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nological progress”, computed for 19 highly developed OECD countries over the period

1970–2000 based on (i) the neoclassical growth accounting approach that adopts the Cobb–

Douglas production function specification, (ii) a nonparametric approach where the World

Technology Frontier (WTF) is constructed with Data Envelopment Analysis, and (iii) a “hy-

brid” approach that combines the two. Measures of TFP growth (capturing all output gains

actually obtained in a given country that cannot be traced back to factor accumulation)

are carefully distinguished from measures of technical change (capturing only technological

progress shifting the WTF). Empirical properties of all 22 measures are compared according

to a range of characteristics frequently discussed in the macroeconomic literature. The con-

clusion is that the choice of appropriate measurement methodology should be suited to the

question addressed in each specific study, the simple growth accounting approach is generally

insufficient, and particular attention should be paid to the empirical treatment of technical

efficiency changes. The results are also sensitive to the precision of WTF estimation.
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1 Introduction

In the growth and development accounting literature ever since the seminal work of

Solow (1957), and hence in the bulk of macroeconomic investigations, “technological

progress” has been casually identified with growth of residual productivity, an umbrella

term containing everything that could not be traced back to the accumulation of factors

of production, included in the aggregate production function. It is however uncertain

– and competing methodologies provide conflicting clues on that – what exactly this

production function should be, and what factors it should take as inputs. Seen from

a slightly different angle: it remains unsettled, how one should decompose growth in

output per worker into the contributions of“factors”and“technology”. The objective of

the current article is to investigate these matters more closely, indicating that valuable

lessons can be learned by macroeconomists from the established productivity analysis

literature.

To this end, we will study the empirical properties of 22 alternative specifications

of “technological progress” (i.e., growth of residual productivity): ten versions of total

factor productivity (TFP) growth, and twelve versions of technical change, capturing

technological progress at the World Technology Frontier (WTF), or TFP growth net

of technical efficiency changes. The focus of the study will be with 19 high-income

OECD countries in the period 1970–2000. All compared measures will be computed

with the use of data on aggregate inputs (physical capital, human capital, etc.) and

output (GDP) only.

By contrasting the neoclassical growth accounting approach based on the Cobb–

Douglas production function specification1 with nonparametric approaches based on

deterministic frontier models,2 we will show which predictions regarding “technological

progress”across countries are robust to changes in the production function specification,

and which are not. Concurrently, we will also assess the robustness of our conclusions

to changes in the composition of the underlying dataset. To achieve this latter goal, 15

of our 22 measures of technological progress will be based on WTF estimates computed

with an auxiliary use of US state-level data (beside the OECD country-level data). As

demonstrated in a related study (Growiec, 2012), such augmentation of the dataset

is likely to improve the precision of WTF estimates markedly. The current article

confirms that it also has a significant impact on the implied measures of technological

progress.

1For example, Solow (1957) or Timmer, Ypma and van Ark (2003).
2For example, Färe et al. (1994), Kumar and Russell (2002), Henderson and Russell (2005),

Jerzmanowski (2007), Badunenko, Henderson and Zelenyuk (2008), or Growiec (2012).
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The key difference between neoclassical growth accounting and frontier approaches

to the measurement of technological progress lies with the treatment of each country’s

technical inefficiency of factor use. The growth accounting approach assumes 100%

efficiency for all countries in all years. Frontier approaches, on the other hand, relax

this restriction by applying the concept of the WTF. The WTF is defined as maximum

output which could potentially be produced given inputs, and viewed as a function of

the inputs. In the current study, it will be constructed with Data Envelopment Analy-

sis (DEA), one of the most popular methodologies of productivity analysis. Technical

inefficiency will then be directly interpreted as distance to the frontier. Having our

constructed WTF in hand, we will also consider a “hybrid” parametric–nonparametric

approach, put forward in the literature on “appropriate technology vs. efficiency” de-

compositions (Basu and Weil, 1998; Jerzmanowski, 2007).

One should also be aware of another important dividing line among “technological

progress”measures. Namely, from the established productivity analysis literature (e.g.,

Färe et al., 1994; Ray and Desli, 1997; Maudos, Pastor and Serrano, 2000; Coelli et

al., 2005; Zofio, 2007; O’Donnell, 2009) it follows that there are two distinct groups

of such measures: TFP growth measures, capturing productivity gains actually ob-

tained in a given country (e.g., TFP growth as defined by Solow, 1957; Malmquist

index), and technical change measures, capturing technological progress at the World

Technology Frontier (e.g., potential technical change (PTC) and technical change (TC)

indexes defined in Zofio, 2007). The difference between these two groups of measures

lies with the treatment of technical efficiency changes, i.e., changes in the countries’

distance to the common WTF. TFP growth measures include this component, whereas

technical change indexes leave it out, as demonstrated in the following output growth

decomposition:

Output growth = Efficiency change× Technical change
︸ ︷︷ ︸

TFP growth

×Factor accum. (1)

By assuming 100% technical efficiency of all countries in all years, neoclassical growth

accounting implicitly identifies TFP growth with technical change. However, when

technical inefficiency is allowed for, the difference between both measures becomes

important. Our empirical analysis indicates that large discrepancies between the two

groups of measures are visible in terms of almost all analyzed characteristics. Changes

in countries’ distance to the WTF turn out to be both sizeable and highly variable,

and thus their appropriate treatment is essential in the assessment of the pace of

technological progress across countries.

Despite all the aforementioned differences, several unifying theoretical frameworks

have been proposed in the productivity analysis literature, where the neoclassical
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growth accounting approach and the nonparametric frontier analysis can be taken as

special instances. Such encompassing structures are useful for pinpointing the theo-

retical foundations of the alternative approaches to the measurement of technological

progress. In particular, the framework developed by ten Raa and Shestalova (2011)

applies to our case directly.3 Among the four alternative measurement methods con-

sidered in that article, neoclassical growth accounting and the DEA approach are the

only two which do not require any additional data beyond aggregate inputs and output,

thus implicitly confirming our choice of compared measures.

Given this background, the contribution of the current article to the literature is

to:

• discuss formally the methodology behind several alternative empirical approaches

to the measurement of “technological progress” across countries,

• provide a synthetic, numerical assessment of their empirical properties, based on

an international panel dataset encompassing 19 highly developed OECD countries

in the period 1970–2000.

To the latter end, we will compute (i) the fraction of growth in GDP per worker

explained by the technological progress (residual) component in each of the 22 speci-

fications, as well as (ii) the explained fraction of its cross-sectional and intertemporal

variance. We will also calculate the correlations of these residual measures with out-

put growth, and ex post prediction errors when output growth is predicted solely by

the “factor-only component” (i.e., when residual technological progress is set to zero).

Another exercise would be to compute pairwise correlation coefficients among our 22

measures of technological progress, to see if they convey essentially the same informa-

tion, or conversely – if the definitional differences are empirically meaningful.

To our best knowledge, the current paper constitutes the first attempt to bring

together several alternative methods of measurement of “technological progress” across

countries, with the objective of comparing their empirical properties, considering both

measures based on neoclassical growth accounting (which is still a standard approach

in macroeconomics) and the ones based on nonparametric WTF estimates.

In the end, the lesson from the current study is that the researcher’s choice of the

method of measuring technological progress across countries should always be selected

in accordance with the analyzed research question, and the treatment of technical effi-

ciency changes should be particularly closely studied. It seems that there is no unique

3Ten Raa and Mohnen (2002) and ten Raa (2005) have provided similar setups, too, but they

focused on the case of a single multisector economy and defined technical inefficiency as the scope for

output-enhancing intersectoral reallocation of inputs, instead of the country’s distance to the WTF.
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choice which would be empirically “best”; on the contrary, all considered “goodness of

fit” measures vary significantly with changes in methodology: different methods are

best in explaining average output growth rates, different methods excel in capturing

their variance, etc.

We do not observe any alignment of this sort in the literature, though. Instead,

alternative analytical methods are used for answering the same sets of questions, often

leading to diverging results. For example, methodological differences between alter-

native decompositions of overall output growth into contributions of physical capi-

tal accumulation, accumulation of other production factors, and residual productivity

growth, seem to merely reflect the backgrounds of their authors, either in neoclassical

macroeconomics and/or national accounts (e.g., Jorgenson, 1995, Timmer, Ypma and

van Ark, 2003) or in productivity analysis dealing with firm-level data (e.g., Färe et

al., 1994, Kumar and Russell, 2002).

In the current study we also find that the precision of WTF estimates matters a lot

for the predicted rates of technological progress, especially if technical change measures

are considered (as opposed to TFP growth measures). Furthermore, the results of our

nonparametric analyses indicate marked departures from (i) full technical efficiency,

(ii) the Cobb–Douglas production function specification, and (iii) perfect substitution

between skilled and unskilled labor (see also Growiec et al., 2011 and Growiec, 2012).

As far as the methodology of the current article is concerned, it should be men-

tioned that even though each of our 22 measures of technological progress is based on a

different definition and/or dataset, we in fact disregard several alternative methodolo-

gies which could potentially be used for our purposes as well. First of all, we omit the

strand of literature which deals with CES production functions (e.g., Duffy and Pa-

pageorgiou, 2000; Antràs, 2004; Klump, McAdam and Willman, 2007; Chirinko, 2008;

León-Ledesma, McAdam and Willman, 2010). Clearly, relaxing the Cobb–Douglas

production does not imply the need for an immediate jump into the “extreme” non-

parametric DEA case where no explicit functional form of the production function is

assumed. The class of CES production functions is another natural extension of the

Cobb–Douglas baseline. Secondly, we also do not consider stochastic frontier models

here (see e.g., Koop, Osiewalski and Steel, 1999, 2000; Kumbhakar and Lovell, 2000;

Bos et al., 2010). Adopting a methodology based on such models could however help

us span a natural bridge between simpler approaches based on Cobb–Douglas or CES

production functions, and the nonparametric approaches considered in the current pa-

per.4 Yet another question which ought to be addressed in near future is, how large is

4Another advantage of stochastic frontier models is that they offer both an assessment of distance

of each country to the WTF – a concept which is at heart of the current analysis – and an explicit
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the uncertainty in our nonparametric estimations of the WTF. This question could be

addressed with the use of bootstrap techniques for nonparametric frontier models (see

e.g. Simar and Wilson, 2000; Kneip, Simar and Wilson, 2008; Badunenko, Henderson

and Russell, 2009).

The article is structured as follows. In Section 2, we specify the 22 alternative

measures of technological progress. In Section 3, we describe our dataset. In Section

4, we provide our main results regarding the empirical properties of each particular

measure of technological progress. Section 5 concludes.

2 Measurement of technological progress

2.1 Technology and technical efficiency

Even though in macroeconomics, the term “technological progress” is used in a broad

range of contexts, the productivity analysis literature requires us to be more precise

here. In the current paper, we will therefore always specify if we are talking about mea-

sures of TFP growth (which include technical efficiency changes), or technical change

measures (which leave them out).

All definitions will be constructed on the basis of production possibility sets St of

feasible input–output configurations, for t =1970, 1975, 1980, 1985, 1990, 1995, 2000:

St = {(xt, yt) : xt can produce yt}, (2)

where xt is the vector of inputs (which will be defined for each measure separately), yt
is the country’s output (GDP per worker), and St satisfies Färe and Primont (1995)

axioms for all t. Based on this specification of the world’s technology at each given year

t, we can define the Shephard’s output distance function (cf. Zofio, 2007), capturing

the country’s distance to the frontier, as:

Dt
O(xt, yt) = inf

θ
{θ > 0 : (xt, yt/θ) ∈ St} (3)

which is linearly homogenous of degree +1 in yt and nonincreasing in xt. IfD
t
O(xt, yt) =

1 then the given country is technically efficient; otherwise it is inefficient. The World

statistical treatment of the estimation error – a feat which our methodology does not offer. They also

allow more sophisticated functional forms to be estimated than just Cobb–Douglas or CES: perhaps

the most popular one in this literature is the relatively flexible translog production function, allowing

for systematic deviations from constant returns to scale and a constant elasticity of substitution. A

comparison between deterministic nonparametric, and stochastic parametric frontier models should

thus be considered as an important task for further research.
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Technology Frontier (WTF) is a fragment of the boundary of the production possibility

set, for which output is maximized given inputs:

WTF t = {(xt, yt) : D
t
O(xt, yt) = 1}. (4)

Hence, if a country is technically efficient then it spans (i.e., belongs to) WTFt.

The production possibility set and the WTF for each year t = 1970, 1975, 1980,

1985, 1990, 1995, 2000 will be constructed nonparametrically using Data Envelopment

Analysis, the details of which will be discussed in a separate subsection. Alternatively,

in some specifications, we will take the neoclassical growth accounting approach which

assumes full technical efficiency of each country and a strict functional form of the

aggregate production function. We will also consider a “hybrid”DEA–growth account-

ing approach which retains the Cobb–Douglas production function specification from

growth accounting but uses DEA-based measures of technical efficiency.

It is critical to note that with the passage of time, each country will observe three

different types of shifts: factor accumulation, shifts of the WTF (i.e., technical change),

and changing distance to the frontier (i.e., efficiency change). The exact measurement

of each of those shifts is conditional on the definition of the production technology, or

the construction of St. Thus the computed pace of “technological progress” must also

be conditional on these assumptions.

2.2 The growth accounting approach

The development and growth accounting literature (see e.g., Solow, 1957; Caselli, 2005)

habitually defines total factor productivity (TFP) on the basis of a Cobb–Douglas

production function, computed using either only physical capital and labor, or physical

and (homogenous) human capital as inputs. For country i in year t, TFP (sometimes

referred to as the Solow residual) is then computed as:

Ait =
yit
kαit

or Ait =
yit

kαith
1−α
it

, (5)

where α is most often assumed to take the “consensus” value of 1/3 (Kydland and

Prescott, 1982). Consequently, TFP growth is captured by the gross growth rate of the

Solow residual:

TFP
x
(i, t− 1, t) =

yit
yi,t−1

(
ki,t−1

kit

)α

(6)

or

TFP
x
(i, t− 1, t) =

yit
yi,t−1

(
ki,t−1

kit

)α (
hi,t−1

hit

)1−α

. (7)
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The subscript x refers to the specific choice of variables entering the input vector,

x = (k) or x = (k, h).

This approach requires the researcher to assume the Cobb–Douglas production func-

tion specification, constant returns to scale, and full efficiency of all production units

(i.e., countries). Hence, the efficiency change component is trivially set to unity, and

TFP growth is equal to technical change, and both of them are equal to output growth

divided by factor accumulation. By the same token, the best practice technology is

identified with the average practice technology here. Yet, if we allow for technical

inefficiency in production and relax the restrictions on the functional form of the ag-

gregate production function, then the data may reject these assumptions or at least

indicate some departures from this benchmark. Admitting that multiple methods for

generalizing the growth accounting approach exist in the literature (as discussed in the

Introduction), we limit ourselves to the nonparametric DEA approach which provides

clear-cut implications for the measurement of TFP growth and technical change across

countries.

2.3 Data Envelopment Analysis

Before we can view the technological developments in each country as relative to the

World Technology Frontier (WTF), assuming that there might be some technical inef-

ficiency involved in the production process, which itself might be changing over time,

we must first construct the WTF itself. Knowing the maximum attainable (frontier)

output given factor inputs in country i at time t, denoted as y∗t (xit), is thus crucial for

obtaining these measures of “technological progress”.

To obtain estimates of output at the WTF, i.e., the best-practice production func-

tion, we shall use the nonparametric DEA algorithm, introduced to the context of

cross-country productivity growth analyses by Färe et al. (1994) and followed by,

among others, Kumar and Russell (2002), Henderson and Russell (2005), Jerzmanowski

(2007), Badunenko, Henderson and Zelenyuk (2008), and Growiec (2012). The princi-

pal idea behind DEA is to envelop all data points in the “smallest” convex set and to

infer the production function as a fragment of the boundary of this set for which output

is maximized given inputs, i.e. as a convex hull of production techniques (input–output

configurations) used in the current data. For each country i and period t, DEA provides

a decomposition of output yit:

yit = y∗t (xit)×Dt
O(xit, yit), (8)

i.e., into a product of the maximum attainable output given inputs y∗t (xit) and the
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Shephard output distance functionDt
O(x

t, yt) ∈ (0, 1], measuring the“vertical”distance

of country i to the technology frontier at time t.

In the current analysis, we assume that technologies that were once available, remain

available forever, and hence we do not allow for technical regress. This requires us to

carry out a sequential WTF construction procedure where for each year t, WTF t is

spanned by observations from all years τ = 1970, ..., t.

Since each dataset contains a finite number of data points, one for each territorial

unit and each year, by construction the DEA–based production function will be piece-

wise linear and its vertices will be the actually observed efficient input–output configu-

rations. Given our assumptions, the (output-oriented) deterministic DEA method is a

linear programming technique allowing one find the Shephard output distance function

Dt
O(xjt, yjt) for each unit j = 1, 2, ..., I and given t ∈ {1, 2, ..., T} in the sample such

that its reciprocal – the Debreu–Farrell efficiency index θjt is maximized subject to a

series of feasibility constraints (cf. Fried, Lovell and Schmidt, 1993):

max
{θjt,λ11,...,λIt}

θjt

s.t. θjtyjt ≤
t∑

τ=1

I∑

i=1

λiτyiτ ,

t∑

τ=1

I∑

i=1

λiτx1,iτ ≤ x1,jt,

t∑

τ=1

I∑

i=1

λiτx2,iτ ≤ x2,jt,

... (9)
t∑

τ=1

I∑

i=1

λiτxn,iτ ≤ xn,jt,

λiτ ≥ 0, i = 1, 2, ..., I, τ = 1, 2, ..., t,

It is also additionally assumed that
∑t

τ=1

∑I

i=1 λiτ = 1 in the VRS case (variable

returns to scale). Under the CRS (constant returns to scale) assumption, no further

restriction on λiτ ’s is necessary.
5

Throughout the remaining text, and following Zofio (2007), the Shephard distance

function taking into consideration as benchmark technology the DEA frontier with

VRS will be denoted as Dt
O(xit, yit), whereas the Shephard distance function from the

5The CRS case is sometimes referred to as CCR in the honor of its authors (Charnes, Cooper, and

Rhodes, 1978). The VRS case is referred to as BCC (Banker, Charnes, and Cooper, 1984).
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DEA frontier with CRS – as D̆t
O(xit, yit). Both functions coincide only if the true

underlying technology is CRS, which is likely to be roughly true in the case of cross-

country OECD data, but rather not exactly true. Consequently, y∗t (xit) will denote

the maximum attainable output given the DEA frontier with VRS, and y̆∗t (xit) – with

CRS.

The choice of DEA as our WTF construction method was based primarily on the

advantageous fact that it does not require any assumptions on the functional form of

the aggregate production function (provided that it satisfies the free-disposal property).

Indeed, the usual assumption of a Cobb–Douglas aggregate production function may

lead to marked biases within growth accounting or levels accounting exercises leading

to an overestimation of the role of total factor productivity (TFP) in explaining growth,

as argued by Caselli (2005) and Jerzmanowski (2007), a feature which is avoided when

the DEA approach is adopted.6 Also, it does not require any additional data beside

aggregate inputs and output.

One should also be aware of the limitations of the DEA approach. First, its deter-

ministic character makes it silent on the estimation precision of the aggregate produc-

tion function and of the predicted efficiency levels if inputs and outputs are subject to

stochastic shocks. Second, the DEA provides a biased proxy of the actual technological

frontier. In fact, even the most efficient units in the sample could possibly operate with

some extra efficiency, since they are themselves aggregates of smaller economic units

and must therefore have some internal heterogeneity. After taking account of that, the

frontier would be shifted upwards; efficiency is nevertheless normalized to 100% for the

most efficient units in the sample. Third, the DEA constructs the aggregate production

function basing on the (relatively few) efficient data points. This makes it naturally

sensitive to outliers and measurement error. We deal with this issue very carefully.

2.4 Malmquist indexes and their decompositions

Based on our DEA results, we are able to define a range of measures of TFP growth

and technical change. The following classification of these measures is based on Zofio

(2007).7 The measures of TFP growth are:

1. The CRS Malmquist productivity index, computed from a production function

6As for the predicted shape of the production function, DEA can only offer its finite-sample,

piecewise linear approximation. With sufficiently large data samples, however, certain parametric

forms could be tested formally against this approximate DEA-based nonparametric benchmark, such

as the Cobb–Douglas or translog (cf. Growiec et al., 2011).
7See also O’Donnell (2009).
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constructed with the non-parametric DEA algorithm with CRS:

MCRS
x

(i, t− 1, t) =

√

D̆t
O(xit, yit)

D̆t
O(xi,t−1, yi,t−1)

D̆t−1
O (xit, yit)

D̆t−1
O (xi,t−1, yi,t−1)

= (10)

=
D̆t

O(xit, yit)

D̆t−1
O (xi,t−1, yi,t−1)

√

y̆∗t (xit)

y̆∗t−1(xit)

y̆∗t (xi,t−1)

y̆∗t−1(xi,t−1)
.

The CRS Malmquist index defined above is a geometric average (Fisher ideal

index)8 of CRS Malmquist indexes taking technology at time t and t − 1 as the

benchmark technology. It is also a product of the country’s efficiency ratio at

periods t and t − 1, and the technical change (“WTF shift”) factor. Intuitively,

it captures technological progress actually observed in a given country, reflected

both in the country’s progress or regress with respect to the WTF, and the pace

at which the WTF itself is shifted.

As pointed out by several authors (e.g., O’Donnell, 2009; Daskovska, Simar and

Van Bellegem, 2010), the Malmquist index is not multiplicatively complete (cir-

cular), that is, in generalMCRS
x

(i, t−2, t) ̸=MCRS
x

(i, t−2, t−1)·MCRS
x

(i, t−1, t).

2. The VRS Malmquist productivity index, computed from a production function

constructed with the non-parametric DEA algorithm with VRS:

MV RS
x

(i, t− 1, t) =

√

Dt
O(xit, yit)

Dt
O(xi,t−1, yi,t−1)

Dt−1
O (xit, yit)

Dt−1
O (xi,t−1, yi,t−1)

(11)

=
Dt

O(xit, yit)

Dt−1
O (xi,t−1, yi,t−1)

√

y∗t (xit)

y∗t−1(xit)

y∗t (xi,t−1)

y∗t−1(xi,t−1)
.

Again, the VRS Malmquist index defined above is a geometric average (Fisher

ideal index) of VRS Malmquist indexes taking technology at time t and t− 1 as

the benchmark technology. The difference is that this time we allow for variable

returns to scale.

The VRS Malmquist index is not multiplicatively complete (circular) either, that

is, in general MV RS
x

(i, t− 2, t) ̸=MV RS
x

(i, t− 2, t− 1) ·MV RS
x

(i, t− 1, t).

The measures of technical change are the following:

8See e.g., Henderson and Russell (2005) for a discussion.
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1. Potential technical change PTC, capturing the rate of technical change at the

WTF, constructed with the non-parametric DEA algorithm with CRS. It is de-

fined as:

PTC
x
(i, t− 1, t) =

√

D̆t−1
O (xit, yit)

D̆t
O(xit, yit)

D̆t−1
O (xi,t−1, yi,t−1)

D̆t
O(xi,t−1, yi,t−1)

=

√

y̆∗t (xit)

y̆∗t−1(xit)

y̆∗t (xi,t−1)

y̆∗t−1(xi,t−1)
.

(12)

PTC, first proposed by Färe et al. (1994), isolates the effects of a shifting WTF

(technical change at the WTF) from the effects of efficiency changes. As argued

by Ray and Desli (1997), however, PTC is the exact measure of technical change

at the WTF only if the data are in perfect alignment with the CRS restriction.

Otherwise, it convolutes technical change with scale efficiency change.

It is also easily noticed that

MCRS
x

(i, t− 1, t) =
D̆t

O(xit, yit)

D̆t−1
O (xi,t−1, yi,t−1)

× PTC
x
(i, t− 1, t) ≡ (13)

≡ EC
x
(i, t− 1, t)× PTC

x
(i, t− 1, t).

Hence, potential technical change is the CRS Malmquist index net of CRS tech-

nical efficiency changes.

2. Technical change TC, capturing the rate of technical change at the WTF, con-

structed with the non-parametric DEA algorithm with VRS. It is defined as:

TC
x
(i, t− 1, t) =

√

Dt−1
O (xit, yit)

Dt
O(xit, yit)

Dt−1
O (xi,t−1, yi,t−1)

Dt
O(xi,t−1, yi,t−1)

=

√

y∗t (xit)

y∗t−1(xit)

y∗t (xi,t−1)

y∗t−1(xi,t−1)
.

(14)

Just like PTC, the current measure TC isolates the effects of a shifting WTF

(technical change at the WTF) from the effects of efficiency changes. As argued

by Ray and Desli (1997), TC is the exact measure of technical change at the

WTF in the general case of variable returns to scale.

It is also easily noticed that

MV RS
x

(i, t− 1, t) =
Dt

O(xit, yit)

Dt−1
O (xi,t−1, yi,t−1)

× TC
x
(i, t− 1, t) ≡ (15)

≡ TEC
x
(i, t− 1, t)× TC

x
(i, t− 1, t).

Hence, technical change is the VRS Malmquist index net of VRS technical effi-

ciency changes.
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To see how much noise is introduced into the analysis if CRS decompositions are

used when the technology is truly VRS, the following decomposition is also useful

(Zofio, 2007):

MCRS
x

(i, t− 1, t) = MV RS
x

(i, t− 1, t)×RTS
x
(i, t− 1, t) = (16)

= TEC
x
(i, t− 1, t)× TC

x
(i, t− 1, t)×RTS

x
(i, t− 1, t),

where

RTS
x
(i, t− 1, t) =

√

D̆t−1
O (xit, yit)D

t−1
O (xi,t−1, yi,t−1)D̆t

O(xit, yit)Dt
O(xi,t−1, yi,t−1)

Dt−1
O (xit, yit)D̆

t−1
O (xi,t−1, yi,t−1)Dt

O(xit, yit)D̆t
O(xi,t−1, yi,t−1)

.

(17)

Hence, all differences between the CRS and VRS specifications can be lumped

into the returns-to-scale component RTS. The interpretation of this component

is the following (Zofio, 2007): “if RTS
x
(i, t−1, t) > 1, the firm [country] improves

its performance on a scale basis with regard to the base period productivity

benchmark by exploiting increasing returns to scale and getting closer to the

MPSS [most productive scale size]. Contrarily, RTS
x
(i, t − 1, t) < 1 indicates

that input change carries decreasing returns to scale and the firm [country] is

moving away from optimal scale”.

2.5 The “hybrid” approach

Alongside the simplest growth accounting approach and the more involved DEA-based

measurement methods defined above, we shall also consider an intermediate, “hybrid”

approach. It goes along the lines of neoclassical growth accounting in defining TFP

growth as the ratio of output and input growth, with the aggregate production function

being defined as Cobb–Douglas with CRS. It also disentangles technical change along

the WTF from changes in technical efficiency, however, by multiplying the TFP growth

rate with the ratio of CRS DEA-based technical efficiency measures. Hence, concep-

tually, this hybrid TFP growth measure is a measure of technical change (technical

change at the WTF):

T̃FP
x
(i, t− 1, t) =

y̆∗t (xit)

y̆∗t−1(xi,t−1)

(
ki,t−1

kit

)α

(18)

or

T̃FP
x
(i, t− 1, t) =

y̆∗t (xit)

y̆∗t−1(xi,t−1)

(
ki,t−1

kit

)α (
hi,t−1

hit

)1−α

, (19)

where α = 1/3 and y∗t is the maximum output per worker attainable at time t given

inputs. This number is evaluated from the WTF, computed according to the non-

parametric DEA algorithm with CRS. The CRS assumption is used here for coherence
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with the assumed Cobb–Douglas function which requires CRS as well. As opposed to

TFP growth obtained via neoclassical growth accounting, the “hybrid” approach deals

exclusively with the best practice technology, not the average practice technology.

Inserting the identity yit = Dt
O(xit, yit)×y

∗
t (xit) into the above definitions, we obtain

the following decomposition of TFP growth, computed with the growth accounting

approach:

TFP
x
(i, t− 1, t) = EC

x
(i, t− 1, t)× T̃FP

x
(i, t− 1, t), (20)

where EC
x
(i, t − 1, t) is the CRS technical efficiency change component defined in

equation (13). This leads to the following output growth decomposition:

yit
yi,t−1

= EC
x
(i, t− 1, t)× T̃FP

x
(i, t− 1, t)×

(
kit
ki,t−1

)α (
hit
hi,t−1

)1−α

, (21)

known in the growth accounting literature as the“appropriate technology vs. efficiency”

output growth decomposition (Basu and Weil, 1998; Jerzmanowski, 2007; Growiec,

2012).

2.6 Information sets

As mentioned in the Introduction, the current paper considers 22 alternative empirical

measurements of“technological progress”(i.e., TFP growth or technical change). Along

one dimension, this multiplicity has been logically grouped above into six categories

differing in methodology. Alternatively, however, they can also be classified into four

categories according to the information set (or vector x) used for computing them.

Intersecting these two dimensions naturally leads to a 4× 6 matrix. In its rows we put

the six alternative methods for computing “technological progress”, described above,

whereas in its columns we put information sets Ii, i = 1, 2, 3, 4:

• I1: data on OECD countries and US states, including GDP per worker and the

stock of physical capital per worker (xit = kit);

• I2: data on OECD countries only, including GDP per worker as well as physical

and human capital per worker (xit = (kit, hit));

• I3: data on OECD countries and US states, including GDP per worker as well

as physical and human capital per worker (xit = (kit, hit));

• I4: data on OECD countries and US states, including GDP per worker, phys-

ical capital and the stocks of unskilled and skilled labor per worker (xit =

(kit, L
U
it , L

S
it)).

14



Having defined the information sets as above, we immediately note the following nesting

relationships: I1 ⊂ I3 ⊂ I4 and I2 ⊂ I3 ⊂ I4.

The obvious advantage of using I3 over I1 is that human capital is one of the

important factors driving short-to-medium run output growth and convergence, and

thus omitting it overstates the role of physical capital accumulation (cf. Henderson

and Russell, 2005), and possibly also residual productivity growth.

The advantage of using I3 over I2 comes from the fact that the US are a country

with substantial internal heterogeneity in inputs and output, which always spans the

WTF when considered as a single data point (cf. Growiec, 2012). Hence, we expect

that the WTF will be estimated with less precision when internal heterogeneity of the

US is disregarded than in the case when the particular US states are included in the

dataset as well.9

In the case of I4 we assume that the stocks of unskilled and skilled labor are a

decomposition of total human capital per worker h used in I3 (such that h = LU +LS),

but they enter the aggregate production function separately and thus are allowed to be

imperfectly substitutable. LU captures human capital per worker in the sub-population

with less than secondary education, whereas LS captures human capital per worker in

the sub-population with secondary or higher education. Allowing unskilled and skilled

labor to be imperfectly substitutable in the aggregate production function follows from,

among others, Caselli and Coleman (2006) and empirical evidence in Pandey (2008);

it explains the theoretical advantage of using I4 over I3.

One possible disadvantage of using larger information sets instead of smaller ones

is, on the other hand, that all our macroeconomic variables are measured (constructed)

with substantial error, and some of these errors may cancel out in the aggregate case

but (unwillingly) drive some of our results in the disaggregate case.

Visually, the discussed 4 × 6 matrix is presented in Table 1. The notation “(C.)”

denotes the countries-only dataset which does not include US state-level data.

Upon reading the table, the following facts are worth noting. First, the measure-

ment of TFP growth across countries according to the Cobb–Douglas-based growth

accounting procedure does not change whether we include US states in the dataset

as well or not. Second, there is (unfortunately) no clear consensus in the literature

on the elasticity of substitution between skilled and unskilled labor which could then

be inserted as a “human capital” aggregate into a Cobb-Douglas production function

with physical and human capital (cf. Caselli and Coleman, 2006). In earlier literature

where human capital was treated as homogenous factor, this elasticity was assumed

9See Growiec (2012) for a discussion on the appropriateness of sub-national disaggregation of the

US and consequences of the idea to further disaggregate other countries, or US states themselves.
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Table 1: Matrix of alternative specifications.

Information sets

I1 I2 I3 I4

TFP growth

parametric C-D TFPk TFPk,h

nonparametric Malmquist (CRS) MCRS
k MCRS

k,h (C.) MCRS
k,h MCRS

k,LU ,LS

nonparametric Malmquist (VRS) MV RS
k MV RS

k,h (C.) MV RS
k,h MV RS

k,LU ,LS

Tech change

hybrid C-D + DEA T̃FP k T̃FP k,h(C.) T̃FP k,h T̃FP k,LU ,LS

nonparametric PTC (CRS) PTCk PTCk,h(C.) PTCk,h PTCk,LU ,LS

nonparametric TC (VRS) TCk TCk,h(C.) TCk,h TCk,LU ,LS

to be infinite. We replicate this assumption here to conform with that literature, and

hence our measure of TFP growth boils down to the same number in the cases of all

three information sets I2, I3, I4, resulting in two empty slots in our 4× 6 matrix.

Third, the CRS Malmquist index as well as potential technical change PTC com-

puted with I1 are degenerate measures of “technological progress” because the CRS

restriction imposed on a single-factor production function forces it to be linear in

the whole domain. PTCk is thus identically unity for all countries and years, and

MCRS
k ≡ ECk: all changes in output per worker that are not proportional to physical

capital accumulation are automatically identified as technical efficiency changes. This

must be remembered when interpreting the results.

3 Data

The dataset used in the study covers 19 highly developed OECD countries: Australia,

Austria, Belgium, Canada, Denmark, Finland, France, Greece, Ireland, Italy, Japan,

Netherlands, Norway, Portugal, Spain, Sweden, Switzerland, United Kingdom, and

United States, as well as 40 US states.10 The sample covers the period 1970–2000,

in 5-year intervals. Even though the frequency of the data is low, due to the limited

availability of human capital data, it is nevertheless sufficient the purposes of the

current study which focuses on medium-to-long run phenomena. All the data we are

using are set in per worker terms.

10We dropped Germany due to the presence of the unification shock in the data, Luxembourg

because of its extraordinarily high output primarily due to specialization and the activity of multina-

tional firms, and the following US states: AK, CO, DC, DE, LA, NV, NH, NM, UT, WV, WY, due

to reasons such as high oil extraction rents, specialization, special tax status, etc. The precise reasons

for these omissions are discussed in the appendix.
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International data on GDP and GDP per worker are taken from the Penn World

Table 6.2 (Heston, Summers, and Aten, 2006), and US state-level GDP and GDP

per worker – from the Bureau of Economic Analysis, Regional Accounts. The unit of

measurement is the PPP converted US dollar under constant prices as of year 2000.

US state-level data have been multiplicatively adjusted to guarantee internal coherence

with the aggregate US data from the Penn World Tables.

The physical capital series have been constructed using the perpetual inventory

method described, among others, by Caselli (2005) and OECD (2009). We have taken

country-level investment shares as well as government shares from the Penn World

Tables 6.2. The procedure for constructing state-level physical capital data for our

study is more complicated due to missing data. Description of the imputation process

can be found in the appendix.11

Country-level human capital data have been taken from de la Fuente and Doménech

(2006), and US state-level human capital data – from the National Priorities Database.

US state-level data have been imputed when data were missing, using the indirect

evidence from Turner, Tamura, Mulholland, and Baier (2007).Unskilled labor LU and

skilled labor LS are measured in “no-schooling equivalents”: each worker’s labor input

is weighted by her educational attainment. This requires us to split the overall level

of human capital per worker into stocks of “human capital within unskilled labor” and

“within skilled labor”.

In sum: from the raw educational attainment data we have constructed the human

capital aggregates using the Mincerian exponential formula with a concave exponent

following Hall and Jones (1999), and more directly, Caselli (2005):

LU =
∑

i∈SU

ψie
φ(si), LS =

∑

i∈SS

ψie
φ(si), (22)

where SU is the set of groups of people who completed less than 12 years of education

(less than elementary, elementary, less than secondary), SS is the set of groups of people

who completed 12 years of education or more (secondary, less than college, college or

more), ψi captures the share of i-th education group in total working-age population

of the given country, si represents years of schooling in i-th education group (cf. de la

11Two alternative methods for computing TFP growth have recently been proposed by Burda and

Severgnini (2008). These methods do not require one to construct the physical capital series. We do

not apply these methods here because capital stocks are necessary for computing all other measures

of technological progress, and because we want to maintain strict comparability between the methods

throughout the whole study.
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Fuente and Doménech, 2006), and ϕ(s) is a concave piecewise linear function:

ϕ(s) =







0.134s s < 4,

0.134 · 4 + 0.101(s− 4) s ∈ [4, 8),

0.134 · 4 + 0.101 · 4 + 0.068(s− 8) s ≥ 8.

(23)

Furthermore, assuming that everyone who has not completed high school is counted

as unskilled, and everyone who has completed it – as skilled, we compute the overall

scale of human capital per worker as a sum of its two components: h = LU + LS.

Setting the cutoff point at high school level seems adequate for OECD economies are

typically technologically advanced and highly capitalized.12 For any further caveats

carried forward by our dataset, please consult the appendix.

4 Main results

4.1 Technological progress across OECD countries, 1970-2000

Keeping in mind all the methodological caveats, let us now pass to the presentation of

our foremost set of empirical results: “technological progress”rates across the 19 OECD

countries in our sample, for the entire period 1970–2000, calculated according to each

of the 22 diverse specifications. These results are summarized in Tables 2–3. Please

note that the ultimate row in those tables contains unweighted cross-country averages,

computed as annualized growth rates from the geometric averages of the respective

2000/1970 ratios of technology levels.

From Tables 2–3 we observe that expanding the information set from I1 or I2

towards I4, as well as using more and more general assumptions (i.e., relaxing the

Cobb–Douglas restriction and then relaxing the CRS assumption), generally decreases

the estimates of technological progress rates. This is because by allowing more degrees

of freedom in the production function, we allow it to fit the observed patterns of factor

accumulation and output growth better, and so there is less space left for residual

productivity growth.

Even more importantly, already at this point we observe the empirical relevance of

the theoretical distinction between measures of technical change, interpreted as “gen-

uine” technological progress at the WTF, and TFP growth measures, capturing techno-

logical progress actually observed in each given country. The first observed discrepancy

12It might be set too high if developing economies were to be considered as well, though (cf. Caselli

and Coleman, 2006).
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is that for the former group of measures, “technological progress” is by construction

constrained to non-negative rates. Since our methodology includes the assumption

that all input-output configurations, once used, remain available forever, technological

regress at the frontier is impossible. For the latter group of measures, in contrast,

technological progress can easily be negative: if only output growth is outpaced by the

rate of factor accumulation, then this difference will be reflected in a fall in technical

efficiency, and residual technological progress will become negative. We in fact observe

exactly this kind of dynamics in our data in Japan, Portugal, Spain, and Greece. The

second empirical discrepancy is that technical change is positively correlated with ini-

tial physical and human capital stocks (cf. Kumar and Russell, 2002; Jerzmanowski,

2007) and negatively correlated with the rates of subsequent output growth, whereas

TFP growth, due to taking account of efficiency changes as well, is much more dis-

persed across countries, and correlates positively both with overall output growth and

with the initial stocks of physical and human capital. All these regularities are visible

in Figure 1.13

Please note that the results presented in Table 2–3 and Figure 1 are averaged over

the entire period 1970–2000. Even though this already gives some information about

the empirical properties of each particular measure of technological progress, allows

for first comparisons, and gives a clue that certain measures may be more useful for

some purposes and less useful for others, it does not produce enough data for a reliable

analysis of the relative weaknesses and strengths of each measure. This can only be

done with the use of panel data, able to account both for the spatial and the temporal

dimension of the dataset. A table of all 22 measures of technological progress in all five-

year subperiods (1970–75, 1975–80, 1980–85, 1985–90, 1990–95, 1995–2000) is too long

to be presented here in full, but it is that table which underlies all further analyses.14

Hereafter, wherever we refer to cross–sectional results, we mean the results based on

the set of 19 country-level measures being 1970–2000 averages. When we refer to panel

results, on the other hand, we mean the results based on the set of 19 × 6 = 114

measures specific for each country and each five-year period.

13In the lower panel of Figure 1, the stock of physical capital per worker (right axis) is expressed in

US dollars in 2000 prices. The units of human capital per worker (right axis as well) are not directly

interpretable but are comparable across countries and time.
14The table is available from the author upon request.
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Figure 1: Means over TFP growth indexes and technical change measures, and their

relation to growth in output per worker and initial physical and human capital stocks.
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Table 2: Average annual rates of “technological progress” in 19 OECD countries in 1970–2000, according to a range of

TFP growth measures.
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

GDP ratio TFPk TFPk,h MCRS
k

MCRS
k,h

(C.) MCRS
k,h

MCRS
k,LU ,LS MV RS

k
MV RS

k,h
(C.) MV RS

k,h
MV RS

k,LU ,LS

Australia 1,34% 0,81% 0,39% -0,24% 0,35% 0,37% 0,14% 0,73% 0,59% 0,72% 0,38%

Austria 2,21% 1,31% 0,89% -0,47% 0,74% 0,68% 0,63% 1,22% 1,33% 1,22% 1,02%

Belgium 1,96% 1,15% 0,66% -0,45% 0,59% 0,56% 0,36% 1,10% 1,25% 1,10% 0,64%

Canada 1,23% 0,62% 0,27% -0,57% 0,12% 0,09% 0,68% 0,48% 0,29% 0,48% 0,68%

Denmark 1,29% 0,75% 0,62% -0,31% 0,76% 0,69% 0,56% 0,72% 0,84% 0,76% 0,60%

Finland 1,98% 1,33% 0,52% 0,05% 0,63% 0,57% -0,08% 1,28% 0,25% 0,89% 0,25%

France 1,89% 1,04% 0,53% -0,63% 0,56% 0,53% 0,12% 0,94% 0,77% 0,92% 0,36%

Greece 1,31% 0,64% -0,13% -0,67% -0,55% -0,53% -0,89% -0,22% -0,38% -0,29% -0,64%

Ireland 3,62% 2,42% 1,92% 0,05% 0,71% 0,60% 0,57% 0,60% 0,68% 0,61% 0,77%

Italy 1,78% 1,22% 0,47% 0,10% 0,50% 0,48% -0,21% 1,17% 0,40% 0,92% 0,18%

Japan 2,33% 0,75% -0,08% -2,33% -0,60% -0,75% -0,65% -0,58% -0,44% -0,59% -1,07%

Netherlands 1,07% 0,78% 0,25% 0,21% 0,25% 0,25% -0,92% 0,82% 0,72% 0,76% -0,30%

Norway 2,31% 1,67% 1,67% 0,42% 2,11% 1,92% 1,44% 1,78% 2,10% 1,94% 1,35%

Portugal 2,17% 0,93% 0,57% -1,49% -0,43% -0,59% -0,17% -1,41% 0,23% -0,89% -0,07%

Spain 1,95% 0,90% -0,01% -1,17% -0,49% -0,47% -0,77% -0,22% -0,45% -0,44% -0,43%

Sweden 1,06% 0,70% 0,36% -0,03% 0,45% 0,40% -0,02% 0,70% 0,29% 0,61% 0,16%

Switzerland 0,62% 0,18% -0,22% -0,71% 0,01% -0,11% -0,12% 0,27% 0,38% 0,24% 0,16%

UK 1,91% 1,29% 0,90% 0,07% 0,57% 0,60% 0,41% 0,93% 0,64% 0,88% 0,58%

USA 1,68% 1,00% 0,79% -0,36% 0,65% 0,62% 0,99% 0,89% 0,80% 0,89% 1,11%

mean* 1,77% 1,03% 0,54% -0,45% 0,36% 0,31% 0,11% 0,59% 0,54% 0,56% 0,30%

Notes: ∗ Mean = unweighted geometric average of 2000/1970 ratios, transformed into annualized growth rates.
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Table 3: Average annual rates of “technological progress” in 19 OECD countries in 1970–2000, according to a range of

technical change measures.

(11) (12) (13) (14) (15) (16) (17) (18) (19) (20) (21) (22)

GDP ratio T̃ FP k T̃ FP k,h(C.) T̃ FPk,h T̃ FP k,LU ,LS PTCk PTCk,h(C.) PTCk,h PTCk,LU ,LS TCk TCk,h(C.) TCk,h TCk,LU ,LS

Australia 1,34% 1,05% 0,87% 0,55% 0,68% 0,00% 0,82% 0,53% 0,43% 0,95% 0,98% 0,95% 0,86%

Austria 2,21% 1,79% 0,80% 0,75% 0,67% 0,00% 0,64% 0,54% 0,40% 1,14% 0,80% 1,14% 0,93%

Belgium 1,96% 1,61% 0,78% 0,68% 0,64% 0,00% 0,71% 0,58% 0,34% 1,19% 0,92% 1,19% 0,74%

Canada 1,23% 1,21% 0,80% 0,64% 0,47% 0,00% 0,64% 0,46% 0,88% 0,82% 0,76% 0,82% 1,05%

Denmark 1,29% 1,07% 0,77% 0,60% 0,48% 0,00% 0,91% 0,66% 0,42% 1,07% 0,94% 1,02% 0,78%

Finland 1,98% 1,28% 0,88% 0,64% 1,01% 0,00% 0,99% 0,69% 0,41% 1,07% 1,08% 0,95% 0,67%

France 1,89% 1,68% 0,73% 0,65% 0,85% 0,00% 0,76% 0,65% 0,44% 1,05% 0,97% 1,08% 0,85%

Greece 1,31% 1,32% 0,64% 0,55% 0,99% 0,00% 0,22% 0,16% 0,22% 0,33% 0,39% 0,36% 0,36%

Ireland 3,62% 2,37% 1,68% 1,56% 1,55% 0,00% 0,47% 0,25% 0,20% 0,41% 0,57% 0,41% 0,34%

Italy 1,78% 1,12% 0,94% 0,61% 0,98% 0,00% 0,98% 0,63% 0,30% 1,04% 1,07% 0,95% 0,50%

Japan 2,33% 3,16% 1,09% 1,14% 1,16% 0,00% 0,56% 0,47% 0,59% 0,86% 0,73% 0,85% 0,78%

Netherlands 1,07% 0,57% 1,00% 0,71% 1,49% 0,00% 1,00% 0,72% 0,31% 1,36% 1,09% 1,33% 0,69%

Norway 2,31% 1,25% 0,55% 0,53% 0,70% 0,00% 0,98% 0,77% 0,47% 1,35% 1,10% 1,17% 0,69%

Portugal 2,17% 2,46% 1,50% 1,47% 0,87% 0,00% 0,49% 0,30% 0,13% 0,34% 0,42% 0,19% 0,15%

Spain 1,95% 2,10% 1,07% 0,79% 0,96% 0,00% 0,58% 0,32% 0,19% 0,49% 0,65% 0,56% 0,26%

Sweden 1,06% 0,73% 0,90% 0,65% 1,02% 0,00% 0,99% 0,69% 0,64% 1,07% 0,92% 0,98% 0,82%

Switzerland 0,62% 0,90% 0,77% 0,73% 0,69% 0,00% 1,01% 0,85% 0,79% 1,50% 1,09% 1,47% 1,28%

UK 1,91% 1,22% 0,93% 0,66% 0,87% 0,00% 0,60% 0,36% 0,38% 0,49% 0,66% 0,52% 0,56%

USA 1,68% 1,36% 0,79% 0,70% 0,65% 0,00% 0,65% 0,53% 0,86% 0,94% 0,80% 0,94% 1,15%

mean* 1,77% 1,49% 0,92% 0,77% 0,88% 0,00% 0,74% 0,53% 0,44% 0,92% 0,84% 0,89% 0,71%

Notes: ∗ Mean = unweighted geometric average of 2000/1970 ratios, transformed into annualized growth rates.
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4.2 Accounting for growth in output per worker

We shall now turn to the analysis of most important empirical properties of the alter-

native methods of measurement of technological progress across countries. The first

of those properties is the ability of the “factor-only component” – capturing growth in

output per worker less technological progress, computed in association with each of the

considered measures, cf. Caselli (2005) – to explain growth in GDP per worker.

The results are summarized in Table 4 and Figure 2. The numbers in Table 4

are unweighted averages over countries (in the cross-sectional case), or over countries

and time periods (in the panel case), of percentages of growth attributed to factor

accumulation and residual technological progress in each of the specifications. The

larger is the share of factors in this decomposition, the better is the fit of the underlying

production function to the data, and the smaller is the residual component. Please note

that in the case of TFP growth measures, technical efficiency changes are included in

“technological progress”, whereas in the case of technical change measures, they are

included in the “factor-only component”.

Figure 2: Percentage of growth in output per worker attributed to factor accumulation

in each of the specifications of residual technological progress.
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Table 4: Percentage of growth in output per worker attributed to factor accumulation

and technological progress in each of the specifications.

Panel Cross-section

Factors Technology Factors Technology

(1) TFPk 35,40% 64,60% 40,84% 59,16%

(2) TFPk,h 65,38% 34,62% 71,27% 28,73%

(3) MCRS
k 106,70% -6,70% 115,61% -15,61%

(4) MCRS
k,h (C.) 61,61% 38,39% 81,88% 18,12%

(5) MCRS
k,h 62,32% 37,68% 84,80% 15,20%

(6) MCRS
k,LU ,LS 83,06% 16,94% 95,15% 4,85%

(7) MV RS
k 42,35% 57,65% 68,70% 31,30%

(8) MV RS
k,h (C.) 53,51% 46,49% 71,58% 28,42%

(9) MV RS
k,h 47,40% 52,60% 70,17% 29,83%

(10) MV RS
k,LU ,LS 70,04% 29,96% 85,40% 14,60%

(11) T̃FP k 28,07% 71,93% 13,66% 86,34%

(12) T̃FP k,h(C.) 41,50% 58,50% 47,59% 52,41%

(13) T̃FP k,h 58,32% 41,68% 57,24% 42,76%

(14) T̃FP k,LU ,LS 52,00% 48,00% 50,13% 49,87%

(15) PTCk 100,00% 0,00% 100,00% 0,00%

(16) PTCk,h(C.) 37,72% 62,28% 59,25% 40,75%

(17) PTCk,h 55,25% 44,75% 71,91% 28,10%

(18) PTCk,LU ,LS 69,88% 30,12% 77,43% 22,57%

(19) TCk 25,58% 74,42% 47,61% 52,39%

(20) TCk,h(C.) 36,80% 63,20% 52,74% 47,27%

(21) TCk,h 29,13% 70,87% 49,59% 50,41%

(22) TCk,LU ,LS 50,86% 49,14% 61,09% 38,91%
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We observe that for any given information set I1–I4, if the “technological progress”

measure includes changes in technical efficiency then the “factor-only component” does

a better job in explaining output growth than residual technological progress. The

opposite is true for technical change measures, where it is technological progress which

explains a significantly larger fraction. The reason for this discrepancy lies with the

treatment of technical efficiency change which therefore appears empirically very rele-

vant.15

We also see that generally all factor-only components do a better job in capturing

output growth when the dataset is a cross-section rather than when it is a panel.

One reason for that might be that over the long run, output rises primarily due to

factor accumulation and some frontier productivity growth, whereas in shorter time

periods there is more room for efficiency changes, partly because capital stocks cannot

be instantaneously adjusted to the newly available technology. Finally, we also see

that both in the panel and in the cross-section, the largest fraction of output growth is

explained by factors if technological progress is estimated as the CRS Malmquist index

under the full information set I4.

4.3 Accounting for the variance of output growth, correlation

with output growth, and forecast accuracy

Table 5 and Figure 3 summarize a few more empirical characteristics of each of the

measures of technological progress, such as the variance of growth in output per worker

accounted by the factor-only component, correlations with output growth, and forecast

accuracy if output growth is forecast solely with the factor-only component. Obviously,

each of these characteristics captures a different decomposition, and thus – even though

each statistic might be understood as some measure of “goodness of fit” – they cannot

be used directly for picking winners and losers, or for judging which measure of tech-

nological progress is generally the “most appropriate” one in cross-country empirical

applications. It clearly depends on the particular question asked and the assump-

tions made in each particular study, some of which will be discussed in the following

paragraphs as well as in subsection 4.5.

We do see several regularities, though, complementing the knowledge we already

have from the theoretical definition of each of our measures.16 The regularities are the

15MCRS

k
and PTCk are excluded from Figure 2 because they imply PTCk ≡ 1 and MCRS

k
≡ ECk

and thus are not interesting from the point of view of the current comparison.
16MCRS

k
and PTCk are excluded from Figure 3 because they imply PTCk ≡ 1 and MCRS

k
≡ ECk

and thus are not interesting from the point of view of the current comparison.
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following:

Figure 3: Selected characteristics of the 22 measures of technological progress.
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1. The TFP growth measure derived from growth accounting is very strongly cor-

related with output growth, both in the cross-section and in the panel, which

suggests a possible problem of an inappropriate functional form. This measure

leaves a quite large fraction of output growth to be explained by factor accu-

mulation, which is a generally desirable property, but is largely outperformed by

several Malmquist indices in this respect.

2. Malmquist indexes are visibly less correlated with output growth, especially in the

cross-section, and leave an even larger fraction of output growth to be explained

by factor accumulation.

3. The hybrid parametric–non-parametric TFP growth measure is very weakly cor-

related with output growth, especially in the temporal dimension. The factor-only

component associated with this measure of “technological progress” does a bad

job in explaining GDP’s rate of growth, but a very good job in explaining its vari-

ance across countries and time. The fact that hybrid TFP growth accounts for
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Table 5: Selected characteristics of the 22 measures of technological progress.

Levels P Levels C Corr. P Corr. C Variance Var+cov MAE RMSE AIC BIC

(1) TFPk 35,40% 40,84% 0,964 0,901 7,58% 11,42% 0,0676 0,0074 -451,4 -438,6

(2) TFPk,h 65,38% 71,27% 0,912 0,752 18,40% 12,03% 0,0580 0,0057 -460,6 -435,0

(3) MCRS
k

106,70% 115,61% 0,673 0,012 68,21% 34,27% 0,0537 0,0051 -486,6 -473,8

(4) MCRS
k,h

(C.) 61,61% 81,88% 0,834 0,234 33,90% 17,21% 0,0627 0,0061 -453,1 -427,6

(5) MCRS
k,h

62,32% 84,80% 0,833 0,205 36,32% 15,15% 0,0626 0,0064 -448,7 -423,2

(6) MCRS
k,LU ,LS 83,06% 95,15% 0,863 0,267 30,20% 8,59% 0,0607 0,0059 -440,5 -402,2

(7) MV RS
k

42,35% 68,70% 0,790 0,041 46,78% 19,28% 0,0722 0,0079 -444,3 -431,5

(8) MV RS
k,h

(C.) 53,51% 71,58% 0,808 0,186 39,37% 18,06% 0,0674 0,0068 -443,0 -417,4

(9) MV RS
k,h

47,40% 70,17% 0,784 0,077 52,14% 16,24% 0,0729 0,0081 -426,8 -401,2

(10) MV RS
k,LU ,LS 70,04% 85,40% 0,879 0,235 25,17% 11,38% 0,0605 0,0059 -441,7 -403,4

(11) T̃ FP k 28,07% 13,66% 0,407 0,655 84,66% 77,12% 0,0630 0,0053 -481,9 -469,1

(12) T̃ FP k,h(C.) 41,50% 47,59% 0,399 0,657 94,15% 74,11% 0,0525 0,0049 -475,6 -450,1

(13) T̃ FP k,h 58,32% 57,24% 0,148 0,706 108,05% 92,91% 0,0388 0,0024 -541,4 -515,9

(14) T̃ FP k,LU ,LS 52,00% 50,13% 0,070 0,453 114,56% 97,11% 0,0424 0,0027 -514,0 -475,7

(15) PTCk 100,00% 100,00% 0,072 0,088 100,00% 100,00% 0,0000 0,0000 N/A N/A

(16) PTCk,h(C.) 37,72% 59,25% 0,322 -0,403 100,52% 79,29% 0,0535 0,0050 -473,1 -447,6

(17) PTCk,h 55,25% 71,91% 0,080 -0,432 109,52% 96,02% 0,0387 0,0024 -543,3 -517,8

(18) PTCk,LU ,LS 69,88% 77,43% 0,156 -0,429 101,64% 93,67% 0,0264 0,0014 -577,0 -538,7

(19) TCk 25,58% 47,61% -0,072 -0,410 146,82% 103,80% 0,0638 0,0061 -470,0 -457,2

(20) TCk,h(C.) 36,80% 52,74% 0,332 -0,365 99,08% 78,38% 0,0544 0,0051 -471,2 -445,6

(21) TCk,h 29,13% 49,59% -0,043 -0,441 134,82% 101,81% 0,0608 0,0053 -467,8 -442,2

(22) TCk,LU ,LS 50,86% 61,09% 0,140 -0,478 106,43% 93,23% 0,0424 0,0028 -511,9 -473,6

Legend:

• “Levels” – percentage of total growth in output per worker explained by factor accumulation. Index P denotes

averages over a panel of 5-year intervals spanning 1970–2000, index C denotes the cross-sectional average.

• “Corr.” – correlation of the technological progress measures with growth in output per worker. Index P denotes

averages over a panel of 5-year intervals spanning 1970–2000, index C denotes the cross-sectional average.

• “Variance” denotes the percentage of variance of output growth rates explained by the factor-only component,

assuming that growth in output per worker equals the technological progress factor times the factor accumulation

factor.

• “Var+cov” is the Caselli (2005) measure of success – the ratio of variance of the factor-only component plus

one covariance of the factor-only component and technological progress (numerator) over the variance of output

growth rates (denominator). Both “variance” measures have been computed using a panel of 5-year intervals

spanning 1970–2000.

• MAE and RMSE denote, respectively, the mean absolute error and the root of mean square error, obtained

when growth in output per worker is predicted ex post as the growth rate of the factor-only component.

• AIC and BIC denote, respectively, the Akaike and the Bayesian (Schwarz) information criterion for the above

forecast.
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a large fraction of differences in growth performances suggests that technological

progress at the WTF is highly non-neutral and targets selected factor ratios only.

Standard growth accounting techniques, assuming a uniform technical change

pattern, should therefore fall short in this respect.

4. Non-parametric technical change measures (PTC, TC) are robustly negatively

correlated with output growth in the cross section. This is probably because of

the convergence process in the data and the fact that technological progress is

observed mostly in the domain of high physical and human capital intensities

(cf. Kumar and Russell, 2002; Jerzmanowski, 2007). Its factor-only component

explains a very large part of variance of output growth across countries and time,

corroborating the finding that technological progress at the WTF is highly non-

neutral.

5. The most striking general finding from Figure 3 is that all measures of TFP growth

are highly correlated with output growth17 but their factor-only components do

a bad job in explaining its variance, whereas measures of technical change are

weakly correlated with output growth (even negatively in the cross-section) and

their factor-only components do a good job in explaining its variance.

6. Enlarging the information set by including further factors of production increases

the percentage of output growth explained by factors and lowers the correlation of

each given measure of technological progress with output growth. This regularity

justifies the inclusion and the subsequent decomposition of human capital in the

production function.

7. Increasing the precision of WTF estimates by adding auxiliary US state-level

data to the dataset (see Growiec, 2012) generally improves the empirical prop-

erties of most considered measures. In particular, it increases the percentage of

variance explained by the factor-only component associated with a given measure

of technical change; this regularity does not apply to TFP growth measures.

8. The factor-only component does the best job in predicting output growth (that

is, MAE and RMSE are minimized) when “technological progress” is defined as

PTC, taking into account the decomposition of human capital into unskilled and

skilled labor.

17It is true particularly in the temporal dimension; in the cross-section, this correlation falls down

to 0,041–0,267 for Malmquist indices.
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9. Other things equal, PTC is superior to TC (as judged by the MAE and RMSE)

in predicting output growth with the factor-only component. This suggests that

in international data, returns to scale should be close to constant on average.

10. Average forecast accuracy of the factor-only component is better for measures of

technical change than for measures of TFP growth. There is however a trade-off

in accuracy of forecasting mean output growth which is better in the latter case,

and its deviations from the mean, which is better in the former case.

4.4 Pairwise correlations

A further piece of information is conveyed in Tables 6–7, containing pairwise (Pearson)

correlation coefficients among the 10 measures of TFP growth and the 12 measures

of technical change, constructed for our dataset of OECD countries. The graphical

layout of Tables 6–7 emphasizes the fact that what matters most for the “character” of

a measure is the methodology of its construction, not the information set upon which

it is based. The parametric TFP growth measures are strongly correlated with each

other, and so are all Malmquist indexes (irrespective of the CRS/VRS assumption),

all hybrid TFP growth measures, and all PTC/TC measures (again, irrespective of the

CRS/VRS assumption). The correlation across methodologies is much less pronounced

and in several cases it is actually negative.

Still, on the basis of evidence discussed above, the auxiliary use of US state-level

data seems helpful.

Interestingly, the negative correlations between hybrid TFP growth measures and

non-parametric technical change indexes appear in the cross-sectional dimension but

disappear in the panel. More generally, panel correlations are generally larger, with the

exception of correlations between PTC and TC measures which are larger in the cross-

section. The reason is that most measures of “technological progress” move in a more

or less parallel fashion across time (but vary largely across countries). Two possible

explanations of this regularity are the following: (i) technological progress at the WTF

gradually trickles down over time to more backward countries as well, counteracting

the negative cross-sectional correlation between measures of technological progress in

each country and progress at the WTF, and (ii) function misspecification errors are

repeated over time giving rise to “country-specific effects”, creating a positive time-

series correlation able to offset the negative cross-sectional correlation in the panel.

We suppose that both these effects can potentially be important.
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Table 6: Pairwise correlations among the 10 measures of TFP growth.

CROSS-SECTIONAL DATA, 1970–2000

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

TFPk TFPk,h MCRS
k MCRS

k,h (C.) MCRS
k,h MCRS

k,LU ,LS MV RS
k MV RS

k,h (C.) MV RS
k,h MV RS

k,LU ,LS

(1) TFPk 1,00 0,91 0,44 0,53 0,52 0,44 0,40 0,43 0,42 0,48

(2) TFPk,h 0,91 1,00 0,54 0,74 0,73 0,72 0,50 0,68 0,59 0,73

(3) MCRS
k 0,44 0,54 1,00 0,72 0,76 0,43 0,81 0,58 0,78 0,56

(4) MCRS
k,h (C.) 0,53 0,74 0,72 1,00 1,00 0,81 0,85 0,91 0,93 0,82

(5) MCRS
k,h 0,52 0,73 0,76 1,00 1,00 0,80 0,89 0,90 0,95 0,83

(6) MCRS

k,LU ,LS 0,44 0,72 0,43 0,81 0,80 1,00 0,61 0,79 0,72 0,95

(7) MV RS
k 0,40 0,50 0,81 0,85 0,89 0,61 1,00 0,76 0,97 0,71

(8) MV RS
k,h (C.) 0,43 0,68 0,58 0,91 0,90 0,79 0,76 1,00 0,89 0,83

(9) MV RS
k,h 0,42 0,59 0,78 0,93 0,95 0,72 0,97 0,89 1,00 0,80

(10) MV RS

k,LU ,LS 0,48 0,73 0,56 0,82 0,83 0,95 0,71 0,83 0,80 1,00

PANEL DATA, 5-YEAR INTERVALS SPANNING 1970–2000

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

TFPk TFPk,h MCRS
k MCRS

k,h (C.) MCRS
k,h MCRS

k,LU ,LS MV RS
k MV RS

k,h (C.) MV RS
k,h MV RS

k,LU ,LS

(1) TFPk 1,00 0,96 0,85 0,89 0,89 0,88 0,88 0,86 0,86 0,90

(2) TFPk,h 0,96 1,00 0,84 0,94 0,95 0,94 0,86 0,90 0,86 0,92

(3) MCRS
k 0,85 0,84 1,00 0,80 0,81 0,72 0,84 0,77 0,80 0,74

(4) MCRS
k,h (C.) 0,89 0,94 0,80 1,00 0,97 0,93 0,90 0,96 0,92 0,92

(5) MCRS
k,h 0,89 0,95 0,81 0,97 1,00 0,94 0,91 0,93 0,93 0,92

(6) MCRS

k,LU ,LS 0,88 0,94 0,72 0,93 0,94 1,00 0,84 0,90 0,87 0,97

(7) MV RS
k 0,88 0,86 0,84 0,90 0,91 0,84 1,00 0,87 0,97 0,89

(8) MV RS
k,h (C.) 0,86 0,90 0,77 0,96 0,93 0,90 0,87 1,00 0,91 0,91

(9) MV RS
k,h 0,86 0,86 0,80 0,92 0,93 0,87 0,97 0,91 1,00 0,92

(10) MV RS

k,LU ,LS 0,90 0,92 0,74 0,92 0,92 0,97 0,89 0,91 0,92 1,00
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Table 7: Pairwise correlations among the 12 measures of technical change.

CROSS-SECTIONAL DATA, 1970–2000

(11) (12) (13) (14) (15) (16) (17) (18) (19) (20) (21) (22)

T̃FPk T̃FPk,h(C.) T̃FPk,h T̃FP
k,LU ,LS PTCk PTCk,h(C.) PTCk,h PTC

k,LU ,LS TCk TCk,h(C.) TCk,h TC
k,LU ,LS

(11) T̃FPk 1,00 0,58 0,74 0,27 N/A -0,59 -0,52 -0,25 -0,49 -0,56 -0,48 -0,37

(12) T̃FPk,h(C.) 0,58 1,00 0,93 0,62 N/A -0,35 -0,50 -0,43 -0,55 -0,49 -0,58 -0,55

(13) T̃FPk,h 0,74 0,93 1,00 0,51 N/A -0,46 -0,48 -0,32 -0,49 -0,55 -0,53 -0,44

(14) T̃FP
k,LU ,LS 0,27 0,62 0,51 1,00 N/A -0,10 -0,23 -0,45 -0,23 -0,15 -0,24 -0,49

(15) PTCk N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

(16) PTCk,h(C.) -0,59 -0,35 -0,46 -0,10 N/A 1,00 0,93 0,28 0,83 0,94 0,77 0,42

(17) PTCk,h -0,52 -0,50 -0,48 -0,23 N/A 0,93 1,00 0,43 0,95 0,94 0,91 0,62

(18) PTC
k,LU ,LS -0,25 -0,43 -0,32 -0,45 N/A 0,28 0,43 1,00 0,43 0,31 0,46 0,89

(19) TCk -0,49 -0,55 -0,49 -0,23 N/A 0,83 0,95 0,43 1,00 0,91 0,98 0,68

(20) TCk,h(C.) -0,56 -0,49 -0,55 -0,15 N/A 0,94 0,94 0,31 0,91 1,00 0,88 0,53

(21) TCk,h -0,48 -0,58 -0,53 -0,24 N/A 0,77 0,91 0,46 0,98 0,88 1,00 0,73

(22) TC
k,LU ,LS -0,37 -0,55 -0,44 -0,49 N/A 0,42 0,62 0,89 0,68 0,53 0,73 1,00

PANEL DATA, 5-YEAR INTERVALS SPANNING 1970–2000

(11) (12) (13) (14) (15) (16) (17) (18) (19) (20) (21) (22)

T̃FPk T̃FPk,h(C.) T̃FPk,h T̃FP
k,LU ,LS PTCk PTCk,h(C.) PTCk,h PTC

k,LU ,LS TCk TCk,h(C.) TCk,h TC
k,LU ,LS

(11) T̃FPk 1,00 0,14 0,23 -0,13 N/A 0,07 0,09 0,11 -0,11 -0,01 -0,07 0,06

(12) T̃FPk,h(C.) 0,14 1,00 0,32 0,53 N/A 0,88 0,18 0,56 0,02 0,84 0,10 0,38

(13) T̃FPk,h 0,23 0,32 1,00 0,55 N/A 0,24 0,72 0,49 0,34 0,22 0,40 0,47

(14) T̃FP
k,LU ,LS -0,13 0,53 0,55 1,00 N/A 0,46 0,27 0,60 0,02 0,48 0,08 0,33

(15) PTCk N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

(16) PTCk,h(C.) 0,07 0,88 0,24 0,46 N/A 1,00 0,35 0,68 0,21 0,94 0,28 0,52

(17) PTCk,h 0,09 0,18 0,72 0,27 N/A 0,35 1,00 0,55 0,62 0,31 0,66 0,65

(18) PTC
k,LU ,LS 0,11 0,56 0,49 0,60 N/A 0,68 0,55 1,00 0,24 0,67 0,33 0,77

(19) TCk -0,11 0,02 0,34 0,02 N/A 0,21 0,62 0,24 1,00 0,19 0,93 0,56

(20) TCk,h(C.) -0,01 0,84 0,22 0,48 N/A 0,94 0,31 0,67 0,19 1,00 0,28 0,57

(21) TCk,h -0,07 0,10 0,40 0,08 N/A 0,28 0,66 0,33 0,93 0,28 1,00 0,70

(22) TC
k,LU ,LS 0,06 0,38 0,47 0,33 N/A 0,52 0,65 0,77 0,56 0,57 0,70 1,00
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4.5 Corollaries from the main results

The principal conclusion from the results presented above is that for different purposes,

different measures of “technological progress” should be used, and particular attention

should be paid to the distinction between TFP growth and technical change because of

the differential treatment of technical efficiency changes. If the objective is to account

for the average output growth rate across countries or time, then TFP growth measures

should be used, and in this case the most successful measure appears to be the CRS

Malmquist index computed using the information set I4.
18

If the objective is, on the other hand, to find the sources of variation of output

growth rates across countries and time, most promising are the measures of technical

change, in particular the ones based on the information set I4. If one wants to minimize

ex post prediction errors when predicting output growth with growth of the factor-

only component, then PTC computed with I4 should be the most appropriate choice.

Generally, one always has to draw a firm line between measures of technical change and

measures of TFP growth, where the latter one includes shifts in technical efficiency as

well. Both types of measures are distinct by definition, negatively correlated with each

other, and yield diverging results.

Another conclusion stemming from the study is that the variances and correla-

tions are significantly different in the temporal dimension than in the cross-sectional

dimension. One reason is that there is a lot of variation in technical efficiency across

countries, but this index changes relatively slowly in time. A different reason could

be that there are “country-specific effects” due to production function misspecification

active in the panel.

Yet another lesson here is that increasing the precision of WTF estimates helps

in increasing all our “goodness of fit” measures. Obviously, this applies strongly to

adding a human capital measure into the production function. Interestingly enough,

however, this applies even more strongly to decomposing human capital into skilled and

unskilled labor, and we also record visible increases in our “goodness of fit” measures

when the dataset is enlarged by using auxiliary US state-level data on top of our OECD

country-level data (cf. Growiec, 2012), even though these numbers are measured with

admittable error.

18It may be surprising that the VRS Malmquist index is found somewhat inferior to the CRS variant

in the considered dataset. Without implying, let us suggest that a possible reason behind this result

might be a combination of approximately constant returns to scale at the cross-country level and

substantial measurement error.
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4.6 A comparison with van Biesebroeck (2007)

An insightful reader might notice that the current article has the same objective as the

one carried out by van Biesebroeck (2007), that is to compare the relative strengths

and weaknesses of several alternative measures of factor productivity and technologi-

cal progress. There are a few decisive differences between these two papers, though.

First, van Biesebroeck’s paper focuses primarily on measuring inputs and outputs of

individual firms, and ours – of countries. Second, his study is based on artificial data,

and ours is based on real-world data. While his approach has the relative advantage

of providing a clear-cut metric of “distance to reality” – because he knows exactly his

data-generating process and we do not – it also has the disadvantage that the proper-

ties of that data-generating process might be actually distant from the properties of a

process generating real-world data, if it exists at all. Indeed, van Biesebroeck’s data are

generated from a model economy endowed with a Cobb–Douglas production function,

deformed by a number of stochastic shocks. If the world is not fundamentally Cobb–

Douglas, however, his results will be biased in favor of methods where this functional

form is explicitly assumed, such as his parametric stochastic frontier estimations.19

Third, most of the methods for computing technological progress considered by van

Biesebroeck (2007) require the researcher to estimate the parameters of the production

function and/or use data on the labor share in GDP, which we intentionally set aside

in our analysis. In result, our study might be based on wrong calibrations, but for sure

it will not face the problems of endogeneity of production decisions and equilibrium

pricing behavior. Fourth, van Biesebroeck assumes the technology frontier to be the

same for all periods of time. While that might be a legitimate assumption in industrial

(micro)economics with relatively short time spans, it is certainly not in macroeconomic

productivity analysis. Therefore in the current study we allow the WTF to shift in time,

and we actually identify 20 out of 22 technological progress measures with appropriate

functions of these shifts.

5 Conclusion

The current article has been the first one to bring together 22 approaches to the mea-

surement of “technological progress” across countries, providing a synthetic, numerical

19In particular, one of van Biesebroeck’s conclusions is that parametric methods have a clear ad-

vantage over non-parametric ones when factors of production are measured with error. In his study,

though, measurement error is assumed to be centered around a Cobb–Douglas production function,

which likely drives this result.
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assessment of their empirical properties on the basis of a few standard, easily inter-

pretable statistics. The considered measures are based on the neoclassical growth ac-

counting approach, nonparametric frontier analysis (DEA), and a “hybrid” parametric-

nonparametric approach. The frontier approach enabled us to construct the World

Technology Frontier (WTF) and subsequently control for changes in countries’ techni-

cal inefficiency. Having discussed a range of definitional issues, we have investigated

empirically what fraction of total growth in GDP per worker and its variance in the

group of 19 OECD countries in 1970–2000 is captured by the “technological progress”

(residual productivity growth) component in each of the specifications. We have also

computed the correlations of these residual measures with growth in output per worker

and calculated the mean ex post prediction errors (MAE, RMSE) when future output

growth is predicted as the implied factor-only component.

The results of this investigation indicate that (i) it is crucial to distinguish be-

tween measures of TFP growth, capturing technological progress actually observed in

each given country, from measures of technical change proper, capturing technologi-

cal progress at the WTF, (ii) it is generally worthwhile to use more information for

constructing the WTF, in particular to allow for imperfect substitutability between

skilled and unskilled labor and to use US state-level data apart from OECD country-

level data, and (iii) above all, there is no unique optimal method of measurement of

technological progress, hence the method should always be selected in accordance with

the analyzed research question and special attention should be paid to the treatment

of technical efficiency changes (shifts in the distance to the WTF).

The current study can be extended in numerous ways, including the following ones.

The first idea would be to compare the predictions regarding the cross-country mea-

sures of technological progress from deterministic nonparametric frontier models with

their counterparts from stochastic parametric frontier models, preferably based on the

translog production function specification (cf. Koop, Osiewalski and Steel, 1999, 2000;

Kumbhakar and Lovell, 2000; Growiec et al., 2011) as well as with neoclassical growth

accounting based on the CES aggregate production function specification with factor-

augmenting technical change (cf. Duffy and Papageorgiou, 2000; Klump, McAdam

and Willman, 2007; Chirinko, 2008). Another question which could be addressed is,

how large is the uncertainty in the non-parametric estimations of the WTF, under-

lying the measures of technological progress discussed above. This question could be

addressed with the use of bootstrap techniques for non-parametric frontier models. Yet

another idea would be to use different datasets to see if the results obtained here still

go through.
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Data appendix

The original dataset covers 21 highly developed OECD countries: Australia, Austria,

Belgium, Canada, Denmark, Finland, France, Germany, Greece, Ireland, Italy, Japan,

Luxembourg, Netherlands, Norway, Portugal, Spain, Sweden, Switzerland, United

Kingdom, and the United States, as well as 50 US states plus the District of Columbia:

AL, AK, AZ, AR, CA, CO, CT, DE, DC, FL, GA, HI, ID, IL, IN, IA, KS, KY, LA,

ME, MD, MA, MI, MN, MS, MO, MT, NE, NV, NH, NJ, NM, NY, NC, ND, OH, OK,

OR, PA, RI, SC, SD, TN, TX, UT, VT, VA, WA, WV, WI, WY.

We have however decided to drop Luxembourg and the DC from our analysis be-

cause of the strong indication that these entities’ productivity might be significantly

overestimated because of workers commuting from outside of the territory (such as

Belgium and France for Luxembourg, or Virginia and Maryland for DC).20 We have

also removed Germany from our sample because of the unification shock present in the

data.

Furthermore, since the DEA method is extremely sensitive to outliers, we have

also decided to drop US states with largest long-term average mining shares in the

gross state product. There is an indication that productivity of these states might be

overestimated since their gross state product encompasses substantial resource rents

which are not captured in the estimated production function. These states are Alaska,

Colorado, Louisiana, Nevada, New Mexico, Utah, West Virginia, and Wyoming.21 We

also dropped Delaware and New Hampshire as small, specialized economies with com-

paratively unusual tax systems.22

20Admittedly, this caveat applies to some other EU countries and US states as well. The larger is the

country or state, however, and the more likely is commuting to be bi-directional, the less important

this problem becomes for our aggregate results.
21The sparsely populated oil-producing Alaska is probably the most remarkable among these states.

With its mining share in GDP peaking at 50% in 1981, the state turned out to span the WTF any

time it entered the estimation procedure, subsequently lowering the efficiency factor in most other US

states by as much as 10-30 percentage points.
22In particular, Delaware is known as a within-US “tax haven” and a major center of credit card

issuers. When included in the sample, both Delaware and New Hampshire tended to span the tech-

nology frontier at almost all years 1970–2000. Also, the number of frontier observations increased

markedly after these states had been dropped. We consider this fact to be an indication that they

indeed were outliers in our sample.
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The time span of our analysis is 1970–2000, and the estimations are run in 5-year

intervals. The crucial bottleneck here is the availability of schooling variables which are

only measured in 5-year intervals. Most other data were available in annual frequency

and a longer period.

The data we are using are set in per worker terms. This means that we abstract

from the issues of labor market participation which may result in additional per capita

productivity differences, and of the variation in hours worked per worker which means

that our analysis convolutes productivity differences with labor-leisure choice of the

employees: ceteris paribus, an increase in hours worked per worker will be reflected

by increases in “productivity” as we measure it even though technology as such is

unchanged. It is however difficult to find reliable and comparable data on hours worked

per capita across both OECD countries and US states which would date back at least

until 1970.

For international data on GDP and GDP per worker, we use the Penn World Table

6.2 (Heston, Summers, and Aten, 2006), available for 1960-2003. For state-level GDP

and GDP per worker, we use data from the Bureau of Economic Analysis, Regional

Accounts, available for 1963-2007. The unit of measurement is the PPP converted US

dollar under constant prices as of year 2000. Since, to our surprise, we have found

discrepancies up to 15% (in extreme cases) in the total number of workers employed

across the US in the two datasets, and since international data are given priority in

the analysis, the BEA data on GDP per worker have been proportionally adjusted to

guarantee internal coherence with the aggregate US data from the PennWorld Tables.23

The physical capital series have been constructed using the perpetual inventory

method described, among others, by Caselli (2005) and OECD (2009). We have taken

country-level investment shares as well as government shares from the Penn World

Tables 6.2. There are two polar standpoints as for the role of government in capital

accumulation: one is that government spending is all consumption, and the other one

is that it is all investment. We have taken an intermediate stance here, assuming that

the government invests the same share of its GDP share as the private economy does.

Under this assumption, the overall (private and public) investment share is s/(1 − g)

where s is the private investment share and g is the government share. Furthermore,

following Caselli (2005), we assumed an annual depreciation rate of 6%. For state-level

government shares, we compiled a dataset from primary sources at the US Census

Bureau. Since the period of available data is 1992-2006 only, we extrapolated govern-

ment shares backward in time using state-level averages and the long-run trend from

23As a side effect, this adjustment helps solve the problem of the discontinuity between 1996 and

1997 in BEA data on the gross state product, arising due to a change in measurement methodology.
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the overall US economy. Unfortunately, there are no data on state-level investment

shares apart from those computed by Turner, Tamura and Mulholland (2008) which

are however not publicly available. Knowing that this introduces substantial error

but not being able to obtain better proxies, we have imputed that state-level private

investment shares are equal to the US countrywide private investment share.

Country-level human capital data have been taken from de la Fuente and Doménech

(2006) – D-D hereafter. The raw variables are shares of population aged 25 or above

having completed primary, some secondary, secondary, some tertiary, tertiary, or post-

graduate education. The considered dataset is of 5-year frequency only and it ends in

1995. Among all possible education attainment databases, the D-D dataset has been

given priority due to our trust in its superior quality. The original D-D series has been

extrapolated forward to the year 2000 using Cohen and Soto (2007) schooling data as

a predictor for the trends. Neither Barro and Lee (2001) nor Cohen and Soto (2007)

data could be used directly for this purpose because neither of them is (even roughly)

in agreement with the D-D dataset – nor with each other – in the period where all

datasets offer data points.

US state-level human capital data have been taken from the National Priorities

Database. Here, the variables are shares of population aged 25 or above having com-

pleted less than high school, high school, some college, college, or having obtained the

Associate, Bachelor, or Master degree (the last category covering above-Master edu-

cation as well). These data are available for 1995-2006 only. We have extrapolated

the observed trends in the educational composition of the populations backwards using

US country-wide trends documented in D-D and state-level differences in the period

when the data were available. The aggregate state-level quantities of human capital

have been, on the other hand, taken from Turner, Tamura, Mulholland, and Baier

(2007). At the international level, cumulative years of schooling at each level of edu-

cation have been taken from D-D and supplemented with data from country-specific

web resources wherever necessary. The US state-level education attainment data have

also been adjusted to guarantee comparability with D-D data.24

From the raw educational attainment data we have constructed the human capital

aggregates using the Mincerian exponential formula with a concave exponent following

24We have found a roughly steady surplus of 8 percentage points in the share of population with

less than high school completed in the National Priorities Database as compared to D-D, compensated

by a shortage of 5.3 pp. in high school graduates, and of 2.7 pp. in the “some college” category. We

have thus added/subtracted these values from the US state-level figures to guarantee coherence at the

aggregate US level, keeping in mind that this procedure could have introduced some additional error.
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Hall and Jones (1999), and more directly, Caselli (2005):

LU =
∑

i∈SU

ψie
φ(si), LS =

∑

i∈SS

ψie
φ(si), (24)

where SU is the set of groups of people who completed less than 12 years of education

(less than elementary, elementary, less than secondary), SS is the set of groups of people

who completed 12 years of education or more (secondary, less than college, college or

more), ψi captures the share of i-th education group in total working-age population

of the given country, si represents years of schooling in i-th education group (cf. de la

Fuente and Doménech, 2006), and ϕ(s) is a concave piecewise linear function:

ϕ(s) =







0.134s s < 4,

0.134 · 4 + 0.101(s− 4) s ∈ [4, 8),

0.134 · 4 + 0.101 · 8 + 0.068(s− 8) s ≥ 8.

(25)

The overall human capital index can be computed as the sum of unskilled and skilled

labor: H = LU + LS. We have however allowed these two types of labor to be im-

perfectly substitutable, and enter the production function separately. The perfect

substitution case where only total human capital matters is an interesting special case

of our generalized formulation; the data do not support this assumption, however.

Special attention should be paid to the cutoff point of 12 years of schooling de-

lineating unskilled and skilled labor. It is roughly equivalent to the requirement of

having completed secondary education to be skilled: secondary education is usually

completed after 12 years of schooling (13 in some countries). We have thus assumed

that everyone who has not completed high school is counted as unskilled, and who has

– as skilled. This cutoff point seems adequate for OECD economies in our sample –

which are usually technologically advanced and highly capitalized. Another measure-

ment problem which may potentially appear but which we do not consider a major

obstacle here given our sample choice, is that schooling quality at different grades may

vary across countries and states. This pertains both to the split between skilled and

unskilled population and the estimates of aggregate human capital. Controlling for

this heterogeneity is left for further research.
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