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Abstract

Finite mixtures of Skew distributions have become increasingly popular in the last few
years as a flexible tool for handling data displaying several different characteristics such as
multimodality, asymmetry and fat-tails. Examples of such data can be found in financial
and actuarial applications as well as biological and epidemiological analysis. In this paper
we will show that a convex linear combination of multivariate Skew Normal mixtures can be
represented as finite mixtures of univariate Skew Normal distributions. This result can be useful
in modeling portfolio returns where the evaluation of extremal events is of great interest. We
provide analytical formula for different risk measures like the Value-at-Risk and the Expected
Shortfall probability.

Keywords: Finite mixtures, Skew Normal distributions, Value-at-Risk, Expected Shortfall
probability.

1 Introduction

The implementation of finite mixture has become increasingly popular in many disciplines, such
as biological sequences analysis, econometrics, machine learning, actuarial science, finance and
epidemiology. Often data display strong asymmetry, fat tails and multimodality features that are
usually shared by different subpopulations. In this context mixtures of asymmetric distributions
have been adopted in different areas, see for example Frühwirth-Schnatter and Pyne [6], Bernardi et
al. [4] and Haas and Mittnik [8]. Among the skewed distrubutions, the Skew Normal of Azzalini [1]
and the Skew Student-t of Azzalini and Capitanio [3] have become widely employed because of the
attractive properties they share with their symmetric counterparts, and the greater shape flexibility
introduced by the additional asymmetry parameter.

In what follows we will consider finite mixture of multivariate Skew Normal distributions and
linear combinations of them. We will show that a linear combination of mixtures of multivariate
Skew Normals admits a closed form representation as a finite mixtures of univariate Skew Normals.
This result can be very useful for example when we model the distribution of the portfolio return,
defined as a convex linear combination of the portfolio assets assumed to be a mixture of multivariate
Skew Normals. In fact, it is well known in the financial literature that financial returns strongly
deviates from the Gaussian assumption.
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Moreover, since investors holding short or long positions on portfolios of risky assets are mainly
interested in evaluating the risk associated to their portfolios, it is important to calculate some
risk measures like the Value-at-Risk, (VaR), and the Expected Shortfall probability, (ES). Usually
those risk measure are estimated by historical or Monte Carlo simulations. In this paper, under
the assumption of a joint multivariate Skew Normal mixture for the assets, we will provide an
analytical closed form expression for the VaR, the ES and related measures, as functions of the
model parameters.

The paper is organized as follows: in Section 2 we prove that the multivariate Skew Normal
mixtures are closed with respect to linear combinations. In Section 3 we provide analytical formulas
for the Value-at-Risk, the Expected Shortfall probability, and related risk measures both for Skew
Normals and mixtures of them. Few remarks and possible extensions are discussed in Section 4.

2 Linear combinations of multivariate Skew Normal mixtures

Finite mixture of multivariate Skew Normal distributions (see Azzalini and Dalla Valle [2]) for the
d-dimensional observation data y = (y1, y2, . . . , yd) can be defined as

π (y|ξ,Ω,α,η) =

L
∑

l=1

ηlfMSN (y|ξl,Ωl,αl) , (2.1)

where fMSN (y|ξ,Ω,α) is the density of the multivariate Skew Normal distribution defined in
Azzalini and Dalla Valle [2]:

fMSN (y|ξ,Ω,α) = 2Φ

(

γTΩ−1 (y − ξ)
√

1− γTΩ−1γ

)

1

(2π)
d
2 |Ω| 12

exp

{

−1

2
(y − ξ)T Ω−1 (y − ξ)

}

, (2.2)

where ξ ∈ R
d is a d−dimensional vector of location parameters, Ω is a positive definite square

matrix of dimension d, and γ is defined as a reparameterization of the d−dimensional vector of
skewness parameters α, in the following way

γ =
Ω

1

2α√
1 +αTα

= Ω
1

2δ. (2.3)

The parameters ηl, l = 1, 2, . . . , L are the component weights satisfying 0 ≤ ηl ≤ 1,∀l = 1, 2, . . . , L,
and

∑L
l=1 ηl = 1. We denote with φ (x) and Φ (x) the density function and the cumulative density

function of a scalar Gaussian distribution, and with δ = α√
1+α2

, the univariate counterpart of the

δ parameter defined in the previous equation (2.3). The univariate Skew Normal distribution can
be obtained from the previous definition by setting the dimension d of the vector of observation y

equal to 1.

In what follows we prove our main result contained in Theorem 2.1 showing that the distribution of
linear combinations of multivariate Skew Normal mixtures is a mixture of univariate Skew Normals.
Before stating the theorem it is useful to recall the following known results providing the Moment
Generating Function (MGF) of univariate and multivariate Skew Normal distributions and their
extension to mixtures of them.
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Corollary 2.1. Let X ∼ SN (ξ, ω, α) be a univariate Skew Normal distribution, and X ∼
MSN (ξ,Ω,α) be a d-dimensional Skew Normal distribution, then the MGF of X and X are
respectively

MX (t) = 2 exp

{

ξt+
t2ω2

2

}

Φ (δωt) (2.4)

MX (t) = 2 exp

{

tTξ +
tTΩt

2

}

Φ
(

δTΩ
1

2 t
)

. (2.5)

Proof. See Genton [7], page 7 and 17. 22

Corollary 2.2. Let Y ∼ ∑L
l=1 ηlfSN (ξl, ωl, αl), be a univariate Skew Normal mixture, and Y ∼

∑L
l=1 ηlfMSN (y|ξl,Ωl,αl) be a d-dimensional Skew Normal mixture, then the MGF of Y and Y are

respectively

MY (t) =
L
∑

l=1

ηl

(

2 exp

{

ξlt+
t2ω2

l

2

}

Φ (δlωlt)

)

(2.6)

MY (t) =

L
∑

l=1

ηl

(

2 exp

{

tTξl +
tTΩlt

2

}

Φ

(

δTl Ω
1

2

l t

))

. (2.7)

Proof. The proof is straightforward. 22

Theorem 2.1 (Linear combinations of multivariate Skew Normal mixtures). Let Y ∼
∑L

l=1 ηlfMSN (y|ξl,Ωl,αl), assume w ∈ R
d is d-dimensional vector of real coefficients, such that

∑d
j=1wj = 1, then

Z = wTY (2.8)

has density function

fZ (z) =

L
∑

l=1

ηlfSN

(

z|ξ̃l, ω̃l, α̃l

)

,

where ξ̃k = wTξl, ω̃l =
(

wTΩlw
)

1

2 , δ̃l = wTδl, for l = 1, 2, . . . , L. The shape parameters α̃l can be

recovered by inverting the relation δ̃l =
α̃l√
1+α̃2

l

, getting α̃l =
δ̃l

√

1−δ̃2
l

,∀l = 1, 2, . . . , L.

Proof. The MGF of the (scalar) random variable Z = wTY is equal to

MZ (t) = E

[

etZ
]

= E

[

et(w
T
Y)
]

=

∫

Rd

exp
{

t
(

wTy
)}

×

L
∑

l=1

ηl2Φ





γT
l Ω

−1
l (x− ξl)

√

1− γT
l Ω

−1
l γl





1

(2π)
d
2 |Ωl|

1

2

exp

{

−1

2
(y − ξl)

T
Ω−1

l (y − ξl)

}

dy
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After some calculations the MGF can be written as

MZ (t) =
L
∑

l=1

ηl2 exp

{

t
(

wTξl

)

+ t2
wTΩlw

2

}
∫

Rd

Φ





γT
l Ω

−1
l (x− ξl)

√

1− γT
l Ω

−1
l γl





1

(2π)
d
2 |Ωl|

1

2

×

exp

{

−1

2

(

y − ξl −Ω
1

2

l wt

)T

Ω−1
l

(

y − ξl −Ω
1

2

l wt

)

}

dy.

Now, considering the transformation z = Ω
− 1

2

l

(

y − ξl −Ω
1

2

l wt

)

, we get

MY (t) =

L
∑

l=1

ηl2 exp

{

t
(

wTξl

)

+ t2
wTΩlw

2

}
∫

Rd

Φ





γT
l Ω

− 1

2

l z+ γT
l Ω

− 1

2wt
√

1− γT
l Ω

−1
l γ l





exp
{

−1
2z

Tz
}

(2π)
d
2

dz.

By applying the result presented in Ellison [5], detailed in appendix, we obtain

MY (t) =
L
∑

l=1

ηl2 exp

{

t
(

wTξl

)

+ t2
wTΩlw

2

}

Φ
(

δTl wt
)

,

which corresponds to the MGF of a univariate mixture of Skew Normal distribution having the

following parameters:
{

ηl, ξ̃l = wTξl, ω̃l =
(

wTΩkw
)

1

2 , δ̃l = δTl w
}L

l=1
. 22

As a byproduct of this result we have that setting w = (0, . . . , 1, . . . , 0) we obtain the marginal
distribution of the i-th component of the vector Y.

3 Risk Measures

Investors holding short or long positions on portfolios of risky assets are mainly interested in
evaluating the exposure to risk associated to their global positions. Assuming that the distribution
of the portfolio returns follow a multivariate mixture of Skew Normals we calculate different risk
measures for the resulting linear combination of them. The results stated in previous Section 2
provide the theoretical framework to calculate such risk measures. As risk measures, we consider,
the probability of shortfall (PS), i.e. the probability that a portfolio falls short some target level,
the probability of outperformance (PO), i.e the probability of outperforming the target level, and
the more familiar measures known as target shortfall (TS) and tail conditional expectation (TCE).
All these measures can be interpreted as a partial moments of a given order of the corresponding
random variable. They are evaluated for univariate Skew Normal distributions in Section 3.1 and
subsequently extended to mixtures of Skew Normals in Section 3.2. As a latter result we show how
to evaluate the Value-at-Risk and the Expected Shortfall probability using the provided measures.

3.1 Risk measures for univariate Skew Normal distributions

In this Section we provide explicit formulas to evaluate risk measures of a univariate Skew Normal
random variable.
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Theorem 3.1 (PS and PO for univariate Skew Normal). Let Y ∼ SN (ξ, ω, α), the probability
of shortfall PS, i.e. the proability that the random variable Y falls short of the target yp is

PSY (yp, ξ, ω, α) = FX

(

yp − ξ

ω
, α

)

, (3.1)

while the probability that the random variable Y outperforms the target yp, i.e. the probability of
outperformance PO, is

POY (yp, ξ, ω, α) = 1− FX

(

yp − ξ

ω
, α

)

= 1− PSY (yp, ξ, ω, α) , (3.2)

where FX (x, α) is the cdf of a standardized Skew Normal distribution, i.e. X ∼ SN (α) evaluated at
x.

Proof. The shortall probability, PS, is the probability that a univariate random variable,
Y ∼ SN (ξ, ω, α), falls short the threshold yp, and can be evaluated as the zero-th order lower
partial moment (LPM) of the random variable Y with respect to the threshold yp ∈ R

PSY (yp, ξ, ω, α) = LPMY (yp, 0)

= E

{

[yp − Y]0+

}

=

∫

yp−ξ

ω

−∞
2Φ (αx)φ (x) dx

= FX

(

yp − ξ

ω
, α

)

.

The probability of outperformance, PO, is the probability that a univariate random variable,
Y ∼ SN (ξ, ω, α), outperforms the threshold yp, and can be evaluated as the zero-th order upper
partial moment (UPM) of the random variable Y with respect to the threshold yp ∈ R

POY (yp, ξ, ω, α) = UPMY (yp, 0)

= E

{

[Y − yp]
0
+

}

=

∫ +∞

yp−ξ

ω

2Φ (αx)φ (x) dx

= 1− PSY (yp, ξ, ω, α) .

22

Theorem 3.2 (TS for univariate Skew Normal). Let Y ∼ SN (ξ, ω, α), then the target shortfall
TS, of Y is

TSY (yp, ξ, ω, α) = (ξ − yp)POY (yp, ξ, ω, α) + ω [2Φ (αxp)φ (xp) + δb (1− Φ (zp))] , (3.3)

where b =
√

2
π
, zp =

√
1 + α2xp and xp =

yp−ξ
ω

.
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Proof. The target shortfall, TS, can be evaluated as the first order upper partial moment UPM of
the random variable Y ∼ SN (ξ, ω, α), with respect to the threshold yp ∈ R

TSY (yp, ξ, ω, α) = UPMY (yp, 1)

≡ E

{

[Y − yp]
1
+

}

=

∫ +∞

yp−ξ

ω

2Φ (αx)φ (x) dx.

After some algebra we get:

TSY (yp, ξ, ω, α) = (ξ − yp)

∫ +∞

yp−ξ

ω

2Φ (αx)φ (x) dx+ ω

∫ +∞

yp−ξ

ω

2xΦ (αx)φ (x) dx

= (ξ − yp)POY (yp, ξ, ω, α) + ω

∫ +∞

yp−ξ

ω

2xΦ (αx)φ (x) dx.

Integrating by parts we obtain
∫ +∞

yp−ξ

ω

2xΦ (αx)φ (x) dx =
[

− 2φ (x)Φ (αx)
]+∞

xp
+ αb

∫ +∞

xp

exp

{

−x2

2

}

φ (αx) dx

= 2φ (xp) Φ (αxp) + αb

∫ +∞

xp

1√
2π

exp

{

−
(

1 + α2
)

x2

2

}

dx

= 2φ (xp) Φ (αxp) +
αb√
1 + α2

∫ +∞

zp

φ (z) dz

= 2φ (xp) Φ (αxp) + δb [1− Φ (zp)]

where b, xp, zp and δ are defined as before. 22

Finally, in the following theorem we use previous results to calculate the tail conditional expecation
for a univariate Skew Normal distributions.

Theorem 3.3 (TCE for univariate Skew Normal). Let Y ∼ SN (ξ, ω, α), then the tail
conditional expectation of Y, i.e. the mean of Y truncated below the threshold yp, is

TCEY (yp, ξ, ω, α) = ξ +
ωb

PSY (yp, ξ, ω, α)

[

δΦ (zp)−
√
2πφ (xp)Φ (αxp)

]

. (3.4)

where b =
√

2
π

and PSY (x, ξ, ω, α) denotes the probability of shortfall of a Skew Normal r.v.

evaluated at x, defined in equation (3.1).

Proof. Let X ∼ SN (α) be a standardized Skew Normal density, consider Y = ξ + ωX, then Y has
a Skew Normal distribution Y ∼ SN (ξ, ω, α), the TCE of Y is

TCEY (yp, ξ, ω, α) = E (Y|Y ≤ yp)

= ξ + ωE

(

X|X ≤ yp − ξ

ω

)

= ξ + ωE (X|X ≤ xp)

= ξ + ωTCEX (xp, α) , (3.5)
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where xp =
yp−ξ
ω

, and TCEX (xp, α) is the TCE of a standardized Skew Normal distribution,
X ∼ SN (α) and can be evaluated as follows

TCEX (xp, α) = E (X|X ≤ xp)

=
1

FX (xp, α)

∫ xp

−∞
xfX (x, α) dx (3.6)

where fSN (x, α) = 2φ (x)Φ (αx), is the probability density function of the standardized Skew Normal
distribution and FX (xp, α) is the corresponding cdf. By substituting this last expression for the
density in the previous defintion of tail conditional expectation (3.6), it becomes

TCEX (xp, α) =
b

FX (xp, α)

∫ xp

−∞
x exp

{

−x2

2

}

Φ (αx) dx,

where b =
√

2
π
. Integrating by parts, we have

TCEX (xp, α) =
b

FX (xp, α)

[[

− exp

{

−x2

2

}

Φ (αx)

]xp

−∞
+ α

∫ xp

−∞
exp

{

−x2

2

}

φ (αx) dx

]

=
b

FX (xp, α)

[

− exp

{

−
x2p

2

}

Φ (αxp) + α

∫ xp

−∞
exp

{

−x2

2

}

φ (αx) dx

]

, (3.7)

where the last integral in the previous formula (3.7) can be evaluated as follows

∫ xp

−∞
exp

{

−x2

2

}

φ (αx) dx =

∫ xp

−∞

1√
2π

exp

{

−
(

1 + α2
)

x2

2

}

dx

=
1√

1 + α2

∫ zp

−∞

1√
2π

exp

{

−z2

2

}

dz

=
Φ(zp)√
1 + α2

,

where zp =
√
1 + α2xp. By substituting this last expression into the previous equation (3.7) we

obtain the final form for the TCE

TCEX (xp, α) =
b

FX (xp, α)

[

α√
1 + α2

Φ (zp)−
√
2πφ (xp)Φ (αxp)

]

=
b

FX (xp, α)

[

δΦ (zp)−
√
2πφ (xp) Φ (αxp)

]

and, by exploiting equation (3.5), we obtain

TCEY (yp, ξ, ω, α) = ξ +
ωb

PSY (yp, ξ, ω, α)

[

δΦ (zp)−
√
2πφ (xp)Φ (αxp)

]

,

where zp =
√
1 + α2xp, and xp =

yp−ξ

ω
. 22
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3.2 Risk measures for univariate Skew Normal mixtures

In this Section we extend the risk measures presented in the previous section to the mixtures of
univariate Skew Normal distributions.

Theorem 3.4 (PS, PO and TS for mixtures of Skew Normals). Let Y ∼
∑L

l=1 ηlfSN (y|ξl, ωl, αl), then the shortfall probability PS, the probability of outperformance, PO,
and the target shortfall TS of Y are convex linear combinations of the PS, PO and TS, of the
component densities evaluated as in equations (3.1), (3.2) and (3.3):

PSY (yp, L) =

L
∑

l=1

ηlPSl (yp, ξl, ωl, αl) (3.8)

POY (yp, L) =

L
∑

l=1

ηlPOl (yp, ξl, ωl, αl) (3.9)

TSY (yp, L) =
L
∑

l=1

ηlTSl (yp, ξl, ωl, αl) . (3.10)

Proof. The proof is straightforward. 22

Theorem 3.5 (TCE for Skew Normal mixtures). Let Y ∼ ∑L
l=1 ηlfSN (y|ξl, ωl, αl), then the

tail conditional expectation of Y is a convex linear combination of the tail conditional expectations
of the components:

TCEY (yp, L) =
L
∑

l=1

πlTCEl (yp, ξl, ωl, αl) (3.11)

where the weights are πl = ηl
PSl(yp,ξl,ωl,αl)

PSY(yp,L)
, l = 1, 2, . . . , L, with

∑L
l=1 πl = 1.

Proof.

TCEY (yp, L) = E (Y|Y ≤ yp)

=
1

PSY (yp, L)

∫ yp

−∞
y

[

L
∑

l=1

ηlf (y|ξl, ωl, αl)

]

dy

=
1

PSY (yp, L)

L
∑

l=1

ηl

∫ yp

−∞
yf (y|ξl, ωl, αl) dy

=
L
∑

l=1

ηlPSl (yp, ξl, ωl, αl)

PSY (yp, L)
TCEl (yp, ξl, ωl, αl)

=
L
∑

l=1

πlTCEl (yp, ξl, ωl, αl) ,

where πl =
ηlPSl(yp,ξl,ωl,αl)

PSY(yp,L)
, with

∑L
l=1 πl = 1, and TCEl (yp, ξl, ωl, αl) , ∀l = 1, 2, . . . , L, can be

evaluated using equation (3.4). 22
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We now briefly discuss the evaluation of the well known measures of risk: the Value-at-Risk (VaR),
and the Expected Shortfall Probability (ES).

The VaR of portfolio return Z = wTY at confidence level λ is defined as the smallest number z0
such that the probability that Z falls short z0 is not larger than 1− λ

VaRλ (Z) = inf {z0 ∋ P (Z < z0) ≤ 1− λ}
= inf {z0 ∋ F (z0) ≤ 1− λ}
= F−1

Z (1− λ)

where FZ () is the cdf of Z, F−1
Z () is the inverse function of FZ () provided one exists, and the

last inequality holds for continuous distributions. Under the assumption that the risky assets Y

have a mixture of multivariate Skew Normal distributions we have shown in Theorem 2.1 that the
portfolio return Z = wTY is distributed as a univariate mixture of Skew Normals. Hence, the VaR
of the portfolio return Z = wTY at fixed λ confidence level is evaluated as the unique solution with
respect to z of the following equation:

PSZ (z, L)− (1− λ) = 0, (3.12)

where PSZ (z, L) is the probability of shortfall of the distribution of Z.

The Expected Shortfall probability of the portfolio return Z is defined as

ESλ (Z) = E
[

Z|Z ≤ VaRλ (Z)
]

=
1

1− λ

∫

Z≤VaRλ(Z)
zf (z) dz (3.13)

that is, the λ level expected shortfall is the average loss smaller or equal than the λ level quantile
loss VaRλ (Z); this value is analytically tractable for mixture of Skew Normals, and coincides with
the TCE evaluated at the VaRλ (Z), i.e.

TCEZ (VaRλ (Z) , L) =

L
∑

l=1

πlTCEl (VaRλ (Z) , ξl, ωl, αl) , (3.14)

where TCEZ (VaRλ (Z) , L) is evaluated as in equation (3.11).

4 Conclusion

In this paper we provide a new result for linear combinations of multivariate Skew Normal
distributions. This result can be useful when we deal with portfolio returns as convex
linear combinations of different risky assets, modeled by mixtures of multivariate Skew Normal
distributions. Since investors are interested in evaluating the risk associated to their global
portfolios, we calculate risk measures as Value-at-Risk and Expected Shortfall Probability. The
provided formulas can be useful in applications for portfolio optimization.
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Appendix

In this appendix we state the main result contained in Ellison [5] which is useful in deriving the
moment generating function of the Skew Normal distribution and for proving Theorem 2.1.

Theorem 4.1. Let X a Gaussian random variable with mean µ and variance σ2, i.e. X ∼ N
(

µ, σ2
)

,
then

E (Φ (X)) = Φ

(

µ√
1 + σ2

)

. (4.1)

For the proof of the theorem we refer the reader to the work of Ellison [5], and in particular to the
first corollary to the Theorem 2.
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