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ABSTRACT 
Three estimation policies for the optimal order quantity of the classical newsvendor 

model under exponential demand are evaluated in the current paper. According to the 

principle of the first estimation policy, the corresponding estimator is obtained replacing 

in the theoretical formula which gives the optimal order quantity the parameter of 

exponential distribution with its maximum likelihood estimator. The estimator of the 

second estimation policy is derived in such a way as to ensure that the requested critical 

fractile is attained. For the third estimation policy, the corresponding estimator is 

obtained maximizing the a!priori expected profit with respect to a constant which has 

been included into the form of the estimator. Three statistical measures have been chosen 

to perform the evaluation. The actual critical fractile attained by each estimator, the mean 

square error, and the range of deviation of estimates from the optimal order quantity, 

when the probability to take such a range is the same for the three estimation policies. 

The behavior of the three statistical measures is explored under different combinations of 

sample sizes and critical fractiles. With small sample sizes, no estimation policy 

predominates over the others. The estimator which attains the closest actual critical 

fractile to the requested one, this estimator has the largest mean square and the largest 

range of deviation of estimates from the optimal order quantity. On the contrary, with 

samples over 40 observations, the choice is restricted among the estimators of the first 

and third estimation policy. To facilitate this choice, at different sample sizes, we offer 

the required values of the critical fractile which determine which estimation policy 

eventually should be applied. 

 

Keywords: Classical newsvendor model; Exponential distribution; Demand estimation; 

Actual critical fractile; Mean square error of estimators. 
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1. Introduction 

The classical newsvendor model offers one!period optimal ordering policies for 

products whose demand life cycle lasts so long as the duration of the period. The optimal 

order quantity that minimizes the expected cost of the model is determined by equating 

the probability not to observe a stock!out during the period to a critical fractile which 

depends upon the overage and underage costs of the inventory system. The same optimal 

order quantity is obtained if instead of the expected cost we consider the expected profit. 

In this case the critical fractile is a function of the revenue parameters (price and salvage 

value) and the cost parameters (purchase cost and shortage cost).   

Two conditions are required for the application of the classical newsvendor model:  

(a) at the start of any period the inventory system starts with stocking level equal to the 

optimal order quantity, and (b) no fixed costs are incurred with the delivery of the order 

quantity. The knowledge of demand distribution is also necessary in order to proceed to 

specifications of optimal ordering policies. But, in real life conditions at the stage of 

forming inventory policies, neither the true process of generating demand data nor the 

values of its parameters are known. To solve this problem, alternative estimation 

processes have been developed so far in the literature, and their choice mainly depends 

upon the type and length of historical data regarding demand per period. 

The first classification of available estimation processes concerns the capability of 

keeping track of demand in cases where stock!outs occur. For example, when sales are 

conducted in an impersonal environment, it is impossible to measure that part of demand 

which is not met. So, in such cases the available sample constitutes of sales data, and at 

periods in the sample where stock!outs might have occurred, sales have underestimated 

the real demand. Under such circumstances, the available estimation processes take into 

account the unobserved lost part of demand, by modeling demand through censored or 
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truncated distributions. References on this area include the works of Nahmias (1994), Lau 

and Lau (1996), Ernst and Kamrad (2006), and Halkos and Kevork (2011). 

 When records of real demand are available, no matter if stock!outs have or have not 

occurred in the periods included in the sample, two general approaches can be followed. 

The first approach is the Bayesian and the second is the Frequentist. The Bayesian 

approach leads to a posterior distribution of parameters of demand distribution, which is 

continuously updated as the sample is enriched with new data for demand. The posterior 

distribution is generated from a prior distribution, with the latter to be chosen either using 

collateral data or subjective judgment.  The posterior distribution is then used to estimate 

the optimal order quantity and the optimum value of the objective function. Early works 

on this area constitute the papers of Scarf (1959), Iglehart (1964) and Azoury (1985). 

In the context of the Frequentist approach, three estimation policies have been 

suggested in the literature, providing that the demand distribution has been identified 

using appropriate statistical tests. According to the first estimation policy, the parameters 

of demand distribution are replaced by their estimates in the formula which determines 

the optimal order quantity. Replacing, however, demand parameters by their estimates, 

the optimal order quantity is incorrectly computed and the requested probability of not 

observing a stock!out is not attained.  

This argument leads to a second estimation policy, where adjustments are made to 

the estimator of the first estimation policy in order the requested probability to be 

achieved. The third estimation policy, which is the oldest one, is based on the Expected 

Total Operating Cost (ETOC) function introduced by Hayes (1969). The ETOC is the 

expected value of the expected cost of the newsvendor model, after having replaced the 

optimal order quantity by an appropriate estimator, whose form depends upon the type of 
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demand distribution. This form is then specified by minimizing ETOC with respect to a 

certain constant which has already been included into the form of the estimator. 

The last category of estimation processes refers to the case where records of 

demand per period are available, but the form of demand distribution cannot be 

identified. Then, researchers have two alternatives to estimate the optimal order quantity. 

The first alternative is to follow a non!parametric approach which includes the sampling!

based policy or the use of order statistics and bootstrapping techniques. In the sampling!

based policy, demand is modeled by the empirical distribution function of historical 

demand data. The second alternative is followed when partial information about the 

demand (in terms of moments) is available. In this case the optimal order quantity is 

determined by maximizing the worst case expected profit considering all distributions 

with the same values of the available moments. The relevant literature review of the last 

two alternatives can be found in Liyanage and Shanthikumar (2005), Janssen et al. 

(2009), and Akcay et al. (2011).  

In the current paper, which is classified to the area of the frequentist inferential 

approach, we evaluate for the first time the three aforementioned estimation policies 

when demand follows the exponential distribution. To perform the evaluation, three 

statistical measures are considered and their analytic forms are derived. The first 

statistical measure is the actual critical fractile that each policy attains, that is, the 

effective probability the estimated order quantity to meet the total demand occurred 

during the period. The second statistical measure is the Mean Square Error (MSE) of the 

estimator of each policy. The need for using MSE is the biasedness that arises to those 

estimators which either ensure the requested probability of not observing a stock!out 

during the period or minimize the ETOC function. Finally, the last statistical measure 
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refers to the range of deviations of estimates from the optimal order quantity, when the 

probability to take such a range is the same for the three estimation policies.   

The choice of exponential distribution has been made for three reasons. The first 

reason is that we take tractable results for the ETOC function, and so comparisons among 

the three estimation policies can be made at an analytic base. The second reason is 

existent evidences about the demand distribution from real!life inventory problems. Lau 

(1997) points out that demand for some seasonal fashion items is characterized by high 

uncertainties, and in such cases it is more appropriate the demand to be modeled by the 

exponential distribution. The third reason refers to a theoretic finding which Halkos and 

Kevork (2012) resulted in. Replacing the parameter of exponential distribution with its 

maximum likelihood estimator, they showed that validity and precision of the asymptotic 

confidence interval for the optimal order quantity do not depend upon the values assigned 

to the revenue and cost parameters of the newsvendor model. This theoretic result leads 

us in the current work to present the three statistical measures as functions of the critical 

fractile without making specific assumptions about the values that revenue and cost 

parameters take on. 

 The aforementioned discussion leads the rest of the paper to be structured as 

follows. The next section presents literature review concerning the use of the three 

estimation policies and existent results from comparative studies among alternative 

estimation processes. The specifications of estimators for the optimal order quantity 

according to the three estimation policies are obtained in section 3. In sections 4 and 5 we 

derive the analytic forms of the three statistical measures and we study their performance 

for different combinations of sample size and requested critical fractile. Finally, section 6 

summarizes the most important findings of the current work.   
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2. Theoretical background – Literature review 

Let ( )θ;xf  and ( )θ;xF  be respectively the probability density function and the 

distribution function of demand X for any inventory cycle (or period), with the vector θ  

to include the parameters of demand distribution. For example, if demand is 

exponentially distributed, the vector θ will include the parameter of exponential 

distribution, while with normal demand the vector θ  includes the mean and the variance. 

In the context of the classical newsvendor model and denoting by, 

Q : the order quantity, 

p : selling price per unit, 

c : purchasing cost per unit, 

v : salvage value, 

s : shortage penalty cost per unit, 

uC : per unit underage cost, where scpCu +−= , and 

oC : per unit overage cost, with vcCo −= , 

the optimization is performed either to the expected cost of the model (Lau, 1997), 

( ) ( )[ ] ( ) ( ) ( ) ( )∫+−++−=ζ
Q

0

uouou dx;xxCC;QQCCQXEC,Q θθθ fF , (1) 

or to the expected profit (Khouja, 1999), 

( ) ( ) ( ) ( ) ( ) ( ) ( )XsEdx;xxsvp;QQsvpQscp,Q

Q

0

−+−++−−+−=ξ ∫ θθθ fF . (2) 

Taking first and second order derivatives using Leibniz’s rule, the optimal order 

quantity, *Q , is the same either minimizing ζ  or maximizing ξ , and satisfies the 

sufficient condition 

( ) R
svp

scp

CC

C
;x

ou

u =
+−
+−

=
+

=θF , 
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where R is the critical fractile representing the probability the optimal stocking level at 

the start of any period to be sufficient to meet the total demand which will occur during 

the period. So, at the beginning of each period, the inventory system will start with the 

optimal stock  

( )θ;RQ 1* −= F .  (3) 

Following Schweitzer and Cachon (2000), R can be either less or greater than 0.5. When, 

the specified values for p, c, v, s give 5.0R <  (or 5.0R > ), then the product is classified 

as a low!profit (or high!profit) product. 

Suppose that data on demand are available for the most recent n periods. Then, 

according to the first estimation policy of the frequentist inferential approach, θ  is 

replaced in (3) with its estimator θ̂ , leading to the estimator ( )θ̂;RQ̂ 1

1n

−
+ = F  of the 

optimal order quantity for period 1n + . For the analysis which follows, we name this 

policy as “Direct Estimation Policy (DEP)”. The following works have used the 

principle of DEP to derive confidence intervals or to develop test of hypotheses 

concerning the optimal order quantity and the maximum expected profit.  

Assuming normal demand, and replacing θ  in (3) with its MLE, Kevork (2010) 

developed an appropriate estimator for the maximum expected profit and explored its 

statistical properties for both small and large samples. With normal demand, and using 

the sample mean and the unbiased estimator of the variance, Su and Pearn (2011) 

developed a statistical hypothesis testing methodology to select among two newsboy!type 

products the one which has a higher probability of achieving a target profit under the 

optimal ordering policy. When demand follows the Rayleigh or the exponential 

distribution, Halkos and Kevork (2012) replaced in (3) the parameter of each distribution 

by its MLE, and derived the distributions of the estimators for the optimal order quantity 

and the maximum expected profit. 
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Replacing, however, θ  with θ̂ , the optimal order quantity is incorrectly computed 

and the requested critical fractile, namely, the probability not to experience a stock!out 

during the period, is not attained. Ritchken and Sankar (1984) were the first who raised 

this problem and suggested appropriate adjustments to be made to the DEP estimator 

1nQ̂ + . Assuming normal demand with unknown mean and unknown variance, Ritchken 

and Sankar made the necessary adjustment to that part of the DEP estimator which refers 

to the safety stock. The same problem of not attaining the requested critical fractile was 

studied by Katircioglou (1996), who resulted in the same modified estimator with that 

one of Ritchken and Sankar. Janssen et al. (2009) also handled the same problem and 

obtained an estimator attaining the requested critical fractile when demand follows the 

normal distribution with unknown mean but known variance.  

To the extent of our knowledge, in the current paper we derive for the first time the 

adjusted estimator which ensures under exponential demand the requested critical fractile 

using the Dirichlet and Beta distributions. For the modified estimators of these studies the 

term “unbiasdness” is used from a different perspective than the traditional one which is 

related to the sampling distribution of the estimator. Treating the optimal order quantity 

as the R
th

 percentile of demand distribution, the modified estimators of the 

aforementioned studies are unbiased from the sense that they ensure the requested critical 

fractile. This is the reason why in the remaining analysis we name this policy as 

“Unbiased Percentile Estimation Policy (UPEP)”.  

Hayes (1969) introduced the concept of the Expected Total Operating Cost (ETOC) 

to investigate the inaccuracy in the estimation of inventory targets such as the optimal 

order quantity in the newsvendor model. ETOC is the expected value of (1) after having 

replaced Q  with a function of θ̂ , ( )θ̂g , whose form depends upon the type of demand 

distribution. Specifications for ( )θ̂g  are obtained minimizing ETOC with respect to 
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constant(s) which are included into ( )θ̂g . Hayes derived the specifications of ( )θ̂g  under 

an exponential and normal demand, when the latter one has unknown mean and known or 

unknown variance. Katircioglou (1996) also used the ETOC concept to study the effect of 

biasing in estimation when demand follows the normal and gamma distributions. 

Modeling demand by the Johnson Translation System (JTS), Akcay et al. (2011) seek the 

specification of ( )θ̂g  which minimizes ETOC within a class of estimators implied by the 

JTS.  

An equivalent to the ETOC concept is the a!priori Expected Profit (apEP) 

introduced by Liyanage and Shanthikumar (2005). The apEP is the expected value of (2) 

after having replaced again Q  with ( )θ̂g . Under exponential demand, Liyanage and 

Shanthikumar derived the specification of ( )θ̂g  setting salvage value and shortage cost 

equal to zero. In the current paper with exponential demand, we also use the apEP 

function of Liyanage and Shanthikumar, but we present the constant involved in ( )θ̂g  as a 

function of the critical fractile. For the rest of the analysis, we refer to the estimation 

policy based on the ETOC or apEP concept as “Hayes Estimation Policy (HEP)”. 

A number of comparative studies between alternative estimation processes exist in 

the literature. So, we are closing this section by presenting some indicative ones. Conrad 

(1976) showed that using sales data to estimate the parameter of Poisson distributed 

demand results in order quantities different than the optimal ones. Hill (1997) compared 

the Bayesian against the Frequentist approach with exponential, Poisson, and Binomial 

demand, and showed that Bayesian approach can result in lower expected total cost when 

a meaningful prior is available. Under a general continuous distribution, Ding et al. 

(2002) showed that in the presence of lost sales optimal order quantities are higher 

compared to the case where demand would be fully observed.  
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Similarly, modeling demand by the JTS, Akcay et al. (2011) quantified the 

inaccuracy in the DEP estimator as a function of the length of the historical data, the 

critical fractile, and the shape parameters of the demand distribution and suggested the 

use of the HEP instead of the DEP for setting order quantities in the presence of this 

inaccuracy. But, according to the statistical measures which we have chosen to compare 

the three estimation policies under consideration, when demand follows the exponential 

distribution, our work concludes that no estimation policy predominates over the others, 

and the choice is left in inventory managers. If managers can accept a reasonable 

reduction to the requested probability of not having a stock!out during the period, the 

choice between the DEP and the UPEP depends on the value of the critical fractile.  

3. Estimators for the optimal order quantity 

Given that a sample n21 X,...,X,X  is available, and denoting by θ̂  the maximum 

likelihood estimator (MLE) of θ , the order quantity that will be used for period 1n +  is 

determined from ( )θ̂;RQ̂ 1

1n

−
+ = F . To estimate *Q  from 1nQ̂ + , we shall assume that in 

every period in the sample, the salvage value had been set up at a level which ensured 

that if any excess inventory remained at the end of period, this was disposed of through 

either consignment stocks or buyback arrangements. 

Under an exponential demand we have ( ) θ−−θ=θ x1e;xf  and ( ) θ−−=θ xe1;xF . So, 

from (2), the expected profit becomes 

( ) ( )( ) ( ) θ−−−−+−θ=θξ θ− sQvce1svp,Q Q , (4) 

the optimal order quantity is determined from (3) as 

 
( ) ( ) 1* R1ln

vc

svp
lnQ

−−θ=







−

+−
θ= , (5) 

and the MLE of θ  is the sample average nXˆ
n

1t

t∑
=

=θ . 
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When demand follows the exponential distribution, the ordering policy is expressed 

by the class of estimators of the form ( ) θκ=+
ˆQ̂ j

j

1n , where jκ  is differentiated according to 

each estimation policy. So, for each policy we take the following: 

Direct Estimation Policy (DEP) 

Replacing in (5) θ with θ̂ , the estimator of *Q  becomes ( ) θκ=+
ˆQ̂ 1

1

1n , with 

( ) 1

1 R1ln
−−=κ  . Since θ̂  is unbiased, ( )1

1nQ̂ +  is also unbiased for *Q .  

Percentile Unbiased Estimation Policy (PUEP) 

The estimator ( ) θκ=+
ˆQ̂ 2

2

1n  is specified by finding 2κ  such that the following 

probability statement is true: 

( ) R
n

n

X

X

PrˆXPr
2

1n

1t

t

n

1t

t

21n =



















κ+
<=θκ<

∑

∑
+

=

=
+ . 

Since demand is formed independently in successive periods and follows the 

exponential distribution,  Xj’s for 1n,n,...,2,1j +=  are independent ( )θ,1gamma  random 

variables. Defining ∑
+

=

=
1n

1j

jjj XXY  and following theorem 4.1 of Devroye (1986, pp. 

594), the vector of random variables [ ]n21 Y...YY  follows the Dirichlet (Dir) 

distribution with 1j =α  for 1n,n,...,2,1j += . Then, applying the aggregation property of 

the Dirichlet distribution (e.g. see Frigyik et al., 2010), the sum n21 Y...YY +++  follows 

( )1,nDir . But ( )1,nDir  is the Beta distribution with parameters n=α  and 1=β . Hence 

( )n,1B ~ 
XX...XX

X...XX

X

X

1nn21

n21

1n

1t

t

n

1t

t

+
+

=

=

++++
+++

=

∑

∑
, (6) 
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and ( )2nn κ+  must be ( )n,1B R!1 , where ( )1,nB R1−  is the ( )th
R1−  percentile of the Beta 

distribution.  

When α , β  are integers, the regularized incomplete Beta function is derived from 

8.17.5 of Paris (2010), and has the form 

( ) ( ) j1j
1

j

y y1y
j

1
,I

−−β+α
−β+α

α=

−






 −β+α
=βα ∑ . 

Then the cumulative distribution function of ( )n,1B  is 

 ( )( ) ( ) n

y y1,nIy1,nBPr ==≤ , (7) 

from which we take  ( ) ( ) n1

R1 R11,nB −=− , and finally 

( )( )
( ) n1

n1

2
R1

R11(n

−

−−
=κ . 

 

Hayes Estimation Policy (HEP) 

Defining the estimator ( ) θκ=+
ˆQ̂ 3

3

1n , and using (4), the a!priori expected profit 

becomes 

 ( )( )[ ] ( ) ( )( )( ){ } ( ) ( )( ) .sQ̂EvcQ̂expE1svp,Q̂EapEP 3

1n

3

1n

3

1n θ−−−θ−−+−θ=θξ= +++
 

Because ( )θ∑
=

,ngamma~X
n

1t

t , by using the scaling property of the gamma distribution, 

we take the distributional result 

( )ωθω= ∑
=

,ngamma~XU
n

1t

t , (8) 

where in this case ( )θκ=ω n3 . Then the expected value of ( )Uexp −  is derived as 

( )( ) ( ) ( ) ( )( )
( )

=
Γ

ωθ−ωθ
−=−

−−∞

∫ du
n

uexpu
uexpUexpE

1nn

0
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( )
( )

( ) ( ) n

0

nn

1dttexpt
1n

−
∞−

ωθ+=−







ωθ+

ωθ
Γ
ωθ

= ∫ , (9) 

where ( )nΓ  is the gamma function evaluated at n. 

Result (9) is also stated in Liyanage and Shanthikumar (2005) but without proof. 

Using (9), apEP takes the form 

( )( )[ ] ( ) ( ) θ−θκ−−




















κ+
−+−θ=θξ= + svc

n

n
1svp,Q̂EapEP 3

n

3

3

1n , 

and maximizing it with respect to 3κ , we finally obtain 

( ) 



 −−=κ +

−
1R1n 1n

1

3 . 

 

4. Actual Critical Fractile 

To start with evaluating the three estimation policies under exponential demand, in 

the current section, for each estimator, we derive the analytic form of the actual critical 

fractile, that is, the effective probability to cover the total demand occurred during the 

period, when the order quantity is determined by each estimation policy. As a benchmark, 

we take the PUEP estimator as its use ensures that the actual critical fractile equals to the 

requested one. For the analysis which follows, we remind the reader that 1j =  stands for 

the DEP estimator, 2j =  for the PUEP estimator, and 3j =  for the HEP estimator. 

For the j
th

 estimation policy, the actual critical fractile is defined as the probability 

( ) ( )( )j

1n1n

j

act QXPrR ++ ≤= . Using (6) and (7), its analytical form is 

    ( ) ( ) ( )
n

jjj

1n

1t

t

n

1t

t

j1n

j

act
n

n
1

n

n
1,nBPr1

n

n

X

X

PrˆXPrR 










κ+
−=











κ+
≤−=



















κ+
≥=θκ≤=

∑

∑
+

=

=
+  (10) 
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To carry on the analysis, we consider the following pairwise differences, which are 

obtained through (10): 

( ) ( ) ( )

( )
( )R1

R1lnn

n
RRR,n

n

1

act

2

act1 −−







−−

=−=ψ , (11a) 

( ) ( ) ( ) ( ) ( )( ) 01R1R1RRR,n
n13

act

2

act2 >−−−=−= −
ψ , (11b) 

( ) ( ) ( )

( )
( ) ( )1nn

n

1

act

3

act3 R1
R1lnn

n
RRR,n

+−−







−−

=−=ψ . (11c) 

Asymptotically the DEP and HEP estimators give the requested critical fractile 

since 

( ) ( ) ( )( ) ( )R1
R1lnexp

1

n

R1ln
1lim

1

R1lnn

n
lim

1n
1

n

n

n
−=

−
=








 −
+

=







−− −−

∞→

∞→
 

and hence ( ) 0R,nlim j
n

=
∞→

ψ  for 3,2,1j = . 

The sign of differences ( ) ( )1
act

2
act RR −  and ( ) ( )1

act
3

act RR −  depends upon the behavior of 

functions ( )R,n1ψ  and ( )R,n3ψ . Due to their complexity, we explored their mathematical 

properties numerically. At first, it is easily deduced that ( ) ( ) 0R,nlimR,nlim j
1R

j
0R

==
→→

ψψ . 

In figures (1a) and (1b) we present for different sample sizes the plots of  ( )R,n1ψ  and 

( )R,n3ψ  against R. From figure (1a), we find out that ( )R,n1ψ  is positive, while from 

figure (1b) we observe that there is a value oR  for which ( ) 0R,n3 <ψ  when oRR < , and 

( ) 0R,n3 >ψ  when oRR > . Therefore, combining the findings of figures (1a), (1b) with 

(11b), we deduce that, for any oRR < , it holds that ( ) ( ) ( ) RRRR 2

act

1

act

3

act =<< , while for 

oRR > , we take ( ) ( ) ( ) RRRR 2
act

3
act

1
act =<< . 
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Figure 1a: Plot of ( )R,n1ψ  against R Figure 1b: Plot of ( )R,n3ψ  against R 

  
 

The next two propositions offer further insights for the behavior of ( )j
actR .  

�����������	
� For a finite 2n ≥ , let ( )j
mR  be the value of R where the deviations 

( )1
actRR −  become maximum. If ( ) ( ) e1eR 1

m −> , then ( )1
mR  equals to oR  and  satisfies the 

equation 

( )
( ) ( )

0R1
R1lnn

n 1n1

o

o

=−−
−−

+
 

������		See in the Appendix. 

 

�����������	
� For 2n ≥  and finite, the deviations ( )3
actRR −   are maximized at  

( )
1n

3

m
1n

n
1R

+









+

−= , 

with  ( )

e

1e
R

27

19 j

m

−
<≤   

������		See in the Appendix. 

 



16 

 

The values of oR  and ( )3
mR  are displayed in table 1. Particularly, the values of oR  

have been obtained numerically solving the equation  ( ) 0R,n3 =ψ , and keeping for each 

sample size the difference of the two terms of ( )R,n3ψ  approximately at the same size. 

Besides, the findings of propositions 1 and 2 are illustrated in figure 2, where for different 

sample sizes we plot the deviations ( )j
actRR −  against R.  

From table 1 and figures 2a and 2b, important conclusions are drawn. At the value of  

oR  the deviations from R of the actual critical fractile attained by the DEP estimator 

becomes maximum. The maximum deviation from R of the actual critical fractile attained 

by the HEP estimator is met at a value ( )3
mR  which is smaller than oR . Finally, as the 

sample size is getting larger, oR  is declining with a relatively slow rate , and ( )3
mR  is always 

smaller than the inflection point, ( ) e1e − , of the graph of deviations ( )1
actRR −  against R. 

 

Table 1: Values of oR  and ( )3

mR  for different sample sizes 

n 
oR  ( )R,n3ψ  ( )3

mR  

2 0.8984 5.90 × 10
!5

 0.7037 

3 0.8891 5.58 × 10
!5

 0.6836 

4 0.8838 4.74 × 10
!5

 0.6723 

5 0.8803 5.44 × 10
!5

 0.6651 

10 0.8726 5.07 × 10
!5

 0.6495 

15 0.8696 5.37 × 10
!5

 0.6439 

20 0.8680 5.07 × 10
!5

 0.6411 

25 0.8669 5.05 × 10
!5

 0.6393 

30 0.8660 5.30 × 10
!5

 0.6381 

40 0.8647 5.41 × 10
!5

 0.6367 

50 0.8638 5.25 × 10
!5

 0.6358 

100 0.8603 5.24 × 10
!5

 0.6339 

300 0.8492 5.24 × 10
!5

 0.6327 
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Figure 2: Plot of ( )j
actRR −  against R for the DEP and HEP estimators 

 

n=5 n=10 

  
  

n=20 n=40 

  
 

 

But the most important remark after studying the deviations ( )j
actRR −  at different R’s 

is traced by looking at the graph for n=40 of figure 2. With samples of at least 40 

observations, the issue of using estimators not giving the requested critical fractile ceases to 

exist as an estimation problem, because the deviations ( )j
actRR −  are considered negligible 

from the inventory managerial practice point of view, as they are ranging below 1%.  
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5. Mean Square Error and deviations of estimates from the optimal order quantity 

The analytic form of the Mean Square Error of each estimator is derived in this 

section and its relation to the actual critical fractile is investigated. As we mention in 

section 3, the DEP estimator is unbiased for *Q , while the other two estimators are not. 

Relevant to the MSE is the range of deviations of estimates from the optimal order 

quantity. The lower limit and the upper limit of the range are derived, when the probability 

of such a range to occur is the same for the three estimation policies. Finally, the relation 

between the MSE and the range of deviations of estimates from the optimal order quantity 

is investigated with regard to the patterns of behavior of the actual critical fractile which 

have been discussed in the previous section. 

To start with, the analytic form of MSE is derived through (8). By setting njκ=ω , 

the sampling distribution of j

1nQ̂ +  is the ( )n,ngamma jθκ . Hence 

( ) ( ) ( )[ ] ( ) 22

1j

2

j2
j

1n

j

1n

j

1n
n

Q̂BiasQ̂VarQ̂MSE θ












κ−κ+
κ

=+= +++ , (12) 

as ( ) ( )2

j

j

1n nnQ̂Var θκ=+  and 

( ) ( ) ( ) ( )θκ−κ=−θ−θκ=−= −
++ 1j

1

j

*j

1n

j

1n R1lnQQ̂EQ̂Bias . 

By setting  ( ) 0R,n1 >ψ in (11a), we take the inequality 

( )
( ) 0R1

R1lnn

n n1 >−−
−−

, (13) 

which holds for ∞<≤ n2 , and R between zero and one. Setting also ( ) 0R,n3 <ψ  in (11c) 

we obtain the inequality 

( )
( ) ( )

0R1
R1lnn

n 1n1 <−−
−−

+
, (14) 
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which holds for finite 2n ≥  and oRR < . The inequality in (14) becomes positive when 

oRR > . 

Having available (13) and (14), we reach the next proposition which ranks the sizes 

of ( )j

1nQ̂MSE +  for the three estimation policies. 

 

�����������	�� Given the sample size, n, and the corresponding value of oR , for oRR <  

( )( ) ( )( ) ( )( )2

1n

1

1n

3

1n Q̂MSEQ̂MSEQ̂MSE +++ << , 

while when oRR >  

( )( ) ( )( ) ( )( )2

1n

3

1n

1

1n Q̂MSEQ̂MSEQ̂MSE +++ << . 

				������		See in the Appendix. 

 

To relate the range of deviations of estimates from the optimal order quantity to the 

actual critical fractile and the MSE of the three estimators, we consider the next 

probability:  

( ) ( ) ( )( ) α−=≤−≤ + 1LQQ̂LPr j

u

*j

1n

j

�
. 

Since ( )n,ngamma~Q̂ j

j

1n θκ+ , we take the following lower and upper limits for the 

deviation ( ) *j

1n QQ̂ −+  after applying the scaling property of the Gamma distribution: 

( ) ( ) ( ) 0n1,n
n

Qn,nL 2

1

j1*

j2

j <








−Γ
κ

κθκ
=−θκΓ= αα�

, 

and  

( ) ( ) ( ) 0n1,n
n

Qn,nL
2

1
1

j1*

j

2
1

j

u >








−Γ
κ

κθκ
=−θκΓ= α

−
α

−
, 
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where ( )1,nvΓ  is the v
th

 percentile of the ( )1,ngamma . As ( )1,ngamma  is a right!skewed 

distribution, it is easily deduced that for each estimation policy  ( ) ( )jj

u LL
�

> . 

			�����������	�� Given the sample size, n, for any oRR <  we have 

(i)  ( ) ( ) ( )312 LLL
���

<< , 

(ii)  ( ) ( ) ( )2

u

1

u

3

u LLL << , 

(iii) ( ) ( ) ( ) ( ) ( ) ( )22

u

11

u

33

u LLLLLL
���

−<−<− , 

while when oRR >  

(i)  ( ) ( ) ( )132 LLL
���

<< , 

(ii)  ( ) ( ) ( )2

u

3

u

1

u LLL << , 

(iii) ( ) ( ) ( ) ( ) ( ) ( )22

u

33

u

11

u LLLLLL
���

−<−<− . 

			������		See in the Appendix. 

 

The findings of propositions 1 up to 4 are accompanied with results displayed in 

Tables 2 and 3. The general conclusion is that no estimation policy predominates over the 

others, and the choice is left in inventory managers. At the stage of selecting an estimation 

policy, inventory managers should balance the loss in the requested critical fractile against 

increases which they will face in mean square errors and maximum deviations of estimates 

from the optimal order quantity with a pre!specified probability. In the current work, under 

an exponential demand, we offer the necessary formulae for constructing at any requested 

critical fractile tables similar to table 2 (or table 3), in order practitioners to have the 

appropriate information to come up with a decision.  
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Table 2: Sizes of the statistical criteria when the requested critical fractile takes on those 

values where the differences between them and the actual critical fractiles attained by the 

HEP estimator become maximum 
 

 

n 

 
( )3
mR  

 
( )3

actR  

( )( )
( )( )3

1n

2

1n

QMSE

QMSE

+

+  
( ) ( )

( ) ( )33

u

22

u

LL

LL

�

�

−
−

 
( )

( )3

u

2

u

L

L
 

2 0,7037 0,5556 2,946 1,674 2,197 

5 0,6651 0,5981 1,512 1,223 1,478 

10 0,6495 0,6145 1,225 1,105 1,273 

20 0,6411 0,6231 1,106 1,051 1,166 

30 0,6381 0,6261 1,069 1,034 1,127 

40 0,6367 0,6276 1,051 1,025 1,105 

50 0,6358 0,6285 1,041 1,020 1,092 

100 0,6339 0,6303 1,020 1,010 1,060 

300 0,6327 0,6315 1,007 1,003 1,033 

 

Table 3: Sizes of the statistical criteria when the requested critical fractile takes on those 

values where the differences between them and the actual critical fractiles attained by the 

DEP estimator become maximum 
 

 

n 

 

oR  

 
( )1

actR  

( )( )
( )( )1

1n

2

1n

QVar

QMSE

+

+  
( ) ( )

( ) ( )11

u

22

u

LL

LL

�

�

−
−

 
( )

( )1

u

2

u

L

L
 

2 0,8984 0,7823 5,006 1,869 2,356 

5 0,8803 0,8295 1,854 1,246 1,480 

10 0,8726 0,8464 1,355 1,110 1,266 

20 0,8680 0,8547 1,162 1,052 1,161 

30 0,8660 0,8571 1,105 1,034 1,122 

40 0,8647 0,8580 1,077 1,025 1,102 

50 0,8638 0,8584 1,061 1,020 1,089 

100 0,8603 0,8576 1,030 1,010 1,058 

300 0,8492 0,8483 1,009 1,003 1,030 

 

 

For example, suppose that demand is available for a sample of 10 periods, and the 

values of parameters p, c, v, s result in a requested critical fractile equal to ( )3
mR , where the 

deviation ( )3

actRR −  becomes maximum. In such a case, from the data of table 2, the 

manager can evaluate whether by selecting the HEP estimator a reduction of 3.5% from the 

requested critical fractile could compensate for a more than 22% increase of the MSE and 

the maximum deviations of estimates from the optimal order quantity (with probability 

95%) which he will face by using the UPEP estimator. In the same hypothetical example, if 
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oRR = , the inventory manager would face a similar dilemma, that is, the choice among the 

DEP and UPEP estimators. With 10n = , the use of the DEP estimator would lead to a 

reduction of 2,6% from the requested critical fractile. But on the other hand, the selection 

of the UPEP estimator would give a MSE increased by 35.5%, and a maximum deviation 

of estimates from the optimal order quantity increased by 26.6 % (with probability 95%).  

We are concluding therefore, that the use of the UPEP estimator can offer the 

requested critical fractile, but, unfortunately, its use has as consequences larger MSE’s and 

larger range of deviation of estimates from the optimal order quantity. Of course such 

problems do not exist in large samples as the sizes of all the statistical criteria under 

consideration are approximately the same. 

 

6. Conclusions 

In this per we consider the classical newsvendor model with exponential demand and 

for the first time we evaluate three estimation policies for the optimal order quantity. We 

name them as Direct Estimation Policy (DEP), Unbiased Percentile Estimation Policy 

(UPEP) and Hayes Estimation Policy (HEP). According to the principle of the DEP, the 

estimator for the optimal order quantity was obtained after we had replaced the parameter 

of the exponential distribution with its maximum likelihood estimator in the formula which 

determines the optimal order quantity.  

In the context of the UPEP, we modified the DEP estimator in order the new adjusted 

estimator to attain the requested critical fractile, namely, the probability of not having a 

stock!out during the period. The HEP is based on the concept of the Expected Total 

Operating Cost (ETOC) or the equivalent concept of the a!priori Expected Profit (apEP). In 

the current work, we obtained the apEP by taking the expected value of the expected profit 

after we had replaced the order quantity with a linear function of the maximum likelihood 
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estimator of the parameter of exponential distribution. The linear function was then 

specified by maximizing the apEP.   

To perform the evaluation we considered three statistical measures for which we 

derived analytic forms. The first statistical measure is the actual critical fractile which each 

policy attains. The actual critical fractile is the effective probability the estimated order 

quantity to meet the total demand which will occur during the period. By definition, only 

the PUEP estimator attains the requested critical fractile. The second statistical measure is 

the Mean Square Error (MSE) of the estimator of each policy, and only the DEP estimator 

is unbiased for the optimal order quantity. The final measure refers to the range of 

deviations of estimates from the optimal order quantity, when the probability to take such a 

range is the same for the three estimation policies.   

The behavior of the aforementioned three statistical measures was studied analytically 

for different combination of sample sizes and requested critical fractiles. The general 

conclusion is that no estimation policy predominates over the others. The closer the actual 

critical fractile lies to the requested one, the larger the MSE of the estimator and the larger 

the range of deviations of estimates form the optimal order quantity we take. So, although 

the UPEP estimator gives the requested critical fractile, it has the largest mean square error, 

the largest range of deviations, and the largest deviation of estimates from the optimal order 

quantity. Among the DEP and HEP estimators, which one attains the closest actual critical 

fractile to the requested one depends upon the value of the requested critical fractile. When 

this value is quite close to 1, the HEP estimator gives a better actual critical fractile, but it 

has larger MSE and larger range of deviations of estimates from the optimal order quantity 

compared to the DEP estimator.  
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Consequently, the choice among the UPEP estimator on the one side and the DEP or 

the HEP estimator on the other side can be made on a subjective base accordingly to the 

preferences of inventory managers. So, if a manager requires a high degree of confidence 

that the requested critical fractile will eventually occur, he should use the UPEP estimator, 

knowing however the consequences of such a choice regarding the relatively greater size of 

the MSE and the size of deviations of estimates from the optimal order quantity.  But, when 

demand follows the exponential distribution, this problem of choice is in existence only for 

the case of small samples.  

We showed that with samples over 40 observations, the deviation of the actual critical 

fractile attained by the DEP and the HEP estimator from the corresponding requested 

critical fractile is negligible. Thus, with samples over 40 observations, the choice is 

restricted among the DEP and the HEP estimator. In this paper, for different sample sizes, 

we give the values of the requested critical fractile which eventually enable us to make the 

choice between the latter two estimation policies. 
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APPENDIX 

 

Proof of Proposition 1 

 

Taking n as a fixed quantity, first and second order conditions to maximize ( )1

actRR −  

are obtained from the following derivatives: 

( )( ) ( ) ( )[ ]{ }
( )

( )

( )
0

R1

1

R1lnn

n
1R1lnnnR1

dR

d

dR

RRd
1n

nn
1

act =
−








−−

−=−−+−−=
−

+
−

 

and 

( )( )
( ) ( )[ ] ( )[ ]

=








−−
−

−−

+

−
=

−
++

+

1n2n2

1n

2

1
act

2

R1lnn

1

R1lnn

1n

R1

n

dR

RRd
 

( )
( )[ ] ( ) ( ){ }R1ln1R1lnn

R1

n 2n

2

1n

−+−−
−

= +−
+

. 

Hence, ( )1
mR  maximizes the deviations ( )1

actRR −  when  

( )( )
( )( ) ( )

0R1
R1lnn

n 1n11
m1

m

=−−
−−

+
, (A1) 

and ( )( ) 0R1lnn 1
m <−+  or  ( )

e

1e
R 1

m

−
> . 

At oR  the difference ( ) ( )3
act

1
act RR −  is eliminated. But from (8c), ( ) ( )3

act
1
act RR =  when 

( ) 0R,n o3 =ψ  or 

( )
( ) ( )

0R1
R1lnn

n 1n1

o

o

=−−
−−

+
. (A2) 

From (A1) and (A2) it is concluded that ( )
o

1
m RR = , which completes the proof. 

 

Proof of Proposition 2 

Taking n as a fixed quantity, we take the following derivatives: 

 

( )( ) ( ) ( ) ( ){ } ( ) ( )
0R1

1n

n
1R1R1

dR

d

dR

RRd 1n11nn
3

act =−
+

−=−+−−=
− +−+

 (A3) 

and 

( )( )
( )

( ) ( ) ( )
0R1

1n

n

dR

RRd 1n2n

22

3

act

2

<−
+

−==
− ++−

. (A4) 
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Hence, from (A3) and (A4), the deviations ( )3

actRR −  are maximized at  

( )
1n

3

m
1n

n
1R

+









+

−= . 

For 2n =  

( ) 7037.0
27
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


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++



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which complete the proof. 

 

 

Proof of Proposition 3 

 

(i) ( )( ) ( )( ) ( )( ) ( ) 0
n

1
Q̂MSEQ̂MSE 22

121212

1

1n

2

1n >θ






 κ−κ+κ+κκ−κ=− ++ , 
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( )( )
( )
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which follows from  (10). 

 

(ii) 
( )( ) ( )( ) ( ) 0

n

1n

n
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which follows from (A1), by setting 1nr += . 

 

(iii) ( )( ) ( )( ) ( ) 2

1313

1

1n

3

1n
n

1n

n

1n
Q̂MSEQ̂MSE θ







 κ
−

−κ
+

κ−κ=− ++ . 

But  

( ) ( )[ ] ( ) ( )
( ) ( ) ( )

( ) ( )









−−
−−−

−−
=−−−−=κ−κ +

+−

−+− 1n1

1n1

11n1

13 R1
R1lnn

n

R1

R1lnn
R1ln1R1n , 

and from (A3) 331
n

1n

n

1n
κ

+
<κ<κ

−
. Hence from (11) and (A4): 
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1n

3

1n <− ++ . (A8.1) 

For oRR > , 013 >κ−κ and ( )( ) ( )( ) 0Q̂MSEQ̂MSE 1

1n

3

1n >− ++ . (A8.2) 

The proof is completed, by using (9) and combining (A1), (A2), and (A4) to get: 

  (i) From (A1), 1
2

1 <
κ
κ

, and ( ) ( ) 01

n

2

n <β−β  

  (ii) From (A2), 
3

1

2
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n

2

n <β−β  
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1
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1
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Proof of Proposition 4 

 

(i) Since ( )jL
�

’s are negative:  
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which is negative for oRR <  and positive for oRR >  . 

 

(iii) The proof is completed by using again (A5), (A6), and (A8) in the following 

differences: 
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which is negative for oRR <  and positive for oRR >  . 
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