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1 Introduction

The asymptotic behavior of expressions of the form
Pn

t=1 f(rnxt) where xt is
an integrated process, rn is a sequence of norming constants, and f is a mea-
surable function has been the subject of a number of articles in recent years.
We mention Borodin and Ibragimov (1995), Park and Phillips (1999), de Jong
(2004), Jeganathan (2004), Pötscher (2004), de Jong and Whang (2005), Berkes
and Horvath (2006), and Christopeit (2009) which study weak convergence re-
sults for such expressions under various conditions on xt and the function f .
Of course, these results also provide information on the order of magnitude ofPn

t=1 f(rnxt). However, to the best of our knowledge no result is available for
the case where f is non-integrable with respect to Lebesgue-measure in a neigh-
borhood of a given point, say x = 0. In this paper we are interested in bounds
on the order of magnitude of

Pn
t=1 jxtj

��
when � � 1, a case where the implied

function f is not integrable in any neighborhood of zero. More generally, we
shall also obtain bounds on the order of magnitude for

Pn
t=1 vt jxtj

��
where

vt are random variables satisfying certain conditions. While the emphasis in
this paper is on negative powers that are non-integrable in any neighborhood
of zero (i.e., � � 1), we also present results for � < 1 whenever they are eas-
ily obtained. We make no e¤ort to improve the results in case � < 1, but we
shall occasionally mention better results available in this case (or in subcases
thereof) without attempting to be complete in the coverage of such (better) re-
sults speci�c to the case � < 1. While my interest in the problem treated in the

�I would like to thank Kalidas Jana for inquiring about the order of magnitude of some of
the quantities now treated in the paper. I am indebted to Robert de Jong for comments on
an early draft that have led to an improvement in Theorem 1. I am grateful to Istvan Berkes,
Hannes Leeb, David Preinerstorfer, Zhan Shi, the referees, and the editor Peter Phillips for
helpful comments.
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present paper is purely driven by mathematical curiosity, reciprocals and ratios
of variables that may be integrated are not alien to economic models. Hence
the results presented below are of potential interest for the econometric analysis
of such models.

2 Results

Consider an integrated process

xt = xt�1 + wt

for integer t � 1, with the initial real-valued random variable x0 being indepen-
dent of the process (wt)t�1 which is assumed to be given by

wt =
1X

j=0

�j"t�j :

Here ("i)i2Z are independent and identically distributed real-valued random
variables that have mean 0 and a �nite variance, which � without loss of gener-
ality � is set equal to 1. The coe¢cients �j are assumed to satisfy

P1
j=0

���j
�� <1

and
P1

j=0 �j 6= 0. Furthermore, "i is supposed to have a density q with respect
to (w.r.t.) Lebesgue-measure. We note that under these assumptions xt pos-
sesses a density w.r.t. Lebesgue-measure for every t � 1, and the same is true for
wt; cf. Section 3.1 in Pötscher (2004). Furthermore, the characteristic function
 of "i is assumed to satisfy

Z 1

�1

j (s)j
�
ds <1 (1)

for some 1 � � < 1. These assumptions will be maintained throughout the
paper. They have been used in Pötscher (2004), while stricter versions occur,
e.g., in Park and Phillips (1999), de Jong (2004), and de Jong and Whang
(2005). A detailed discussion of the scope of condition (1) is given in Pötscher
(2004), Section 3.1. In particular, we recall from Lemma 3.1 in Pötscher (2004)
that under the maintained conditions of the present paper densities ht of t

�1=2xt
exist such that for a suitable integer t� � 1

sup
t�t�

khtk1 <1 (2)

is satis�ed, where k�k1 denotes the supremum norm. In the following we set
� = supt�t� khtk1.

2.1 Bounds on the Order of Magnitude of
Pn

t=1 jxtj
��

We �rst consider the behavior of
Pn

t=1 jxtj
��
. Note that under our assumptions

this quantity is almost surely well-de�ned and �nite for every � 2 R.1 Recall

1 In particular, how, and if, we assign a value in the extended real line to jxtj
�� on the

event fxt = 0g has no consequence for the results.
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that we are mainly interested in the case � � 1. While the next theorem
provides an upper bound on the order of magnitude, lower bounds are discussed
in Remarks 5 and 6 below.

Theorem 1

nX

t=1

jxtj
��
=

8
<

:

OPr(n
�=2) if � > 1

OPr(n
1=2 log n) if � = 1

OPr(n
1��=2) if � 2 � � < 1:

Proof. Suppose �rst that � � 0 holds. Since
Pt��1

t=1 jxtj
��

is almost surely

real-valued it su¢ces to prove the result for
Pn

t=t�
jxtj

��
. For 0 < � < 1 we

have almost surely

nX

t=t�

jxtj
��

=
nX

t=t�

jxtj
��
1

����t�1=2xt
��� > �=(nt)1=2

�

+
nX

t=t�

jxtj
��
1

����t�1=2xt
��� � �=(nt)1=2

�

= Qn(�) +Rn(�)

where t� is as in (2) and n � t�. First consider Rn(�): Set

Sn(�) =
n[

t=t�

n���t�1=2xt
��� � �=(nt)1=2

o
:

Observe that fRn(�) > 0g = Sn(�) up to null-sets and

Pr (Rn(�) > 0) = Pr (Sn(�)) �
nX

t=t�

Pr
����t�1=2xt

��� � �=(nt)1=2
�

=
nX

t=t�

Z �=(nt)1=2

��=(nt)1=2
ht(z)dz � 2��n�1=2

nX

t=t�

t�1=2

� 4��

holds for all n � t� in view of (2) using the fact that
Pn

t=t�
t�1=2 �

Pn
t=1 t

�1=2 �

2n1=2. Next we bound Qn(�): Observe that

EQn(�) =
nX

t=t�

t��=2E

����t�1=2xt
���
��

1(
���t�1=2xt

��� > �=(nt)1=2)

�
;
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and that for t � t�

E

����t�1=2xt
���
��

1(
���t�1=2xt

��� > �=(nt)1=2)

�

= E

����t�1=2xt
���
��

1(1 >
���t�1=2xt

��� > �=(nt)1=2)

�

+E

����t�1=2xt
���
��

1(
���t�1=2xt

��� � 1)
�

�

Z

�=(nt)1=2<jzj<1

jzj
��

ht(z)dz + 1 � 2�

Z 1

�=(nt)1=2
z��dz + 1

�

8
><

>:

1 + 2�(�� 1)�1�1��(nt)(��1)=2 if � > 1

1 + 2� log
�
��1
�
+ 2� log

�
(nt)

1=2
�

if � = 1

1 + 2�(1� �)�1 if 0 � � < 1:

Consequently, for n � max(t�; 3) we have

E(Qn(�)) �

8
<

:

�
1 + 2�(�� 1)�1�1��

�
n(��1)=2

Pn
t=t�

t�1=2 if � > 1�
1 + 2�+ 2� log

�
��1
��
(log n)

Pn
t=t�

t�1=2 if � = 1�
1 + 2�(1� �)�1

�Pn
t=t�

t��=2 if 0 � � < 1:

�

8
<

:

c(�; �; �)n�=2 if � > 1
c(1; �; �)n1=2 log n if � = 1
c(�; �; �)n1��=2 if 0 � � < 1:

where c(�; �; �) are positive �nite constants.
Now, for arbitrary " > 0 choose �(") satisfying 0 < �(") < min(1; "=(8�)).

Then choose M =M("; �; �) > 0 large enough to satisfy

M > 4"�1c(�; �("); �):

Then, with dn = n�=2 in case � > 1, dn = n1=2 log n in case � = 1, and
dn = n1��=2 in case 0 � � < 1, we obtain using Markov�s inequality

Pr

 

d�1n

nX

t=t�

jxtj
��

> M

!

� Pr
�
d�1n Qn(�(")) > M=2

�
+ Pr

�
d�1n Rn(�(")) > M=2

�

� 2d�1n EQn(�("))=M + Pr (Rn(�(")) > 0) < "

for all n � max(t�; 3). Since
Pn

t=t�
jxtj

��
is almost surely real-valued for all

n � t�, this completes the proof in case � � 0.
Suppose next that �2 � � < 0 holds. Observe �rst that

nX

t=1

jxtj
��
� max

�
1; 2���1

�
 

nX

t=1

jxt � x0j
��
+ n jx0j

��

!

: (3)
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By Lyapunov�s inequality and noting that E (xt � x0)
2
is of the exact order

t (since wt is a linear process with absolutely summable coe¢cients satisfyingP1
j=0 �j 6= 0) we have

E
nX

t=1

jxt � x0j
��
� c

nX

t=1

t��=2 = O(n1��=2)

for some �nite constant c. But then an application of Markov�s inequality givesPn
t=1 jxt � x0j

��
= OPr(n

1��=2). Together with (3) this establishes the claim.

Remark 2 (i) The proof of Theorem 1 in the previous version of this paper
(dated January 2011) is incorrect. For a discussion of the errors and an alter-
native proof see the supplementary notes available on my webpage.
(ii) Remark 6 in the January 2011 version of this paper insinuated that

there is a contradiction between Theorem 1 and results in de Jong and Whang
(2005). However, the argument put forward in this remark is invalid as there is
an elementary sign-mistake in the inequality presented in that remark. Hence,
this remark is completely invalid and I owe apologies to de Jong and Whang.

Remark 3 (i) For values of � such that x�� is well-de�ned for every x except
possibly for x = 0, the quantity

Pn
t=1 x

��
t is almost surely well-de�ned and

real-valued. By the triangle inequality Theorem 1 applies also to
Pn

t=1 x
��
t .

(ii) Not surprisingly, the expectation of
Pn

t=1 jxtj
��
will typically be in�nite

in the case � � 1 (e.g., if the density of xt is bounded from below in a neigh-
borhood of zero as is the case if xt is Gaussian). The expectation can, however,
also be in�nite in other cases (e.g., if � < �2 and moments of xt of order ��
do not exist).

Remark 4 (i) It follows from Remark 5 below that the bound given for �2 �
� < 0 holds in fact for all � < 0 provided the additional condition

P1
j=0 j

1=2
���j
�� <

1 is satis�ed. [The additional condition is perhaps unnecessary, but we do not
make any e¤ort to remove it as the focus in this paper is on the case � � 1.]

(ii) If Ex20 < 1 holds, then Ex2t = E (xt � x0)
2
+ Ex20 is of the order t

and thus E jxtj
��

is at most of the order t��=2 for �2 � � < 0 by Lyapunov�s
inequality. This shows that if Ex20 < 1 holds the proof of Theorem 1 for the
case �2 � � < 0 can be simpli�ed.

Remark 5 Suppose the stronger summability condition
P1

j=0 j
1=2
���j
�� <1 is

satis�ed. Under this additional assumption more is known in case �1 < � < 1
than just the upper bound on the order of magnitude of

Pn
t=1 jxtj

��
given by

Theorem 1: If �1 < � < 1 then

n�=2�1
nX

t=1

jxtj
�� d
! j�j

��
Z 1

0

jW (s)j
��

ds (4)

for n ! 1, with the limiting variable being positive with probability one;
as a consequence, n1��=2 is the exact order of magnitude in probability of
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Pn
t=1 jxtj

��
. Here W is standard Brownian motion and � =

P1
j=0 �j , which is

non-zero by assumption.2 Relation (4) follows from the �rst claim in Corollary
3.3 in Pötscher (2004), applied to the function T given by T (x) = jxj

��
for

x 6= 0 and T (0) = 0, and from the observation that n�=2�1
Pb

t=1 jxtj
��
! 0 as

n ! 1 for every �xed integer b. Note that T is locally integrable since � < 1
and that T satis�es T (�x) = j�j

��
T (x) for all x 2 R and all � 6= 0. Also note

that the integral in (4) is almost surely well-de�ned and �nite (independently of
how one interprets jW (s)j

��
for W (s) = 0 in case � > 0), cf. (2.4) and Remark

2.1 in Pötscher (2004). [In the case � � 0, it is well-known that (4) holds
even under much weaker conditions than used here, cf. Lemma A.1 in Pötscher
(2004). Since the emphasis in this paper is on positive �, we make no attempt
to spell out these sharper and well-known results for � � 0.]

Remark 6 3(i) We �rst provide a lower bound in case � = 1. Given the addi-
tional assumption

P1
j=0 j

1=2
���j
�� <1, a lower bound for the order of magnitude

in probability of
Pn

t=1 jxtj
�1
is given by n1=2, in the sense that

lim
n!1

Pr

 

n�1=2
nX

t=1

jxtj
�1

> M

!

= 1

holds for every real M , i.e., n�1=2
Pn

t=1 jxtj
�1
!1 in probability. To see this,

let Tk;1(x) = min(k; jxj
�1
) for k 2 N with the convention that Tk;1(0) = k.

Then we have almost surely

n�1=2
nX

t=1

jxtj
�1
= n�1

nX

t=1

���n�1=2xt
���
�1

� n�1
nX

t=1

Tk;1(n
�1=2xt)

for every k 2 N. Furthermore, n�1
Pn

t=1 Tk;1(n
�1=2xt) converges in distribution

to
R 1
0
Tk;1(�W (s))ds by Corollary 3.4 in Pötscher (2004).

4 Now, by Corollary
7.4 in Chung and Williams (1990) and the monotone convergence theorem we
have almost surely

Z 1

0

Tk;1(�W (s))ds =

Z 1

�1

Tk;1(�x)L(1; x)dx! j�j
�1
Z 1

�1

jxj
�1
L(1; x)dx =1

for k ! 1, where L denotes standard Brownian local time. The last equality
in the above display follows since L(1; 0) > 0 almost surely and L(1; x) hav-
ing almost surely continuous sample path together imply that there exists a
neighborhood U of zero (that may depend on the realization of L(1; �)) such
that infx2U L(1; x) > 0 holds almost surely. Note that the just established

2Clearly, �2 is nothing else than the so-called long-run variance.
3The lower bound results for � � 1 given in this remark together with the lower bound re-

sults for the case �1 < � < 1 implied by Remark 5 provide an improvement over Proposition
6.4 in Park and Phillips (1999) under weaker conditions.

4Since Tk;1 is continuous, this convergence in fact holds under weaker conditions on the
process xt then used here, cf. Lemma A.1 in Pötscher (2004).
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lower bound (established under the stricter summability condition on �j im-
posed here) and the upper bound given by Theorem 1 agree up to a logarithmic
term and in this sense are close to being sharp.
(ii) We next turn to the case � > 1 and show that the upper bound n�=2 on

the order of magnitude is also a lower bound in the sense that

lim
"!0;">0

lim inf
n!1

Pr

 

n��=2
nX

t=1

jxtj
��

> "

!

= 1 (5)

holds: To this end let �n be a sequence satisfying �n ! 1 and n�1�n ! 0 as
n!1. Then we have almost surely

�
n�1�n

�1��
n��=2

nX

t=1

jxtj
��

= n�1
nX

t=1

�n

����nn
�1=2xt

���
��

� n�1
nX

t=1

�nTk;�(�nn
�1=2xt);

where Tk;�(x) = min(k; jxj
��
) for k 2 N with the convention that Tk;�(0) = k.

Note that Tk;� is Lebesgue-integrable (since � > 1) and bounded. The version
of Theorem 3 in Jeganathan (2004) given as Proposition 15 in the Appendix
below now shows that the right-hand side of the above display converges in
distribution to

j�j
�1
Z 1

�1

Tk;�(x)dxL(1; 0):

Since L(1; 0) > 0 almost surely and
R1
�1

Tk;�(x)dx! 1 for k ! 1, it follows
that

lim
n!1

Pr

 
�
n�1�n

�1��
n��=2

nX

t=1

jxtj
��

> M

!

= 1

holds for every realM , i.e.,
�
n�1�n

�1��
n��=2

Pn
t=1 jxtj

��
!1 in probability.

Note that � > 1 and that this result holds for every sequence �n satisfying �n !
1 and n�1�n ! 0. A fortiori it then holds for every sequence �n > 0 satisfying
n�1�n ! 0. Hence we have that �nn

��=2
Pn

t=1 jxtj
��

! 1 in probability for
every sequence �n !1. By Lemma 16 in the Appendix it follows that n�=2 is
a lower bound in the sense of (5).

Remark 7 (i) All results above for
Pn

t=1 jxtj
��

apply analogously to sums

of the form
Pn

t=a jxtj
��

for any (�xed) integer a > 1. [This follows sincePa�1
t=1 jxtj

��
is almost surely �nite]

(ii) In case � � 0 all results given above for
Pn

t=1 jxtj
��

carry over toPn
t=0 jxtj

��
. For � > 0 this is again so, provided the distribution of x0 does

not assign positive mass to the point 0; otherwise,
Pn

t=0 jxtj
��

is unde�ned on

the event where x0 = 0; if one chooses to de�ne jx0j
��

= 1 on this event,
then the above results clearly do not apply (except for the lower bound given
in Remark 6 which then holds a fortiori).
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2.2 Bounds on the Order of Magnitude of
Pn

t=1 vt jxtj
��

We next illustrate how the above results can be used to derive upper bounds on
the order of magnitude of

Pn
t=1 vt jxtj

��
where vt for t � 1 are random variables

de�ned on the same probability space as xt. Note that this expression is almost
surely well-de�ned and �nite for every � 2 R.5 The leading case we have in
mind is vt = wkt+1 where k 2 N. Applying the Cauchy-Schwarz inequality gives
almost surely

�����

nX

t=1

vt jxtj
��

�����
�

 
nX

t=1

v2t

!1=2 nX

t=1

jxtj
�2�

!1=2
:

Hence, if supt�1Ev
2
t < 1 (or more generally

Pn
t=1Ev

2
t = O(n)) holds, we

obtain from Theorem 1

nX

t=1

vt jxtj
��
=

8
<

:

OPr(n
(�+1)=2) if � > 1=2

OPr(n
3=4 (log n)

1=2
) if � = 1=2

OPr(n
1��=2) if � 1 � � < 1=2:

(6)

Under the additional assumption
P1

j=0 j
1=2
���j
�� < 1 the bound OPr(n

1��=2)
in fact holds also for � < �1, cf. Remark 5. Variations of the above bound can
obviously be obtained by using Hölder�s inequality.

Remark 8 In the case � = 0 the problem reduces to determining the order ofPn
t=1 vt, a problem to which this paper has nothing to add to the literature.

We only observe that in this case the above bound can clearly be improved to
OPr(n

1=2) whenever vt satis�es a central limit theorem (as is, e.g., the case if

vt = wt+1), or whenever E (
Pn

t=1 vt)
2
= O(n). The latter condition is, e.g.,

satis�ed if vt is mean-zero and weakly stationary with absolutely summable
covariance function, or if vt is a sequence of uncorrelated mean-zero random
variables satisfying supt�1Ev

2
t < 1. We do not further comment on such

improvements as they are not related to the subject of the paper.

We next provide improvements on the bound (6) under appropriate assump-
tions on vt. Note that the assumptions on vt in the subsequent proposition are
certainly satis�ed if vt is independent of xt (or of xt�x0, respectively) for every
t � 1 and the �rst absolute moment of vt is bounded uniformly in t. In partic-
ular, these assumptions are satis�ed for the important special case vt = wkt+1
provided that �j = 0 for all j > 0 (implying that wt = "t) and that E j"tj

k
is

�nite.6

5 In particular, how, and if, we assign a value in the extended real line to vt jxtj
�� on the

event fxt = 0g has no consequence for the results.
6The condition that �j = 0 for all j > 0 can of course be replaced by the more general

condition �l 6= 0 for some l � 0 and �j = 0 for all j 6= l. This equally applies to the discussion
immediately preceding Propositions 11 and 13.
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Proposition 9 Suppose that in addition to the maintained assumptions we
have that supt�1E(jvtj) < 1 holds. Assume further that E(jvtj j xt) = E(jvtj)
almost surely holds for all t � 1 if � � 0, and that E(jvtj j xt � x0) = E(jvtj)
almost surely holds for all t � 1 if �2 � � < 0. Then

nX

t=1

jvtj jxtj
��
=

8
<

:

OPr(n
�=2) if � > 1

OPr(n
1=2 log n) if � = 1

OPr(n
1��=2) if � 2 � � < 1:

A fortiori the same bound then holds for
Pn

t=1 vt jxtj
��
.

Proof. Suppose � � 0. For the same reasons as given in the proof of Theorem
1 it su¢ces to bound

Pn
t=t� jvtj jxtj

��
. De�ne for 0 < � < 1

Q0n(�) =
nX

t=t�

jvtj jxtj
��
1

����t�1=2xt
��� > �=(nt)1=2

�

and

R0n(�) =
nX

t=t�

jvtj jxtj
��
1

����t�1=2xt
��� � �=(nt)1=2

�
:

Observe that now the event fR0n(�) > 0g is contained in Sn(�) up to null-sets
where Sn(�) has been de�ned in the proof of Theorem 1. Hence,

Pr (R0n(�) > 0) � 4��

as shown in the proof of Theorem 1. Furthermore, since jvtj is integrable and
jxtj

��
1
���t�1=2xt

�� > �=(nt)1=2
�
is a bounded xt-measurable random variable,

the law of iterated expectations and the assumptions on vt imply that

EQ0n(�) �

�
sup
t�1

E(jvtj)

� nX

t=t�

t��=2E

����t�1=2xt
���
��

1(
���t�1=2xt

��� > �=(nt)1=2)

�

holds. The remainder of the proof is then identical to the proof of Theorem 1.
Next suppose �2 � � < 0. Then

nX

t=1

jvtj jxtj
��
� max

�
1; 2���1

�
 

nX

t=1

jvtj jxt � x0j
��
+ jx0j

��
nX

t=1

jvtj

!

: (7)

Observe that the second sum on the right-hand side of the above display is
OPr(n) by an application of Markov�s inequality (since E jvtj is uniformly bounded
by assumption) and since jx0j

��
is well-de�ned and real-valued. Furthermore,

since jvtj is integrable and jxt � x0j
��
is a nonnegative real-valued random vari-

able we may use the law of iterated expectations again (conditioning being on
xt � x0) to obtain that the expectation of the �rst sum in (7) is bounded by

�
sup
t�1

E(jvtj)

� nX

t=1

E
�
jxt � x0j

��
�
:

This bound is then further treated exactly as in the proof of Theorem 1.
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Remark 10 If Ex20 < 1 is assumed, the condition E(jvtj j xt � x0) = E(jvtj)
almost surely can be replaced by E(jvtj j xt) = E(jvtj) almost surely also in case
�2 � � < 0. The proof then proceeds by directly bounding E

Pn
t=1 jvtj jxtj

��

by
�
supt�1E(jvtj)

�Pn
t=1E

�
jxtj

��
�
; cf. Remark 4(ii).

We next turn to the case where vt is a martingale di¤erence sequence. The
improvement over the bound (6) is obtained in this case by observing that
the sequence

Pn
t=1 vt jxtj

��
is then a martingale transform and by combining

Theorem 1 with results in Lai and Wei (1982). [Note that
Pn

t=1 vt jxtj
��

will
typically not be a martingale as the �rst moment will in general not exist,
cf. Remark 3(ii); hence, martingale central limit theorems are not applicable.]
The assumptions in the subsequent proposition are in particular satis�ed in the
important special case where vt = wt+1 and �j = 0 for all j > 0 (implying that
vt = wt+1 = "t+1) by choosing Ft as the �-�eld generated by xt+1; : : : ; x1 for
t � 0.

Proposition 11 Suppose that in addition to the maintained assumptions we
have that (vt)t�1 is a martingale di¤erence sequence with respect to a �ltration
(Ft)t�0 such that supt�1E

�
v2t j Ft�1

�
<1 holds almost surely. Assume further

that xt is Ft�1-measurable for every t � 1.
(a) Then

nX

t=1

vt jxtj
��
=

8
><

>:

oPr(n
�=2 (log n)

1=2+�
) if � > 1=2

oPr(n
1=4(log n)1+� ) if � = 1=2

oPr(n
(1��)=2 (log n)

1=2+�
) if � 1 � � < 1=2

holds for every � > 0. Under the additional assumption
P1

j=0 j
1=2
���j
�� < 1

the bound given for the range �1 � � < 1=2 continues to hold for the range
�1 < � < 1=2.
(b)

nX

t=1

v2t jxtj
��
=

�
oPr
�
n�=2+�

�
if � � 1

oPr
�
n1��=2+�

�
if � 2 � � < 1

holds for every � > 0. Under the additional assumption
P1

j=0 j
1=2
���j
�� < 1

the bound given for the range �2 � � < 1 continues to hold for the range
�1 < � < 1.

Proof. Since
Pt

s=1 ws is a (nondegenerate) recurrent random walk under the
assumptions of the proposition that is not of the lattice-type (as it has un-
countably many possible values in the sense of Chung (2001, Section 8.3) by
Lebesgue�s di¤erentiation theorem), it visits every interval in�nitely often al-
most surely. From independence of x0 and (ws)s�1 we may conclude that almost
surely jxtj falls into the interval (1=2; 3=2) in�nitely often. This shows that the
sum

Pn
t=1 jxtj

��
diverges almost surely for every value � 6= 0, the divergence

10



being trivial in case � = 0. Now apply Lemma 2(iii) in Lai and Wei (1982) to
conclude that

nX

t=1

vt jxtj
��
= o

0

@
 

nX

t=1

jxtj
�2�

!1=2 

log
nX

t=1

jxtj
�2�

!1=2+�1

A a:s:

and
nX

t=1

v2t jxtj
��
= o

0

@
 

nX

t=1

jxtj
��

!1+�1

A a:s:

for every � > 0. Apply Theorem 1 as well as Remark 5 (applied to 2� and �,
respectively) to complete the proof.

Remark 12 If supt�1E (jvtj


j Ft�1) <1 almost surely holds for some 
 > 2,

applying Corollary 2 in Lai and Wei (1982) yields the slightly better bound

nX

t=1

vt jxtj
��
=

8
><

>:

OPr(n
�=2 (log n)

1=2
) if � > 1=2

OPr(n
1=4 log n) if � = 1=2

OPr(n
(1��)=2 (log n)

1=2
) if � 1 � � < 1=2;

where under the additional condition
P1

j=0 j
1=2
���j
�� < 1 the bound for the

range �1 � � < 1=2 again continues to hold for �1 < � < 1=2.

In case the martingale di¤erence sequence is square-integrable with a non-
random conditional variance the bound in Part (a) of the above proposition can
be somewhat improved. I owe this observation to a referee. Note that the sub-
sequent proposition in particular covers the important special case vt = wt+1 =
"t+1 mentioned above.

Proposition 13 Suppose that in addition to the maintained assumptions we
have that (vt)t�1 is a martingale di¤erence sequence with respect to a �ltration
(Ft)t�0 such that E

�
v2t j Ft�1

�
= E

�
v2t
�
holds almost surely for all t � 1 and

such that supt�1E
�
v2t
�
< 1. Assume further that xt is Ft�1-measurable for

every t � 1. For the case �1 � � < 0 assume additionally Ex20 <1. Then

nX

t=1

vt jxtj
��
=

8
<

:

OPr(n
�=2) if � > 1=2

OPr(n
1=4 (log n)

1=2
) if � = 1=2

OPr(n
(1��)=2) if � 1 � � < 1=2

holds.

Proof. Assume � � 0 �rst. For the same reasons as given in the proof of The-
orem 1 it su¢ces to bound

Pn
t=t� vt jxtj

��
. For 0 < � < 1 write

Pn
t=t� vt jxtj

��

as Q�n(�) +R
�
n(�) where

Q�n(�) =
nX

t=t�

vt jxtj
��
1

����t�1=2xt
��� > �=(nt)1=2

�

11



and

R�n(�) =
nX

t=t�

vt jxtj
��
1

����t�1=2xt
��� � �=(nt)1=2

�
:

Observe that fjR�n(�)j > 0g � Sn(�) up to null-sets, and hence Pr (jR
�
n(�)j > 0) �

4�� as shown in the proof of Theorem 1. Observe that the terms making up
Q�n(�) have a �nite second moment since the factor multiplying vt is bounded in
view of � � 0. By the martingale di¤erence property of vt, by the assumptions
on its conditional variance, and since xt is Ft�1-measurable we obtain arguing
similarly as in the proof of Theorem 1 and setting c = supt�1E

�
v2t
�

EQ�n(�)
2 =

nX

t=t�

Ev2tE
�
jxtj

�2�
1

����t�1=2xt
��� > �=(nt)1=2

��

� c
nX

t=t�

t��E

����t�1=2xt
���
�2�

1

�
1 >

���t�1=2xt
��� > �=(nt)1=2

��

+c
nX

t=t�

t��E

����t�1=2xt
���
�2�

1

����t�1=2xt
��� � 1

��

� c
nX

t=t�

t��

 

2�

Z 1

�=(nt)1=2
z�2�dz + 1

!

:

This gives the bound

EQ�n(�)
2 =

8
<

:

O (n�) if � > 1=2
O
�
n1=2 log n

�
if � = 1=2

O
�
n1��

�
if 0 � � < 1=2:

An argument similar to the one in the proof of Theorem 1 then completes the
proof in the case � � 0. Next consider the case �1 � � < 0. Since Ex20 < 1
is assumed, we have that jxtj

��
is square-integrable for �1 � � < 0. Since

vt is square-integrable by assumption, it follows that vt jxtj
��

is integrable and
hence is a martingale di¤erence sequence w.r.t. (Ft)t�0. In fact, vt jxtj

��
is

even square-integrable for �1 � � < 0: since v2t and jxtj
�2�

are nonnegative
and integrable, the law of iterated expectations and the assumptions imply

E
�
v2t jxtj

�2�
�
= E

�
jxtj

�2�
E
�
v2t j Ft�1

��
= E

�
jxtj

�2�
�
E
�
v2t
�
<1:

Now, vt jxtj
��

being a square-integrable martingale di¤erence sequence implies
that

E

 
nX

t=1

vt jxtj
��

!2
=

nX

t=1

Ev2tE
�
jxtj

�2�
�
� sup

t�1
E
�
v2t
�
c1

nX

t=1

t�� = O
�
n1��

�

where we use the fact that E jxtj
�2�

� c1t
�� for a �nite constant c1 as shown

in Remark 4(ii). An application of Markov�s inequality then proves the result.
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Remark 14 We note that the bounds in Propositions 9 and 13 are given only
for � � �2 or � � �1, respectively. We have not invested e¤ort into extending
the validity of these bounds beyond this range. In the special case vt = wt+1 the
bound for

Pn
t=1 vt jxtj

��
is again OPr(n

(1��)=2) for � � �2; this follows from
Theorem 3.1 in Ibragimov and Phillips (2008) which establishes distributional
convergence of n(��1)=2

Pn
t=1 wt+1 jxtj

��
. This theorem makes assumptions on

the process xt that are stronger in some dimensions (e.g., higher moment as-
sumptions) but are weaker in other respects (e.g., no assumption about existence
of a density). However, for � > �2 (which includes the case of negative powers
of interest here) the results in Ibragimov and Phillips (2008) do not apply.
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A Appendix

We �rst present a variant of Theorem 3 in Jeganathan (2004). If x0 = 0,
the subsequent proposition follows immediately from Theorem 3 in Jeganathan
(2004). As we show in the proof below, for general x0 the proposition follows
from that theorem combined with Remark 4 in Jeganathan (2004) plus a con-
ditioning argument. We also note that the assumptions on xt that we maintain
here are stronger than necessary and the proposition could also be established
under weaker conditions similar to the ones used in Jeganathan (2004). We do
not discuss such a more general result here.

Proposition 15 Suppose f is a Lebesgue-integrable real-valued function on R
that is bounded. Then, under the maintained assumptions on xt, it holds that

n�1
nX

t=1

�nf(n
�1=2�nxt)

d
! j�j

�1

�Z 1

�1

f(y)dy

�
L(1; 0) (8)

for any sequence �n satisfying �n !1 and n�1�n ! 0. (Recall � =
P1

j=0 �j 6=
0.)

Proof. Without loss of generality we may assume that �0 6= 0 (otherwise
shift the sequences �j and "i appropriately). Set 
n = n1=2h(n)��10 � as in
Jeganathan (2004) with positive h(n), and note that 
n 6= 0. From Proposition
1 in Jeganathan (2004) we obtain that 
�1n Sn = 
�1n

Pn
t=1 wt converges in

distribution to N(0; 2). In view of the central limit theorem for linear processes
and the fact that h(n) is positive, we conclude that h(n) converges to 2�1=2 j�0j.
We also note that sign(
n) = sign(�

�1
0 �) is independent of n. Observe that

n�1
nX

t=1

�nf(n
�1=2�nxt) =

�
n1=2= j
nj

�
n�1

nX

t=1

��nf
�(
�1n

��nxt) (9)

where ��n = n�1=2 j
nj�n satis�es
��n !1 and n�1��n ! 0 and where f�(y) =

f(sign(��10 �)y).
Assume �rst that x0 � 0. Then xt = St and since all assumptions in Theo-

rem 3(i) (or (ii)) in Jeganathan (2004) are satis�ed, we conclude from that theo-

rem that the above expression converges weakly to 21=2 j�j
�1
�R1

�1
f�(y)dy

�
�L(1; 0)

where �L(1; 0) is the local time as de�ned in Jeganathan (2004). Since
R1
�1

f�(y)dy =R1
�1

f(y)dy and since 21=2 �L(1; 0) has the same distribution as L(1; 0) the result
follows in case x0 � 0.
Next assume that x0 � c, a constant not necessarily equal to zero. By (9)

it again su¢ces to show that n�1
Pn

t=1
��nf

�(
�1n
��nxt) = n�1

Pn
t=1 f

�
n(


�1
n St)

converges to
�R1

�1
f�(y)dy

�
�L(1; 0) weakly, where f�n(y) =

��nf
�(��n(y+c


�1
n )).

But, under the maintained assumptions on xt, this follows from the extension
of Theorem 3 discussed in Remark 4 in Jeganathan (2004) if we can verify the
subsequent conditions for f�n (we may assume without loss of generality that
��n > 0 for all n):
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(i) By change of variables and the integrability assumption on f we have

sup
n

Z 1

�1

jf�n(y)j dy = sup
n

Z 1

�1

����nf
�(��n(y + c


�1
n ))

�� dy =
Z 1

�1

jf(y)j dy <1:

(ii) Correcting a typo in Jeganathan (2004), we have to show that

lim sup
n

n�1
Z 1

�1

jf�n(y)j
2
dy = 0:

Note that the left-hand side can be written as

lim sup
n

n�1
Z 1

�1

����nf
�(��n(y + c


�1
n ))

��2 dy = lim sup
n

n�1��n

Z 1

�1

jf(y)j
2
dy

by a change of variables and the de�nition of f�. But this is zero since n�1�n !
0 by assumption and since the integral is �nite (f is quadratically integrable
since it is integrable and bounded).
(iii) Again by a change of variables

lim
d!1

sup
n

Z

jyj�d

jf�n(y)j dy = lim
d!1

sup
n

Z

j���1n z�c
�1n j�d
jf�(z)j dz:

Since f is integrable, the limit for d!1 is zero for each integral individually.
Hence, it su¢ces to show that

lim
d!1

sup
n�N

Z

jyj�d

jf�n(y)j dy = lim
d!1

sup
n�N

Z

j���1n z�c
�1n j�d
jf�(z)j dz = 0

for a suitable N . Choose N such that ��n > 1 and
��c
�1n

�� � 1 holds for n � N .
Then we have for d > 2

sup
n�N

Z

j���1n z�c
�1n j�d
jf�(z)j dz �

Z

jzj�d=2

jf�(z)j dz =

Z

jzj�d=2

jf(z)j dz (10)

since n
z :
�����
�1
n z � c
�1n

��� � d
o
� fz : jzj � d=2g

for n � N and d > 2. The upper bound in (10) now converges to zero for
d!1 by integrability of f .
(iv) De�ne Fn(y) as in Remark 4 in Jeganathan (2004). Then for y � 0 we

obtain

Fn(y) =

Z y

0

��nf
�(��n(u+ c


�1
n ))du =

Z ��n(y+c

�1

n )

��nc

�1

n

f�(z)dz;

whereas for y < 0 we obtain

Fn(y) = �

Z 0

y

��nf
�(��n(u+ c


�1
n ))du = �

Z ��nc

�1

n

��n(y+c

�1

n )

f�(z)dz:
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It follows that

Fn(y)! F (y) =

8
<

:

R1
0
f�(z)dz if y > 0
0 if y = 0

�
R 0
�1

f�(z)dz if y < 0

for every y. Observe that consequently
R1
�1

�L(1; y)dF (y) =
�R1

�1
f�(y)dy

�
�L(1; 0).

(v) supn;y
��
�1
n jf�n(y)j = supn;y

��f�(��n(y + c
�1n ))
�� = supy jf�(y)j = supy jf(y)j <

1 since f is a bounded function.
This proves that (8) holds for arbitrary nonrandom starting values. If the

starting value x0 is random, we proceed as follows:

Pr

 

n�1
nX

t=1

�nf(n
�1=2�nxt) � u

!

=

Z
Pr

 

n�1
nX

t=1

�nf(n
�1=2�nxt) � u j x0 = c

!

dG(c)

=

Z
Pr

 

n�1
nX

t=1

�nf(n
�1=2�n(St + c) � u

!

dG(c)

where we have made use of independence of x0 and (S1; : : : ; Sn) and where G
denotes the distribution function of x0. By what was shown above, we have that
Pr
�
n�1

Pn
t=1 �nf(n

�1=2�n(St + c) � u
�
converges to the distribution function

Pr
��R1

�1
f(y)dy

�
L(1; 0) � u

�
for all continuity points of this distribution func-

tion. Since this distribution function does not depend on c, we can conclude
from dominated convergence that

Pr

 

n�1
nX

t=1

�nf(n
�1=2�nxt) � u

!

! Pr

��Z 1

�1

f(y)dy

�
L(1; 0) � u

�

for all continuity points. This completes the proof.

Lemma 16 Suppose Yn is a sequence of (real-valued or extended real-valued)
nonnegative random variables. Then the following are equivalent:
(i) �nYn !1 in probability as n!1 for every sequence �n of real numbers

satisfying �n !1.
(ii) lim"!0;">0 lim infn!1 Pr (Yn > ") = 1.
(iii) lim infn!1 Pr (Yn > "n) = 1 for every sequence of real numbers "n > 0

satisfying "n ! 0.

Proof. We �rst show that (i) implies (iii): For given "n > 0 satisfying "n ! 0
de�ne �n = "�1n . Clearly then �n ! 1 holds. From (i) we then have that
Pr (�nYn > 1)! 1 as n!1. But this immediately translates into (iii).
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Next we show that (iii) implies (i): Let �n !1 be a given sequence and let
0 < M <1 be arbitrary. De�ne "n =M=�n which is well-de�ned and positive
for su¢ciently large n and satis�es "n ! 0. But then

1 = lim inf
n!1

Pr (Yn > "n) = lim inf
n!1

Pr (�nYn > M)

holds as a consequence of (iii). Since M was arbitrary, (i) follows.
That (ii) implies (iii) is obvious since for every " > 0 we have Pr (Yn > "n) �

Pr (Yn > ") for large n since "n ! 0.
We �nally show that (iii) implies (ii): Suppose (ii) does not hold. Then

lim
"!0;">0

lim inf
n!1

Pr (Yn > ") < 1

must hold, noting that the outer limit exists due to monotonicity with respect
to ". In particular,

lim
k!1

lim inf
n!1

Pr (Yn > 1=k) < 1

must hold. Hence we can �nd a strictly increasing sequence nk of integers
diverging to in�nity and a constant c < 1 such that

Pr (Ynk > 1=k) < c < 1

holds for every k � k0 for some su¢ciently large k0. For n � nk0 de�ne "n = 1=k
if nk � n < nk+1, and set "n = 1 for n < nk0 . Then "n > 0 and "n ! 0 for
n!1 holds. But

lim inf
n!1

Pr (Yn > "n) � lim inf
k!1

Pr (Ynk > "nk) � lim inf
k!1

Pr (Ynk > 1=k) � c < 1,

showing that (iii) does not hold.
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