in continuous-time diffusion models include Aı̈t-
Sahalia and Lo (1998, 2000), Aı̈t-Sahalia (1999), Sundaresan (2001), Cai
and Hong (2003), Fan and Zhang (2003), Fan et al. (2003), Kristensen
(2004), Fan (2005), and others.



CHAPTER 6

Long–Range Dependent Time Series

6.1 Introductory results

There is a long history of studying long-range dependent models for
strictly stationary time series. Hurst (1951), Mandelbrot and Van Ness
(1968), Granger and Joyeux (1980), and Geweke and Porter–Hudak
(1983) were among the first to study time series models with long-range
dependence through using the spectral density approach. Attention has
recently been given to two single-parameter models in which the spec-
tral density function is proportional to ω−γ , 1 < γ < 2, for ω near zero,
and the asymptotic decay of the autocorrelation function is proportional
to τγ−1. Because the spectral density function is unbounded at ω = 0–
equivalently, the autocorrelation function is not summable, these are
long–range dependent (LRD) (long memory; strong dependent) models.
A recently published survey of long-range dependence literature up to
about 1994 is Beran (1994). See also Robinson (1994), Baillie and King
(1996), Anh and Heyde (1999) and Robinson (2003) for recent develop-
ments of long-range dependence in econometrics and statistics.

We now state two definitions and a theorem, which are the same as
Definitions 2.1 and 2.2 as well as Theorem 2.1 of Beran (1994).

If {Zt} is a zero mean, real-valued, and stationary process, it has an
autocovariance function

r(τ) = E[ZtZt+τ ]

and the spectral representation of the form (see Theorem 4.3.2 of Brock-
well and Davis 1990)

r(τ) =

∫ π

−π
eiωτdF (ω), (6.1)

where F (ω) is nondecreasing and bounded. If F (ω) is absolutely contin-
uous, its density f(ω) is called the spectrum of Zt. There is an inversion

157
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formula

f(ω) =
1

2π

∞∑

n=−∞
r(n)e−2inω (6.2)

provided that r(τ) is absolutely summable. For this case, {Zt} is called
a stationary process with short–range dependence.

We now state the following definitions for the case where r(τ) is not

absolutely summable. Let ρ(τ) = r(τ)
r(0) .

Definition 6.1. Let {Zt} be a stationary process for which the following
holds. There exists a real number α ∈ (0, 1) and a constant Cρ > 0 such
that

lim
τ→∞

ρ(τ)

Cρτ−α
= 1. (6.3)

Then {Zt} is called a stationary process with long–range dependence.
Equation (6.3) can be written as

ρ(τ) ≈ Cρ
1

τα
as τ → ∞,

where the symbol “≈” indicates that the ratio tends to one as τ → ∞.

Knowing the autocorrelations is equivalent to knowing f(ω). Therefore,
long-range dependence can also be defined by imposing a condition on
the spectral density.

Definition 6.2. Let {Zt} be a stationary process for which the following
holds. There exists a real number β ∈ (0, 1) and a constant Cf > 0 such
that

lim
λ→0

f(ω)

Cf |ω|−β
= 1. (6.4)

Then {Zt} is called a stationary process with long-range dependence.
Equation (6.4) can be written as

f(ω) ≈ Cf
1

|ω|β as ω → 0.

These two definitions are equivalent in the following sense.

Theorem 6.1. (i) Suppose (6.3) holds with 0 < α = 2 − 2H < 1. Then
the spectral density f exists and

lim
ω→0

f(ω)

Cf |ω|1−2H
= 1,

where

Cf = σ2π−1CρΓ(2H − 1) sin(π − πH) with σ2 = var(Zt).
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(ii) Suppose (6.4) holds with 0 < β = 2H − 1 < 1. Then

lim
τ→∞

ρ(τ)

Cρτ2H−2
= 1,

where

Cρ = 2CfΓ(2 − 2H) sin(πH − 0.5π)σ−2.

The proof of Theorem 6.1 is straightforward. It is important to note that
the definition of long-range dependence by (6.3) (or Equation (6.4)) is
an asymptotic definition and that the relation α+ β = 1 is always true.
The parameter H is called a self–similarity parameter.

6.2 Gaussian semiparametric estimation

Let {Zt} be a stationary long–range dependent process with zero mean.
Denote by r(τ) the lag–τ autocovariance of {Zt} and by fθ(ω) the spec-
tral density of {Zt} such that

r(τ) = E[ZtZt+τ ] =

∫ π

−π
cos(τω)fθ(ω) dω.

It is assumed that

fθ(ω) ∼ G ω1−2H as ω → 0+, (6.5)

where G ∈ (0,∞), H ∈
(
1
2 , 1
)

and θ = (G,H) ∈ Θ = (0,∞) ×
(
1
2 , 1
)
.

The parameter H is sometimes called the self-similarity parameter. The
estimation of G and H has been popular in recent years. There are
a number of different approaches to the estimation of G and H. See,
for example, Geweke and Porter–Hudak (1983), Fox and Taqqu (1986),
Dahlhaus (1989), Heyde and Gay (1993), and Robinson (1995a). This
section suggests using the Gaussian semiparametric estimation method
proposed by Robinson (1995b) as this estimation procedure is more ef-
ficient and its asymptotic properties can be established in a broader
context.

The periodogram of {Zt} is defined at the Fourier frequencies ωj = 2πj
T ∈

(−π, π], by

IT (ω) =
1

2πT

∣∣∣∣∣
T∑

t=1

Zte
−itω

∣∣∣∣∣

2

.

The following objective function has been used in the literature:

WT (θ) =
1

4π

∫ π

−π

{
log(fθ(ω)) +

IT (ω)

fθ(ω)

}
dω. (6.6)
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By minimizing (6.6) with respect to θ ∈ Θ, we have

θ̂T = arg min
θ∈Θ

WT (θ).

Under suitable conditions, θ̂T is asymptotically normal. See Dahlhaus
(1989) for more details.

This section considers using a discretized version of (6.6) of the form

ŴT (θ) =
1

m

m∑

j=1

{
log(fθ(ωj)) +

IT (ωj)

fθ(ωj)

}
,

where 1 ≤ m < T
2 . Let Ω = [∆1,∆2] with 1

2 < ∆1 < ∆2 < 1. Clearly,
we may estimate θ by

θ̂ = (Ĝ, Ĥ) = arg min
0<G<∞,H∈Ω

ŴT (θ).

Before we state the main results of this section in Theorems 6.1 and 6.2
below, we need to introduce the following conditions.

Assumption 6.1. As ω → 0+

f(ω) ∼ G0 ω
1−2H0 ,

where G0 ∈ (0,∞) and H0 ∈ [∆1,∆2].

Assumption 6.2. In a neighourhood (0, δ) of the origin, f(ω) is differ-
entiable and

d

dω
log(f(ω)) = O(ω−1) as ω → 0 + .

Assumption 6.3. We have

Zt =

∞∑

s=0

asǫt−s with

∞∑

s=0

a2s <∞,

where

E[ǫt|Ft−1] = 0, E[ǫ2t |Ft−1] = 1, a.s., t = 0,±1, . . . ,

in which {Ft} is a sequence of σ-fields generated by {ǫs, s ≤ t}, and
there exists a random variable ǫ such that E[ǫ2] < ∞ and for all η > 0
and some C > 0, P (|ǫt| > η) ≤ CP (|ǫ| > η).

Assumption 6.4. As T → ∞
1

m
+
m

T
→ 0.

Robinson (1995b) established the following theorem.
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Theorem 6.2. Let Assumptions 6.1–6.4 hold. Then as T → ∞
Ĥ →p H0.

The proof is the same as that of Theorem 1 of Robinson (1995b). In order
to establish the asymptotic normality, we need to modify Assumptions
6.1–6.4.

Assumption 6.5. For some δ ∈ (0, 2]

f(ω) ∼ G0 ω
1−2H0(1 +O(ωδ)) as ω → 0+,

where G0 ∈ (0,∞) and H0 ∈ [∆1,∆2].

Assumption 6.6. In a neighbourhood (0, δ) of the origin, α(ω) is dif-
ferentiable and

dα(ω)

dω
= O

( |α(ω)|
ω

)
as ω → 0+,

where α(ω) =
∑∞
s=0 ase

isω.

Assumption 6.7. Assumption 6.3 holds and also

E[ǫ2t |Ft−1] = µ3 a.s. and E[ǫ4t ] = µ4, t = 0,±1, . . .

for finite constants µ3 and µ4.

Assumption 6.8. As T → ∞
1

m
+
m1+2δ(log(m))2

T 2δ
→ 0.

Robinson (1995b) also established the following theorem.

Theorem 6.3. Under Assumptions 6.5–6.8, we have as T → ∞
√
m(Ĥ −H0) → N

(
0,

1

4

)
.

The proof is the same as that of Theorem 2 of Robinson (1995b).

6.3 Simultaneous semiparametric estimation

As assumed in model (6.5), the above section looks only at the Gaus-
sian semiparametric estimation of the parameters (G,H). This section
proposes using a simultaneous semiparametric estimation procedure for
a vector of unknown parameters involved in a class of continuous–time
Gaussian models. Similarly to Theorems 6.2 and 6.3, both asymptotic
consistency and asymptotic normality results are established.
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6.3.1 Gaussian models with LRD and intermittency

As an extension to model (6.5), Gao (2004) considered the case where
the spectral density function of Gaussian processes is of the form

ψ(ω) = ψ(ω, θ) =
π(ω, θ)σ2

|ω|2β(ω2 + α2)γ
, ω ∈ (−∞,∞), (6.7)

where θ = (α, β, σ, γ) ∈ Θ with

Θ =

{
0 < α <∞, 0 < β <

1

2
, 0 < σ <∞, 0 < γ <∞, β + γ >

1

2

}
,

α is normally involved in the drift function of the process involved, β
is the LRD parameter, σ is involved in the diffusion function of the
process considered, γ is normally called the intermittency parameter of
the process considered, and π(ω, θ) is a continuous and positive function
satisfying 0 < limω→0 or ω→±∞ π(ω, θ) <∞ for each θ ∈ Θ.

When π(ω, θ) ≡ 1 and α = 1 in (6.7), the existence of such a process has
been justified in Anh, Angulo and Ruiz–Medina (1999). For this case,
model (6.7) corresponds to the fractional Riesz–Bessel motion (fRBm)
case. The significance of fRBm is in its behaviour when |ω| → ∞. It
is noted that when α = 1, ψ(ω) of (6.7) is well defined as |ω| → ∞
due to the presence of the component (1 + ω2)−γ , γ > 0, which is the
Fourier transform of the Bessel potential. As a result, the covariances
R(t) of the increments of fRBm are strong for small |t|. That is, large
(resp. small) values of the increments tend to be followed by large (resp.
small) values with probability sufficiently close to one. This is the cluster-
ing phenomenon observed in stochastic finance (see Shiryaev 1999, page
365). This phenomenon is referred to as (second-order) intermittency in
the turbulence literature (see Frisch 1995).

When π(ω, θ) = 1
Γ2(1+β) and γ = 1, model (6.7) reduces to

ψ(ω) = ψ(ω, θ) =
σ2

Γ2(1 + β)

1

|ω|2β
1

ω2 + α2
, (6.8)

which is just the spectral density of processes that are solutions of
continuous–time fractional stochastic differential equations of the form

dZ(t) = −αZ(t)dt+ σdBβ(t), Z(0) = 0, t ∈ (0,∞), (6.9)

where Bβ(t) is general fractional Brownian motion given by Bβ(t) =∫ t
0

(t−s)β
Γ(1+β)dB(s), B(t) is standard Brownian motion, and Γ(x) is the usual

Γ function. Obviously, model (6.9) is a fractional stochastic differential
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equation. It is noted that the solution of (6.9) is given by

Z(t) =

∫ t

0

A(t− s)dB(t) with t ∈ [0,∞) and

A(x) =
σ

Γ(1 + β)

(
xβ − α

∫ x

0

e−α(x−u)uβdu

)
. (6.10)

Model (6.8) corresponds to the spectral density of an Ornstein–Ulhenbeck
process of the form (6.9) driven by fractional Brownian motion with
Hurst index H = β + 1

2 . Obviously, the process Z(t) of (6.10) is Gaus-
sian.

It is noted that the ψ(ω) of (6.7) is well defined for both |ω| → 0 and
|ω| → ∞ due to the presence of the component (α2 +ω2)−γ , which pro-
vides some additional information for the identification and estimation
of α and γ. For model (6.8), when |ω| → 0, ψ(ω) ∼ 1

Γ2(1+β)

(
σ
α

)2 1
ω2β .

For this case, if only information for LRD is used, it is easy to estimate

the whole component
(
σ
α

)2
but difficult to estimate both σ and α indi-

vidually. Thus, the use of information for LRD only can cause a model
misspecification problem. This suggests using some additional informa-
tion for the high frequency area (i.e., |ω| → ∞) for the identification and
estimation of both α and γ involved in model (6.7).

It should be pointed out that the processes having a spectral density of
the form (6.7) can be nonstationary. As can be seen from (6.10), Z(t) of
(6.10) is a nonstationary Gaussian process, but the spectral density ψ(ω)
is a special case of from (6.7). It is worthwhile to point out that model
(6.7) extends and covers many important cases, including the important
case where 0 < β < 1

2 and γ ≥ 1
2 . For this case, β + γ > 1

2 holds
automatically. Recently, Gao et al. (2001) considered the special case
where π(ω, θ) ≡ 1, α = 1, 0 < β < 1/2 and γ ≥ 1/2 in (6.7). The authors
were able to establish asymptotic results for estimators of θ based on
discretization. See, for example, Theorem 2.2 of Gao et al. (2001). As a
special case of model (6.7), another important case where π(ω, θ) ≡ 1,
α = 1, 0 < β < 1

2 , 0 < γ < 1
2 but β + γ > 1

2 that was discussed in detail
by Gao (2004). There are two reasons to explain why the latter case is
quite important. The first reason is that it is theoretically much more
difficult to estimate both β and γ when they relate each other in the
form of β + γ > 1

2 . As can be seen from the next section, a constrained
estimation procedure is needed for this case. The second reason is that
one needs to consider the case where both the long–range dependence
and intermittency are moderate but the collective impact of the two is
quite significant.

In the following section, we propose using a semiparametric estima-
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tion procedure for the parameters involved in (6.7) through using a
continuous–time version of the Gauss–Whittle objective function. Both
the consistency and the asymptotic normality of the estimators of the
parameters are established.

6.3.2 Semiparametric spectral density estimation

Since the process Z(t) of (6.10) is not stationary, we denote by Y (t) the
stationary version of Z(t),

Y (t) =

∫ t

−∞
A(t− s)dB(s), t ∈ [0,∞). (6.11)

Define the autocovariance function of Y by γY (h) = cov[Y (t), Y (t+ h)]
for any h ∈ (−∞,∞). In the frequency domain, as the spectral density
of Y (t) is idential to that of the process Z(t) (see Proposition 6 of Comte
and Renault 1996), the spectral density of Z(t) defined by the Fourier
transform of γY (h): ψ(ω) =

∫∞
−∞ e−iωτγY (τ)dτ , is given by

ψ(ω) = ψ(ω, θ) =
1

Γ2(1 + β)

σ2

|ω|2β(ω2 + α2)γ
, ω ∈ (−∞,∞), (6.12)

where θ = (α, β, σ, γ) is the same as in (6.7). Thus, we may interpret
that the spectral density of the form (6.12) corresponds to Z(t) of (6.8).
Note that when γ = 1, the spectral density of (6.12) reduces to form
(6.8).

We assume without loss of generality that both Z(t) and Y (t) are de-
fined on [0,∞). It is easily seen that the proposed estimation procedure
remains true when both Z(t) and Y (t) are defined on (−∞,∞). This sec-
tion considers only the case of 0 < β < 1

2 . For any given ω ∈ (−∞,∞),
we define the following estimator of ψ(ω) = ψ(ω, θ) by

IYN (ω) =
1

2πN

∣∣∣∣∣

∫ N

0

e−iωtY (t)dt

∣∣∣∣∣

2

, (6.13)

whereN > 0 is the upper bound of the interval [0, N ], on which each Y (t)
is observed. Throughout this chapter, the stochastic integrals are limits
in mean square of appropriate Riemann sums. It is noted that form (6.13)
for the continuous–time case is an extension of the usual periodogram
for the discrete case (see Brockwell and Davis 1990). For discrete time
processes, some asymptotic results have already been established for
periodogram estimators (see §10 of Brockwell and Davis 1990).

Before establishing the main results of this section, we need to introduce
the following assumption.
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Assumption 6.9. (i) Assume that each Gaussian process having a spec-
tral density of the form (6.7) has a stationary Gaussian version.

(ii) Assume that π(ω, θ) is a positive and continuous function in both ω
and θ, bounded away from zero and chosen to satisfy
∫ ∞

−∞
ψ(ω, θ) dω <∞ and

∂

∂θ

(∫ ∞

−∞
log (ψ(ω, θ))

dω

1 + ω2

)
= 0 for θ ∈ Θ.

In addition, π(ω, θ) is a symmetric function in ω satisfying

0 < lim
ω→0

π(ω, θ∗) <∞ and 0 < lim
ω→±∞

π(ω, θ∗) <∞

for each given θ∗ ∈ Θ.

(iii) Let θ0 be the true value of θ, and θ0 be in the interior of Θ0, a
compact subset of Θ. For any small ǫ > 0, if ǫ < ||θ − θ0|| < 1

4 then
∫ ∞

−∞

ψ(ω, θ0)

ψ(ω, θ)

1

1 + ω2
dω <∞,

where || · || denotes the Euclidean norm.

Assumption 6.9(i) assumes only that the processes having a spectral
density of the form (6.7) are Gaussian processes, which can be solutions
of fractional stochastic differential equations. For example, the process
Z(t) given in (6.10) is the solution of equation (6.9), and the spectral
density of the solution is given by (6.8). Assumption 6.9(ii) assumes that
ψ(ω, θ) is also normalized so that

∂

∂θ

(∫ ∞

−∞
log (ψ(ω, θ))

dω

1 + ω2

)
= 0.

This extends similar conditions introduced by Fox and Taqqu (1986) and
then generalized by Heyde and Gay (1993).

Assumption 6.9 allows a lot of flexibility in choosing the form of π(ω, θ),
which includes not only the LRD parameter β, but also the parameters–
of–interest, α and σ. The last two parameters, as can be seen from models
(6.8) and (6.9), have some financial interpretations: α represents the
speed of the fluctuations of an interest rate data set while σ is a measure
for the order of the magnitude of the fluctuations of an interest rate data
set around zero, for example. In general, π(ω, θ) represents some kind
of magnitude of the process involved. Assumption 6.1 holds in many
cases. For example, when π(ω, θ) = 1

Γ2(1+β) and γ ≡ 1 or π(ω, θ) ≡ 1,

Assumption 6.9 holds automatically.

We propose using a simultaneous Gaussian semiparametric estimation
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procedure based on the following objective function:

LYN (θ) =
1

4π

∫ ∞

−∞

{
log(ψ(ω, θ)) +

IYN (ω)

ψ(ω, θ)

}
dω

1 + ω2
. (6.14)

The weight function 1
1+ω2 involved is to ensure that LYN (θ) is well defined.

This is mainly because limω→±∞
log(ψ(ω,θ))

1+ω2 = 0.

Due to the form of

Θ =

{
θ : 0 < α <∞, 0 < β <

1

2
, 0 < σ <∞, 0 < γ <∞, β + γ >

1

2

}
,

we need to consider the following two different cases:

• Case I:

Θ1 =

{
θ : 0 < α <∞, 0 < σ <∞, 0 < β <

1

2
,

1

2
≤ γ <∞

}
;

• Case II:

Θ2 =

{
θ : 0 < α <∞, 0 < σ <∞, 0 < β, γ <

1

2
, β + γ >

1

2

}
.

Obviously, Θ1 ⊂ Θ and Θ2 ⊂ Θ.

For Case I, the minimum contrast estimator of θ is defined by

θN = arg min
θ∈Θ10

LYN (θ), (6.15)

where Θ10 is a compact subset of Θ1.

For Case II, we introduce the following Lagrangian function

MY
N (θ) = LYN (θ) − λg(θ),

where λ is the multiplier and g(θ) = β+γ− 1
2 . The minimisation problem:

Minimising LYN (θ), subject to θ ∈ Θ2

can now be transferred to the following minimisation problem:

θ̃N = arg min
θ∈Θ20

MY
N (θ), (6.16)

where Θ20 is a compact subset of Θ2. It should be noted that Case I
corresponds to λ = 0 and that Case II corresponds to λ 6= 0. To avoid
abusing the notation of θ0, we denote the true value of θ ∈ Θ1 by θ10,
and the true value of θ ∈ Θ2 by θ20 throughout the rest of this section.

To state the following results, we also need to introduce the following
conditions.
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Assumption 6.10. (i) For any real function p(·, ·) ∈ L2(−∞,∞),
∫ ∞

−∞

p2(ω, θ0)

(1 + ω2)2

(
∂ log(ψ(ω, θ))

∂θ

)τ (
∂ log(ψ(ω, θ))

∂θ

)
|θ=θ0 dω <∞,

where θ0 = θ10 or θ20.

(ii) For θ ∈ Θ,

Σ(θ) =
1

4π

∫ ∞

−∞

(
∂ log(ψ(ω, θ))

∂θ

)(
∂ log(ψ(ω, θ))

∂θ

)τ
1

(1 + ω2)2
dω <∞.

(iii) The inverse matrix, Σ−1(θ0), of Σ(θ0) exists, where θ0 = θ10 or θ20.

Assumption 6.11. Assume that K(θ, θ0) is convex in θ on an open set
C(θ0) containing θ0, where θ0 = θ10 or θ20 and

K(θ, θ0) =
1

4π

∫ ∞

−∞

{
ψ(ω, θ0)

ψ(ω, θ)
− 1 − log

(
ψ(ω, θ0)

ψ(ω, θ)

)}
dω

1 + ω2
.

Assumption 6.10(i) is required for an application of a continuous–time
central limit theorem to the proof of the asymptotic normality. Assump-
tion 6.10(ii)(iii) is similar to those for the discrete case. See, for example,
Condition (A2) of Heyde and Gay (1993). Assumptions 6.10 and 6.11
simplify some existing conditions for continuous–time models. See, for
example, Conditions 2.1 and 2.2 of Gao, Anh and Heyde (2002).

Assumption 6.10 holds in many cases. For example, when π(ω, θ) =
1

Γ2(1+β) and γ ≡ 1 or π(ω, θ) ≡ 1, Assumption 6.10 holds automatically.

It should be pointed out that Assumption 6.11 holds automatically for
the case where π(ω, θ) ≡ 1, as the matrix K(θ) = {kij(θ)}{1≤i,j≤4} is

positive semidefinite for every θ ∈ C(θ0), an open convex set containing

θ0, where kij(θ) = ∂2

∂θi∂θj
K(θ, θ0), in which θ1 = α, θ2 = β, θ3 = σ

and θ4 = γ. For the detailed verification, we need to use Theorem 4.5
of Rockafeller (1970). This suggests that Assumption 6.11 is a natural
condition.

In general, in order to ensure the existence and uniqueness (at least

asymptotically) of θ̂N , the convexity imposed in Assumption 6.11 is nec-
essary. Previously, this type of condition has not been mentioned in
detail, mainly because the convexity condition holds automatically in
some special cases. For our model (6.7), as the form of ψ(ω, θ) is very
general, Assumption 6.11 is needed for rigorousness consideration.

We now state the following results for Case I and Case II in Theorems
6.4 and 6.5, respectively.
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Theorem 6.4 (Case I). (i) Assume that Assumptions 6.9–6.11 with θ0 =
θ10 hold. Then

P
(

lim
N→∞

θN = θ10

)
= 1.

(ii) In addition, if the true value θ10 of θ is in the interior of Θ10, then
as N → ∞ √

N(θN − θ10) →D N
(
0,Σ−1(θ10)

)
,

where Σ−1(θ10) is as defined above.

Theorem 6.5 (Case II). (i) Assume that Assumptions 6.9–6.10 with

θ0 = θ20 hold. In addition, let θ̃N converge to θ20 with probability one
and the true value θ20 of θ be in the interior of Θ20. Then as N → ∞

√
N(θ̃N − θ20) →D N

(
0, AΣ−1(θ20)A

)
,

where the 4 × 4 matrix A is given by

A =




1 0 0 0
0 1

2 0 − 1
2

0 0 1 0
0 − 1

2 0 1
2


 .

(ii) Assume that Assumptions 6.9–6.11 with θ0 = θ20 hold. Then

P
(

lim
N→∞

θ̃N = θ20

)
= 1.

The proofs of Theorems 6.4 and 6.5 are available from Gao (2004).

Theorem 6.4 extends and complements some existing results for both
the discrete and continuous time cases. See, for example, Comte and Re-
nault (1996, 1998), Gao et al. (2001), and Gao, Anh and Heyde (2002).
As can be seen, strong consistency and asymptotic normality results of
the estimators of the parameters involved in (6.7) do not depend on the
use of discretised values of the process under consideration. It should
also be pointed out that the use of continuous–time models can avoid
the problem of misspecification for parameters. Moreover, the estima-
tion procedure fully makes the best use of all the information available
and therefore can clearly identify and estimate all the four parameters
involved.

Theorem 6.5 establishes the asymptotic consistency results for the case
where θ ∈ Θ2. The corresponding estimation procedure for the important
class of models is now applicable to the case where the LRD parameter
β satisfies 0 < β < 1

2 , the intermittency parameter γ satisfies 0 < γ < 1
2 ,

but the pair (β, γ) satisfies the condition: β + γ > 1
2 . Some practical
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problems that have not solved previously can now be dealt with. We
need to point out that the strong consistency of θ̂N is necessary for
the establishment of the asymptotic normality and that Assumption
6.11 may only be one of the few necessary conditions for the strong
consistency. Due to this reason, we impose the strong consistency directly
for the establishment of the asymptotic normality.

In the following section, we have a detailed look at an application of the
proposed estimation procedure to a class of continuous–time long–range
dependent stochastic volatility models exactly as discussed in Casas and
Gao (2005).

6.4 LRD stochastic volatility models

6.4.1 Introduction

More than thirty years ago, Black and Scholes (1973) assumed a constant
volatility to derive their famous option pricing equation. The implied
volatility values obtained from this equation show skewness, suggesting
that the assumption of constant volatility is not feasible. In fact, the
volatility shows an intermittent behaviour with periods of high values
and periods of low values. In addition, the asset volatility cannot be di-
rectly observed. Stochastic volatility (SV) models deal with these two
facts. Hull and White (1987) were amongst the first to study the loga-
rithm of the stochastic volatility as an Ornstein–Uhlenbeck process. A
review and comparative study about modeling SV up to 1994 has been
given by Taylor (1994). Andersen and Sørensen (1996) examined gen-
eralized moments of method for estimating stochastic volatility model.
Andersen and Lund (1997) extended the CIR model to associate the
spot interest rate with stochastic volatility process through estimating
the parameters with the efficient method of moments. The main assump-
tion of the SV model is that the volatility is a lognormal process. The
probabilistic and statistical properties of a lognormal are well known.
However, the parametric estimation has not been uncomplicated due to
the difficulty finding the maximum likelihood (ML) function. Since 1994,
estimation procedures have been proposed. A comprehensive survey on
several different estimation procedures developed for the SV model has
been given in Broto and Ruiz (2004).

Recent studies show that some data may display long–range dependence
(LRD) (see the detailed review by Beran 1994; Baillie and King 1996;
Anh and Heyde 1999; and Robinson 2003). Since about ten years ago,
there has been some work on studying stochastic volatility with LRD.
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Breidt, Crato and de Lima (1998), Comte and Renault (1998), and Har-
vey (1998) were among the first to consider long–memory stochastic
volatility (LMSV) models. Breidt, Crato and de Lima (1998) also consid-
ered an LMSV case where the log–volatility is modelled as an ARFIMA
process. Comte and Renault (1998) consider a continuous–time fraction-
ally stochastic volatility (FSV) model of the form

dY (t) = v(t)dB1(t) and dx(t) = −αx(t)dt+ σdBβ(t), (6.17)

where x(t) = ln(v(t)), Y (t) = ln(S(t)) with S(t) being the return pro-
cess, B1(t) is a standard Brownian motion, α is the drift parameter,
σ > 0 is the volatility parameter, and Bβ(t) is a fractionally Brown-

ian motion process of the form: Bβ(t) =
∫ t
0

(t−s)β
Γ(1+β)dB(s), in which B(t)

is a standard Brownian motion and Γ(x) is the usual Γ function. It is
assumed that B1(t) and Bβ(t) are independent for all − 1

2 < β < 1
2 .

In Comte and Renault (1998), a discretization procedure was first pro-
posed to approximate the solution of their continuous–time FSV model.
An estimation procedure for 0 < β < 1

2 is developed for a discretized
version of the solution Y (t) based on the so–called log–periodogram re-
gression. Deo and Hurvich (2001) further studied such an estimation
procedure based on the log–periodogram regression method. The au-
thors systematically established the mean–squared error properties as
well as asymptotic consistency results for an estimator of β. Section 4 of
Broto and Ruiz (2004) provides a good survey about existing estimation
methods in discrete–time LMSV models. Gao (2004) pointed out that it
is possible to estimate all the parameters involved in model (6.17) us-
ing the so–called continuous–time version of the Gauss–Whittle contrast
function method proposed in Gao et al. (2001) and Gao, Anh and Heyde
(2002).

The paper by Casas and Gao (2006) has considered a general class of
stochastic volatility models of the form

dY (t) = V (t)dB1(t) (6.18)

with V (t) being given by V (t) = eX(t), where

X(t) =

∫ t

−∞
A(t− s)dB(s), (6.19)

in which B1(t) and B(t) are two standard Brownian motion processes,
A(·) is a deterministic function such that X(t) is stationary, and the
explicit expression of A(·) is determined by the spectral density of X(t).
In addition, the authors assumed that the spectral density function is
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given by

ψX(ω) = ψX(ω, θ) =
π(ω, θ)σ2

|ω|2β (ω2 + α2)
, ω ∈ (−∞,∞), (6.20)

where

θ = (α, β, σ) ∈ Θ =

{
0 < α <∞,−1

2
< β <

1

2
, 0 < σ <∞

}
,

π(ω, θ) is a either a parametric function of θ or a semiparametric func-
tion of θ and an unknown function, continuous and positive function
satisfying 0 < limω→0 or ω→±∞ π(ω, θ) < ∞ for each given θ ∈ Θ, α is
normally involved in the drift function of the stochastic volatility pro-
cess, β is the LRD parameter and σ is a kind of volatility of the stochastic
volatility process.

Unlike most existing studies assuming a particular form for the volatility
process V (t), Casas and Gao (2006) have implicitly imposed certain con-
ditions on the distributional structure of the volatility process. First, the
volatility is a lognormal process with a vector of parameters involved.
Second, the vector of parameters is specified through a corresponding
spectral density function. Third, the parameters involved in the spec-
tral density function may be explicitly interpreted and fully estimated.
Fourth, the generality of the spectral density function of the form (6.20)
implicitly implies that the class of lognormal volatility processes can
be quite general. As a matter of the fact, the class of models (6.18)–
(6.20) is quite general to cover some existing models. For example, when
π(ω, θ) = 1

Γ2(1+β) , model (6.20) reduces to

ψX(ω) = ψX(ω, θ) =
σ2

Γ2(1 + β)

1

|ω|2β
1

ω2 + α2
, (6.21)

which is just the spectral density of the solutions of the second equation
of (6.17) given by

x(t) =

∫ t

0

A(t− s)dB(t) with

A(x) =
σ

Γ(1 + β)

(
xβ − α

∫ x

0

e−α(x−u)uβdu

)
. (6.22)

Its stationary version is defined as X(t) =
∫ t
−∞A(t− s)dB(t). Existence

of some other models corresponding to (6.19) has been established by
Anh and Inoue (2005) and Anh, Inoue and Kasahara (2005). Instead
of further discussing such existence, Casas and Gao (2006) have con-
centrated on the parametric estimation of the volatility process (6.19)
by estimating the parameters involved in the spectral density function
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(6.20). The authors then demonstrated how to implement the proposed
estimation procedure in practice by using both simulated and real sets
of data.

The main structure of Section 6.4 can be summarized as follows: (i)
it considers a general class of stochastic volatility models with either
LRD, intermediate range dependence (IRD), or short–range dependence
(SRD); (ii) it proposes an estimation procedure to deal with cases where
a class of non–Gaussian processes may display LRD, IRD or SRD; (iii)
some comprehensive simulation studies show that the proposed estima-
tion procedure works well numerically not only for the LRD parameter
β, but also for both the drift parameter α and the variance σ2; and (iv)
the methodology is also applied to the estimation of the volatility of
several well–known stock market indexes.

6.4.2 Simultaneous semiparametric estimation

Casas and Gao (2006) have proposed an estimation procedure based on
discrete observations of Y (t) in (6.18). This is mainly because observa-
tions on Y (t) are made at discrete intervals of time in many practical
circumstances, even though the underlying process may be continuous.

Consider a discretized version of model (6.18) of the form

Yt∆ − Y(t−1)∆ = V(t−1)∆(Bt∆ −B(t−1)∆), t = 1, 2, · · · , T, (6.23)

where ∆ is the time between successive observations and T is the size
of observations. In theory, we may study asymptotic properties for our
estimation procedure for either the case where ∆ is small but fixed or
the case where ∆ is varied according to T . We focus on the case where ∆
is small but fixed throughout the rest of this section, since this section is
mainly interested in estimating stochastic volatility process V (t) using
either monthly, weekly, daily, or higher frequency returns.

Let Wt =
Yt∆−Y(t−1)∆

∆ , Ut = V(t−1)∆ and ǫt =
√

∆−1(Bt∆ − B(t−1)∆).
Then model (6.23) may be rewritten as

Wt = Ut
√

∆−1 ǫt, t = 1, 2, · · · , T, (6.24)

where {ǫt} is a sequence of independent and identically distributed (i.i.d.)
normal errors drawn from N(0, 1), and {ǫt} and {Us} are mutually
independent for all s, t ≥ 1. Letting Zt = log(W 2

t ), Xt = log(Ut),
et = log

(
ǫ2t
)
− E

[
log
(
ǫ2t
)]

and µ = E
[
log
(
ǫ2t
)]

− log(∆), model (6.24)
implies that

Zt = µ+ 2Xt + et, t = 1, 2, · · · , T, (6.25)
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where {Xt} is a stationary Gaussian time series with LRD, and {et} is
a sequence of i.i.d. random errors with a known distributional structure.

Such a simple linear model has been shown to be pivotal for establishing
various consistent estimation procedures (Deo and Hurvich 2001). Our
estimation procedure is also based on model (6.25). Since both Zt and
Xt are stationary, their corresponding spectral density functions fZ(·, ·)
and fX(·, ·) satisfy the following relationship:

fZ(ω, θ) = 4fX(ω, θ) +
σ2
e

2π
= 4fX(ω, θ) +

π

4
, (6.26)

where σ2
e = π2

2 is used in (6.26).

Since {Xt} is a sequence of discrete observations of the continuous–time
process X(t), existing results (Bloomfield 1976, §2.5) imply that the
spectral density function fX(ω, θ) is expressed as

fX(ω, θ) =
1

∆

∞∑

k=−∞
ψX

(
ω − 2kπ

∆
, θ

)
, (6.27)

which, together with (6.26), implies that the spectral density function
of Zt is given by

fZ(ω, θ) =
4

∆

∞∑

k=−∞
ψX

(
ω − 2kπ

∆
, θ

)
+
π

4
. (6.28)

The spectral density f(ω, θ) is estimated by the following periodogram

IT (ω) = IZT (ω) =
1

2πT

∣∣∣∣∣
T∑

t=1

e−iωtZt

∣∣∣∣∣

2

. (6.29)

The following Whittle contrast function is then employed

WT (θ) =
1

4π

∫ π

−π

{
log(fZ(ω, θ)) +

IT (ω)

fZ(ω, θ)

}
dω (6.30)

and θ is estimated by

θ̂T = arg min
θ∈Θ0

WT (θ), (6.31)

where Θ0 is a compact subset of the parameter space Θ.

Equations (6.29)–(6.31) have been working well both in theory and prac-
tice for the case where the underlying process {Zt} is Gaussian. Our
theory and simulation results below show that such an estimation pro-
cedure also works well both theoretically and practically for the case
where {Zt} is stationary but non–Gaussian.
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To state the main theoretical results of this section, the following as-
sumptions are needed. For simplicity, denote θ = (α, β, σ)τ = (θ1, θ2, θ3)

τ .

Assumption 6.12. (i) Consider the general model structure given by
(6.18)–(6.20). Suppose that the two standard Brownian motion processes
B1(t) and B(s) are mutually independent for all −∞ < s, t <∞.

(ii) Assume that π(ω, θ) is a positive and continuous function in both ω
and θ, bounded away from zero and chosen to satisfy
∫ π

−π
fX(ω, θ) dω <∞ and

∫ π

−π
log (fX(ω, θ)) dω > −∞ for θ ∈ Θ.

In addition, π(ω, θ) is a symmetric function in ω satisfying

0 < lim
ω→0

π(ω, θ∗) <∞ and 0 < lim
ω→±∞

π(ω, θ∗) <∞

for each given θ∗ ∈ Θ.

(iii) Assume that L(θ, θ0) is convex in θ on an open set C(θ0) containing
θ0, where

L(θ, θ0) =
1

4π

∫ π

−π

{
fZ(ω, θ0)

fZ(ω, θ)
− 1 − log

(
fZ(ω, θ0)

fZ(ω, θ)

)}
dω.

Assumption 6.13. The functions fX(ω, θ) and giX(ω, θ) = −∂f−1
X

(ω,θ)

∂θi
for 1 ≤ i ≤ 3 satisfy the following properties:

(i)

∫ π

−π
log(fX(ω, θ)) dω is twice differentiable in θ under the integral

sign;

(ii) fX(ω, θ) is continuous at all ω 6= 0 and θ ∈ Θ, f−1
X (ω, θ) is continuous

at all (ω, θ);

(iii) the inverse function f−1
X (ω, θ), ω ∈ (−π, π], θ ∈ Θ, is twice differen-

tiable with respect to θ and the functions ∂
∂θi
f−1
X (ω, θ) and ∂2

∂θj∂θk
f−1
X (ω, θ)

are continuous at all (ω, θ), ω 6= 0, for 1 ≤ i, j, k ≤ 3;

(iv) the functions giX(ω, θ) for 1 ≤ i ≤ 3 are symmetric about ω = 0 for
ω ∈ (−π, π] and θ ∈ Θ;

(v) giX(ω, θ) ∈ L1((−π, π]) for all θ ∈ Θ and i = 1, 2, 3;

(vi) fX(ω, θ)giX(ω, θ) for 1 ≤ i ≤ 3 are in L1((−π, π]) and L2((−π, π])
for all θ ∈ Θ;

(vii) there exists a constant 0 < k ≤ 1 such that |ω|kfX(ω, θ) is bounded

and giX(ω,θ)
|ω|k for 1 ≤ i ≤ 3 are in L2((−π, π]) for all θ ∈ Θ; and
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(viii) the matrix { ∂
∂θ log(fX(ω, θ))}{ ∂

∂θ log(fX(ω, θ))}τ is in L1((−π, π])×
Θ1, where Θ1 ∈ Θ.

Assumption 6.12 imposes some conditions to ensure the identifiability
and existence of the spectral density function fX(ω, θ) and thus the
Gaussian time series {Xt}.
Assumption 6.13 requires that the spectral density function fX(ω, θ)
needs to satisfy certain smoothness and differentiability conditions in
order to verify conditions (A2) and (A3) of Heyde and Gay (1993).

Both Assumptions 6.12 and 6.13 are necessary for us to establish the
following asymptotic consistency results. The assumptions are justifi-
able when the form of π(ω, θ) is specified. For example, when π(ω, θ) =

1
Γ2(1+β) and ∆ = 1, Assumptions 6.4 and 6.13 hold automatically. In

this case, it is obvious

∫ π

−π
fX(ω, θ) dω = 4

∫ π

−π

( ∞∑

k=−∞
ψX(ω − 2kπ, θ)

)
dω

= 4

∫ ∞

−∞
ψX(ω, θ) dω <∞.

For the second part of Assumption 6.12(i), using the following decom-
position

fX(ω, θ) = 4
π(ω, θ)σ2

|ω|2β (ω2 + α2)
+ 4

∞∑

k=1

π(2kπ − ω, θ)σ2

|2kπ − ω|2β ((2kπ − ω)2 + α2)

+ 4
π(2kπ + ω, θ)σ2

|2kπ + ω|2β ((2kπ + ω)2 + α2)
,

≡ f1(ω, θ) + f2(ω, θ) + f3(ω, θ),

we have
∫ π

−π
log(fX(ω, θ)) dω ≥

∫ π

−π
log(f1(ω, θ)) dω > −∞

when π(ω, θ) is specified as π(ω, θ) = 1
Γ2(1+β) and ∆ = 1.

For the case of π(ω, θ) = 1
Γ2(1+β) , Assumption 6.13 may be justified

similarly as in the proof of Lemma B.1 of Gao et al. (2001). Instead of
giving such detailed verification, we establish the following theorem.

Theorem 6.6. Suppose that Assumptions 6.12 and 6.13 hold. Then

(i) θ̂T is a strongly consistent estimator of θ0.
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(ii) Furthermore, if the true value θ0 is in the interior of Θ0, then as
T → ∞ √

T (θ̂T − θ0) → N(0,Σ−1(θ0)),

where

Σ(θ) =
1

4π

∫ π

−π

(
∂

∂θ
log(fZ(ω, θ))

)(
∂

∂θ
log(fZ(ω, θ))

)τ
dω.

Similarly to some existing results (Heyde and Gay 1993; Robinson 1995a;

Deo and Hurvich 2001; and others), Theorem 6.6 shows that θ̂T is still
a
√
T–consistent estimator of θ0 even when {Zt} is non–Gaussian. The

proof is based on an application of Theorem 1(ii) of Heyde and Gay
(1993) and relegated to Section 6.5 of this chapter.

It should be mentioned that as T → ∞,
√

Σ(θ0) T
(
θ̂T − θ0

)
converges

in distribution to N(0, I) regardless of whether ∆ is fixed or varied ac-
cording to T . This implies that in theory the applicability of the proposed
estimation procedure does not depend on the choice of ∆. In practice,
{Zt} is sampled using monthly, weekly, daily, or higher frequency data.
In the following section, we apply our theory and estimation procedure
to model (6.7). Our simulation results show that the proposed theory
and estimation procedure works quite well numerically.

6.4.3 Simulation results

Consider a simple model of the form

dY (t) = eX(t)dB1(t) with X(t) =

∫ t

−∞
A(t− s)dB(s), (6.32)

where A(x) = σ
Γ(1+β)

(
xβ − α

∫ x
0
e−α(x−u)uβdu

)
. Note that X(t) is the

stationary version of x(t) =
∫ t
0
A(t− s)dB(s), which is the solution of

dx(t) = −αx(t)dt+ σdBβ(t). (6.33)

In order to implement the proposed estimation procedure, we need to
generate {Xt} from such a Gaussian process with LRD. A closely related
simulation procedure is given in Comte (1996), who proposed a discrete
approximation to the solution of the continuous–time process X(t). A
simulation procedure based on the simulation of the covariance function
of X(t) has been proposed in Casas and Gao (2006) and summarized as
follows:

• generate CT , a T×T auto–covariance matrix, using the auto–covariance
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Figure 6.1 Sample path for data generated with θ = (α, β, σ) = (0.1, 0.1, 0.1)
and ∆ = 1.

function given by γX(τ) = 2
∫∞
0
fX(ω, θ) cos(ωτ) dω with ∆ = 1. CT

is then a symmetric nonnegative definite matrix with spectral decom-
position CT = V ΛV ⊤, where Λ = diag {λ1, . . . , λT } is the diagonal
matrix of the eigenvalues and V is the orthogonal matrix of the eigen-
vectors such that V τV = I with V τ being the matrix transpose of
V ;

• generate a sample G = (g1, g2, . . . , gT )
τ

of independent realisations
of a multivariate Gaussian random vector with the zero vector as the
mean and the identity matrix as the covariance matrix; and

• generate (X1, . . . , XT ) = V Λ1/2V τG as the realisation of a multivari-
ate Gaussian random vector with the zero vector as the mean and CT
as the covariance matrix.

The sample path for {Xt} generated with the initial parameter values
θ0 = (α, β, σ) = (0.1, 0.1, 0.1) is illustrated in Figure 6.1. The peri-
odogram and the spectral density of the simulated data set are illustrated
in Figure 6.2.

{Zt} is then generated from (6.25) with ∆ = 1. To consider all possible
cases, the proposed estimation procedure has been applied to the LRD
case of 0 < β < 1

2 , the IRD case of − 1
2 < β < 0 and the case of β = 0.

Sample sizes of T = 512 and 1024 were considered. The number of 100
replications was used for each case. Simulation results are displayed in
Tables 6.1–6.4 below. The results in Tables 6.1–6.4 show the empiri-
cal means, the empirical standard deviations and the empirical mean
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Figure 6.2 The periodogram and the spectral density for θ = (α, β, σ) =
(0.1, 0.1, 0.1) and ∆ = 1.

squared errors (MSEs) of the estimators. The empirical mean of the ab-
solute value of the corresponding estimated bias is given in each bracket
beneath the corresponding estimator. Each of the MSEs is computed as
the sum of two terms: the square of the estimated bias and variance.
The following tables are taken from Casas and Gao (2006).

Table 6.1 provides the corresponding results for the case where θ0 =
(0.8, 0, 0.5). These results show that the estimation procedure works well
for the SRD case where the initial parameter value for β is zero. For the
estimates of both α0 and σ0, the empirical mean squared errors (MSEs)
decrease when T increases from 512 to 1024. Table 6.2 also considers the
case of β0 = 0 but with smaller σ0 and much smaller α0. For the case of
θ0 = (0.001, 0, 0.01), the results in the second section show that there is
some distortion in the MSEs for the sample sizes of T = 512 and 1024.
The MSEs become stable and relative smaller than these for the case
of T = 1024. This supports empirical financial evidence that sufficiently
large sample sizes are needed to make precise estimation for very small
drift parameters.

From the third section of Table 6.1 to Tables 6.2–6.4, several different
pairs of positive and negative β values are considered. The corresponding
results show that the MSEs for both α0 and σ0 remain stable when β0
changes from a positive value to its negative counterpart.

Individually, both relatively large and relatively small values of β have
been used to assess whether the estimation procedure is sensitive to the
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θ0 = (0.8, 0, 0.5)

Empirical mean

Empirical std.dev.

Empirical MSE

α̂ β̂ σ̂

0.7776 0.0132 0.5226
( 0.0885 ) ( 0.0623 ) ( 0.0805 )
0.1512 0.0925 0.1130

( 0.1243 ) ( 0.0694 ) ( 0.0821 )
0.0234 0.0087 0.0133

( 0.0198 ) ( 0.0072 ) ( 0.0100 )

α̂ β̂ σ̂

0.7923 0.0095 0.5163
( 0.0707 ) ( 0.0453 ) ( 0.0514 )
0.1198 0.0587 0.0690

( 0.0967 ) ( 0.0383 ) ( 0.0487 )
0.0144 0.0035 0.0050

( 0.0133 ) ( 0.0027 ) ( 0.0036)

θ0 = (0.001, 0, 0.01)

Empirical mean

Empirical std.dev.

Empirical MSE

α̂ β̂ σ̂

0.019 -0.0055 0.0147
( 0.0183 ) ( 0.0063 ) ( 0.0089 )
0.0849 0.0339 0.033

( 0.0849 ) ( 0.0337 ) ( 0.0321 )
0.0075 0.0012 0.0011

( 0.0072 ) ( 0.0011 ) ( 0.0010 )

α̂ β̂ σ̂

0.0331 -0.0004 0.017
( 0.0325 ) ( 0.0106 ) ( 0.0096 )
0.1589 0.059 0.0389

( 0.1588 ) ( 0.0581 ) ( 0.0383 )
0.0263 0.0035 0.0016

( 0.0252 ) ( 0.0035 ) ( 0.0015 )

θ0 = (0.1, 0.1, 0.1)

Empirical mean

Empirical std.dev.

Empirical MSE

α̂ β̂ σ̂

0.1008 0.1011 0.1222
( 0.0211 ) ( 0.0151 ) ( 0.0268 )
0.0520 0.0417 0.0430

( 0.0475 ) ( 0.0389 ) ( 0.0402 )
0.0027 0.0017 0.0023

( 0.0027 ) ( 0.0017 ) ( 0.0016 )

α̂ β̂ σ̂

0.0961 0.1024 0.1159
( 0.0146 ) ( 0.0095 ) ( 0.0204 )
0.0275 0.0283 0.0350

( 0.0235 ) ( 0.0268 ) ( 0.0325 )
0.0008 0.00081 0.0015

( 0.0007 ) ( 0.0008 ) ( 0.0011 )

θ0 = (0.1,−0.1, 0.1)

Empirical mean

Empirical std.dev.

Empirical MSE

α̂ β̂ σ̂

0.1116 -0.1205 0.165
( 0.0433 ) ( 0.0488 ) ( 0.0741 )
0.0807 0.0867 0.1109

( 0.0690 ) ( 0.0744 ) ( 0.1050 )
0.0066 0.0079 0.0165

( 0.0058 ) ( 0.0063 ) ( 0.0111 )

α̂ β̂ σ̂

0.1002 -0.1106 0.1355
( 0.0321 ) ( 0.0377 ) ( 0.0476 )
0.0441 0.0650 0.0697

( 0.0301 ) ( 0.0540 ) ( 0.0620 )
0.0019 0.0043 0.0061

( 0.0019 ) ( 0.0036 ) ( 0.0040 )

Table 6.1 Estimates and the empirical means of the absolute values of the estimated biases (in the brackets).
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θ0 = (0.3, 0.01, 0.1)

Empirical mean

Empirical std.dev.

Empirical MSE

α̂ β̂ σ̂

0.3167 -0.0136 0.1713
( 0.0806 ) ( 0.0707 ) ( 0.0808 )
0.1272 0.1220 0.1343

( 0.0995 ) ( 0.1020 ) ( 0.1287 )
0.0164 0.0154 0.0231

( 0.0140 ) ( 0.0126 ) ( 0.0166 )

α̂ β̂ σ̂

0.3022 0.0021 0.1326
( 0.0487 ) ( 0.0587 ) ( 0.0434 )
0.0816 0.1018 0.0786

( 0.0653 ) ( 0.0834 ) ( 0.0732 )
0.0067 0.0104 0.0072

( 0.0064 ) ( 0.0095 ) ( 0.0055 )

θ0 = (0.3,−0.01, 0.1)

Empirical mean

Empirical std.dev.

Empirical MSE

α̂ β̂ σ̂

0.3191 -0.0444 0.1767
( 0.0685 ) ( 0.0658 ) ( 0.0837 )
0.1186 0.1220 0.1297

( 0.0984 ) ( 0.1083 ) ( 0.1252 )
0.0144 0.0161 0.0227

( 0.0121 ) ( 0.0127 ) ( 0.0157 )

α̂ β̂ σ̂

0.296 -0.0174 0.1412
( 0.0574 ) ( 0.0687 ) ( 0.0551 )
0.0876 0.1167 0.0909

( 0.0660 ) ( 0.0944 ) ( 0.0831 )
0.0077 0.0137 0.0100

( 0.0072 ) ( 0.0127 ) ( 0.0071 )

θ0 = (0.5, 0.45, 0.1)

Empirical mean

Empirical std.dev.

Empirical MSE

α̂ β̂ σ̂

0.5349 0.4217 0.1475
( 0.0628 ) ( 0.0462 ) ( 0.0535 )
0.1473 0.0896 0.1036

( 0.1376 ) ( 0.0817 ) ( 0.1006 )
0.0229 0.0088 0.0130

( 0.0197 ) ( 0.0070 ) ( 0.0101 )

α̂ β̂ σ̂

0.4982 0.442 0.1210
( 0.0185 ) ( 0.0283 ) ( 0.0267 )
0.0489 0.0467 0.0442

( 0.0453 ) ( 0.0379 ) ( 0.0409 )
0.0024 0.0022 0.0024

( 0.0023 ) ( 0.0018 ) ( 0.0017 )

θ0 = (0.5,−0.45, 0.1)

Empirical mean

Empirical std.dev.

Empirical MSE

α̂ β̂ σ̂

0.4922 -0.4432 0.1647
( 0.0483 ) ( 0.0604 ) ( 0.1038 )
0.0644 0.0915 0.1329

( 0.0430 ) ( 0.0687 ) ( 0.1050 )
0.0042 0.0084 0.0218

( 0.0035 ) ( 0.0076 ) ( 0.0125 )

α̂ β̂ σ̂

0.4901 -0.4465 0.1619
( 0.0491 ) ( 0.0623 ) ( 0.0857 )
0.0615 0.0873 0.1002

( 0.0380 ) ( 0.0610 ) ( 0.0805 )
0.0039 0.0076 0.0139

( 0.0030 ) ( 0.0072) ( 0.0070 )

Table 6.2 Estimates and the empirical means of the absolute values of the estimated biases (in the brackets).
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θ0 = (0.2, 0.3, 1)

Empirical mean

Empirical std.dev.

Empirical MSE

α̂ β̂ σ̂

0.2042 0.2992 1.0136
( 0.0506 ) ( 0.0640 ) ( 0.0683 )
0.0702 0.0926 0.0873

( 0.0486 ) ( 0.0666 ) ( 0.0557 )
0.0049 0.0086 0.0078

( 0.0045 ) ( 0.0084 ) ( 0.0061 )

α̂ β̂ σ̂

0.2000 0.2906 1.0179
( 0.0458 ) ( 0.0619 ) ( 0.0502 )
0.0648 0.0831 0.0651

( 0.0456 ) ( 0.0559 ) ( 0.045 )
0.0042 0.0700 0.0044

( 0.0042 ) ( 0.0058 ) ( 0.0031 )

θ0 = (0.2,−0.3, 1)

Empirical mean

Empirical std.dev.

Empirical MSE

α̂ β̂ σ̂

0.191 -0.2717 1.0171
( 0.0663 ) ( 0.0643 ) ( 0.0672 )
0.1025 0.0799 0.0871

( 0.0784 ) ( 0.0549 ) ( 0.0576 )
0.0106 0.0072 0.0079

( 0.0094 ) ( 0.0043 ) ( 0.0058)

α̂ β̂ σ̂

0.181 -0.2759 1.0363
( 0.0616 ) ( 0.0474 ) ( 0.0689 )
0.0709 0.0577 0.0836

( 0.0396 ) ( 0.0406 ) ( 0.0593 )
0.0054 0.0039 0.0083

( 0.0034 ) ( 0.0022 ) ( 0.0046)

θ0 = (0.4, 0.2, 10)

Empirical mean

Empirical std.dev.

Empirical MSE

α̂ β̂ σ̂

0.4083 0.1812 9.9999
( 0.0401 ) ( 0.0438 ) ( 0.0449 )
0.0681 0.0587 0.0901

( 0.0555 ) ( 0.0431 ) ( 0.0779 )
0.0047 0.0038 0.0081

( 0.0041 ) ( 0.0025 ) ( 0.0081 )

α̂ β̂ σ̂

0.3962 0.1927 10.0025
( 0.0305 ) ( 0.0263 ) ( 0.0315 )
0.0405 0.0332 0.0479

( 0.0267 ) ( 0.0215 ) ( 0.0361 )
0.0016 0.0012 0.002

( 0.0014 ) ( 0.0008 ) ( 0.0021 )

θ0 = (0.4,−0.2, 10)

Empirical mean

Empirical std.dev.

Empirical MSE

α̂ β̂ σ̂

0.4008 -0.2142 10.0095
( 0.0586 ) ( 0.0381 ) ( 0.0789 )
0.0812 0.0474 0.1232

( 0.0559 ) ( 0.0314 ) ( 0.0948 )
0.0066 0.0024 0.0153

( 0.0065 ) ( 0.0016 ) ( 0.0138 )

α̂ β̂ σ̂

0.3893 -0.2134 10.0276
( 0.0513 ) ( 0.0344 ) ( 0.0785 )
0.0630 0.0404 0.1083

( 0.0377 ) ( 0.0249 ) ( 0.0793 )
0.0041 0.0018 0.0125

( 0.0031 ) ( 0.0011 ) ( 0.0089 )

Table 6.3 Estimates and the empirical means of the absolute values of the estimated biases (in the brackets).
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θ0 = (0.1, 0.2, 0.01)

Empirical mean

Empirical std.dev.

Empirical MSE

α̂ β̂ σ̂

0.2674 0.1718 0.3007
( 0.1764 ) ( 0.046 ) ( 0.2936 )
0.7007 0.1100 1.8803

( 0.6984 ) ( 0.1038 ) ( 1.8798 )
0.5190 0.0129 3.6200

( 0.4878 ) ( 0.0111 ) ( 3.5336 )

α̂ β̂ σ̂

0.2937 0.1907 0.5467
( 0.2018 ) ( 0.046 ) ( 0.5402 )
0.6492 0.0965 2.3606

( 0.6467 ) ( 0.0852 ) ( 2.3598 )
0.4590 0.0094 5.8605

( 0.4183) ( 0.0086 ) ( 5.5687 )

θ0 = (0.1,−0.2, 0.01)

Empirical mean

Empirical std.dev.

Empirical MSE

α̂ β̂ σ̂

0.1487 -0.2183 0.1012
( 0.0612 ) ( 0.0537 ) ( 0.0947 )
0.1152 0.0981 0.1513

( 0.109 ) ( 0.0839 ) ( 0.1491 )
0.0156 0.0098 0.0312

( 0.0120 ) ( 0.0083 ) ( 0.0222 )

α̂ β̂ σ̂

0.1247 -0.2226 0.0772
( 0.0496 ) ( 0.0411 ) ( 0.0712 )
0.0901 0.0760 0.1173

( 0.0790 ) ( 0.0677 ) ( 0.1149 )
0.0087 0.0063 0.0183

( 0.0068 ) ( 0.0049 ) ( 0.0132 )

θ0 = (1, 0.2, 0.01)

Empirical mean

Empirical std.dev.

Empirical MSE

α̂ β̂ σ̂

0.9971 0.1532 0.1219
( 0.0375 ) ( 0.0955 ) ( 0.113 )
0.0573 0.1676 0.1804

( 0.0433 ) ( 0.1452 ) ( 0.1797 )
0.0033 0.0302 0.0451

( 0.0031 ) ( 0.0234 ) ( 0.0323 )

α̂ β̂ σ̂

0.9967 0.1762 0.0937
( 0.0258 ) ( 0.0758 ) ( 0.0851 )
0.0353 0.1360 0.1319

( 0.0242 ) ( 0.1152 ) ( 0.1309 )
0.0012 0.0191 0.0244

( 0.0011 ) ( 0.0160 ) ( 0.017 )

θ0 = (1,−0.2, 0.01)

Empirical mean

Empirical std.dev.

Empirical MSE

α̂ β̂ σ̂

0.9899 -0.1978 0.1223
( 0.0339 ) ( 0.0498 ) ( 0.1162 )
0.0512 0.0878 0.1811

( 0.0395 ) ( 0.0721 ) ( 0.1786 )
0.0027 0.0077 0.0454

( 0.0021 ) ( 0.0075 ) ( 0.0319 )

α̂ β̂ σ̂

0.9947 -0.2086 0.1052
( 0.0266 ) ( 0.0425 ) ( 0.097 )
0.0368 0.0788 0.1409

( 0.0259 ) ( 0.0668 ) ( 0.1396 )
0.0014 0.0063 0.0289

( 0.0011 ) ( 0.0056 ) ( 0.0195 )

Table 6.4 Estimates and the empirical means of the absolute values of the estimated biases (in the brackets).
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choice of β values. These results in Table 6.2 show that there is some
MSE distortion in the case of T = 512 for β0 when β0 is as small as either
0.01 or −0.01. When T increases to 1024, the MSEs become stable. For
the case of β0 = 0.45 or −0.45, the MSEs look quite stable and very
small.

In Tables 6.3 and 6.4, both relatively large and relatively small values for
σ0 have also been considered. When the volatility σ0 of the FSV model
is as small as 0.1, Table 6.2 shows that the MSEs are both stable and
quite small. For the case of σ0 = 10 in the second section of Table 6.3,
the MSEs for the estimates of all the components of θ0 are quite stable
and very small, particularly when T = 1024.

Since empirical financial evidence also suggests that very small volatility
parameter values make precise estimation quite difficult, we consider
four cases in Table 6.4 that the volatility parameter value is as small as
σ0 = 0.01. These results show that the MSEs become quite reasonable
when the sample size is as medium as T = 1024. It is also observed from
Table 6.4 that the change of the drift parameter value from α0 = 0.1 to
α0 = 1 does not affect the MSEs significantly.

In summary, the MSEs in Tables 6.1–6.4 demonstrate that both the pro-
posed estimation procedure and the asymptotic convergence established
in Theorem 6.4 work well numerically. In addition, both the proposed
theory and estimation procedure have been applied to several market
indexes in the following section.

6.4.4 Applications to market indexes

Market indexes are a guideline of investor confidence and are inter–
related to the performance of local and global economies. Investments
on market indexes such as the Dow Jones, S&P 500, FTSE 100, etc, are
common practice. In this section, we apply model (6.32) to model the
stochastic volatility and then the estimation procedure to assess both
the memory and volatility properties of such indexes. The first part of
this section provides the explicit expressions of both the mean and the
variance functions of stochastic volatility process V (t). The second part
of this section describes briefly these indexes. Some empirical results are
given in the last part of this section. The discussion of this section is
based on the paper by Casas and Gao (2006).



184 LONG–RANGE DEPENDENT TIME SERIES

Estimation of mean and variance

In addition to estimating the three parameters α, β and σ involved in
model (6.32), it is also interesting to estimate both the mean µV and
the standard deviation σV of the stochastic volatility process V (t).

Since the stationary version V (t) = eX(t) in model (6.32) is considered,
it can be shown that both the mean and variance functions of V (t) may
be expressed as follows:

µV = µV (θ) = exp(σ2
X/2) and

σ2
V = σ2

V (θ) =
(
exp(σ2

X − 1)
)
exp(σ2

X), (6.34)

where

σ2
X = σ2

X(θ) = γX(0) =
σ2π

Γ2(1 + β)α1+2β cos(βπ)
. (6.35)

The mean µV (θ) and the standard deviation σV (θ) are then estimated
by

µ̂V = µV (θ̂T ) and σ̂V = σV (θ̂T ) (6.36)

with θ̂T being defined before. For the market indexes, the corresponding
estimates are given in Tables 6.5 and 6.6 below. Some detailed descrip-
tions about the real data are first given below.

Real data

The data sets chosen for our empirical study are: a) two major Amer-
ican indexes: Dow Jones Industrial Average and S&P 500; b) three of
the major European indexes: CAC 40, DAX 30 and FTSE 100; and c)
the major Asian index, the NIKKEI 225. A vast amount of information
about market indexes is available on the Internet. Wikipedia and In-
vestorWords.com give easy access to informative glossaries of the stock
market indexes.

Dow Jones Industrial Average: The DJIA started in July 1884 with the
main railway companies of the time. Today the Dow is calculated as the
price–weighted average of 30 blue chip stocks from each important stock
sector in the market (except transportation and utilities): chemical, steel,
tobacco, sugar, electrics, motors, retail, etc. The section under study in
this section is from October 1, 1928 to July 29, 2005 and can be seen in
Figure 6.3. More information can be found at the Dow Jones, Dow Jones
Indexes corporate sites and the Wall Street Journal amongst others.

S&P 500: Standard & Poor’s 500 is a market–value weighted price of
500 stocks: some from the New York Stock Exchange and, since 1973,



LRD STOCHASTIC VOLATILITY MODELS 185

0
2

0
0

0
4

0
0

0
6

0
0

0
8

0
0

0
1

2
0

0
0 Dow Jones

In
d

e
x

1928 1941 1954 1967 1980 1992 2005

Figure 6.3 Dow Jones Industrial Average.

Figure 6.4 S&P 500.

some from the NASDAQ stock market. The choice of stock prices aim
to achieve a common distribution between the grouping price and the
distribution of the total New York Stock Exchange. The S&P 500 Index
Committee establishes the guidelines for addition and deletion of prices
into the index. It was created in 1957, but its values have already been
extrapolated since the beginning of 1928. It represents 70% of the U.S.
equity market. The values in Figure 6.4 are from January 2, 1958 to July
29, 2005.
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Figure 6.5 French CAC 40.

CAC 40: The CAC 40 is the French Stock Market Index which was set
up on December 30, 1987. It is a market–weighted average of the 40
most significant values out of the top 100 market capitalisations on the
Paris Bourse. An interesting feature of this market is that the 45% of
the shares belong to foreign investors, therefore fluctuations of the CAC
40 can be an indicator of international economy performance. Figure 6.5
plots the values from December 30, 1987 to July 29, 2005.

DAX 30: Trading on the Frankfurt Stock Exchange, the DAX 30 is a
price–weighted index of the 30 top German companies in terms of book
volume and market capitalisation. Figure 6.6 shows the index from its
beginning on December 31, 1964 to July 29, 2005. More information can
be found in the web page of Gruppe Deutsche Börse.

FTSE 100: The Financial Times Stock Exchange 100 is a guideline of
the performance of the British economy and one of the most important
indexes in Europe. It is a market–weighted index of the largest 100 stocks
in the London Stock Exchange. The index from January 31, 1978 to July
29, 2005 is shown in Figure 6.7. The FTSE homepage contains more
detailed information.

NIKKEI 225 Average: This is a price–weighted average of 225 stocks of
the Tokyo Stock Exchange from industry and technology. It has been
calculated daily since 1971. The performance of this index is different
from the American indexes. The NIKKEI increased fiercely from the
70’s until the end of the 80’s, experiencing a drop of over 30,000 within
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Figure 6.6 German DAX 30.
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Figure 6.7 Financial Times Stock Exchange 100.

months and the descending trend has continued until today. Figure 6.8
shows the index values since January 4, 1984 to July 29, 2005.

Empirical results

We have applied the proposed estimation procedure to real financial
data. The results in Table 6.5 contain the estimates of α, β, σ, µV , and
σV .
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Figure 6.8 Japanese NIKKEI 225 Average.

It is not surprising that the parameter estimates of the DJIA and S&P
500 are comparable as Table 6.5 shows. A quick look at Figures 6.3 and
6.4 shows that the two American indexes behave similarly. In both cases
β̂ is about 1%, meaning that the volatility of these indexes displays
a certain degree of LRD. This is expected from the studies of Ding,
Granger and Engle (1993) who showed that the square of the returns
of the S&P 500 displays LRD. The two indexes have σ̂ of 1% but differ
from each other in the value of α̂. We believe that this is due to the
difference in periods of the data sets, as the DJIA was studied from 1928
and the S&P 500 from 1958. This difference results in a greater standard
deviation of the volatility process for the DJIA, 56%, in comparison with
a standard deviation of 44% for the S&P 500.

Results of Table 6.5 for the European indexes suggest that the volatility
of the French CAC 40 and the British FTSE 100 display IRD or antiper-
sistence. In contrast, the German DAX 30 does not seem to have any
memory of the past. The mean µ̂V is 1.06 for the DAX 30 and 1.07 for
the CAC 40 and FTSE 100. Thus, the expected value of the volatility
is roughly the same for the three European indexes. In addition, the
German index is less risky because the standard deviation of the volatil-
ity process is 37% in comparison with 43% in the other two European
indexes.

The estimates of α and σ for the NIKKEI 225 are larger than those of
the American and European indexes. In fact, α̂ of the NIKKEI is three
times larger than α̂ of the Dow Jones, and σ̂ of the NIKKEI is nine
times larger than σ̂ of the Dow Jones. Thus, for the same value of β̂,
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σ̂V of the NIKKEI is expected to be roughly 50 times larger than σ̂V of
the Dow Jones. However, as we can see in Table 6.5, the NIKKEI has a
standard deviation of 53% and the Dow Jones has a dispersion of 56%.
This shows that the LRD parameter influences the standard deviation of
the volatility greatly. A series with a positive β will tend to have a larger
standard deviation in the volatility than a series with antipersistence.

In an attempt to understand the evolution of the volatility through time
and in particular the behaviour of the LRD parameter, three sections of
the DJIA are considered separately. The results are given in Table 6.6.
The β parameter does not change through time but α and σ do. The
first section of the data from 1928 to 1968 registers the larger values
for the mean and standard deviation of the volatility process. This is a
consequence of the Great Depression of 1929 and the following economic
recession that severely hit the U.S. economy. It was not until well after
World War II that indicators of industrial production such as the GDP
and share prices reached the values they had prior to 1929. Sections from
1928 to 1988 and from 1928 to 2005 have experienced a decrease of the
mean and standard deviation of the volatility process. The last 35 years
have not passed without financial shocks such as the consequence of the
oil crisis of 1973, the Black Monday of 1987 and two Gulf Wars. However,
the impacts of these events have not affected the DJIA as strongly as
the Great Depression whose effects are easing off with time. We may say
that nowadays the DJIA is experiencing a time of stability.

In summary, the volatility of each of the seven major worldwide stock
indexes has been estimated. The DJIA and the S&P 500 display LRD,
so statistical patterns may be repeated at different time scales produc-
ing arbitrage opportunities. The volatility of the DJIA and the NIKKEI
225 have the largest dispersion, making them riskier than the other in-
dexes. The European indexes have the lowest standard deviation in the
volatility process, in particular the German index. The three European
indexes and the Japanese index display IRD.

6.5 Technical notes

6.5.1 Proof of Theorem 6.6

This appendix provides only an outline of the proof of Theorem 6.6,
since some technical details are quite standard but tedious in this kind
of proof and therefore omitted here. To prove Theorem 6.6, we need to
introduce the following lemmas.
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Lemma 6.1. Suppose that Assumptions 6.12 and 6.13 hold. Then as
T → ∞

WT (θ) →W (θ) =
1

4π

∫ π

−π

{
log(fZ(ω, θ)) +

fZ(ω, θ0)

fZ(ω, θ)

}
dω. (6.37)

Proof: In order to prove (6.37), it suffices to show that for every con-
tinuous function w(ω, θ)

∫ π

−π
IT (ω)w(ω, θ) dω →

∫ π

−π
fZ(ω, θ0)w(ω, θ) dω (6.38)

with probability one as T → ∞.

In view of the expression of Zt = µ+2Xt+et in (6.25) as well as Lemma
1 of Hannan (1973), the proof of Fox and Taqqu (1986) remains valid
for the case where {Zt} is non–Gaussian. This is mainly because of the
following three reasons.

The first reason is that Lemma 1 of Hannan (1973) is applicable to non–
Gaussian time series and thus to our time series {Zt}. The second reason
is that the proof of Lemma 1 of Fox and Taqqu (1986) remains valid for
Zt = µ+ 2Xt + et, in which {Xt} is the Gaussian time series with LRD
but {et} is a sequence i.i.d. random errors. The third reason is that
Assumption 6.12(ii) guarantees that {Xt} admits a backward expansion
of the form (see Fox and Taqqu 1986, p. 520)

Xt =

∞∑

s=0

bsut−s, (6.39)

where {bs} is a sequence of suitable real numbers such that {Xt} is
a Gaussian process with its spectral density function being given by
fX(ω, θ), and {us} is a sequence of independent and Normally dis-
tributed random variables with E[us] = 0 and E[u2s] = 1.

Lemma 6.2. Suppose that Assumptions 6.12 and 6.13 hold. Then as
T → ∞

θ̂T − θ0 → 0 with probability one. (6.40)

Proof: Lemma 6.1 implies that the following holds with probability one
for θ 6= θ0,

WT (θ) −WT (θ0) → L(θ, θ0) (6.41)

as T → ∞, where

L(θ, θ0) =
1

4π

∫ π

−π

{
fZ(ω, θ0)

fZ(ω, θ)
− 1 − log

(
fZ(ω, θ0)

fZ(ω, θ)

)}
dω > 0.
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Index α̂ β̂ σ̂ µ̂V σ̂V

DJIA 0.0029 0.0109 0.0127 1.1181 0.5592
S&P 500 0.0047 0.0108 0.0143 1.0808 0.4432
CAC 40 0.0047 -0.2778 0.0667 1.0764 0.4288
DAX 30 0.0054 0.0059 0.0137 1.0602 0.3734
FTSE 100 0.0013 -0.3112 0.0606 1.0760 0.4274
NIKKEI 225 0.0094 -0.2752 0.0912 1.1088 0.5312

Table 6.5 Estimates of market indexes volatility parameters.

Dow Jones Industrial Average α̂ β̂ σ̂ µ̂V σ̂V

1 Oct. 1928 – 23 Sep. 1968 0.0035 0.0108 0.0160 1.1405 0.6255
1 Oct. 1928 – 27 Jul. 1988 0.0033 0.0109 0.0138 1.1096 0.5336
1 Oct. 1928 – 29 Jul. 2005 0.0029 0.0109 0.0127 1.1056 0.5214

Table 6.6 Evolution of the volatility through time.

Thus, for any given ǫ > 0

lim inf
T→∞

inf
||θ−θ0||≥ǫ

(WT (θ) −WT (θ0)) > 0 (6.42)

with probability one. The proof of θ̂T → θ0 with probability one follows
from Assumption 6.12(iii). Thus, the proof of Lemma 6.2 is finished.

Proof of Theorem 6.6(i). The first part of Theorem 6.6 has already
been proved in Lemma 6.2.

Proof of Theorem 6.6(ii): The proof of the second part of Theorem
6.6 is standard. Note that Assumption 6.12 implies that Condition (A1)
of Heyde and Gay (1993) is satisfied because of (6.39) and the expression
of Zt = µ + 4Xt + et. Assumption 6.13 implies that conditions (A2)
and (A3) of Heyde and Gay (1993) are satisfied for fX(ω, θ) and then
fZ(ω, θ). Thus, by applying the mean–value theorem and Theorem 1(ii)
of Heyde and Gay (1993), the proof is completed.

6.6 Bibliographical notes
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CHAPTER 7

Appendix

The following lemmas and theorems are of general interest and can be
used for other nonlinear estimation and testing problems associated with
the α–mixing condition. Lemma A.2 and Theorem A.1 below extend
some corresponding results of Hjellvik, Yao and Tjøstheim (1998) and
Fan and Li (1999) for the β–mixing case.

Theorem A.1 improves existing results in the field, such as Gao and
Anh (2000), and Lemma A.1 of Gao and King (2004). Theorem A.2 is
a novel result of this kind for the α–mixing time series case and has
some useful applications in deriving asymptotic Edgeworth expansions
for kernel–based test statistics.

7.1 Technical lemmas

Lemma A.1. Suppose thatMn
m are the σ-fields generated by a stationary

α-mixing process ξi with the mixing coefficient α(i). For some positive
integers m let ηi ∈M ti

si where s1 < t1 < s2 < t2 < · · · < tm and suppose
ti − si > τ for all i. Assume further that

||ηi||pipi = E|ηi|pi <∞,

for some pi > 1 for which Q =
∑l
i=1

1
pi
< 1. Then

∣∣∣∣∣E
[

l∏

i=1

ηi

]
−

l∏

i=1

E[ηi]

∣∣∣∣∣ ≤ 10(l − 1)α(τ)(1−Q)
l∏

i=1

||ηi||pi .

Proof: See Roussas and Ionnides (1987).

Lemma A.2. (i) Let ψ(·, ·, ·) be a symmetric Borel function defined on
Rr × Rr × Rr. Let the process ξi be a r-dimensional strictly stationary
and strong mixing (α–mixing) stochastic process. Assume that for any
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fixed x, y ∈ Rr, E[ψ(ξ1, x, y)] = 0. Then

E





∑

1≤i<j<k≤T
ψ(ξi, ξj , ξk)





2

≤ CT 3M
1

1+δ ,

where 0 < δ < 1 is a small constant, C > 0 is a constant independent of
T and the function ψ, M = max{M1,M2,M3,M4}, and

M1 = max
1<i<j≤T

max
{
E|ψ(ξ1, ξi, ξj)|2(1+δ)

}
,

M2 = max
1<i<j≤T

max

{∫
|ψ(ξ1, ξi, ξj)|2(1+δ)dP (ξ1)dP (ξi, ξj)

}
,

M3 = max
1<i<j≤T

max

{∫
|ψ(ξ1, ξi, ξj)|2(1+δ)dP (ξj)dP (ξ1, ξi)

}
,

M4 = max
1<i<j≤T

max

{∫
|ψ(ξ1, ξi, ξj)|2(1+δ)dP (ξ1)dP (ξi)dP (ξj)

}
.

(ii) Let φ(·, ·) be a symmetric Borel function defined on Rr × Rr. Let
the process ξi be defined as in (i). Assume that for any fixed x ∈ Rr,
E[φ(ξ1, x)] = 0. Then

E





∑

1≤i<j≤T
φ(ξi, ξj)





2

≤ CT 2M
1

1+δ

5 ,

where δ > 0 is a constant, C > 0 is a constant independent of T and the
function φ, and

M5 = max
1<i<j≤T

max

{
E|φ(ξ1, ξi)|2(1+δ),

∫
|φ(ξ1, ξi)|2(1+δ)dP (ξ1)dP (ξi)

}
.

Proof: As the proof of (ii) is similar to that of (i), one proves only (i).
Let i1, . . . , i6 be distinct integers and 1 ≤ ij ≤ T , let 1 ≤ k1 < · · · <
k6 ≤ T be the permutation of i1, . . . , i6 in ascending order and let dc be
the c–th largest difference among kj+1 − kj , j = 1, · · · , 5. Let

H(k1, · · · , k6) = ψ(ξi1 , ξi2 , ξi3)ψ(ξi4 , ξi5 , ξi6).

By Lemma A.1 (with η1 = ψ(ξi1 , ξi2 , ξi3), η2 = ψ(ξi4 , ξi5 , ξi6), l = 2,
pi = 2(1 + δ) and Q = 1

1+δ ),

|E[H(k1, · · · , k6)]| ≤
{

10M
1

1+δα
δ

1+δ (k6 − k5) if k6 − k5 = d1

10M
1

1+δα
δ

1+δ (k2 − k1) if k2 − k1 = d1.
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Thus, ∑

1 ≤ k1 < · · · < k6 ≤ T
k2 − k1 = d1

|E[H(k1, · · · , k6)]|

≤
T−5∑

k1=1

∑

k2=k1+maxj≥3{kj−kj−1}

T−3∑

k3=k2+1

· · ·
T∑

k6=k5+1

×
{

10M
1

1+δα
δ

1+δ (k2 − k1)
}

≤ 10M
1

1+δ

T−5∑

k1=1

T−4∑

k2=k1+1

(k2 − k1)
2α

δ
1+δ (k2 − k1)

≤ 10TM
1

1+δ

T∑

k=1

k4α
δ

1+δ (k) ≤ CTM
1

1+δ .

Similarly,
∑

1 ≤ k1 < · · · < k6 ≤ T
k2 − k1 = d1

|E[H(k1, · · · , k6)]| ≤ CTM
1

1+δ .

Analogously, it can be shown in a similar way that
∑

1 ≤ k1 < · · · < k6 ≤ T
k6 − k5 = d2 or k2 − k1 = d2

|E[H(k1, · · · , k6)]| ≤ CT 2M
1

1+δ ,

∑

1 ≤ k1 < · · · < k6 ≤ T
k6 − k5 = d3 or k2 − k1 = d3

|E[H(k1, · · · , k6)]| ≤ CTM
1

1+δ .

On the other hand, if {k6−k5, k2−k1} = {d4, d5}, by using Lemma A.1
three times we have the inequality

|E[H(k1, · · · , k6)]| ≤ 10M
1

1+δ

3∑

i=1

α
δ

1+δ (di).

Hence, ∑

1 ≤ k1 < · · · < k6 ≤ T
{k6 − k5, k2 − k1} = {d4, d5}

|E[H(k1, · · · , k6)]|
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≤
∑

1 ≤ k1 < · · · < k6 ≤ T
max{k6 − k5, k2 − k1}
≤ min2≤j≤4{kj+1 − kj}

×
{

10M
1

1+δ

[
α

δ
1+δ (k3 − k2) + α

δ
1+δ (k4 − k3) + α

δ
1+δ (k5 − k4)

]}

≤ 30M
1

1+δ

∑

1 ≤ k1 < · · · < k6 ≤ T
max{k6 − k5, k2 − k1} ≤ d3

α
δ

1+δ (d3) ≤ 30CT 3M
1

1+δ .

Thus, we have
∑

1 ≤ i, j, k, r, s, t ≤ T
i, j, k, r, s, t different

|E[ψ(ξi, ξj , ξk)ψ(ξr, ξs, ξt)]| ≤ CT 3M
1

1+δ .

Similarly, we can show that
∑

1 ≤ i, j, k, r, s, t ≤ T
i, j, k, s, t different

|E[ψ(ξi, ξj , ξk)ψ(ξi, ξs, ξt)]| ≤ CT 3M
1

1+δ ,

∑

1 ≤ i, j, k, l ≤ T
i, j, k, l different

|E[ψ(ξi, ξj , ξk)ψ(ξi, ξj , ξl)]| ≤ CT 3M
1

1+δ .

Finally, it is easy to see that
∑

1≤i<j<k≤T
E[ψ(ξi, ξj , ξk)

2] ≤ T 3 max
1<i<j

E[ψ(ξ1, ξi, ξj)
2].

The conclusion of Lemma A.2(i) follows, and therefore the proof of
Lemma A.2 is completed.

Götze, Tikhomirov and Yurchenko (2004) considered a quadratic sum of
the form

QT =
T∑

j=1

ajj(X
2
j − E[X2

j ]) +
∑

1≤j 6=k≤T
ajkXjXk, (A.1)

where X1, · · · , XT are independent and identically distributed random
variables with E[X1] = 0, E[X2

1 ] < ∞ and E[X6
1 ] < ∞. Here {aij}

is a sequence of real numbers possibly depending on T . They actually
considered a more general setup than this, but for simplicity we briefly
present this simplified form.

The following notational symbols are needed.
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A = (ajk)
T
j,k=1 : T × T matrix containing all coefficients ajk;

‖A‖ =
∑T
j,k=1 a

2
jk;

TrA =
∑T
j=1 ajj : the trace of the matrix A;

V 2 =
∑T
j=1 a

2
jj and L2

j =
∑T
k=1 a

2
jk, j = 1, · · · , T ;

dτ = (a11, a22, · · · , aTT ) ∈ R
T : T–dimensional column vector con-

taining all diagonal elements of the matrix A;

A0 denotes the T ×T matrix with elements ajk if j 6= k and equal to
0, if j = k;

µk = E
[
Xk

1

]
and βk = E

[
|X1|k

]
for k = 1, · · · , 6;

λ1 the maximal in absolute value, eigenvalue of the matrix A;

M = max

(
|λ1|2
‖A‖2

,

(∑T

j=1
L4

j

) 1
2

‖A‖2

)
;

σ2
∗ = (µ4 − µ2

2)V
2 + 2µ2

2‖A0‖2 and κ = σ−3
∗
(
µ2
3d

τA0d + 4
3µ

2
3TrA3

0

)
.

In the above symbols the superscript τ denotes the transposition of a
vector or matrix. Note that the matrix A0 is obtained from the matrix
A by replacing all diagonal elements by 0.

The coefficients in the quadratic form (A.1) should satisfy some condi-
tions:

Q(i): ‖A‖ <∞; Q(ii): there exists some absolute positive constant
b21 > 0 such that

1 − V 2

‖A‖2 ≥ b21.

Lemma A.3. Under conditions Q(i) and Q(ii), we have

sup
x

∣∣∣∣P
(
QT
σ∗

≤ x

)
− Φ(x) + κΦ′′′(x)

∣∣∣∣ ≤ Cb−4
1

(
β2
3 + V ‖A‖−1β6

)
µ−3
2 M,

where C is an absolute positive constant and where Φ′′′(·) denotes the
third derivative of the cumulative distribution function of the standard
normal.

Proof: The proof is the same as that of Theorem 1.1 in Götze, Tikhomirov
and Yurchenko (2004).
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7.2 Asymptotic normality and expansions

Theorem A.1. Let ξt be a r-dimensional strictly stationary and α–
mixing stochastic process with the mixing coefficient α(t) ≤ Cαα

t for
some 0 < Cα < ∞ and 0 < α < 1. Let θ(·, ·) be a symmetric Borel
function defined on R

r × R
r. Assume that for any fixed x, y ∈ R

r,
E[θ(ξ1, y)] = E[θ(x, ξ1)] = 0. Let

θst = θ(ξs, ξt) and σ2
T =

∑

1≤s<t≤T
var[θst].

For some small constant 0 < δ < 1, let

MT11 = max
1≤i<j<k≤T

max
{
E|θikθjk|1+δ

}
,

MT12 = max
1≤i<j<k≤T

max

{∫
|θikθjk|1+δdP (ξi)dP (ξj , ξk)

}
,

MT21 = max
1≤i<j<k≤T

max
{
E|θikθjk|2(1+δ)

}
,

MT22 = max
1≤i<j<k≤T

max

{∫
|θikθjk|2(1+δ)dP (ξi)dP (ξj , ξk)

}
,

MT23 = max
1≤i<j<k≤T

max

{∫
|θikθjk|2(1+δ)dP (ξi, ξj)dP (ξk)

}
,

MT24 = max
1≤i<j<k≤T

max

{∫
|θikθjk|2(1+δ)dP (ξi)dP (ξj)dP (ξk)

}
,

MT3 = max
1≤i<j<k≤T

E|θikθjk|2,

MT4 = max
1 < i, j, k ≤ 2T
i, j, k different

{
max
P

∫
|θ1iθjk|2(1+δ)dP

}
,

where the maximization over P in the equation for MT4 is taken over
the probability measures P (ξ1, ξi, ξj , ξk),

P (ξ1)P (ξi, ξj , ξk), P (ξ1)P (ξi1)P (ξi2 , ξi3), and P (ξ1)P (ξi)P (ξj)P (ξk),

where (i1, i2, i3) is the permutation of (i, j, k) in ascending order;

MT51 = max
1≤i<j<k≤T

max

{
E

∣∣∣∣
∫

θikθjkθikθjkdP (ξi)

∣∣∣∣
2(1+δ)

}
,

MT52 = max
1≤i<j<k≤T

max

{∫ ∣∣∣∣
∫

θikθjkθikθjkdP (ξi)

∣∣∣∣
2(1+δ)

dP (ξj)dP (ξk)

}
,

MT6 = max
1≤i<j<k≤T

E

∣∣∣∣
∫

θikθjkdP (ξi)

∣∣∣∣
2

, MT7 = max
1≤i<j<T

E
[
|θij |2(1+δ)

]
.
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Let

MT1 = max
1≤i≤2

{MT1i} , MT2 = max
1≤i≤4

{MT2i} , MT5 = max
1≤i≤2

{MT5i} .

Assume that all the MTi are finite. Let

MT = max

{
T 2M

1
1+δ

T1 , T 2M
1

2(1+δ)

T5 , T 2M
1
2

T6, T
2M

1
(1+δ)

T7

}
,

NT = max

{
T

3
2M

1
2(1+δ)

T2 , T
3
2M

1
2

T3, T
3
2M

1
2(1+δ)

T4

}
.

If limT→∞
max{MT ,NT }

σ2
T

= 0, then

1

σT

∑

1≤s<t≤T
θ(ξs, ξt) →D N(0, 1) as T → ∞.

Proof: For a given constant 0 < ρ0 ≤ 1
4 , choose qT = [T ρ0 ] > 2 as the

largest integer part of T ρ0 . Obviously,
∑∞
T=1 e

−d0qT < ∞ for any given
d0 > 0. Recall the notation of θst and define

φst = θst − E [θst|It−q] and ψst = E [θst|It−q] . (A.2)

Observe that

LT =
T∑

t=2

t−1∑

s=1

θst =

T∑

t=q+1

t−q∑

s=1

φst +

T∑

t=q+1

t−q∑

s=1

ψst

+

T∑

t=2

t−1∑

s=t+1−q
φst +

T∑

t=2

t−1∑

s=t+1−q
ψst ≡

4∑

j=1

LjT . (A.3)

To establish the asymptotic distribution of LT , it suffices to show that
as T → ∞

L1T

σT
→ N(0, 1) and

LjT
σT

→p 0 for j = 2, 3, 4. (A.4)

Let Vt =
∑t−q
s=1 φst. Then E[Vt|It−q] = 0. This implies that {Vt} is a

sequence of martingale differences with respect to It−q. We now start
proving the first part of (A.4). Applying a central limit theorem for
martingale sequences (see Theorem 1 of Chapter VIII of Pollard 1984),
in order to prove the first part of (A.4), it suffices to show that

1

σ2
T

T∑

t=q+1

V 2
t →p 1 and

1

σ4
T

T∑

t=q+1

E
[
V 4
t

]
→ 0. (A.5)
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To verify (A.5), we first need to calculate some useful quantities. Recall
the definition of Vt and observe that

V 2
t =

t−q∑

s=1

φ2st + 2

t−q∑

s1=2

s1−1∑

s2=1

φs1tφs2t

T∑

t=q+1

E[V 2
t ] =

T∑

t=q+1

t−q∑

s=1

E[φ2st] + 2

T∑

t=q+2

t−q∑

s1=2

s1−1∑

s2=1

E [φs1tφs2t]

≡ σ2
1T + ∆1T . (A.6)

We now show that as T → ∞
σ2
1T = σ2

T (1 + o(1)) and ∆1T = o
(
σ2
T

)
. (A.7)

By Lemma A.1 (with η1 = φs1t, η2 = φs1t, l = 2, pi = 2(1 + δ) and
Q = 1

1+δ ),

E |φs1tφs2t| ≤ 10M
1

1+δ

T1 β
δ

1+δ (s1 − s2).

Therefore,

∆1T ≤ 10T 2M
1

1+δ

T1

T∑

i=1

α
δ

1+δ (i) ≤ CT 2M
1

1+δ

T1 (A.8)

using
∑∞
i=1 α

δ
1+δ (i) <∞. This, together with the conditions of Theorem

A.1, implies that ∆1T = o
(
σ2
T

)
as T → ∞.

We now start to verify the first part of (A.7). Let σ2
st = E[φ2st]. Observe

that

E

(
T∑

t=q+1

V 2
t − σ2

1T

)2

≤ 2E

{
T∑

t=q+1

t−q∑

s=1

[
φ2st − σ2

st

]
}2

+ 8E

{
T∑

t=q+2

t−q∑

s1=2

s1−1∑

s2=1

φs1tφs2t

}2

≡ Q1T +Q2T . (A.9)

In the following, we first show that as T → ∞
Q2T = o

(
σ4
T

)
. (A.10)

Using Lemma A.1 again, we can show that as T → ∞

Q2T = 8E

{
T∑

t=q+2

t−q∑

s1=2

s1−1∑

s2=1

φs1tφs2t

}2
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≤ 8


∑

t1 6=t2

∑

s1 6=s2

∑

r1 6=r2
|E [φs1t1φs2t1φr1t2φr2t2 ]|




≤ 8 max
{
M2
T , N

2
T

}
= o

(
σ4
T

)

under the conditions of Theorem A.1.

Let Cφ =
∫
φ212φ

2
34dP1(ξ1)dP1(ξ2)dP1(ξ3)dP1(ξ4), where P1(ξi) denotes

the probability measure of ξi.

Using Lemma A.1 repeatedly, we have that for different i, j, k, l

∣∣E
[
φ2ijφ

2
kl

]
− Cφ

∣∣ ≤ 10 {α(∆(i, j, k, l))}1− 1
1+δ M

1
1+δ

T4

= 10M
1

1+δ

T4 {α(∆(i, j, k, l))} δ
1+δ , (A.11)

where ∆(i, j, k, l) is the minimum increment in the sequence which is the
permutation of i, j, k, l in ascending order.

Similarly to (A.11), we can have for all different i, j, k, l

∣∣σ2
ijσ

2
kl − Cφ

∣∣ ≤ 10M
1

1+δ

T4 {α(∆(i, j, k, l))} δ
1+δ . (A.12)

Therefore, using (A.11) and (A.12),

Q1T = 2E

{
T∑

t=q+2

t−q∑

s=1

[
φ2st − σ2

st

]
}2

≤ 2

(∑

t1,t2

∑

s1,s2

∣∣E
[
φ2ijφ

2
kl

]
− σ2

ijσ
2
kl

∣∣
)

≤ 2

(∑

t1,t2

∑

s1,s2

∣∣E
[
φ2ijφ

2
kl

]
− Cφ

∣∣+
∣∣Cφ − σ2

ijσ
2
kl

∣∣
)

≤
{
O

(
T 3M

1
1+δ

T4

)
+O

(
T 3MT3

)}
= o(σ4

T ). (A.13)

It now follows from (A.9)–(A.13) that for any ǫ > 0

P

{∣∣∣∣∣
1

σ2
1T

T∑

t=q+1

V 2
t − 1

∣∣∣∣∣ ≥ ǫ

}
≤ 1

σ4
1T ǫ

2
E

[
T∑

t=q+1

V 2
t − σ2

1T

]2
→ 0.

(A.14)

Thus, the first part of (A.5) is proved. Note that for q + 1 ≤ k ≤ T ,

E[V 4
k ] = E

{
k−q∑

i=1

φ
2
ik + 2

∑

1≤i<j<k−q

φikφjk

}2
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= E

{
k−q∑

i=1

φ
4
ik + 6

∑

1≤i<j<k−q

φ
2
ikφ

2
jk + 4

k−q∑

l=1

∑

1≤i<j<k−q

φ
2
lkφikφjk

}

+ 4E





∑

q≤i<j<k,1≤s<t<k−q,(i,j) 6=(s,t)

φikφjkφskφtk





= 4

k−q∑

l=1

∑

1≤i<j<k−q

E
[
φ
2
lkφikφjk

]

+ 4
∑

1≤i<j<k−q, 1≤s<t<k−q,(i,j) 6=(s,t)

E [φikφjkφskφtk]

+ O
(
T

2
MT3

)
. (A.15)

It is easy to see that

∫
|φikφjkφskφtk|1+δ dP ≤

√∫
|φikφjk|2(1+δ) dP

∫
|φskφtk|2(1+δ) dP

≤ MT4.

Similarly to (A.11), we can have for any (i, j) 6= (s, t),

|E[φikφjkφskφtk]| ≤ 10M
1

1+δ

T4 {α(∆(i, j, s, t))} δ
1+δ , (A.16)

where ∆(·) is as defined before.

Consequently,

T∑

k=q+1

E[V 4
k ] = O

(
T 3M

1
1+δ

T4

)
= o(σ4

T ). (A.17)

This finishes the proof of the first part of (A.5) and therefore the proof
of (A.5).

Applying Lemmas A.1 and A.2 implies that as T → ∞

E |L2T | ≤
T∑

t=q+1

t−q∑

s=1

E |E [θst|It−q]|

≤ C

T∑

t=q+1

t−q∑

s=1

α
δ

1+δ (t− q − s) M
1

2(1+δ)

T7 ≤ C

(
TM

1
2(1+δ)

T7

)

= o(σT ) (A.18)

using the conditions of Theorem A.1.
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The second part of (A.4) for L4T follows from the conditions of Theorem
A.1 and

E |L4T | ≤
T∑

t=2

t−1∑

s=t+1−q
E (E [|θst| |It−q])

≤ C

T∑

t=2

t−1∑

s=t+1−q
α

δ
1+δ (t− 1 − s) M

1
2(1+δ)

T7 ≤ C

(
TM

1
2(1+δ)

T7

)

= o(σT ). (A.19)

We finally prove the second part of (A.4) for L3T . Similarly, using Lemma
A.1, we can show that as T → ∞
∣∣∣∣∣

T∑

t=2

t−1∑

s1=t+1−q

t−1∑

s2 6=s1,s2=t+1−q

E [φs1tφs2t]

∣∣∣∣∣ ≤
T∑

t=2

t−1∑

s1=t+1−q

t−1∑

s2 6=s1,s2=t+1−q

× E [|φs1tφs2t|]
≤ o

(
T

2
q MT3

)
, (A.20)

∣∣∣∣∣
T∑

t1=3

t1−1∑

t2=t1+1−q

t1−1∑

s1=t1+1−q

t2−1∑

s2=t2+1−q
E [φs1t1φs2t2 ]

∣∣∣∣∣ ≤ o
(
T 2q2 MT3

)
.

(A.21)

Using (A.20) and (A.21) implies that as T → ∞

E
[
L

2
3T

]
=

T∑

t=2

t−1∑

s=t+1−q

E
[
φ
2
st

]
+

T∑

t=2

t−1∑

s1=t+1−q

t−1∑

s2 6=s1,s2=t+1−q

E [φs1tφs2t]

+ 2

T∑

t1=q+2

t1−q∑

t2=2

t1−1∑

s1=t1+1−q

t2−1∑

s2=t2+1−q

E [φs1t1φs2t2 ]

+ 2

T∑

t1=2

t1−1∑

t2=t1+1−q

t1−1∑

s1=t1+1−q

t2−1∑

s2=t2+1−q

E [φs1t1φs2t2 ]

=

T∑

t=2

t−1∑

s=t+1−q

E
[
φ
2
st

]
+

T∑

t=2

t−1∑

s1=t+1−q

t−1∑

s2 6=s1,s2=t+1−q

E [φs1tφs2t]

+ 2

T∑

t1=3

t1−1∑

t2=t1+1−q

t1−1∑

s1=t1+1−q

t2−1∑

s2=t2+1−q

E [φs1t1φs2t2 ]

= O

(
T

3
2M

1
2
T3

)
+O

(
Tq

2
M

1
2
T3

)
= o
(
σ
2
T

)
(A.22)

in view of the fact that the third term of (A.22) is zero because of

E[φs2t2φs1t1 |It1−q] = 0.
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This completes the proof of Theorem A.1.

In order to establish some useful lemmas without including non–essential
technicality, we introduce the following simplified notation:

ast =
1

T
√
hdσ0

K

(
Xs −Xt

h

)
, QT (h) =

T∑

t=1

T∑

s=1, 6=t
asteset,

ρ(h) =

√
2K(3)(0)

∫
π3(u)du

3

(√∫
π2(u)du

∫
K2(v)dv

)−3 √
hd,

where σ2
0 = 2µ2

2 ν2
∫
K2(v)dv with ν2 = E[π2(X1)] and µ2 = E[e21], and

K(3)(·) denotes the three–time convolution of K(·) with itself. We now
have the following theorem.

Theorem A.2. Suppose that the conditions of Theorem 3.1 hold. Then
for any h

sup
x∈R1

∣∣P (QT (h) ≤ x) − Φ(x) + ρ(h) (x2 − 1) φ(x)
∣∣ = O

(
hd
)
. (A.23)

Proof: The proof is based on a nontrivial application of Lemma A.3. As
the proof itself is extremely technical, we provide only an outline below.

In view of QT (h), we need to follow the proofs of Theorems 1.1 and 3.1
as well as Lemmas 3.2–3.5 of Götze, Tikhomirov and Yurchenko (2004)
step-by-step to finish the proof of Theorem A.2. Note that the proofs of
their Theorems 1.1 and 3.1 remain true. The proofs of their Lemmas 3.2–
3.5 also remain true by successive conditioning arguments when needed.

Alternatively, we may apply Lemma A.3 to the conditional probabil-
ity P (QT (h) ≤ x|XT ) and then use the dominated convergence theorem
to deduce (A.23) unconditionally. To avoid repeating the conditioning
argument (given XT ) for each case in the following derivations, the corre-
sponding conditioning arguments are all understood to be held in prob-
ability with respect to the joint distribution of XT = (X1, · · · , XT ).

In any case, in order to apply Lemma A.3, we need to verify certain
conditions of Lemma A.3.

ajj = T−1h−d/2K(0), dτ = T−1h−d/2K(0) (1, · · · , 1)
τ

TrA = h−d/2K(0), V 2 = (Thd)−1K2(0)

‖A0‖2 = T−2h−d
T∑

s,t=1
s 6=t

K2

(
Xs −Xt

h

)

dτA0d = T−3h−3d/2K2(0)

T∑

s,t=1
s 6=t

K

(
xs − xt
h

)
. (A.24)



ASYMPTOTIC NORMALITY AND EXPANSIONS 205

Obviously,

Tr(A3
0
) =

T∑

q=1

T∑

k=1
k 6=q

T∑

j=1
j 6=k
j 6=q

aqkakjajq =
(
T−1h−d/2

)3 T∑

q=1

T∑

k=1
k 6=q

T∑

j=1
j 6=k
j 6=q

× K

(
Xq −Xk

h

)
K

(
Xk −Xj

h

)
K

(
Xj −Xq

h

)
.

Using the stationary ergodic theorem, the sums involving the kernel
function K in (A.24) can be approximated as follows:

1

T 2

T∑

j,k=1
j 6=k

K2

(
Xi −Xj

h

)
≈

∫ ∫
K2

(
x− y

h

)
π(x, y)dxdy

≈ hd
∫ ∫

K2(u)π(y + uh, y)dudy

≈ hd
∫ ∫

K2(u)π2(y)dudy

≈ hd
∫ ∫

K2(u)π2(v)dudv, (A.25)

where π(x, y) denotes the joint density function of (X1, X1+τ ) for any
τ ≥ 1, and π(x) is the marginal density function of X1.

Similarly, for the second sum in expression (A.24)

1

T 2

T∑

s,t=1
s 6=t

K

(
Xs −Xt

h

)
≈ hd

∫
K(u)du

∫
π2(v)dv. (A.26)

For the triple sum in expression (A.25) we find

1

T 3

T∑

q=1

T∑

k=1
k 6=q

T∑

j=1
j 6=k
j 6=q

K

(
Xq −Xk

h

)
K

(
Xk −Xj

h

)
K

(
Xj −Xq

h

)

≈
∫ ∫ ∫

K

(
x− y

h

)
K

(
y − z

h

)
K

(
z − x

h

)
π(x, y, z)dxdydz

≈ h2d
∫ ∫ ∫

K(−(u+ v))K(v)K(u)π(z − uh, z + vh, z)dudvdz

≈ h2d
∫ ∫ ∫

K(−(u+ v))K(v)K(u)π3(z)dudvdz

= h2d
∫ ∫

K(u+ v)K(v)K(u)dudv
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= h2d
∫ (∫

K(w)K(w − v)dw

)
K(v)dv

= h2d
∫
K ∗K(v)K(v)dv

∫
π3(u)du

= h2d (K ∗K ∗K)(0)

∫
π3(u)du, (A.27)

where π(x, y, z) denotes the joint density of (X1, X1+τ1 , X1+τ2) for any
τ1, τ2 ≥ 1.

Combining (A.24)—(A.27) we obtain the following behaviours

TrA ≈ h−d/2K(0), V 2 ≈ T−1h−dK2(0)

‖A0‖2 ≈
∫
K2(u)du

∫
π2(v)dv

dτA0d ≈ T−1h−d/2K2(0)

∫
K(u)du

∫
π2(v)dv

Tr(A3
0
) ≈ hd/2K(3)(0)

∫
π3(u)du, (A.28)

where K(3)(·) = (K ∗K ∗K)(·) is the three times convolution of K with
itself.

From this we get approximations for the quantities σ2
∗ and κ involved in

Lemma A.3:

σ2
∗ ≈ T−1h−d(µ4 − µ2

2)K
2(0) + 2µ2

2

∫
K2(u)du

∫
π2(v)dv

κ ≈
µ2
3K

2(0)
Thd +

4µ3
2

∫
π3(u)du

3 K(3)(0)

σ3∗

√
hd

≈
√

2K(3)(0)

3

(√∫
K2(u)du

)−3

c(π)
√
hd ≡ ρ(h),

where c(π) =

∫
π3(x)dx(√∫
π2(x)dx

)3

In order to apply Lemma A.3 to finish the proof, we need to show that
the upperbound of Lemma A.3 tends to 0 as T → ∞. Observe that

‖A‖2 = ‖A0‖2 +

T∑

j=1

a2jj

≈
∫
K2(u)du

∫
π2(v)dv + (nhd)−1K2(0). (A.29)
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Similarly to (A.27), we may show that

T∑

t=1

L4
t =

T∑

s=1

(
T∑

t=1

a2st

)2

=

T∑

s=1

T∑

t=1

a4st

+

T∑

s=1

T∑

t1=1

T∑

t2=1, 6=t1
a2st1a

2
st2 =

1

T 2hd

∫
K4(u)du

∫
π2(v)dv

+
1

Thd

∫ ∫
K2(w)K2

(
w +

u− v

h

)
π(u, v)dwdudv

=
1

T 2hd

∫
K4(u)du

∫
π2(v)dv

+
1

T
K

(2)
2 (0)

∫
π2(v)dv, (A.30)

where K
(2)
2 (0) is the two–time convolution of K2(·) with itself.

Similarly, we may show that as T → ∞

λ1 ≤ max
1≤j≤T

T∑

i=1

|aij | ≤
√
hd
∫
K(u)du

∫
π2(v)dv. (A.31)

Consequently, using that h→ 0 and Thd → ∞, we find that

|λ1|2
‖A‖2 ≈ hd

(∫
π2(v)dv

)2
∫
K2(u)du

∫
π2(v)dv

. (A.32)

From (A.27)–(A.30) we then find that

(∑T
t=1 L4

t

)1/2

‖A‖2 ≈

√
K

(2)
2 (0)

∫
π2(v)dv

√
T

. (A.33)

Thus, (A.32) and (A.33) imply that there is some constant C∞ such that

M ≈ C∞h
d, (A.34)

which shows that the upperbound in Lemma A.3 tends to 0 at a rate
proportional to hd. This completes the proof of Theorem A.2.
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