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Abstract

We identify an otherwise e¢cient market in which racial biases a¤ect market outcomes.

In particular, we examine data on point spreads for NBA games over the 15 seasons from

1993-94 to 2007-08. We �nd evidence that teams with more black players tend to face

a larger point spread and that these teams perform worse against the spread. These

biased outcomes are signi�cantly large and persistent so that we are able to identify pro�t

opportunities. We also �nd evidence that the biased spread is set by the bookmakers rather

than being moved as a result of excessive betting on the more black team. These �ndings

are consistent with information-based discrimination where mistaken beliefs persist even

though they are �nancially disadvantageous, and, more importantly, recognizable and

correctable.
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"Billy, listen to me, white men can�t jump."

Sydney Deane

1 Introduction

Beliefs shaped by psychological dispositions and social norms or interactions are commonly

recognized as important determinants of economic decision making and market outcomes.

Becker (1957) and Arrow (1972) provide models depicting such beliefs in the context of dis-

crimination while Akerlof (1980) and Romer (1984) study the persistence of customs. Most

of the evidence on the e¤ects of beliefs formed upon a psychological and social basis, or "bi-

ases", comes from the studies aiming to detect discrimination in labor markets (e.g., Bertrand

and Mullainathan, 2004), in access to services (e.g., Page, 1995) and in access to resources,

most notably credit (e.g., Munnell, Tootell, Browne, and McEneaney, 1996; Pope and Sydnor,

2011). But the study of psychological and social biases go beyond discrimination: a related

literature documents systematic deviations from standard assumptions underlying economic

behavior and links them to psychological and social factors.1 Challenges remain in both

strands of the literature: documenting whether discrimination exists rather than the observed

di¤erences stemming from unobserved heterogeneity, distinguishing information-based dis-

crimination from taste-based discrimination, and understanding whether and how behavioral

biases carry over from laboratory experiments to real markets as well as whether and how

they persist instead of market forces eliminating such biases.

This paper o¤ers new insights into these challenges by studying the e¤ects of psychologically-

based, socially-reinforced beliefs in a �nancial market setting. In particular, we examine the

relationship between National Basketball Association (NBA) betting outcomes and the race

of the participants in order to uncover how biases originating from psychological dispositions

and social norms a¤ect market outcomes. This is an ideal setting to expand our knowledge

on the economics of biases for several reasons.

First, the NBA betting markets provide advantages that other settings, including other

�nancial market settings, cannot. Speci�cally, bettors pay for their biased tastes à la Becker.

1See Camerer, Loewenstein, and Rabin (2004) and DellaVigna (2009) for a review.
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Hence, decisions based on mistaken beliefs are punished with direct pecuniary losses. This is

in contrast to studies of the impact of beliefs in psychology and sociology literatures, where

most evidence relies on experiments or surveys with no immediate, explicit, pecuniary gains

or losses for the participants. In addition, unlike most �nancial markets, the sports betting

markets contain well-de�ned prices, well-de�ned outcomes, readily accessible information, and

a �nite time horizon. Therefore, usual caveats associated with measurement problems (e.g.,

de�ning the horizon over which returns should be measured) and asymmetric information

do not apply. Moreover, the actions and outcomes are repeated with a signi�cant degree of

frequency, providing an opportunity to test whether the impact of biases persists or disappears

as market participants learn about the bias and compete to grasp arbitrage opportunities.

Second, the beliefs in the market we study are easily recognized since some of the most

deeply held ideas about race and racial di¤erence are expressed in our beliefs about sports and

athletic ability, creating one of the most well-known stereotypes: the natural black athlete,

and especially, the black basketball star. The common perception that black people are better

at basketball than people of other races or ethnicities is so evident that the term "the black

game" was coined to refer to the sport (George, 1999). What makes it so di¢cult to counter

the argument that blacks have an innate ability to play basketball is that there appears to

be evidence to support it: roughly 70% of NBA players are black. As a result, the idea that

blacks are better basketball players and the evidence that seemingly supports this idea can

have far-reaching consequences. For economists, an interesting question arises when these

observations become unwavering, subconscious attitudes that support the mistaken belief that

athletic ability is inextricably tied to race and these attitudes a¤ect economic decision making

in a predictable manner, thus challenging the rationality tenet in its standard form.

Hence, in our setting, market outcomes are objective, common knowledge, determined

within a �nite time, and repeated regularly, and there exists a widely-familiar, biased view

of the participants. Our data consists of the outcomes of NBA games and the Las Vegas

point spreads on these games, from the 1993-94 season through the 2007-08 season.2 Betting

on NBA basketball generally involves a point spread wager, where the bet wins based on the

2Note that the Professional and Amateur Sports Protection Act of 1992 (PASPA) imposes a federal ban on
sports betting in all states with the exception of Delaware, Nevada, Montana, and Oregon. These four states
already had sports betting laws on their books when the Congress passed PASPA and were permitted to o¤er
parlay-type sports betting. Nevada, however, exclusively allows all types of sports betting, statewide, on any
professional or amateur sports games, in any capacity.
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relationship between the �nal score and the point spread. We say that the team covers the

spread if a bet on the team pays. To illustrate, if the spread is +3.5 for the home team, an

$11 bet on the home team would pay $21 if either the home team won the game or lost by 3

points or less. An $11 bet on the visiting team would pay $21 only if the visiting team won

by 4 points or more. In this setting, the point spread is a market-based estimate of the actual

margin at the end of the game.

Our analysis provides evidence that biases embodied as stereotypes about the relative

ability of a certain group of players have an impact on �nancial decisions by examining how

the point spread and the performance against the spread in NBA betting markets varies with

the racial composition of the teams. We ask whether the belief that black players are better

than their white counterparts a¤ects the point spread and hence the likelihood of beating the

spread.3 In other words, do "more black" basketball teams look better than "less black"

teams in the sense that, all things equal, bettors are more inclined to bet on the former? If

this is the case, then the spread on a more black team will be higher than it should be, leading

to a negative relationship between the fraction of black players and the performance against

the spread.

We �nd that the point spreads are higher for teams with a relatively higher fraction of black

players. We also �nd that the probability of beating the spread decreases as the fraction of

black players increases. Our results are robust to alternate measures of the racial composition

of the team: the number of black players starting the game, the number of black players on

the roster, and the minutes played by black players in recent games.

One important assumption in interpreting the �nding that it is less likely for black teams

to beat the spread concerns the e¢ciency of NBA betting markets. In other words, it is

implicitly assumed that the spread incorporates all relevant and available information about

the game. We con�rm that this is indeed the case, by showing that the actual margin minus

the spread is normally distributed with a mean of zero. Hence, unconditionally, any game

has an equal probability of ending up with a score on either side of the spread.

Further, the notion that the ability di¤erence is indeed a bias, and is not real, is con�rmed

by the empirical observation that performance measures for black and white players are not

statistically di¤erent. In fact, white players tend to be taller and more e¢cient in the

3Perhaps with slight abuse of the term, we use "white" to refer to all non-black players.

4



sense that they score almost the same points as black players despite playing fewer minutes.

However, there is no signi�cant di¤erence in terms of scoring ability between black players and

their white counterparts. Similarly, there is no evidence of a robust relationship between the

relative blackness of a team and its chances of winning the game. Hence, even in the absence

of statistical evidence supporting the belief that black players are better, the bias exists and

a¤ects decisions made by agents.

There are two hypotheses for the cause of the relationship between race and the point

spread. It could be that biased bettors place more money on the more black team, thus

causing the spread to move from an unbiased spread to a biased spread. Or it could be the

case that the bookmakers are aware of the bias of bettors, and set the spread in order to

extract more surplus. Why would bookmakers set a biased spread? Levitt (2004) shows

that bookmakers can increase their earnings if bettors have a bias. This is because the

bookmakers can set the point spread in a manner such that more than half of the money is

bet on the outcome which wins less than half of the time. In order to distinguish between

these hypotheses, we use a second data set containing the opening and closing point spreads,

for the 2003-04 season through the 2009-10 season.

Our results show that the opening spread does not move at all a quarter of the time and

the di¤erence between the closing spread and opening spread is normally distributed around

zero. Moreover, the movement of the spread is not related to the racial composition of the

teams in a statistically signi�cant and robust manner. Hence, it appears to be the case that

the bookmakers know of the bias towards more black teams and consider this when they set

the spread. This is further supported by evidence that more money is bet on the more black

team.

To gain intuition on our results, consider two teams which are exactly as good as each

other, consequently each team will win with a probability of 0.5. However, one team is �more

black� than the other. Therefore, some people will have a bias that the black team is better

and deem their probability of winning to be greater than 0.5, even though �the truth� is 0.5.

To exploit this bias, rather than setting the spread as a pick-em (spread of 0), the bookmaker

sets the spread in favor of the black team at a value di¤erent from 0. This means that (all

things equal) the black team will cover the spread with a probability less than 0.5, making

this a worse bet. This reasoning still holds when the teams are not as good as each other. In
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this case, there is a �true spread� which each team will cover with probability 0.5. But the

bookmakers do not set the spread at the true spread but rather the true spread adjusted by

a few points for the black team. Again, the black team covers with probability less than 0.5.

Let us return to the case where both teams are equally good, so the expected �nal margin

is zero. Further, let us assume that the spread at which an even amount of money would be

placed both sides of the bet would be -3 for the more black team. In this case, since half of the

money is on either side of the bet, the bookmakers� expected payo¤ is determined exclusively

by the betting cost: for every $11 bet, the winner gets $21, that is, a return of $10 and not

$11. Similarly if the spread is set at 0, the bookmakers� expected payo¤ is again determined

exclusively by the betting cost.4 The pro�t-maximizing spread is somewhere between 0 and

-3. So, the bookmakers set the spread at, say, -2 and more money is bet on the black team

because bettors think the spread should be -3. Since more than half of the money is bet on

the outcome which occurs less than half the time, the bookmakers earn extra pro�ts.

Our results imply that biases can indeed in�uence behavior in �nancial settings. Hence,

we contribute to the literature by providing evidence that economic decision making is altered

by conscious or subconscious categorization based on observable characteristics, e.g., race and

gender. Additionally, the association between the point spread ("the price") and the racial

composition of the teams (a variable that is not systematically related to the winning ability

of a team and is observable prior to the bets being placed) creates pro�table opportunities

that involve betting on the "whiter" team. In other words, the bias is su¢ciently large

and persistent that we are able to identify a means of pro�ting from the biased market out-

comes. Moreover, our �ndings are consistent with such biases being more likely to stem from

information-based motives than from taste-based motives. This is because the bookmakers

seem to incorporate these biases into prices and there is no reason to expect these particular

agents to be of a di¤erent racial composition than the others. Also, if one presumes that bet-

tors from a particular geographical region would be more inclined to bet on the team based

in their region and the racial pro�le of bettors resembles the demographics of the region, then

preference-based explanations would imply a negative relationship between the "black cities"

and the probability of the more black home teams beating the spread. We do not, however,

�nd evidence of such a relationship.

4For more on this, see Levitt (2004).
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The rest of the paper is organized as follows. Section 2 discusses the related literatures on

discrimination and �nancial markets, including sports betting. Section 3 provides an overview

of the data. Section 4 presents the results and Section 5 concludes.

2 Background

Our paper relates to several strands of literature. The �rst of these strands examines biases

and their impact on economic outcomes. A large number of studies look at discrimination,

i.e., where outcomes depend on characteristics such as gender and race. Because of the

ine¢ciencies discrimination may create and the potential policy implications, it is of great

interest to identify settings in which biases exist and, once they are identi�ed, to specify the

mechanism which is causing the bias.5 Often, it is very di¢cult to �nd unambiguous evidence

of biased outcomes, mostly due to the omitted variables problem. That is, ruling out the

possibility that the observed variation may be a consequence of unobserved heterogeneity,

which is also correlated with the object of study (in many cases, gender or race), is a di¢cult

task. In response to this problem, some researchers have used audit studies whereby the

investigators send identical treatments into the �eld, with exception that they di¤er on the

basis of, say, race. Then the researchers seek to observe di¤erences in behavior on the basis of

race. For instance, in their in�uential study, Bertrand and Mullainathan (2004) sent otherwise

identical resumes to potential employers, where some applicants had "white" names and some

had "black" names. The authors found that applicants with black names were less likely to

receive a callback for an interview than were the applicants with white names. Audit studies,

such as this one, have proven to be useful in identifying biased settings.6 There are however,

some drawbacks with audit studies.7 First, it is argued (Heckman, 1998) that these studies

overstate the e¤ect of discrimination because they do not account for the e¤ects of the unbiased

people on the market outcomes. In other words, these audit studies can identify that some

behave in a biased fashion, however it is possible that the unbiased people can behave in a way

which mitigates the e¤ects of the behavior of the biased people. Our paper is not vulnerable

5For more on discrimination literature, see, among others, Altonji and Blank, 1999, Ross and Yinger, 2002,
and Charles and Guryan, 2008.

6See Ayers and Siegelman (1995) for another example of this type of technique.
7For more on the di¢culties with audit studies, see Yinger (1998).
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to this criticism because the object of our study is not individual behavior but rather market

outcomes and we �nd that the market outcomes are biased. Second, to our knowledge,

audit studies are not repeated whereby the decision maker can learn about the unobserved

heterogeneity of the subject. Again, we are not vulnerable to this objection because we have

a considerable number of observations for the same players and teams, whereby the e¤ects

of the unobserved heterogeneity could be learned. Therefore, we �nd that the market is

persistently biased even with the opportunity to learn otherwise, and even though there are

pecuniary costs to behaving based on these mistaken beliefs.

The phenomenon we study is a product of "positive stereotypes" and can perhaps be

more accurately labeled as "reverse discrimination" since the group which is deemed to be

superior faces odds that are more di¢cult to overcome. In other words, the belief that

black basketball players are better creates a bias for betting on the more black team and it

becomes more di¢cult for the black team to beat the spread.8 Still, one could think of this

phenomenon in terms of the main theories of discrimination in the microeconomics literature.

In the �rst of these theories, di¤erential behavior towards a certain group of individuals is

driven by the preference for not interacting with them (Becker, 1957; Arrow, 1973). In other

words, individuals have a "taste" for their own kind or a distaste for the other kind. In the

second theory, agents take race to be a signal for unobserved or costly information about skill

levels and mistaken beliefs can survive if they create self-ful�lling outcomes (Phelps, 1972).

In our context, information-based explanations would be more relevant if bets re�ected the

prior belief that blacks are better at basketball while the �ndings would �t the taste-based

explanations if white bettors bet against more black teams. Unfortunately, we do not have

information on the race of the individual bettors but we use the demographic characteristics

of the region which hosts the team to indirectly address this issue. The lack of a signi�cant

relationship between the racial composition of the host communities and that of the teams

supports the information-based, rather than taste-based, explanations.

Our paper relates to the literature documenting and explaining market anomalies in �-

nance as well. Closely related to our premise of studying the impact of a common perception

in a �nancial market setting, Hong and Kacperczyk (2009) and Hong and Kostovetsky (2012)

8Cheryan and Bodenhausen (2000) provide evidence that stereotypes can lead to such a "choking e¤ect"
by looking at the performance of Asian-American women in math tests.
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look at case of the "sin stocks" and political values in investment decisions. Wolfers (2006a)

examines the stock market returns of companies with female CEOs. Sports betting markets,

in particular, provide an attractive ground for testing market e¢ciency because, unlike most

�nancial markets, the sports betting markets contain well-de�ned prices, well-de�ned out-

comes and a �nite time horizon. In particular, sports betting markets have outcomes which

are realized within a short time frame, are observable by all market participants, and are

unambiguous (no measurement error or uncertainty about the horizon over which outcomes

should be measured). Finally, these markets are unlikely to have uninformed traders due to

the widespread availability of information. Therefore, the questions related to the e¢ciency

of the sports betting markets are of interest to economists in order to test market e¢ciency

hypotheses in general. Echoing �ndings in other �nancial markets, several studies have found

ine¢ciencies in the sports betting markets.9 For instance, studies have found that bettors

erroneously place bets for sentimental reasons (Avery and Chevalier, 1999; Braun and Kvas-

nicka, 2012; Forrest and Simmons, 2008), on teams which are deemed hot (Brown and Sauer,

1993; Camerer, 1989), and on teams which are favorites (Golec and Tamarkin, 1991; Grey

and Grey, 1997). Levitt (2004) �nds, using data on the wagers placed by bettors as part of

a handicapping contest o¤ered at an online sports book during the 2001-02 NFL season, that

the amount of money placed on each side of the bet is not equal and this imbalance is related

to observable information. In particular, Levitt �nds that the proportion of money bet is

higher for favorites and road teams. Interpreting this �nding, he argues that the bookmakers

set the spread in order to exploit common biases: people like favorites and people do not

su¢ciently account for the home �eld advantage.10

The particular bias we study, i.e., the common belief that black players are better than

their white counterparts, has been the subject of experimental investigation of the e¤ects of

stereotypes on judgments in sports.11 For instance, Stone, Perry and Darley (1997) directed

subjects to listen to an audio clip of a basketball game after viewing a picture of the player

9See Barberis and Thaler (2002) for a general overview and Sauer (1998) for applications in sports betting.
10Paul and Weinbach (2011) corroborate this �nding using the percentage of bets actually placed on NFL

games. Our analysis shows that the bets on NBA games are also distorted by racial stereotypes. Also see
Kuypers (2000). Snowberg and Wolfers (2010) discuss the evidence that, in the odds betting of horse racing,
bettors have a bias towards betting on longshots rather than on favorites.

11For more on the stereotype of the athletic black man, see Biernat and Manis (1994), Sailes (1996), and
Stone, Lynch, Sjomeling, and Darley (1999).
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whom they were instructed to judge. The subjects who were shown a picture of a black

player rated the performance as better than those subjects who were shown a picture of a

white player. While existing experiments are suggestive of biases in judgments involving race

and athletic performance, since the accuracy of these judgments are not related to the material

incentives of the subjects, it can be di¢cult to interpret these results. However, our study is

not vulnerable to this critique because obviously betting on the outcome of a basketball game

is indeed related to a person�s material incentives.

Others have also looked at the e¤ect of race on outcomes in sports. Again, this litera-

ture is signi�cant beyond the sports context because it involves decisions which exhibit large

incentives for success or accuracy and the outcomes can be objectively measured. Price and

Wolfers (2010) �nd a negative relationship between the personal fouls assessed against NBA

players and the number of own-race referees who o¢ciated the game. Relatedly, Parsons,

Sulaeman, Yates and Hamermesh (2011) �nd that the likelihood of a called strike in baseball

is related to the agreement of the pitcher�s and umpire�s race. Although these judgments are

made by well-trained and experienced professionals, they are also made under great duress

and must be made almost instantaneously. Therefore, it is possible that these judgments,

while obviously of great signi�cance, would be attenuated if they were made under di¤erent

circumstances. By contrast, the judgments which comprise the data we provide are made by

individuals who have the opportunity to re�ect on the merits of their decisions. Hence, our

�ndings imply that racial stereotypes may a¤ect decisions even when they are made under an

extended period of deliberation.

In a similar vein, Larsen, Price, and Wolfers (2008) �nd that the relationship between

race and fouls documented in Price and Wolfers (2010) is signi�cant enough so that, given

information about the race of the referees and the relative racial composition of the teams,

one could improve their chances of placing a winning bet against the spread. By contrast, we

focus primarily on the racial composition of the teams. Hence, the bias we examine emerges

from the simple observation that many believe black players to be better, rather than the

less visible notion that the referees exhibit an own-race bias. In addition, we analyze the

opening and closing point spreads and we �nd evidence that the bookmakers are aware of the

bias, thus suggesting that the phenomenon is more likely to be driven by information-based

motivations rather than by taste-based explanations. In other words, we provide evidence
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consistent with the assertion that the bettors may be taking the racial composition of the

teams as a signal to guide their betting decisions (statistical discrimination à la Phelps). The

evidence also supports the claim that the bookmakers incorporate all relevant information

which may not be re�ected in the racial discrepancy between the teams and set the spread

so that they can exploit the information-based bias of the bettors. Finally, as does Larsen,

Price, and Wolfers (2008), we o¤er an analysis of a simple betting strategy. The simple

betting strategy proposed by Larsen, Price, and Wolfers (2008) involves the interaction of

the di¤erences in the race of the teams and the referees, and in our case it is exclusively a

function of the racial composition of the teams. Hence, arguably, our strategy requires less

information and is less computationally-intensive than theirs. Our betting strategies prove

to be at least as pro�table, and often more so, than the ones analyzed in Larsen, Price, and

Wolfers (2008). However, despite the di¤erences between Larsen, Price, and Wolfers (2008)

and the present paper, we view our work as o¤ering a complementary investigation into the

relationship between race and betting markets.

3 Data

Our baseline dataset combines box score information on all regular season NBA games played

from the 1993-94 season to the 2007-08 season. We exclude the playo¤ games since the

outcomes for these games tend to be path-dependent not only across games in the same series

but also across rounds, thus accentuating the survivorship bias in the sense that the number

of player or team observations would closely depend on their past performance. The box

score information is obtained at the player-game level from www.basketball-reference.com,

which also keeps track of draft picks and other background information of the players, such

as the height and weight. The ultimate team-game level dataset is constructed from these

player-by-player observations, obtained from www.basketball-reference.com.

One crucial variable, however, for our analysis that is missing from the www.basketball-

reference.com website is the race of the players. In some cases (mostly for players who are

still active), a picture of the player accompanies the statistics but this happens only at a

small fraction of the overall player universe during our sample period. Hence, we conduct an

extensive search to obtain information on the race of the players, navigating www.nba.com,
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www.hoopedia.nba.com, www.draftreview.com, and images found via Google. This informa-

tion enables us, by visual inspection, to characterize the racial membership of the players.

Admittedly, we use a rather coarse de�nition of race by assigning players (and coaches) into

two broad categories of black and white, where white includes Caucasians, Asians, and Lati-

nos. Yet, we use several measures of the racial composition of the team in order to ensure

robustness of the results involving a variable as subjective as a player�s race. Further, we also

double-check our classi�cation of the racial membership of the players against that used in

Price and Wolfers (2010). The discrepancy between the racial classi�cation exists for a mere

31 out of 1128 matched players. This di¤erence corresponds to only 2.5 percent of the more

than a quarter of a million player-game observations used in our dataset.

The data for the point spreads are obtained from www.goldsheet.com. We verify the

accuracy of the spreads from this source against other sources commonly-used in the acad-

emic studies of sports betting, such as www.covers.com, and �nd no signi�cant discrepancies.

In fact, information on the ultimate outcomes of the games tends to be more accurate in

www.goldsheet.com than it is in www.covers.com: of the 41 cases when a discrepancy between

the two sources exists, the cross-check with www.espn.com con�rms that the former has the

correct information 80 percent of the time. In the absence of an obvious third source to check

the point spreads against, we ultimately use the two data sources as cross-checks against each

other in constructing our �nal dataset and eliminate the observations in which a discrepancy

between the two sources exist. We complement this information on the closing spreads with

information on the opening spreads and the percent of bets placed on each side of the bet.12

A total of 18,450 regular-season games were played during the sample period. After

excluding games for which there is a missing box score or racial composition data, we are left

with 17,178 games. Further, after excluding games for which there was either no betting

information or contradictory betting information, or where the betting outcome was a push,

leading to cancellation of all bets (which occurs approximately 1.3 percent of the time), we

are left with 14,785 games in the sample. Before we move to the formal analysis, we present

some descriptive statistics of this �nal dataset.

Of the 1021 players who were active in the NBA during our sample period, 71.8 percent

are black. Black players are even more over-represented in the starting line-up of the teams:

12These data are available, at a fee, from www.sportsbetting.com.
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on average, only one out of �ve starters is white. In a typical game, each team deploys 9 to 11

players, 8 of which are, on average, black. As a result, at the player-game level, 76.7 percent

of the observations are identi�ed as being associated with a black player. These statistics

con�rm the casual observation of the dominance of black players in the NBA, not only by

sheer number but also by the visibility they obtain by playing more minutes in more games.

Table 1 provides a summary of the data used in our analysis at the player-game level,

and Table 2 summarizes the data at the team-game level. At the player-game level, there

are some statistically signi�cant di¤erences between black and white players. However, it is

not always the case that black players have "more desirable qualities" and the magnitudes

of these di¤erences are not very meaningful. For instance, while, on average, black players

score roughly two points more than their white counterparts, they are not as e¢cient as

demonstrated by their slightly lower �eld goal percentages. According to these metrics, black

players overall do not appear to be much better than their white peers. If one assumes that

the team is a sum or re�ection of the skill levels of individual players, there seems to be no

obvious statistical reason to deem more black teams to be of better quality.

At the team-game level, on which we conduct the empirical analysis, we summarize the

information on betting spreads and the racial composition of the teams. Racial composition

is measured by three alternative metrics: the number of black starters, the number of black

players on the team roster regardless of whether they actually play in a game, and the minutes

played by black players. This �nal metric is calculated as the average of the past �ve games the

team has played and is expressed as a percentage of the total minutes in the game. To avoid

duplication, all variables are expressed from the home team�s perspective. Simple statistics

point to a slight advantage for the home team as they win the game 60 percent of the time by

an average margin of around 4 points. Point spreads seem to take this into account at least

partially because the home team is the favorite about 70 percent of the time and beats the

spread 51 percent of the time. Note that the partial o¤set of the home court advantage is in

line with earlier studies showing a similar bias in NFL betting markets (Levitt, 2004).
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4 Analysis

4.1 Accuracy of point spreads and the link between race and winning prob-

ability

In order to demonstrate the relationship between performance against the spread and the

racial makeup of the teams, we estimate the following regression:

P (home team beats the spread)it = �+ ��blackit + Xh + 'Ys + �(Xh � Ys) + "it

where the dependent variable is a dummy variable which takes on the value 1 if the home

team beats the spread on game i played at date t and 0 otherwise, �blackit is the di¤erence

between the "blackness" of the home team and the visiting team, Xh and Ys are (home)

team and season (during which date t is included) �xed e¤ects, respectively. As noted in the

previous section, the blackness of a team is measured by the various metrics (number of black

starters, number of black players on the team roster, and the fraction of minutes played by

black players in the previous �ve games).

Thus, our empirical approach rests on a baseline speci�cation where the probability that

the home team beats the spread is a function of the racial composition of the team relative

to its opponent. This relies on two assumptions and, before moving on to the main analysis,

we con�rm that these assumptions hold.

The �rst assumption is that basketball betting markets are, in general, e¢cient, in that

any observable information should be re�ected in the spread. So, we begin our analysis by

looking at the accuracy of point spreads in forecasting the game outcome. Figure 1 shows

the distribution of "forecast errors," de�ned as the actual margin (or realized spread) minus

the point spread on a game. Indeed, the errors closely resemble a normal distribution with

zero mean.13 Figure 2 formally veri�es this statement by plotting the forecast error against a

normal distribution.14 We �nd that the NBA betting markets are, in general, e¢cient in the

13See Wolfers (2006b) who examines the distribution of errors in college basketball games and �nds evidence
of point shaving in games with a large point spread.

14Kolmogorov-Smirnov equality-of-distributions test as well as skewness and kurtosis test for normality
further verify that forecast errors are normally distributed. Results of these tests are available from the
authors upon request.
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sense that the distribution of the di¤erence between the winning margin and the point spread

is not distinguishable from a normal distribution. In line with this, when plotted against

the realized winning margins, one can see that the point spread is an accurate forecast of the

actual game outcomes (Figure 3).

The second assumption is that the probability of winning a game does not increase in the

relative blackness of the teams. Table 3 presents the results of a regression analysis where

the more black team in a match-up is shown not to have a systematically higher probability of

winning a game. The sign on the variables of interest, i.e., blackness of the home team relative

to the visiting team, varies from one speci�cation to the next and is not always signi�cant

and positive when the dependent variable is the realized margin on the game (upper panel in

Table 3). Therefore, there is little evidence of a positive association between the blackness of

the teams and the decisiveness of the �nal scores. A quick glance at the table would suggest a

somewhat robust negative relationship between the blackness of the teams and the probability

of winning (lower panel in Table 3).15 It should be noted that this is not necessarily a sign of

lower quality or generally worse performance of teams composed of more black players against

teams with more white players. Rather, in these speci�cations, the relative blackness of a

team may be capturing the e¤ect of other factors which determine the performance of one team

against another. Indeed, once factors such as the record of the team up to a speci�c game in

a season is controlled for, the magnitude and signi�cance of this coe¢cient is weakened.16 In

summary, our assumption that the probability of winning a game does not increase with the

di¤erences in racial composition towards blackness has support in the data.

With the two assumptions veri�ed, we now proceed to the regression analysis of the point

spread and actual game outcomes.

4.2 Race and point spreads

Table 4 presents our main �ndings. In a nutshell, our analysis shows that teams which are

more black tend to face a higher point spread and that these teams exhibit a worse performance

15Notice that the team with more black starters is likely to have a larger realized margin but a lower
probability of winning. While this seems a bit curious, it is consistent with a few outliers where the team with
more black starters had a blowout when they won. Also note that the association between the di¤erences in the
blackness of the teams and the realized margin of the game is not robust as the positive signi�cant coe¢cient
disappears when alternative measures of blackness are used.

16These results are not presented here for sake of brevity but are available from the authors upon request.
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against the spread. Note that, in each regression, team �xed e¤ects and season �xed e¤ects

as well as team-season interactions are employed. Hence, neither the time-invarying team

characteristics nor the team-invarying time e¤ects are driving the results.17

In the upper panel, the dependent variable is the spread faced by the home team. Ac-

cording to our three measures of the racial di¤erences between the teams, we see that there

is a positive relationship between the spread and these measures. In the middle panel, the

dependent variable is the realized margin of the home team minus the spread. Based on the

three measures of the racial di¤erences between the teams, we see that there is a negative

relationship between the blackness of the team and the realized margin minus spread. In

the lower panel, the dependent variable is a dummy which takes the value of 1 if the home

team beats the spread and zero otherwise. Again, according to our three measures of the

racial di¤erences between the teams, we �nd a negative relationship between the blackness of

the team and the probability that they cover the spread. To summarize, we �nd evidence

that teams which are more black tend to face a larger point spread and that these teams

perform worse against the spread. The evidence so far supports part of the conjecture we

introduced at the beginning: point spreads, even as they control for all relevant and available

information on the two teams facing each other, are disproportionately higher for more black

teams, consistent with the belief that they are better than those with more white players.

4.3 Biased bettors or biased bookmakers?

A natural question then is, what is driving the relationship between the racial composition of

the teams and the performance against the spread? There are two main competing hypotheses.

The �rst hypothesis is that the bookmakers are aware of the racial bias of bettors and they set

the spread in such a way to exploit the bias à la Levitt (2004). The second hypothesis is that

the bookmakers are unaware of the bias of the bettors and set the spread to be the expected

�nal score of the game and the relationship found above is caused by bettors who systematically

bet on the more black team, thus moving the spread. In order to distinguish between these

hypotheses, we investigate whether there is a relationship between the movement of the spread

17The results presented in the tables are estimated using probit when the dependent variable is a binary
variable, e.g., the probability of beating the spread. To ensure that the results do not su¤er from the inci-
dental parameters problem, we also estimate these speci�cations using ordinary least squares. The sign and
signi�cance of the coe¢cients of interest are indeed robust to the choice of estimation method.
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and the racial composition of the teams. Figure 4 demonstrates that the movement of the

spread is normally distributed with a mean of zero.

Table 5a presents the results of our regressions involving the movement of the spread.18 In

our �rst speci�cation, we do not account for team- and season-speci�c factors, or team-season

interaction terms. There we �nd a signi�cant relationship between race and the movement

of the spread. However, for the three speci�cations in which we do account for these �xed

e¤ects, we do not �nd a signi�cant relationship between the race of the teams and movement

of the spread. Moreover, from Table 4, we know that there is a systemic relationship between

the relative racial composition of the teams and the spread itself. Hence, the spread re�ects

the belief that teams with more black players should be placed as favorites. Indeed, more

(less) money appears to be bet on the home team if it has more (less) black players than the

visiting team, as shown in Figure 5. To further this argument, we investigate whether the

money bet on the home team is related to the relative racial composition of the teams. Table

5b shows the results of this exercise. There appears to be a positive, albeit statistically weak,

relationship between the racial composition of the team and the percent of money bet in favor

of the home team. In other words, the spread is set in a way that the resulting bets are

skewed in favor of the more black team. Based on the regressions in Tables 5a and 5b, we

favor the explanation that bookmakers are aware of the bias of bettors and set the spread to

exploit this bias.

4.4 Robustness checks

How robust are our results? We perform several robustness checks where we control for the

race of the referees, the race of the coaches, and the racial composition of the location of the

home team.

First, one concern is that our results no longer hold when one accounts for the racial

composition of the referee crew. For instance, Larsen, Price, and Wolfers (2008) �nd that

the racial composition of the referee crew, together with the racial composition of the teams,

is relevant and can a¤ect the probability of a team winning the game and, hence, beating

the spread. Speci�cally, the authors �nd that teams can become disadvantaged when the

18 In the remainder of the tables, for the sake of brevity, we only show the results involving the di¤erence in
black starters. The results are virtually identical when the other two metrics are used and are available from
the authors upon request.
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racial composition of the referee crew di¤ers from the racial composition of the team. We

perform a series of regressions with the dependent variable as the probability of beating the

spread, however, we restrict attention to the following categories: an all-white crew, a crew

with at least one black referee, a crew with at least one white referee, and an all-black crew.

We also consider the case where the crew is neither all black nor all white. Finally, we add

the proportion of white referees as an additional control variable in our baseline speci�cation.

Table 6a presents the results of these regressions. Even when accounting for the racial

composition of the referee crew, our results remain signi�cant in each case, with the exception

of an all-black crew. However, note that an all-black crew is an extremely rare occurrence

as it accounts for only 126 games out of 14,694 in our sample. Hence, in the majority of the

games in our sample, it remains true that it is more di¢cult for the more black team to beat

the spread.

Second, another important factor could be the race of the coaches. One could imagine

that when the home team has more black players and, according to the beliefs of some, is more

talented, there can be an additional bias if bettors also think that a more black team led by a

black head coach should do even better than they would when led by a white head coach. We

follow a similar approach as when controlling for the racial composition of referees and split

our sample by the di¤erence in the race of the head coaches of the two teams. Again, we also

run a regression where the di¤erence between race of the home team�s head coach and that of

the visiting team�s head coach is introduced as an additional control variable. Results of these

regressions are presented in Table 6b. Interestingly, more black home teams actually have a

better chance of beating the spread when their head coach is white but the visiting team is

led by a black head coach. Regardless, note that when the coaches are of the same race (a

majority of the cases), the negative relationship between the blackness of the team and the

probability of beating the spread prevails. Finally, our �nding from the baseline regression

also holds when the di¤erence between the race of the head coaches is controlled for as an

additional regressor in the speci�cation.

It is also possible that the biases found above are related to the racial composition of the

bettor or the racial composition of the location of the basketball team. While we cannot

account for the race of the bettors, we can control for the racial composition of the location of

the teams. Therefore, to the extent that a person living in the location of the team is more
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likely to bet on the team, we can test whether our results are driven by the characteristics

of the population at the locations of the teams. We run a pair of probits with probability

of beating the spread as the dependent variable. We include the di¤erence in black starters

as an independent variable, while accounting for the racial composition of the location of the

teams. In particular we account for the di¤erence in the proportion of blacks in the city

and di¤erence in the proportion of blacks in the state. In Table 6c, we present the results

of these regressions. In all speci�cations, the di¤erence in black starters remains signi�cant,

and neither of the terms accounting for the racial composition of the location are signi�cant.

As a result, we do not �nd evidence that the racial composition of the locations are related to

the bias found above.

On a related question about the race of the audience and the team, Kanazawa and Funk

(2001) �nd that the television ratings of games are positively related to the fraction of white

players on the teams. This is seemingly at odds with the evidence that white teams are

perceived to be worse at basketball. Presumably spectators attend basketball games or watch

on television in order to see "good basketball." If this was the case, there would be a negative

relationship between the white composition of the teams and television ratings for that game.

Yet, this �nding could be explained if the majority of NBA fans were white and, while white

fans thought that black players were better, they still prefered to watch the white players,

leading to a "premium" for white players. This is in line with the own-race preference, which

would predict that white audiences choose to watch white players as they derive utility from

associating with them even if they perceive the overall quality of the basketball played by these

players to be inferior. We do not, however, �nd an analogous relationship between betting on

the more black home teams in locations with a higher proportion of black population. This

may imply that, when taking �nancial decisions directly associated with basketball, audiences

stick to the stereotypes, perhaps relying on them as informative signals.

Finally, our �nding may not survive if performance criteria of the teams or the factors that

may be a¤ecting each team�s performance against speci�c opponents are explicitly included

in the speci�cation. As noted earlier, in our baseline, we control for time-invarying team

characteristics and team-invarying time e¤ects. But the performance and, relatedly, the

morale of a team may vary through a given season or when faced with a particular opponent,

e.g., because their game strategies are similar or because the bettors perceive a match between
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two speci�c teams di¤erently from others. Another issue could be that bookmakers correct

any systemic mistakes which may occur in setting the spread as the same two teams face

each other again and again. Table 6d presents the results obtained when the di¤erence in the

records and winning streaks (i.e., the number of games the team won out of the last �ve games

played) of the teams are added to the speci�cation and �xed e¤ects for speci�c team pairings

are included. Our �nding that the more black team has a lower probability of beating the

spread is robust to these checks.

4.5 Pro�t opportunities

So far, we have presented evidence that there is a negative relationship between the relative

blackness of a team and its probability of beating the spread. The question then is whether

there are pro�table strategies which consistently yield returns over the break-even hurdle.

Accounting for the cost of betting, the break-even hurdle requires a winning percentage higher

than 52.4 percent. We consider three simple strategies in Table 7: betting on the team with

more black players, betting on the team with more white players, and betting on the home team

only when it has more white players than the visiting team.19 The reason for distinguishing

between the home and visiting team in the last strategy is to exploit the possibility that the

home court advantage may not be fully accounted for by the bettors. Yet, betting on the

whiter team regardless of where the game is delivers with a winning percentage of 54 percent

and a return of 3 percent. Applying the "bet on the white" strategy while also re�ecting on

the home court advantage, improves the returns: The bets placed this way, on average, win

58 percent of the time for an overall average return of 10 percent.

Across seasons, the pro�ts obtained by following the "bet on the white home team" strategy

are persistent over time. In the 2007-08 season, as a result of the strategy of only betting

on the home team when it has 1, 2, 3, or 4 more white players in the starting line-up than

the visiting team, we observe the probability of a winning bet to be as high as 75 percent

and net returns (accounting for the cost of betting) to range from 8 percent to 43 percent.

Table 8 presents the results of adopting this strategy over our whole sample period. Indeed,

19One could, of course, design betting strategies based on the roster of the rival teams or the minutes played
by black players in the last few games. We obtain similar results using such strategies but prefer to present the
results with the black starters on each team because this is the statistic which is the most easily-accessible and
the least computationally-intensive.
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this strategy of betting on the home team when it has more white players delivers positive

net returns that not only increase with the starkness of the racial di¤erence between the two

teams but also broadly persist from one season to the next. This may suggest that, although

learning opportunities abound, the bettors� behavior still re�ects the mistaken belief that

teams with more black players are better, akin to the �nding in Pope and Schweitzer (2011).

5 Conclusion

This paper examines the impact of the positive stereotype of the black basketball star on

�nancial decisions, as revealed in the market outcomes, using evidence from sports betting

markets. We �nd evidence of a bias in NBA betting markets based on race. We also �nd

evidence that this bias is exploited by the bookmakers. This �nding can be explained by

bettors taking race as a signal of skill level in deciding on which team to bet and bookmakers

setting the point spreads higher for more black teams. An implication of our �ndings is that

stereotypes, and biases in general, may a¤ect �nancial decisions and, hence, market outcomes.

These �ndings add to the literature showing the importance of biases in economic decision

making. In particular, we demonstrate that market makers process the available information

e¢ciently but at the same time, when setting the prices, allow for the fact that the participants

have a bias, which they do not correct, even though not doing so leads to direct pecuniary

losses. Information-based discrimination is more likely to explain the phenomenon in the

case we study since the prices do not adjust much after being initially set. We also provide

evidence that biases do indeed carry over from laboratory experiments to real markets even

when stakes are high and the agents have the time and opportunity to learn.

What do these �ndings mean for other economic markets? If we �nd persistently-mistaken,

�nancially-disadvantageous beliefs in a market with obviously- and immediately-realized �nan-

cial costs and many opportunities to learn, then we would expect there to be such in other

markets. Most straightforwardly, do presumptions about intellectual or athletic ability based

on stereotypes increase or decrease the odds of success for certain groups in certain �elds?

Another, perhaps a socially and politically uncomfortable question which may arise from this

analysis is, if people are prone to making suboptimal sports betting decisions due to racial

stereotypes, do people make similar costly judgment errors in other economic decisions? For
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instance, do employers hire engineers with a background from a particular region presuming

that they have an innate ability for quantitative tasks? Is provision of health, education,

and other social services a¤ected by subconscious attitudes towards some groups? These and

other interesting questions are left for future research.
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Figure 1: Distribution of Forecast Errors
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Figure 2: Di¤erence between the Winning Margin and the Point Spread against Normal
Distribution
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Figure 3: Accuracy of Point Spreads
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Figure 4: Distribution of the Di¤erence between the Opening and Closing Spreads
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Figure 5: Distribution of Money Bet
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Table 1. Summary Statistics at Player-Game Level: Adjusted

Black players White players Signi�cance
Variable Obs Mean Std. Dev. Obs Mean Std. Dev. of di¤erence
Personal fouls 323178 4.99 5.07 98028 5.61 6.14 >0.99
Points 323176 18.04 12.07 98028 17.13 12.79 <0.01
Free throws attempted 323179 4.89 6.32 98028 4.38 6.69 <0.01
Free throws made 323179 3.55 4.85 98028 3.24 5.14 <0.01
Free throw percentage 206288 1.53 1.86 55807 1.76 2.33 >0.99
Field goals attempted 323179 15.61 8.07 98028 14.71 8.39 <0.01
Field goals made 323179 6.80 4.90 98028 6.44 5.16 <0.01
Field goal percentage 308710 1.15 2.27 91836 1.35 2.73 >0.99
Two point shots attempted 323179 12.94 7.62 98028 11.78 7.99 <0.01
Two point shots made 323179 5.92 4.70 98028 5.43 4.92 <0.01
Two point shot percentage 303829 1.18 2.25 89363 1.37 2.67 >0.99
Three point shots attempted 323179 2.67 4.04 98028 2.92 4.52 >0.99
Three point shots made 323179 0.88 1.89 98028 1.01 2.22 >0.99
Three point shot percentage 155412 0.64 1.39 46544 0.80 1.83 >0.99
O¤ensive rebounds 323179 2.48 3.55 98028 2.66 3.95 >0.99
Defensive rebounds 323179 5.66 4.93 98028 6.20 5.52 >0.99
Total rebounds 323179 8.15 6.52 98028 8.85 7.17 >0.99
Assists 323179 4.09 4.46 98028 3.92 4.77 <0.01
Steals 323179 1.57 2.38 98028 1.39 2.44 <0.01
Blocks 323179 0.98 2.14 98028 1.09 2.40 >0.99
Turnovers 323179 2.99 3.56 98028 2.90 3.87 <0.01
Win score 323176 6.74 11.70 98028 7.28 12.88 >0.99

Notes: The last column shows the p-values from t-tests with the null hypothesis that the statistic

for black players is greater than the statistic for white players. Adjusted statistics are calculated by

multiplying the raw statistics by 48 (the total number of minutes in a regular game, i.e., no overtime)

and then dividing by the actual number of minutes played by that player in that game.
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Table 2. Summary Statistics at Team-Game Level

Obs Mean St. Dev.
Point spread 14785 -1.86 5.07
Realized margin 17178 3.36 14.15
Realized margin - spread 14785 0.35 11.53
Probability of beating the spread 14785 0.51 0.50
Black starters 17179 3.90 1.05
Di¤erence in black starters 17178 0.01 1.41
Black players on the roster 17179 7.60 1.63
Di¤erence in black players on the roster 17178 -0.01 2.12
Black minutes 17022 0.78 0.16
Di¤erence in black minutes 16982 0.001 0.21

Notes: Point spread is the quoted spread on a game as of the closing time for bets, expressed from

the home team�s perspective. Realized margin is the actual di¤erence between the home team score

and the visiting team score at the end of the game. Probability of beating the spread is a dummy

that is 1 if a bet on the home team wins. Black starters is the number of black players in the starting

line-up. Black players on the roster is the number of black players on the team roster. Black minutes

is the proportion of minutes played by black players to the total minutes in the game, calculated over

the past �ve games the team has played. These measures of blackness of a team refer to the home

team. Di¤erence in black starters is calculated as the number of black players in the starting line-up

(number of black players on the roster, proportion of black minutes) of the home team minus the

number of black players in the starting line-up (number of black players on the roster, proportion of

black minutes) of the visiting team.

34



Table 3. Winning the Game

Realized margin
Di¤erence in black starters 0.290***

[0.105]
Di¤. in black players on the roster 0.091

[0.066]
Di¤erence in black minutes -4.356***

[0.675]
Team �xed e¤ects yes yes yes
Season �xed e¤ects yes yes yes
Team-season interactions yes yes yes
Observations 17178 17178 16982
R-squared 0.14 0.14 0.14

Probability of winning
Di¤erence in black starters -0.023***

[0.009]
Di¤. in black players on the roster -0.029***

[0.006]
Di¤erence in black minutes -0.399***

[0.065]
Team �xed e¤ects yes yes yes
Season �xed e¤ects yes yes yes
Team-season interactions yes yes yes
Observations 17178 17178 16982

Notes: The dependent variable in the upper panel is the realized margin in the game, computed as

the home team score minus the visiting team score. The dependent variable in the lower panel is the

probability of winning, which is a dummy that is 1 if the home team won the game. The regressions

are estimated using ordinary least squares for the winning margin, and using probit for the probability

of winning. Di¤erence in black starters is calculated as the number of black players in the starting

line-up (number of black players on the roster, proportion of black minutes over the past �ve games) of

the home team minus the number of black players in the starting line-up (number of black players on

the roster, proportion of black minutes over the past �ve games) of the visiting team. Robust standard

errors are in square brackets. ***, **, and * denote statistical signi�cance at the 1, 5, and 10 percent

levels, respectively.
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Table 4. Beating the Spread

Point spread
Di¤erence in black starters 0.364***

[0.032]
Di¤. in black players on the roster 0.143***

[0.021]
Di¤erence in black minutes 3.161***

[0.224]
Team �xed e¤ects yes yes yes
Season �xed e¤ects yes yes yes
Team-season interactions yes yes yes
Observations 14784 14784 14631
R-squared 0.33 0.32 0.33

Realized margin - spread
Di¤erence in black starters -0.239***

[0.083]
Di¤. in black players on the roster -0.275***

[0.053]
Di¤erence in black minutes -1.427**

[0.596]
Team �xed e¤ects yes yes yes
Season �xed e¤ects yes yes yes
Team-season interactions yes yes yes
Observations 14784 14784 14631
R-squared 0.06 0.06 0.06

Probability of beating the spread
Di¤erence in black starters -0.021**

[0.009]
Di¤. in black players on the roster -0.033***

[0.006]
Di¤erence in black minutes -0.116*

[0.066]
Team �xed e¤ects yes yes yes
Season �xed e¤ects yes yes yes
Team-season interactions yes yes yes
Observations 14784 14784 14631

Notes: The dependent variable in the upper panel is the point spread quoted on the game, expressed

from the home team�s perspective. The dependent variable in the middle panel is the di¤erence between

the realized margin (the actual outcome of the game) and the point spread. The dependent variable in

the lower panel is the probability of beating the spread, which is a dummy that is 1 if a bet on the home

team wins. The regressions are estimated using ordinary least squares for the point spread and the

di¤erence between the realized margin and the spread, and using probit for the probability of beating

the spread. Di¤erence in black starters is calculated as the number of black players in the starting
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line-up (number of black players on the roster, proportion of black minutes over the past �ve games) of

the home team minus the number of black players in the starting line-up (number of black players on

the roster, proportion of black minutes over the past �ve games) of the visiting team. Robust standard

errors are in square brackets. ***, **, and * denote statistical signi�cance at the 1, 5, and 10 percent

levels, respectively.
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Table 5a. Moving the Point Spread

Closing spread - Opening spread
Di¤erence in black starters 0.014** 0.008 0.008 0.006

[0.007] [0.008] [0.008] [0.009]
Team �xed e¤ects no yes yes yes
Season �xed e¤ects no no yes yes
Team-season interactions no no no yes
Observations 7977 7977 7977 7977
R-squared 0.00 0.01 0.01 0.05

Notes: The dependent variable is the di¤erence between the closing and opening values of the

spread on the game, showing how much the point spread moves from the start of betting until all

bets close. The regressions are estimated using ordinary least squares. Di¤erence in black starters is

calculated as the number of black starters on the home team minus the number of black starters on

the visiting team. Robust standard errors are in square brackets. ***, **, and * denote statistical

signi�cance at the 1, 5, and 10 percent levels, respectively.
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Table 5b. Bias in Bets

Money bet on home team
Di¤erence in black starters 0.185 0.243* 0.243* 0.285*

[0.118] [0.140] [0.140] [0.158]
Team �xed e¤ects no yes yes yes
Season �xed e¤ects no no yes yes
Team-season interactions no no no yes
Observations 8011 8011 8011 8011
R-squared 0.00 0.00 0.01 0.01

Notes: The dependent variable is the money placed as bets on the home team, expressed as a

percentage of the total bets placed on the game. The regressions are estimated using ordinary least

squares. Di¤erence in black starters is calculated as the number of black starters on the home team

minus the number of black starters on the visiting team. Robust standard errors are in square brackets.

***, **, and * denote statistical signi�cance at the 1, 5, and 10 percent levels, respectively.
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Table 6a. Robustness: Referees

Probability of beating the spread

At least one black referee At least one white referee
Di¤erence in black starters -0.015* -0.022***

[0.011] [0.009]
Team �xed e¤ects yes yes
Season �xed e¤ects yes yes
Team-season interactions yes yes
Observations 11244 14460

All-black crew All-white crew
Di¤erence in black starters -0.098 -0.044**

[0.128] [0.021]
Team �xed e¤ects yes yes
Season �xed e¤ects yes yes
Team-season interactions yes yes
Observations 126 3464

Neither all-black Referee race
nor all-white crew as additional control

Di¤erence in black starters -0.017* -0.019**
[0.011] [0.009]

Proportion of white referees -0.150***
[0.046]

Team �xed e¤ects yes yes
Season �xed e¤ects yes yes
Team-season interactions yes yes
Observations 10911 14694

Notes: The regressions are estimated using probit. Di¤erence in black starters is calculated as the

number of black starters on the home team minus the number of black starters on the visiting team.

The race composition of referees are taken into account by splitting the sample by the proportion

of black referees in the 3-person crew. Alternatively, the proportion of white referees is included as

a control variable. Robust standard errors are in square brackets. ***, **, and * denote statistical

signi�cance at the 1, 5, and 10 percent levels, respectively.
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Table 6b. Robustness: Coaches

Probability of beating the spread

Black (H), white (V) White (H), black (V)
Di¤erence in black starters -0.015 0.044*

[0.020] [0.026]
Team �xed e¤ects yes yes
Season �xed e¤ects yes yes
Team-season interactions yes yes
Observations 3011 2797

Both black or both white Coach race as additional control
Di¤erence in black starters -0.033*** -0.017*

[0.012] [0.009]
Di¤erence in coaches� race -0.064***

[0.024]
Team �xed e¤ects yes yes
Season �xed e¤ects yes yes
Team-season interactions yes yes
Observations 8859 14784

Notes: The regressions are estimated using probit. Di¤erence in black starters is calculated as the

number of black starters on the home team minus the number of black starters on the visiting team.

The race of the coach is taken into account by splitting the sample by the races of both the home and

visiting teams� coaches. Alternatively, the proportion of white referees is included as a control variable.

In the �rst column, "Black (H), white (V)" indicates that only observations where the coach of the

home team is black and the coach of the visiting team is white are included. In the second column,

"White (H), black (V)" indicates that only observations where the coach of the home team is white

and the coach of the visiting team is black are included. In the third column, either both coaches are

black or both coaches are white. In the last column, the di¤erence in coaches� race is calculated by

�rst creating a dummy for the coach of each team (1 if the coach is black) and then subtracting the

visiting team�s dummy from the home team�s. Robust standard errors are in square brackets. ***, **,

and * denote statistical signi�cance at the 1, 5, and 10 percent levels, respectively.
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Table 6c. Robustness: Population in Host Location

Probability of beating the spread
Di¤erence in black starters -0.020** -0.019**

[0.009] [0.009]
Di¤. in proportion of blacks in the city -0.0001

[0.0001]
Di¤. in proportion of blacks in the state -0.001

[0.001]
Team �xed e¤ects yes yes
Season �xed e¤ects yes yes
Team-season interactions yes yes
Observations 14705 14705

Notes: The regressions are estimated using probit. Di¤erence in black starters is calculated as the

number of black starters on the home team minus the number of black starters on the visiting team.

The di¤erence in proportion of blacks in the city (state) is computed by subtracting the percent of black

population, as of 2000, in the visiting team�s host city (state) from the percent of black population

in the home team�s host city (state). Robust standard errors are in square brackets. ***, **, and *

denote statistical signi�cance at the 1, 5, and 10 percent levels, respectively.
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Table 6d. Robustness: History of Teams

Probability of beating the spread
Di¤erence in black starters -0.019** -0.023** -0.023** -0.026*** -0.033***

[0.009] [0.009] [0.010] [0.010] [0.012]
Di¤erence in records 0.033***

[0.007]
Di¤erence in recent games 0.041

[0.033]
Margin on the teams� last match 0.002**

[0.001]
Spread on the teams� last match 0.0001

[0.003]
Team �xed e¤ects yes yes yes yes yes
Season �xed e¤ects yes yes yes yes yes
Team-season interactions yes yes yes yes yes
Match �xed e¤ects no no no no yes
Observations 14781 14631 14041 13437 13324

Notes: The regressions are estimated using probit. Di¤erence in black starters is calculated as the

number of black starters on the home team minus the number of black starters on the visiting team.

In the �rst column, the di¤erence in records is calculated as the di¤erence between the number of

wins the home team had in a particular season prior to the game in consideration and the number

of corresponding wins for the visiting team. In the second column, the di¤erence in recent games is

calculated as the di¤erence between the number of wins the home team had in a particular season over

the �ve previous games before the game under consideration and the number of corresponding wins

for the visiting team. In the third column, the margin on the teams� last match is computed as the

di¤erence between home team�s score and the visiting team�s score obtained the last time the two teams

played against each other (irrespective of the location). In the fourth column, the spread on the teams�

last match is the point spread quoted on the last game the two teams faced each other (irrespective of

the location and expressed from the home team�s perspective). Note that the margin/spread is equal

to the margin/spread from the last match-up in the previous season when the game in consideration

is the �rst time the two teams face each other in a given season. Robust standard errors are in square

brackets. ***, **, and * denote statistical signi�cance at the 1, 5, and 10 percent levels, respectively.
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Table 7. Chances of Winning with Simple Strategies

Strategy 1 Bet on the team that has X more black starters ...
1 2 3 4

Bets Win % Return % Bets Win % Return % Bets Win % Return % Bets Win % Return %
Average 6518 49.3 -5.9 2670 47.2 -9.9 783 47.6 -9.0 254 40.3 -23.0
Average for all 10225 46.1 -12.0

Strategy 2 Bet on the team that has X more white starters ...
1 2 3 4

Bets Win % Return % Bets Win % Return % Bets Win % Return % Bets Win % Return %
Average 6518 50.7 -3.1 2670 52.8*** 0.8*** 783 52.4 0.0 254 59.7*** 14.0***
Average for all 10225 53.9*** 2.9***

Strategy 3 Bet on the home team only when it has X more white starters than the visiting ...
1 2 3 4

Bets Win % Return % Bets Win % Return % Bets Win % Return % Bets Win % Return %
Average 3224 51.5 -1.7 1331 55.4*** 5.8*** 399 58.3*** 11.4*** 118 65.3*** 24.7***
Average for all 5072 57.6*** 10.0***

Notes: The table shows the outcome of bets placed on a team when it has X (taking on values of 1, 2, 3, or 4) more white/black starters than the

opposing team, as de�ned by the strategy. Bets show the number of games that satisfy the condition in a given season and the strategy would

require an $11 bet being placed on the team. Win % is the proportion of bets that the betted-on team would beat the spread and the bettor would

receive $21. Return % denotes the return on the betting strategy, computed as the total money earned on the bets as a proportion of the money

spent on placing the bets. Bets are expressed in units; win % and return % are in percent terms. The �rst row reports the total number of bets

and the simple average for the wins and returns over all the seasons in the sample. The last row reports the total number of bets and the simple

average for the wins and returns for the strategy considered as a whole. *** indicates that the win % (return %) is signi�cantly higher than

52.4% (0.0%), i.e., the win percentage required to break even, at the 1% level.



Table 8. Chances of Winning with a Simple Strategy: Season by Season

Bet on the home team only when it has X more white starters than the visiting ...
1 2 3 4

Bets Win % Return % Bets Win % Return % Bets Win % Return % Bets Win % Return %
2007-08 243 56.4 7.6 141 57.4 9.7 41 58.5 11.8 8 75.0 43.2
2006-07 270 48.5 -7.4 110 53.6 2.4 40 52.5 0.2 10 70.0 33.6
2005-06 244 54.9 4.8 126 54.0 3.0 50 56.0 6.9 8 50.0 -4.5
2004-05 214 50.9 -2.8 123 57.7 10.2 38 52.6 0.5 20 35.0 -33.2
2003-04 209 51.2 -2.3 80 63.8 21.7 47 63.8 21.9 27 55.6 6.1
2002-03 217 49.3 -5.9 101 59.4 13.4 38 60.5 15.6 11 63.6 21.5
2001-02 192 54.2 3.4 99 59.6 13.8 28 53.6 2.3 11 63.6 21.5
2000-01 202 51.5 -1.7 122 54.1 3.3 29 51.7 -1.3 13 46.2 -11.9
1999-00 227 53.7 2.6 101 59.4 13.4 18 61.1 16.7 1 100.0 90.9
1998-99 141 53.2 1.5 57 43.9 -16.3 21 61.9 18.2 4 50.0 -4.5
1997-98 201 55.2 5.4 73 58.9 12.5 12 58.3 11.4 4 75.0 43.2
1996-97 227 45.4 -13.4 52 65.4 24.8 16 81.3 55.1
1995-96 235 49.8 -5.0 42 45.2 -13.6 2 50.0 -4.5
1994-95 199 49.7 -5.0 60 41.7 -20.5 7 71.4 36.4
1993-94 203 48.8 -6.9 44 56.8 8.5 12 41.7 -20.5 1 100.0 90.9

Average 3224 51.5 -1.7 1331 55.4*** 5.8*** 399 58.3*** 11.4*** 118 65.3*** 24.7***

Average for all 5072 57.6*** 10.0***

Notes: The table shows the outcome of bets placed on the home team only when the home team has X (taking on values of 1, 2, 3, or 4) more

white starters than the visiting team. Bets show the number of games that satisfy the condition in a given season and the strategy would require

an $11 bet being placed on the home team. Win % is the proportion of bets that the home team would beat the spread and the bettor would

receive $21. Return % denotes the return on the betting strategy, computed as the total money earned on the bets as a proportion of the money

spent on placing the bets. Bets are expressed in units; win % and return % are in percent terms. The row before last reports the total number

of bets and the simple average for the wins and returns over all the seasons in the sample. The last row reports the total number of bets and

the simple average for the wins and returns if one bets anytime the home team has more white starters than the visiting team. *** indicates that

the win % (return %) is signi�cantly higher than 52.4% (0.0%), i.e., the win percentage required to break even, at the 1% level.


