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Abstract

It is often claimed that opinions are more likely to be correct if they are held independ-
ently by many individuals. But what does it mean to hold independent opinions? To
clarify this condition, we distinguish four notions of probabilistic opinion independ-
ence. Which notion applies depends on environmental factors such as commonly
perceived evidence, or, more formally, on the causal network in which people interact
and form their opinions. In a general theorem, we identify conditions on this network
that guarantee opinion independence in each sense. Our results have implications
for ‘wisdom of crowds’ arguments, as we illustrate by providing old and new jury
theorems.

1 Introduction

What exactly does it mean to have independent opinions or beliefs on a factual
question? And under what circumstances can we expect opinions of individuals to
be independent from each other? The concept of opinion independence is not well
understood, even though it is crucial in social epistemology.

Opinion independence is of central importance in the context of ‘wisdom of crowds’
arguments and, more formally, jury theorems. The claim that ‘crowds are wise’ stems
from the idea that decisions based on many opinions are more likely to be correct
than decisions based on a few or just one opinion (e.g., Surowiecki 2004). Much of
the trust in the judgment of large electorates, for instance, comes from the idea that
a judgment is likely to be correct if it is approved by many voters. Similarly, in a
court case a single witness may well be mistaken, but twenty witnesses who all say
the same may not, so the intuition. But these arguments assume that the group
aggregates (sufficiently) independent individual opinions. Opinion dependence can
undermine the ‘wisdom of crowds’: if, for instance, most individuals blindly follow
the same ‘opinion leader’, then the majority is no ‘wiser’ than that opinion leader.
However, exaggerated influence of opinion leaders is only one form of harmful opin-
ion dependence; other popular forms are information cascades and systematic biases.

!The formal results presented in this paper are the work of Franz Dietrich.



In threatening the ‘wisdom of crowds’, opinion dependence ultimately threatens the
epistemic superiority of democratic decision-making bodies and institutions. The im-
portance of opinion independence for ‘wisdom of crowds’ arguments becomes explicit
in jury theorems. Indeed, such theorems typically make an ‘independence’ assumption
(as well as an assumption of voter ‘competence’), and they then conclude that ‘crowds
are wiser’ in the technical sense that larger groups are more likely to be correct in
majority than smaller groups or single individuals.

But opinion independence is not only relevant in the aggregative context of the
‘wisdom of crowds’ and jury theorems. It also matters, for instance, when studying
the effect of group deliberation on opinions, regardless of whether any voting or
aggregation takes place. And finally, it is important to carefully define the notion of
opinion independence for the sake of conceptual clarity, quite apart from its relevance
elsewhere.

In a first step, we need to distinguish between causal and probabilistic depend-
ence. The former states that the opinions causally affect each other, the latter that
they display probabilistic correlations. Causation is clearly distinct from correlation;
yet the two notions are intertwined.? Indeed, whether and how opinions are prob-
abilistically dependent is very much determined by causal interconnections between
individuals and their environment. This paper considers four possible notions of prob-
abilistic independence (Section 2). It determines in a general theorem which notion
applies, depending on the underlying causal relations between individuals and other
relevant factors (Section 3). As an application, we finally present two jury theorems
with different independence conditions (Section 4).

Several technical treatments of opinion independence can be found in the literat-
ure on jury theorems; see for instance Boland (1989), Boland et al. (1989), Ladha
(1992, 1993, 1995), Berg (1993), Dietrich and List (2004), Dietrich (2008), Kaniovski
(2010) and Dietrich and Spiekermann (2010) (and for jury theorems more generally
see for instance Grofman et al. 1983, Nitzan and Paroush 1984, List and Goodin
2001, Bovens and Rabinowicz 2006, Romeijn and Atkinson 2011, Hawthorne unpub-
lished). But opinion dependence has also been discussed less formally in political
philosophy, especially with reference to epistemic and deliberative democracy. Con-
tributions include Grofman and Feld (1988), Estlund et al. (1989), Estlund (1994,
2008), Anderson (2006), Vermeule (2009, ch. 1) and Spiekermann and Goodin (2012).
We approach the problem from a causal angle, which is crucial for gaining a deeper un-
derstanding of independence. To do so, we draw on causal networks. Causal network
reasoning has been employed before in the context of jury theorems (see Dietrich and
List 2004, Dietrich 2008, and Dietrich and Spiekermann 2010), but a general account
of probabilistic independence in terms of causal interactions is still missing.

Our causal approach highlights the effect of social practices and institutions on
opinion independence, and as such on the epistemic quality of these practices and
institutions. In assuming an external standard for epistemic quality and correctness

2For instance, two phenomena that do not causally affect each other can be correlated because
they have a common cause. Here, we do not commit ourselves to any specific account of causation and
our formal (network-theoretic) representation of causation is compatible with different metaphysical
accounts.



we are in line with the correspondence theory of truth and Alvin Goldman’s influential
“veritism” approach in social epistemology (Goldman 1999, 59, 79ff.; 2004).

2 Four different independence conditions and their causal
motivations

We assume that some individuals, labeled ¢ = 1, 2, 3, ..., must form opinions on a
given issue.? This might arise in the context of deciding between two alternatives,
such as: convict or acquit the defendant in a court trial, predict that global warming
will continue or that it will not, and so on. The opinions may, for instance, serve as
votes in a formal voting procedure, or as inputs or outputs of group deliberation.

In the simple base-line case, our model involves

e an opinion of each voter, which can take only two possible values (e.g., ‘guilty’
or ‘innocent’, or ‘yes’ or ‘no’, or ‘1’ or ‘0’),

e the state (of the world), which represents the objectively correct opinion and
which therefore can take the same two values, and

e the correctness notion, according to which an opinion is either ‘correct’ or ‘in-
correct’ depending on whether or not it matches the state.

Since our framework is probabilistic, phenomena — such as opinions and the state

— are outcomes of random variables (with an underlying probability function denoted
Pr). We thus formally consider a random variable x generating the state of the
world, and random variables o1, 02, ... generating the opinions of individuals 1, 2,
... Note our convention of using bold face letters to denote random variables. In our
mentioned base-line case, the state x and the opinions o1, 03, ... all range over the
same binary set (e.g., the set {‘yes’, ‘no’} or {1,0}), where an opinion o; is thought
of as being correct if o; = x. All our illustrations will follow this binary base-line case
(as does the literature on jury theorems). But our model is much more general:

e The opinions 01, 02, ... need not be binary and might, for instance, be sets of
believed propositions (belief sets or judgment sets), numerical estimates (say,
of temperature), or even degrees of belief.

e The state x need not be binary and might, for instance, be a set of true proposi-
tions, the true temperature, or an objective probability or probability function.*

e The notion of correctness of opinions need not be binary, i.e., there may be mul-
tiple degrees of objective correctness (rightness, goodness etc.’) For instance,

3The total number of individuals does not matter for us. Technically, it may even be taken to be
countably infinite, as in jury theorems.

4In fact, the state and the opinions may be two different kinds of objects, i.e., range over a different
sets — which is philosophically natural since an opinion differs conceptually from its truth-making
fact, i.e., the state. For instance, the opinion could be ‘guilty’ or ‘innocent’, and the state could be
the fact of what exactly the defendant did on 7 January 2010.

*Different notions of objectivity are compatible with that assumption, as long as the fact about
the correct opinion is not determined by the actual opinions of people. This excludes procedural
notions of quality of opinion, where an opinion is correct if and because it matches the opinion that
arose collectively by applying an appropriate procedure. It also excludes constructivist notions of
quality of opinion where an opinion’s quality is constitutively determined by the opinions of the
agents.



a temperature estimate (the opinion) is correct to a degree given by its prox-
imity to true temperature (the state); and, in a presumably more controversial
application, subjective probabilities (the opinion) are correct to the extent to
which they resemble the objective or ‘rational’ probabilities (the state).5
In general, the variables o1, 09,... thus range over an arbitrary set of possible
opinions, and the state x ranges over an arbitrary set of possible states. We do not
yet formalize the correctness notion, as it is not needed to analyse opinion dependence,
but only to state jury theorems.”
The simplest independence assumption one might come up with refrains from
conditionalizing on any background information:

Unconditional Independence (UI). The opinions 01, 09, ... are unconditionally
independent.

Counterexamples to Ul are easily constructed. In short, since opinions are typ-
ically (indeed, hopefully) correlated with the state, they are usually correlated with
each other. To see, for instance, why the first two individuals (jurors) in our court
trial example presumably hold positively correlated rather than independent opin-
ions, note that a ‘guilty’ opinion of juror 1 typically raises the probability of a ‘guilty’
opinion of juror 2 — formally, Pr(os = ‘guilty’|o; = ‘guilty’) > Pr(oy = ‘guilty’) —
because juror 1’s ‘guilty’ opinion raises the probability that the state is that of a
guilty defendant (assuming juror 1 is competent), which in turn raises the probabil-
ity that juror 2 holds a ‘guilty’ opinion (assuming juror 2 is competent). This is a
clear violation of UI, which would have required that opinions are of no informational
relevance to each other.

Note that this argument implicitly assumes that the state x has a causal effect
on each opinion, as indicated in Figure 1. In this (and all following) plots, only

Figure 1: The state is a direct cause of the opinions.

two opinions are shown for simplicity. The arrows represent causal relationships,

®The literature on jury theorems rarely considers more than two opinions and has perhaps never
considered more than two correctness levels. List and Goodin (2001) use many opinions but only two
correctness levels (where exactly one opinion is correct and all others are incorrect without further
refinement).

TA formalization could include a set S of possible ‘correctness levels’ (e.g., the set {‘correct’,
‘incorrect’} for a binary correctness notion) and a function mapping each opinion-state pair (o, x) to
the correctness level (in S) of opinion o in state .



pointing from the causing variable to the affected variable. In Figure 1 the opinions
are probabilistically dependent ‘through’ their common cause x.

That Ul is easily violated should not surprise scholars familiar with the Condorcet
Jury Theorem, given that this theorem does not assume that opinions are uncon-
ditionally independent but (usually) that they are state-conditionally independent.
What is more surprising is that Ul does hold in some circumstances, but we post-
pone this issue for now and turn to the more classical state-conditional notion of
independence:

State-Conditional Independence (SI). The opinions 01, 09, ... are independent
conditional on the state x.8

This conditional notion of independence is the basis of Condorcet’s classical jury
theorem (e.g., Grofman et al., 1983), which can be summarized as follows (see Section
4 for details). Suppose a group performs a majority vote between two alternatives of
which exactly one is correct. The correct alternative corresponds to our state x, and
the votes to our opinions o1, 09, ... Condorcet’s jury theorem states that if SI holds
and moreover in each state voters are (homogeneously) more often right than wrong,
then the probability of a correct majority outcome increases in (odd) group size and
converges to one.”

State-Conditional Independence says that once we know the state of the world the
opinions do not anymore bear any information on each other. The earlier objection
to UI — namely that the opinions of some of the people tell us something about what
the state is likely to be, and hence about what other people are likely to believe —
does not work against SI because we cannot learn anything new about the state if
we have already conditionalized on it. The state plays the role of a common cause
of the opinions. If the state is indeed the only common cause, SI is in line with
Reichenbach’s famous Common Cause Principle, which is often understood roughly
as follows: if a common cause fully explains the correlations between certain events,
then these events are independent conditional on the common cause (Reichenbach
1956, 159-60). In slightly more general terms:

8 Conditional independence is defined like independence but with probabilities replaced by condi-
tional probabilities. More precisely, as long as x is discrete (e.g., binary), independence conditional
on x by definition means that for every value z which x may take (with positive probability) there
is independence under the conditional probability function Pr(-|z). Without discreteness restriction,
the opinions are independent conditional on x if they are independent under the conditional prob-
ability measure Pr(-|z) for all values = that the random variable x may take, except possibly from
a set of values of x that occurs with zero probability. (The clause ‘except...” appears for technical
reasons related to the general mathematical definition of conditional probabilities, which takes care
of the case in which x takes some or even all of its values with zero probability. We spare the reader
the technicalities.)

9Some statements of Condorcet’s classical jury theorem use an unconditional independence con-
dition, but only in a quite different sense. Fither the state is not modeled as a random variable
but is assumed to take a given value (in which case the framework is different since all probab-
ilities are implicitly posterior probabilities given the state, so that the independence is implicitly
state-conditional). Or the assumption of unconditional independence is applied not to the opinions
themselves but to the events of correct, i.e., state-matching opinions (which makes the assumption
more plausible, although a convincing causal-network-theoretic justification seems hard to give).



Common Cause Principle (stated informally). Phenomena which do not caus-
ally affect each other are probabilistically independent conditional on their common
causes.

While the Common Cause Principle at first sight supports SI, it can be turned
against SI once we consider other causal networks in which x is not the only common
cause of the opinions. Consider for instance the network in Figure 2. Here the

Figure 2: Multiple direct common causes of opinions.

opinions have two common causes, the state x and another cause ¢, which could be a
factor like weather or room temperature. SI can now fail in much the same way as UI.
Suppose for instance that the variable weather has an effect on each juror in a court
trial: the sunnier weather is, the more the jurors see the good in the defendant, and
hence the more they are inclined to form the opinion that the defendant is innocent.
Now, even after having conditionalized on the state of the world that the defendant
is innocent, the opinions of the jurors are informative on each another, this time
through the common cause of weather; for instance, an opinion ‘innocent’ by the first
juror increases the probability that weather is sunny and hence the probability that
the second juror has the opinion ‘innocent’ too. In other words, the opinions are not
state-conditionally independent but state-conditionally positively correlated, namely
through the other common cause (‘weather’) on which SI fails to conditionalize.

This discussion suggests replacing SI by a notion of independence which condition-
alizes on all common causes of the opinions. By doing so we ‘control’ for all factors
that causally affect more than one opinion, eliminating the dependence induced by
such common factors.

To state such a condition formally, let us extend the formal framework, which so
far consists just of the state x and the opinions o1, 039, ... Now we consider these
and any number of additional random variables (representing phenomena which are
directly or indirectly causally related to the opinions), and we consider a causal
network over the variables. Formally, a causal network over some variables is a
so-called directed acyclic graph over these variables, that is, a set of directed arrows
between pairs of variables (representing causal relevance) such that there is no directed
cycle of arrows.!? Figures 1 or 2 were examples of how the network might look like.
Figure 3 is yet another example. Here, the state causally affects a variable ¢, which is
interpretable as evidence (e.g., fingerprints, witness reports, etc.) and which in turn

10For thorough discussions of causal networks, see Pearl 2000, ch. 1.



Figure 3: The state is an indirect common cause of opinions.

influences each opinion. Individuals are thus affected by the state only indirectly, via
the ‘trace’ which the state leaves in the form of c¢. The additional variables (such
as the variable ¢ in Figures 2 and 3) may be binary or multi-valued. For instance,
the variable weather may take the values ‘sunny’, ‘cloudy’, ‘rainy’ and so on; and the
variable ‘body of evidence’ may take several forms as well. Some variables (such as
room temperature) might even range over a continuum of values.

In the causal network, a variable a is said to be a direct cause of another b (and b
a direct effect of a) if there is an arrow pointing from a towards b (‘a — b’). Further,
a is a cause of b (and b an effect of a) if there is a directed path from a to b, i.e.,
a sequence of two or more variables starting with a and ending with b such that
each of these variables (except from the last one) directly causes the next one. For
instance, in Figure 3 the state x directly causes ¢, and indirectly causes the opinions.
Generally, when we use the verb “cause” we refer only to causal contribution; no
sufficiency or necessity is implied.!'!

A variable is a common cause (effect) of some variables if it is a cause (effect)
of each of them. By a ‘common cause’ simpliciter we mean a common cause of (two
or more) opinions. In all figures, such common causes are shown in gray. While in
Figures 1-3 all causes of opinions are common causes, Figure 4 contains four private
causes of opinions; they causally affect just one opinion. Note also that in Figure 4
some of the causes of opinions (namely, cg, ¢4 and cg) are non-evidential: they are
not related to the state. Although this might be viewed as ‘irrational’, individuals
are often influenced by non-evidential causes such as room temperature (a common
non-evidential cause) or the quality of one’s sleep last night (a private non-evidential
cause).

Let us write x (Greek ‘chi’) for the family of all common causes. In Figure 1 x
consists just of the state x; in Figures 2 and 3 of x and ¢; and in Figure 4 of x, c3
and c4. In general, x is a compound random variable with as many parts as there
are common causes of opinions.'> We are now ready to state a new independence
assumption, which is a direct application of the Common Cause Principle:

Common-Cause-Conditional Independence (CI). The opinions o1, 02, ... are

"'More precisely, each variable (i.e., the probabilities of its values) is affected by its direct causes.
Our network is a macroscopic simplification of the world and we do not commit ourselves to whether
the world is fundamentally governed by probabilistic or deterministic processes.

'2The range of x is the Cartesian product of the ranges of the common causes of opinions.



Figure 4: Private and common causes of opinions.

independent conditional on the common causes x.

This independence assumption may seem the most appealing one. It is backed by
the Common Cause Principle and more generally by probabilistic theories of causality.
With CI, the independence of opinions is guaranteed as long as the opinions do not
causally affect each other. It has, however, a weakness in the context of jury theorems
and ‘wisdom of crowds’ arguments. The problem with CI is not so much that it is not
sufficiently justified — CI is perhaps the most justifiable independence assumption —
but rather that CI (like UI) is a premise which does not easily lend itself to arguments
that ‘crowds are wise(r)’. Let us now explain this subtle point informally; in Section
4 we work it out more formally.

It is important to first realize that what matters ultimately in a jury theorem is
not independence of the opinions but rather independence of the events of correct
opinions. The typical reasoning is that a group whose members are independently
more likely to get it right will quite probably get it right in majority. This reasoning
involves independence of the events of holding correct opinions, not independence
of the opinions (or votes) simpliciter.'> Now, independence of the opinions implies
independence of the correct opinion events once we have conditionalized on the state
x. It is easy to see why: conditional on the state being x, if the opinions 01, 09,

. are independent then so are the events that o matches x, oo matches x, and so
on. In other words, the assumption of State-Conditional Independence implies what
is needed, namely (conditional) independence of the correctness events. Similarly,
if it so happens that the state x features among the common causes x — as it does
indeed in all of the above Figures 1-4 — Common-Cause-Conditional Independence also
implies (conditional) independence of the correctness events. But there are plausible
situations in which the state x is not a common cause. Figure 5 is one such case.
Here the common cause c¢ affects both the state and the opinions. As a plausible

'3The kind of aggregative conclusion that independence of opinions simpliciter lends itself to is
different and less relevant. One might for instance reason that a group of jurors who are independently
more likely to express the opinion ‘innocent’ will quite probably hold this opinion in majority. But
what matters is less the probability of an ‘innocent’ majority than that of a correct majority.



Figure 5: The state is not a cause of opinions.

example, imagine a homicide case in which the jurors learn that the defendant has
bought cyanide (represented by ¢). This fact is a common cause of the opinions of
the jurors, who take murder (and guilt) to be more likely if the defendant has bought
cyanide in advance. Since having bought cyanide facilitates poisoning, the purchase
causally affects not just the opinions but also whether the murder takes place; hence
the network of Figure 5. Note that state x is not a cause of any opinions.

Whenever the state x is not a common cause, CI does not conditionalize on it, and
therefore does not lend itself to jury-theorem-type arguments about the probability
of majority correctness. So we have to add the state into the conditionalisation, just
as Condorcet’s jury theorem conditionalizes on the state by using SI rather than UI.
To sum up, we have to conditionalize on all common causes plus the state. But what
does this mean? Following Dietrich (2008) and Dietrich and Spiekermann (2010), the
decision problem faced by the group can be conceptualized as being a description of
two things:

e the fact to find out about, conceptualized as the state of the world;

e the circumstances (environment) in which people form opinions, conceptualized

as the common causes influencing the opinions.

By conditionalising on the decision problem, we include the state by default (thus
making sure that not only the opinions but as a consequence also the events of correct
opinions are independent).

Formally, let us write 7 for the decision problem defined as a family containing
the state x and all common causes. Clearly, the problem 7 reduces to the common
causes Y if the state is a common cause (as in Figures 1-4). In general 7 is isomorphic
to the state-circumstances pair (x, x).14 We are now in a position to state our final
independence condition:

Problem-Conditional Independence (PI). The opinions 01, 09, ... are independ-
ent conditional on the problem 7.

This assumption is put to work in a jury theorem presented in Section 4.

Y This pair contains the state twice if the state is among the common causes, but such a redundancy
poses no problem.



3 The causal foundation of each independence condition:
a general theorem

While the last section has given informal causal motivations for the four independ-
ence conditions, this section turns to a formal result. The result gives us precise
sufficient (and in fact essentially necessary) conditions on causal interconnections for
each independence condition to hold. Given this result, once we know the individuals’
causal environment we can infer which kinds of opinion independence should (not) be
assumed. And if a social planner can design the environment, he can do so to induce
the kind of independence he aims for.

To be able to infer probabilistic features from causal interconnections, one must
of course assume that probabilities are compatible with the causal network. What
such compatibility amounts to has been settled precisely in the theory of causal (and
Bayesian) networks (e.g., Pearl 2000). Formally, probabilities (more precisely: the
joint probability distribution of the variables) are compatible with the causal network
if the so-called (Parental) Markov Condition holds: any variable in the network is
independent of its non-effects'® conditional on its direct causes. For instance, in
Figure 1 opinion o5 is independent of opinion 02 conditional on the direct cause x;
in Figure 2, o7 is independent of 0o given its direct causes x and c; in Figure 3, o
is independent of both 0, and x conditional on the only direct cause c; and so on.
Note the importance of causal independence between the opinions for (probabilistic)
opinion independence: if o7 had a causal effect on o2 then the Markov Condition
would not imply that o is conditionally independent of 0.

The following theorem gives causal conditions for our last two independence con-
ditions; the first two conditions are dealt with by a corollary below.

Theorem 1. Suppose probabilities are compatible with the causal network, and no
opinion is a cause of any other opinion. Then:
(a) Common-Cause-Conditional Independence holds;
(b) Problem-Conditional Independence holds if the state is not a common effect of
any opinions or private causes thereof.

Part (a) is an instance of the Principle of Common Cause and as such should come
without surprise to specialists.'® Part (b) settles the question of how the state should
(not) be causally related to the opinions in order for independence to be preserved
after conditionalising also on the state (in addition to the common causes). The
condition stated in part (b) requires that the state is not a common effect of variables
each of which is or privately causes a different opinion.!”

With the non-effects of a variable a we mean the variables which are not effects of a (and differ

from a).

Y63We nonetheless present a formal proof of part (a), given that standard renderings of the Common
Cause Principle are often less general than our application in that they focus on (in)dependence
between only two random variables and often assume that there is only one common cause. We
allow several opinions and common causes.

'"Equivalently, none of the following three cases obtains: (i) two (or more) opinions cause the state
(as in Figure 6a); (ii) private causes of two (or more) opinions cause the state (as in Figure 6b); (iii)
an opinion and a private cause of a different opinion cause the state.

10



Figure 6 gives counterexamples in which the state x is such a common effect. In

(6a) (6b)
Figure 6: Violations of the condition for Problem-Conditional Independence.

6a we see a causal setup where the state is a common effect of the opinions. A causal
structure like 6a arises if the opinions influence the state. For instance, the prediction
of a bank run might cause the bank run. Though interesting and sometimes very real,
such cases violate one of the core assumptions of many theories of social epistemology
(at least among those committed to a veritistic approach): the assumption that an
external fact determines correctness. ‘Self-fulfilling prophecies’ are ruled out.

In Figure 6b, by contrast, the state is a common effect of private causes of opinions.
To show the relevance of such a setup, we need a more complex example. Suppose
an intelligence agency observes two different subjects at different ends of the town.
The agency knows from reliable sources that if and only if both subject 1 leaves the
house at noon (c;) and subject 2 leaves the house at noon (c2), the two subjects will
have a conspiratorial meeting (x). One agent observes subject 1, another subject 2,
and for security reasons they cannot directly communicate with each other. Both
agents form opinions on whether the meeting will take place. Each agent’s opinion
is influenced only by his own observation (either ¢ or cg), so that these two causes
influence both the opinions and the state. This example shows that 6b is a plausible
causal setup, but, again, the condition in clause (b) of Theorem 1 is violated and
Problem-Conditional Independence should not be assumed. Indeed, PI is intuitively
violated: conditional on the state, we can infer something about an agent’s opinion
if we learn about other opinions. For instance, if we know that the conspiratorial
meeting does not take place (we conditionalize on x being ‘no meeting’) and we learn
that agent 1 believes that the meeting will take place, we can infer that subject 1 has
left the house. But since there is no meeting, we also infer that subject 2 stays at
home and that agent 2 holds the corresponding opinion. We have learned something
about 2’s opinion from 1’s opinion, a violation of PI. A plausible notion of opinion
independence in cases like 6a and 6b must not conditionalize on the state. Therefore,
only Common-Cause-Conditional Independence and hence — somewhat surprisingly,
as there are no common causes — Unconditional Independence hold.

Although Theorem 1 seems to deal only with two of our independence conditions
(CI and PI), an immediate corollary of part (a) gives us causal conditions for our
other two independence conditions:

Corollary. Suppose probabilities are compatible with the causal network, and no
opinion is a cause of any other opinion. Then:

11



e State-Conditional Independence holds if only the state is a common cause;
e Unconditional Independence holds if there are no common causes at all.

Notice how strong the causal conditions for SI and UI are. Among the above
figures, only Figure 1 satisfies the condition for SI that the state is the only common
cause, and only Figures 6a and 6b satisfy the ‘no common cause’ condition for UL It
might surprise that there exist plausible causal interconnections for which UI holds.
Figure 6b is such a plausible network, as discussed above.

4 Application to jury theorems

We have mentioned informally that those of our independence assumptions which
conditionalize (at least) on the state — namely, ST and PI — can be used in jury the-
orems, i.e., formal ‘wisdom of crowds’ arguments. The present section substantiates
this claim by stating two simple jury theorems, namely Condorcet’s classical jury
theorem (which is based on SI) and a new jury theorem (which is based on PI).

To state jury theorems, we first need to enrich our formal framework by an ad-
ditional ingredient: the notion of correctness of opinions. As before, for simplicity it
is best to assume that there are only two correctness levels, ‘correct’ and ‘incorrect’,
two states and two possible opinions, such that exactly one opinion is correct (though
generalizations are compatible with our formal framework).

Formally, for each state x let some opinion o” be specified as the ‘correct’ opinion
in state x. We write R; for the event that i’s opinion is correct, i.e., the event
that o; = 0*. Jury theorems are concerned with the event that a majority of the
group is correct, i.e., that more than half of the correctness events Ry, ..., R, hold.
The question is how this probability of ‘group wisdom’ depends on the group size n
(which we assume to always be odd, to avoid ties under majority voting'®).

Jury theorems typically assume that the correctness events R;, Ra,... are inde-
pendent in some sense. However, causal reasoning of the sort presented above leads
to independence of the opinions 01,02, ..., rather than the correctness events. A key
issue therefore is whether opinion independence (in one of our four senses) implies
correctness independence (in the same sense).

The answer is negative for Ul and CI. For instance, perfectly independent opinions
(satisfying UI) may lead to correlated correctness events. For instance, consider
independent opinions taking the value 1 or 0 with equal probabilities: Pr(o; = 1) =
Pr(o; = 0) = % for all agents i. Let the state be fully determined by the first two
opinion such that it is 1 if 0 = 02 = 1 and 0 otherwise. (This could be the case in
causal environments like those of Figure 6.) Then R; and Ry are negatively correlated

18 As usual, our two theorems can be generalized to possibly even group size n by assuming that
ties are broken by tossing a fair coin.
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rather than independent: Pr(R; N R2) < Pr(R;)Pr(R2). The reason is that

1 1 1
PT(R10R2> = Pr(01:02:1)+Pr(01—02—0)21+127,
Pr(R;) = Pr(oj =03=1)+Pr(o; =03 =0)+Pr(o; =0 # 03)
_ 1,113
444 X
Pr(R2) = Pr(oj=o02=1)+Pr(oj =02=0)+Pr(o2 =0%#o01)
B 1+1+1_3
444 X
where 0fcourse%<%><%:1%.

By contrast, the answer is positive for SI and PI, and more generally for any form
of independence which conditionalizes at least on the state. Let us state this fact
formally (the simple proof is trivial):

Proposition 1. For any family p of random variables containing x (e.g., for p = x
or p = ), if the opinions 01, 09, ... are independent conditional on p, then so are the
correctness events Ry, Ro, ...

This fact is a key to the two jury theorems to be stated now. The first theorem
combines SI with Condorcet’s classical competence assumption:

Classical Competence. There is a parameter p in (%, 1) such that for all states
the conditional correctness probability Pr(R;|z) is p for all individuals 7.

This assumption states that in each given state the voters all have the same
correctness probability of more than § and less than 1.°° Combined with SI (and
Proposition 1), we may thus compare the correctness events Rj, R, ... with inde-
pendent tosses of the same coin biased towards the truth. This metaphor provides

an intuition for the classical jury theorem:

Theorem 2. Under the assumptions SI and Classical Competence, the probability
of a correct majority opinion strictly increases in group size and converges to one.

We now turn to a new jury theorem based on the assumption of problem- (rather
than state-) conditional independence. For each value 7 of the problem 7r we consider
the voter’s problem-specific correctness probability, Pr(R;|7), which is interpretable
either as a measure of how ‘easy’ this problem is (for agents like i) or as the voter’s
competence on problem 7 (see Dietrich 2008 and Dietrich and Spiekermann 2010).

19This condition (and the resulting Theorem 2) can be generalized by allowing p to depend on the
state x.

200ur statement of Classical Competence assumes that the conditional probability Pr(R;|x) is
defined for all states x, i.e., that each state x occurs with non-zero probability. This excludes that
the state has a continuous distribution. Analogously, our statement of Easy /Hard Dichotomy below
assumes that all problems 7 occur with non-zero probability. Both conditions could easily be stated
without this restriction, drawing on the generalized definition of conditional probabilities.
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Intuitively, when the problem is easy, the evidence and the circumstances are truth-
conducive. Conversely, when the problem is hard, the evidence is misleading. For
an extreme example of misleading evidence, assume all witnesses in a court trial lie,
falsely claiming the defendant is innocent, so that the problem-specific probability of
the correct ‘guilty’ opinion approaches zero. In the real world some problems 7 are
undeniably ‘hard’ in the sense that Pr(R;|7) < % — just consider the previous court
example. As another example of a hard problem due to misleading evidence, suppose
a team of doctors is asked to assess whether a woman is pregnant. They perform a
pregnancy test, which gives a negative result, while in fact the woman is pregnant.
As for more realistic cases, imagine voting on a factual question related to a complex
and controversial public policy issue, such as the use of genetically modified crops,
bank bailouts, energy policy, etc. Sometimes such issues are dominated by misleading
evidence, rendering the problem hard.

The existence of ‘hard’ problems need not undermine the plausibility of Classical
Competence, since hard problems might be less frequent than easy problems, so that
on average over all problems a voter might still be more often right than wrong for
each state = — so that Pr(R;|x) exceeds % for all states x. But it would be inappropriate
to assume that the problem-specific (rather than state-specific) correctness probability
Pr(R;|m) exceeds % for all problems 7, since a specific problem may be ‘hard’; as
explained.

We now introduce a problem-specific variant of the Classical Competence assump-
tion which does not state that the problem-specific correctness probability Pr(R;|m)
always equals some fixed parameter p in (%, 1). Rather, we allow this probability to
be below % for some ‘hard’ problems 7. Apart from this, we keep our assumption
as simple as and as close to the classical assumption. Indeed, just as in the classical
assumption the competence parameter p does not depend on the voter or the state,
so in the following assumption all voters are equally competent, all ‘easy’ problems
are equally easy, and all ‘hard’ problems are equally hard:

Easy/Hard Dichotomy. There is a parameter p in ( %, 1) such that for all problems
7 the conditional correctness probability Pr(R;|m) is
e cither p for all individuals ¢ (we then call 7 an ‘easy’ problem)

e or 1 —p for all individuals i (we then call 7 a ‘hard’ problem).?!

Note that this assumption is silent on how many problems are easy or hard.
In the extreme case that all problems are easy, we obtain Classical Competence —
but this case is by no means plausible. In most cases, however, the following jury

theorem reaches a substantially different conclusion than the classical theorem, since
the probability of a correct majority does not converge to one but to the proportion
(probability) of easy problems:

Theorem 3. Under the assumptions PI and Easy/Hard Dichotomy, the probability
of a correct majority opinion converges to Pr(7r is easy) as the group size increases,
and is

2! This condition (and the resulting Theorem 3) could be generalized by allowing p to depend on
the state x contained in 7.
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e strictly increasing if Pr(7 is easy) > Pr(m is hard),
e strictly decreasing if Pr(m is easy) < Pr(s is hard),
e constant if Pr(m is easy) = Pr(r is hard) (= 3).

By the first bullet point, ‘larger groups are wiser’ as long as the problem is more
often easy than difficult. The latter assumption about the problem can be defended
by a stability argument: if more problems are hard than easy, i.e., if the voter is
more often wrong than right (and if as usual only two opinions, say, ‘yes’ or ‘no’,
are possible), then as soon as a voter realizes this (through observing her frequent
failures) the voter can systematically reverse each opinion, thereby making herself
more often right than wrong.

The fragility of ‘wisdom of crowds’ arguments is illustrated by the fact that The-
orem 3 would not survive the following tempting generalization of the assumption of
Easy/Hard Dichotomy. Suppose instead of requiring that the correctness probability
on a problem is either p € (3,1) (for an easy problem) or 1 —p € (0,3) (for a hard
problem) one merely requires that this probability is either p € (%, 1) or g € (0, %)
where q may differ from 1 — p, i.e., where p and ¢ may have different distance to the
midpoint % In such cases the bullet points of Theorem 3 fail to follow, so that larger
crowds may be less ‘wise’, even if most problems are easy.

5 Conclusion

The widespread conceptual confusion about the notion of opinion independence has
hindered progress in assessing whether and when ‘crowds are wise’, and it explains the
disagreements in social epistemology about whether jury theorems have any relevance.
Understanding causal interrelations is indispensable for a proper analysis of opinion
independence.

Our paper distinguishes between four notions of independence, as summarized in
Table 1. The table highlights our two dimensions of categorization. To make a notion

Table 1: Different notions of independence.
explicit state-conditionalization?

yes no
explicit common- yes PI CI
cause-conditionalization? no SI Ul

of independence realistic, the conditionalization has to include the common causes;
to make it suitable for jury theorems — i.e., formal ‘wisdom of crowds’ arguments —
the conditionalization has to include the state of the world, as illustrated in Section
4 by two jury theorems.

State-Conditional Independence is the commonly used notion in orthodox state-
ments of Condorcet’s jury theorem. Common-Cause-Conditional Independence is
most generally defensible from the perspective of the theory of causal networks: it
applies always as long as the opinions do not causally affect each other. Problem-
Conditional Independence resembles Common-Cause-Conditional Independence, ex-
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cept that it conditionalizes on the state of the world even when the state does not
feature among the common causes. Unconditional Independence is the simplest form
of independence. If the literature ignores this condition, it is probably because most
scholars take it to be obviously false; but surprisingly we find plausible causal setups
in which this independence assumption is justified.

Theorem 1 and its corollary give formal causal-network-theoretic foundations for
each of the four independence assumptions. These results suggest that the causal con-
ditions for the classical State-Conditional Independence assumption are quite special
and of limited real-world significance. One will usually have to go beyond classical
independence to make sound arguments in support of the ‘wisdom of crowds’.

Much further work is needed to develop the causal approach. We leave it as
a future challenge to develop new jury theorems for the aggregation of non-binary
opinions, such as judgment sets or degrees of belief.
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A Appendix: Proofs

We now prove our main result (Theorem 1) and the two jury theorems presented as
applications (Theorems 2 and 3).

Proof of Theorem 1. Assume that probabilities are compatible with causal inter-
connections (in the sense of the Parental Markov Condition) and no opinion is a cause
of another opinion. We first prove part (a) and then part (b). The informal idea in
both proofs is that dependence between opinions can only arise if information can
travel along a path in the network without the path being ‘blocked’ by the variables on
which one conditionalizes. The formal definition of ‘blocking’ (or ‘d-separating’) and
the theorem whereby such blocking implies conditional independence are borrowed
from the theory of causal networks, where they play a central role. Throughout we
write C for the set of common causes.

Proof of part (a). We have to show that the opinions are independent conditional

on C. By the ‘blocking theorem’ in the theory of causal networks (e.g., Pearl, 2000,
Theorem 1.2.4) it suffices to show that C blocks every path from an opinion to another
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opinion, in the usual technical sense that for any such path
(i) either the path contains a chain ‘a — b — ¢’ or fork ‘a «— b — ¢’ such that b
isin C
(ii) or the path contains a collider ‘a — b « ¢’ such that b is not in C and does
not cause any variable in C.

To show this, consider any path from an opinion o; to another opinion o;. Call the
path (aj,ag, ..., a,,), where m (> 2) is the number of variables in the path and a; = o;
and a,, = 0;. By definition of a path, any two neighbors a;,a;;1 are connected by
an arrow, of the form ‘a; — a;11’ or ‘a; «— a;+1’.

Case 1: the arrow between a; and ag points towards ay (‘a; — ag’). It is impossible
that between all neighboring variables a;, a;11 the arrow points towards a;;1, since
otherwise o; would be a cause of 0;. Let a; be the earliest variable in the path such
that an arrow points from a;; to a;. Notice the collider ‘a;_1 — a; < a;11’. It is
impossible that a; is in C or causes a variable in C, since otherwise o; (which causes
a;) would cause other opinions. Therefore C blocks the path via clause (ii).

Case 2: the arrow between a; and as points towards a; (‘a; < ag’). It is impossible
that between all neighboring variables as,a;1; the arrow points towards a;, since
otherwise o; would be a cause of 0;. Let a; be the earliest variable in the path such
that an arrow points from a; to a;+1. Notice the fork ‘a;—; <+ a; — a;1’.

Subcase 2.1: a; € C. Then C blocks the path via clause (i).

Subcase 2.2: a; ¢ C. Then a; (which already causes o;) cannot also cause o;. So we
do not have a chain ‘a; — a;+1 — ... — a,,". Choose a, as the earliest variable among
ay, a1, ..., am—1 such that the arrow between ag; and agyq points towards a;. Note
the collider ‘ag_; — ag < as+1’. The variable a; neither belongs to C nor causes a
member of C, since otherwise the variable a; (which causes as) would belong to C.
Therefore C blocks the path via clause (ii).

Proof of part (b). Now suppose that x is not a common effect of any opinions or
private causes thereof. We have to show that the opinions are independent conditional
on {x} UC. Again by the ‘blocking theorem’ (e.g., Pearl, 2000, Theorem 1.2.4), it
suffices to show that {x} UC blocks every path from an opinion to another opinion,
i.e., that for every such path
(i*) either the path contains a chain ‘a — b — ¢’ or fork ‘a «+ b — ¢’ such that b
isin {x}UC
(ii*) or the path contains a collider ‘a — b « ¢’ such that b is not in {x} UC and
does not cause any variable in {x} UC.
Consider any path (ai,...,a,) from an opinion o; (= a;) to another opinion o,
(=am).

Case 1: the arrow between a; and as points towards as (‘a; — ay’). Construct a

collider ‘a;—1 — a; < a;y1’ as in Case 1 of part (a). Again, a; neither is in C nor
causes a variable in C.
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Subcase 1.1: ay neither is x nor causes x. Then, in summary, a; neither belongs to
{x} UC nor causes a variable in {x} UC. So, {x} UC blocks the path via clause (ii*).

Subcase 1.2: a; is x or causes X. We cannot have arrows ‘a; «— ay41 < ... < ap,’,
since otherwise a;, and hence x, would be a common effect of the opinions a; (= o;)

and a,, (= oj). Let ag be the earliest variable among ay, as41, ..., a;,—1 with an arrow
‘ag — as41’. Note the fork ‘a1 < as; — as4+1’ (see Figure A.1).

o)
o
7

Figure A.1: The path in Subcase 1.2.

?

Subsubcase 1.2.1: ag € C. Then we are done as {x} UC blocks the path via clause

(i%).

Subsubcase 1.2.2: as ¢ C. Then we do not have arrows ‘ag — ag11 — ... — ay’,
since firstly ay does not commonly cause the opinion a,, (= 0;) and another opinion
because as ¢ C, and secondly a,; does not privately cause the opinion a,, because
otherwise a;, and hence x, would be a common effect of two variables (namely o; and
as) which are or privately cause distinct opinions. Given that we do not have arrows
‘ag — ag41 — ... — ay, , there must be a variable a, among ast1,...,a,—1 with a
collider ‘a,_1 — a, « a,11’. Let a, be the last such variable among agy1, ..., am_1.
Note that we either have arrows ‘a, < ... « a;,’ or arrows ‘a, « ... <~ a, — ... — ap,’
for some r < p < m (see Figure A.2). We may assume without loss of generality that
in the second case a, does not belong to C, since otherwise {x} UC would block the
path via clause (i*). Now,

(*) a, does not belong to C (hence, does not cause a member of C),

In the case of ‘a, « ... « ay,,’ this is because otherwise the opinion a,, (= o;) would
cause another opinion, and in the case of ‘a, « ... < a, — ... — a;,’ it is because
otherwise a, would belong to C. Notice further that a, is an effect either of the
opinion a,, = 0; (in the case of ‘a, < ... « a,,’) or of a private cause of this opinion

(in case of ‘a, « ... < a, — ... = a,,’). From this it follows that

(**) a, is not x and does not cause x,
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Figure A.2: The path in Subsubcase 1.2.2.

as otherwise x would be a common effect of on the one hand (via a,) the opinion o;
or a private cause thereof, and on the other hand (via a;) the opinion o; (= aj). By
(*) and (**), a, neither belongs to {x} UC nor causes a member of {x} UC. So, the
path is blocked via clause (ii*).

Case 2: the arrow between a; and ap points towards a; (‘a; «— ag’). Construct the
fork ‘a;_1 < a; — a;4+1’ as in Case 2 of part (a).

Subcase 2.1: a; € {x} UC. Then C blocks the path via clause (i*).

Subcase 2.2: a; ¢ {x} UC. Since in particular a; ¢ C, we can construct a collider
‘ag_1 — ags < agy1 as in Subcase 2.2 of part (a) (see Figure A.3), and again as
neither belongs to C nor causes a member of C.

Subsubcase 2.2.1: ag neither is nor causes x. Then, in summary, as neither is in nor
causes a variable of {x} UC, and hence {x} UC blocks the path via clause (ii*).

Subsubcase 2.2.2: ag is or causes x. We cannot have arrows ‘as < agyq < ... < an’,
since otherwise x would be a common effect (via a) of the opinion o; (= a,,) and
the private cause a; of the opinion o; (= a;). If we have arrows ‘a; «— ... «— a; —
.. — a,,” for some s < ¢ < m, then a; must be in C since otherwise a, would be a
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Figure A.3: The path in Subcase 2.2.

?

private cause of the opinion a,, (= 0;) so that x would be a common effect of the
private causes a, and a;; and since ‘a;_1 < a; — agq1’ is a fork with a; € C we
are done by clause (i*). Now assume the remaining case that we neither have arrows
‘ag ¢ ... +— a; NOI aITOWS ‘ag +— ... «— a; — ... — &, . There must be a variable a,
among as41, ..., ay,—1 such that we have a collider ‘a,_; — a, < a,;1’. Choose a, to
be the latest variable among agsy1, ..., a,,—1 with the collider property. Note that we

o

Either:

?

Or: \’K

Figure A.4: The path in Subsubcase 2.2.2.

either have arrows ‘a, + ... «+— a,;,’ or arrows ‘a, < ... « a;, — ... — a,, for some
r < p < m (see Figure A.4). We may assume without loss of generality that in the
second case a, ¢ C, as otherwise we would be done by clause (i*). Then

(***) a, does not belong to C (so, does not cause a member of C).
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In the case of arrows ‘a, < ... «— a,,’ the reason for (***) is that otherwise the opinion
a;, (= o0;) would cause another opinion; and in the case of arrows ‘a, «— ... < a, —
.. — a,, the reason is that otherwise a, would belong to C. Note further that a,
is caused either by the opinion a,, = o; (in the case of arrows ‘a, « ... < a;,’) or
by a private cause of this opinion (in case of arrows ‘a, «— ... —a, — ... — a,’). It
follows that

(****%) a, is not x and does not cause x,

since otherwise x would be a common effect firstly (via a,) of the opinion o; or a
private cause thereof, and secondly (via ay) of the private cause a; of the opinion o;
(= aj). By (***) and (****), a, does not belong to or cause a member of {x} UC.
So, the path is blocked via clause (ii*). W

Although the classical jury theorem is of course well-known, we give a proof of it
because of our more general framework (which allows for more than two states and
opinions).

Proof of Theorem 2. Assume SI and Classical Competence. Let M,, be the event that
a majority of the opinions is correct in the group of size n. For simplicity, we assume
that the set of possible states is countable and each possible state occurs with non-
zero probability. (The proof generalizes easily to an arbitrary set of possible states,
by essentially replacing sums by Lebesgue integrals.)

Conditional on any possible state x, the events Ry, ..., R, have independent prob-
abilities of p; so the probability that exactly k of these events hold is (Z) pE(1—p)nF,
whence the probability that a majority of the events hold is

Bnp = Pr(Malz) = i (Z)p’“(l —p)" k.

k=(n+1)/2

The unconditional probability of a correct majority can be expressed as

Z Pr(M,|z) Pr(z)
= D BupPri@) = By D Pr(e) = By

Pr(M,)

So, it suffices to show that j3,, ,, is strictly increasing in (odd) n and converging to 1.
First, 3, , is strictly increasing in (odd) n because p € (%, 1) and the coefficient
B, satisfies the following well-known recursion formula:

n+1

Brsay = By + (20— 1) (ﬁ) p(1 - p) P

(e.g., Grofman et al. 1983).
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Second, 3,, — 1 as n — oo, by the following argument. Recall that 3, , is
the probability that the sum of n independent and identically distributed Bernoulli-
variables (which are 1 with probability p > %) belongs to the interval (%,n] Equi-
valently, 3, , is the probability that % times this sum, i.e., the correctness frequency,
belongs to the interval (%, 1]. This probability converges to 1 because by the law of
large numbers the correctness frequency converges to p (€ (%, 1)) with probability
one. W

Finally, we prove our new jury theorem.

Proof of Theorem 3. Assume PI and Easy/Hard Dichotomy, and let p be the value
in (%, 1) specified in the latter assumption. Again, let M,, be the probability of a
majority for the correct opinion in the group of (odd) size n. For simplicity, let there
be only countably many possible problems, where each problem occurs with positive
probability. (The proof generalizes easily to an arbitrary set of possible problems.)
Let Ileasy resp. Ilnacqa be the set of easy resp. hard problems. Let peasy be the

probability that the problem is easy (i.e., belongs to Ileasy ).

1. We first calculate the probability of majority correctness conditional on the prob-
lem.

Conditional on any given problem 7 in Il.gy, the events Ry, ..., R, have independ-
ent probabilities of p, so that, just as in the proof of Theorem 2, the probability that
a majority of these events hold is given by the coefficient

Pranim) == > (G-

k=(n+1)/2

By contrast, conditional on any given problem 7 in I} ,,q, the events Ry, ..., R, have
independent probabilities of 1 —p, and the events of incorrect opinions Ry, ..., R,, have
independent probabilities of p; so the probability of a majority of incorrect opinions
is B, », and hence, the probability of a majority of correct opinions is one minus that
probability, i.e.,

Pr(My|r)=1-0

n?p.

2. We now calculate the unconditional probability of majority correctness. First, we
write

Pr(M,) = > Pr(My|r)Pr(r)

= Z Pr(My|m) Pr(m) + Z Pr(My|m) Pr(m).

mElleasy TEhara
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By part 1, it follows that

PI‘(Mn) = Z Bn,ppr(ﬂ-)—i_ Z (1_5n,p)Pr(ﬂ-)

WeHeasy mE€llharq
= Bn,p Z PI"(?T) + (1 - Bn,p) Z Pl“(ﬂ')
WeHeasy mE€hara

- BmppeaSY + (1 - /Bn,p)(l - peasy)
Bn,ppeasy + 1-— anp - peasy + 5n7ppe.dsy
- /Bn,p(2peasy - 1) +1- Deasy -

3. We can finally prove the theorem’s conclusions. In the last expression for Pr(M,,),
the only term which depends on n is 3, ,. As in the proof of Theorem 2, 3, , is
strictly increasing in (odd) n and converges to 1. First, since 3,,,, — 1, we have

Pr(Mn) - 1 X (2peasy - 1) + 1 - peasy = peasy‘

Second, since f3,, ,, is strictly increasing, Pr(M,,) is strictly increasing if 2peasy —1 > 0,
i.e., Peasy > 3, or equivalently Pr(m is easy) > Pr(m is hard). Analogously, Pr(M,,) is
strictly decreasing if 2peasy — 1 < 0, i.e., Pr(m is easy) < Pr(m is hard). And Pr(M,,)
is constant if 2peasy — 1 = 0, i.e., Pr(7 is easy) = Pr(7 is hard). W
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