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Abstract

This paper analyzes the empirical relationship between the price-setting/consumer behavior and the

sources of persistence in inflation and output. First, a small-scale New-Keynesian model (NKM) is

examined using the method of moment and maximum likelihood estimators with US data from 1960

to 2007. Then a formal test compares the fit of two competing specifications in the New-Keynesian

Phillips Curve (NKPC) and the IS equation; i.e. backward- and forward-looking behavior. Accordingly,

the inclusion of a lagged term in the NKPC and the IS equation improves the fit of the model while

offsetting the influence of inherited and extrinsic persistence; it is shown that intrinsic persistence

plays a major role in approximating the inflation and output dynamics for the Great Inflation period.

However, the null hypothesis cannot be rejected at the 5% level for the Great Moderation period; i.e.

the NKM with purely forward-looking behavior and its hybrid variant are equivalent. Monte Carlo

experiments are used to investigate the validity of moment conditions and the finite sample properties

of the classical estimation methods. Finally, the empirical performance of the formal test is discussed

along the lines of the Akaike’s and the Bayesian information criterion.
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1 Introduction

In the New-Keynesian model (NKM), some extensions such as the habit formation and indexing behavior

have gained popularity for the ability to fit the macro data well; see Christiano et al. (2005), Smets and

Wouters (2003, 2005, 2007), and Rabanal and Rubio-Ramarez (2005). For example, the forward-looking

behavior of price indexation has been challenged by macroeconomists over the last decade, because a

hybrid variant of the model with the backward-looking behavior provides a good approximation of inflation

dynamics; see also Gali and Gertler (1999), Fuhrer (1997), Rudd and Whelan (2005, 2006). In the same

way, inertial behavior in the dynamics of the output gap can be better explained by the presence of habit

persistence in consumption rule; e.g. see Fuhrer (2000). Accordingly, the lagged dynamics in the NKM

influence the transmission of shocks to the economy; the backward-looking behavior in the price-setting

and consumption rules affects the degree of endogenous persistence in inflation and output. This also

implies that a good approximation of the NKM to the data (e.g. the persistence of aggregate macro

variables) can provide a potential explanation for the monetary transmission channel to inflation and

output; see Amato and Laubach (2003, 2004) as well as Woodford (2003, Ch.3).

In a small-scale hybrid NKM, however, current inflation and output depend on its expected future and

lagged values, which can give rise to a highly non-linear mapping between structural parameters and the

objective function during estimation. Because of this, we cannot easily overcome identification problems

in the structural model; in other words, the minimization problem in extreme estimators often does not

have a unique solution asymptotically; e.g. see Canova and Sala (2009). The purpose of this paper is

to show to what extent classical estimation methods cope with structural parameter estimates and how

these can be used to evaluate the model’s empirical performance. Especially, we draw attention to an

analytical solution of the model and conduct a structural econometric analysis to identify the effects of a

lagged term in inflation and output.1

More generally, we apply the formal test of Hnatkovska, Marmer and Tang (2012) [HMT henceforth]

and examine the significant influence of the lagged term on the inflation and output dynamics. According

to HMT, the Vuong-type χ2 test evaluates the adequacy of a broad class of the goodness-of-fit measures and

allows for model misspecification; see also Linhart and Zucchini (1986) for model selection. Hence, the test

statistic used in our study can simply indicate the goodness-of-fit of the model in the hypothesis testing,

which measures the discrepancy between the model-generated and empirical moments. For example,

Vuong (1989) demonstrates how to use the likelihood ratio test for non-nested models. Rivers and Vuong

(2002) generalize the hypothesis testing procedure to the application involving a wide range of estimation

techniques. Their procedure extends to complex model selection situations where one or both models may

be misspecified and the models may or may not be nested; see Golden (2000, 2003).

The advantage of the formal test of HMT is that the model’s empirical performance can be flexibly

evaluated according to the chosen moment conditions. The flexibility is commonly associated with the

1Alternatively, the common and simple strategy to provide a quantitative assessment of inflation and output is to use a

reduced form (or single equation) estimation, calibration or simulation based inference; see also Gregory and Smith (1991)

as well as Nason and Smith (2008).
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transparency to the fit of the model when the moment conditions are directly binding for parameter

estimation. Indeed, the limited information approach has been widely used to estimate parameters of

a monetary DSGE model starting from Rotemberg and Woodford (1997). For instance, one common

approach to this problem is to use impulse responses that are most informative about the DSGE model;

Dridi et al. (2007) and Hall et al. (2011) discuss the choice of binding functions and information criteria for

the selection of valid response. Especially, when the model misspecifications and complex structural system

do not allow for efficient estimation, the adequacy of the model in fitting the data can be judged by using

binding functions; see Gourieroux and Monfort (1995). To conduct empirical analysis without auxiliary

model, Franke et al. (2011) examine a small-scale DSGE model using analytical second moments of the

sample auto- and cross-covariances up to lag 8 (two years) for estimation as well as model selection. While

the empirical results using the moment matching approach are contrasted with the Bayesian estimation,

however, the validity of their chosen moment conditions is not indicated by a statistical test.

In this paper, we discuss the efficiency of the method of moments (MM) estimation and examine

the validity of moment conditions along the lines of the maximum likelihood (ML) approach. To see

this, first, we conduct an investigation into the NKM’s empirical performance by using the relationship

between interest rate, inflation and output of US data. In particular, we attempt to assess the significance

of the lagged dynamics in inflation and output. From the ML and MM estimations, we pinpoint an

empirical link between the hybrid model structure and the persistence in inflation and output. Next,

the empirical performances of the model with purely forward-looking behavior and its hybrid variant are

evaluated using the model selection criterion. Accordingly, the inclusion of a lagged term in the New-

Keynesian Phillips Curve (NKPC) and the IS equation improves the fit of the model while offsetting the

influence of inherited and extrinsic persistence; it is shown that intrinsic persistence plays a major role

in approximating the inflation and output dynamics for the Great Inflation period. However, the null

hypothesis cannot be rejected at the 5% level for the Great Moderation period; i.e. the NKM with purely

forward-looking behavior and its hybrid variant are equivalent. Finally, we carry out a Monte Carlo (MC)

study to examine the statistical efficiency of the estimation methods.

The paper is organized as follows: Section 2 reviews the standard New-Keynesian three-equations

model and examines the importance of intrinsic persistence (or backward-looking behavior) for the co-

movement between inflation and output. Estimation methodologies and model selection procedures are

described in section 3. Section 4 presents the empirical results and the model comparison between the

NKM with the forward-looking behavior and its hybrid variant. Moreover, the finite sample properties of

MM and ML are investigated using the MC experiments in section 5. Finally, section 6 concludes. All

technical details are collected in the appendix.
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2 Expectation formation in a DSGE model

In this section, we present the standard New-Keynesian model featuring aggregate supply, aggregate

demand (IS), and monetary policy equations.2 We explore the model specifications of the lagged dynamics

in the NKPC and the IS equation, with a focus on the backward- and forward-looking behavior.

2.1 The New-Keynesian three-equations model

Microfoundations of supply- and demand-side economy have been established as the key components of a

New-Keynesian model framework; e.g. the behavior of optimizing economic agents. The monetary policy

behavior is described by the Taylor rule where the lagged interest rate reflects the gradual adjustment of

a central bank. Thus the model is appropriate to the identification of systemic changes in the economy.

Especially, in our current study, we attempt to examine to what extent the gaps of interest rate, inflation

and output are related to each other and to what extent they affect the economy (π̂t := πt − π∗

t , r̂t :=

rt − r∗t ). The trend components of the quarterly data are estimated by using the Hodrick-Prescott filter

with the smoothing parameter of λ=1600.3 The standard model reads as follows:

π̂t =
β

1 + αβ
Et π̂t+1 +

α

1 + αβ
π̂t−1 + κ xt + νπ,t

xt =
1

1 + χ
Et xt+1 +

χ

1 + χ
xt−1 − τ (r̂t − Et π̂t+1) + νx,t (1)

r̂t = φr r̂t−1 + (1− φr) (φπ π̂t + φxxt) + εr,t

νπ,t = ρπνπ,t−1 + επ,t (for indexing behavior) (2)

νx,t = ρxνx,t−1 + εx,t (for consumption behavior)

where the variable xt is the output gap, π̂t is the inflation gap and r̂t is the interest rate gap. The discount

factor and the slope coefficient of the Phillips curve are denoted by the parameters β and κ, respectively.

The parameters α and χ measure the degree of price indexation in the NKPC (0 ≤ α ≤ 1) and habit

persistence of the household (0 ≤ χ ≤ 1). And τ is a parameter that refers to the intertemporal elasticity

of substitution of consumption (τ ≥ 0). In the Taylor rule, φr determines the degree of interest rate

smoothing (0 ≤ φr ≤ 1). The other parameters φx and φπ are the policy coefficients that measure the

central bank’s reactions to contemporaneous output and inflation (φx, φπ ≥ 0).

2Smets and Wouters (2003, 2007) empirically examine a medium-scale version of the NKM. They estimate structural

parameters and idiosyncratic shocks with the Bayesian techniques. In our study, however, we study a small-scale general

equilibrium model and investigate the role of optimizing behavior in the dynamics of inflation and output.
3Note here that we use the gaps instead of the levels for interest rate and inflation. Indeed, many empirical studies

provide evidence for a time-varying trend in inflation and the natural rate of interest; see Castelnuovo (2010), Cogley and

Sbordone (2008), and Cogley et al. (2010). Moreover, the second moments are chosen to match the data when we estimate

the model parameters. As a result, if we would use the non-stationary data without making assumptions about the data

generating process, it would cause substantial bias in parameter estimates of the structural model.
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The shocks εz,t are normally distributed with standard deviation σz (i.i.d. with z = π, x, r). Since νπ,t

and νx,t are autoregressive processes, the persistences of the cost-push and demand shocks are captured

by the parameters ρπ and ρx, respectively (0 ≤ ρπ, ρx ≤ 1). In estimation, we do not take them together,

but treat them as being an independent case in order to directly disentangle the sources of inflation and

output persistence in the model.4

For the sake of simplicity, we present the above structural equations in canonical form. We denote by

yt the vector of three observable variables: yt = (π̂t, xt, r̂t)
′.

AEtyt+1 + Byt + Cyt−1 + νt = 0 (3)

νt = Nνt−1 + εt, εt ∼ N(0,Σε)

To solve the system, we can express the derivation of the solution as the recursive equation with

matrices Ω and Φ. First, we use the method of undetermined coefficients to obtain the unique solution of

the system under determinacy (i.e., φπ ≥ 1). Second, we apply the brute force iteration method of Binder

and Pesaran (1995) to numerically evaluate the matrix Ω; see appendix B for some intermediate steps.

yt = Ωyt−1 + Φνt (4)

νt = Nνt−1 + εt

From the matrices Ω and Φ, it follows that the contemporaneous and lagged autocovariance process

of the model can be computed recursively using the Yule-Walker equations; see chapter 2 of Lütkepohl

(2005). On the whole, we adjust the notation by changing the dating of the shocks and rewrite Equation (4)

as


 yt

νt+1


 =


 Ω Φ

0 N




 yt−1

νt


+


 0

I


 εt+1 (5)

Moreover, we can transform Equation (5) into the law of motion of zt = (y′t, ν
′

t+1)
′. This can be more

compactly written as

zt = A1zt−1 + ut, ut ∼ N(0,Σu), Σu = DΣεD
′ (6)

4In the current study, we do not consider the presence of serially correlated shocks in the realizations of interest rate. It

is assumed here that the shock persistence parameter of interest rate ρr is explained by its lagged term with the smoothing

parameter φr . See also Carrillo et al. (2007).
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where the matrix A1 and the covariance matrix Σu are functions of the parameter vector θ. The shocks

are mapped into the vector of ut = D · εt+1 with D = (0 I)′. The estimation methodologies will be

discussed later.

2.2 Sources of persistence: backward- and forward-looking behavior

In the study of the model comparison, we put an emphasis on two polar cases of the behavior of economic

agents. For example, when the price indexation parameter α is set to zero, it is assumed in the model that

expectations are purely forward-looking. In this case, inflation persistence is exclusively driven by the

exogenous shock process and inherited persistence from the output gap (see Table 1). But allowing it to

be a free parameter, we assume that agents in the market can choose naive expectations. As a result, the

NKPC is affected by both expected future and lagged inflation. This allows the model to have a degree

of inertia in the NKPC, which can provide structural insights on the comovement between inflation and

output.

Table 1: Sources of persistence in the NKPC and the IS equation

persistence inflation output

intrinsic indexing behavior (α) habit formation (χ)

extrinsic AR (1) of the shock (ρπ) AR (1) of the shock (ρx)

inherited slope of Phillips curve (κ) intertemporal substitution (τ)

In the same vein, Table 1 shows that we can distinguish between the backward and forward-looking

behavior in the IS equation. As long as each household chooses consumption optimally (i.e., without

habit formation χ = 0), the output dynamics in the economy are only driven by the exogenous shock and

the inherited persistence. The latter is implied by rational-expectations equilibrium in the intertemporal

allocation of consumption. On the contrary, if habit persistence is present in the consumption rule (i.e., χ is

now a free parameter), then the output dynamics is endogenously sustained by the optimizing behavior; the

inclusion of habit formation in consumption can simply explain the dependence of the current expenditure

on the past level of expenditure. As a result, the NKPC also depends on the lagged term in the IS equation.

In the current study, we aim to disentangle the sources of inflation and output persistence using classical

estimation methods. Especially, we investigate the degree of endogenous dynamics in the NKM with the

lagged term. In other words, it can be seen that the inclusion of the backward-looking behavior in the

NKPC and the IS equation offsets the effects of the extrinsic and inherited persistence while strengthening

the comovement between inflation and output. Note here that we pinpoint the sources of persistence by

separately considering AR (1) of the shocks for the price indexing and consumption behavior.
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3 Estimation methodologies and model selection

In this section, we explain our estimation methodologies, which are derived from the solution of the NKM:

the method of moment and maximum likelihood estimation. And we present a formal testing procedure

such that the empirical performance of the models can be compared.

3.1 Method of moment and model comparison: HMT (2012)

From the law of motion in Equation (6), it follows that the second moments of zt can be analytically

computed. Thus the contemporaneous and lagged autocovariances of the first-order vector-autoregressive

(VAR (1)) are given by:

Γ(h) := E(ztz
′

t−h) ∈ RK×K , K = 2n, h = 0, 1, 2, · · · (7)

where n is the dimension of the vector of observable variables yt. Their computation proceeds in two

steps. First, Γ(0) is obtained from the equation Γ(0) = A1Γ(0)A
′

1 +Σu, which yields

vecΓ(0) = (IK2 −A1 ⊗A1)
−1vecΣu (8)

where the symbol ’⊗’ denotes the Kronecker product. The invertibility of the term IK2 − A1 ⊗ A1 is

guaranteed, because A1 is clearly a stable matrix; i.e. φπ ≥ 1. Second, the Yule-Walker equations are

employed, from which we can recursively obtain the lagged autocovariances as

Γ(h) = A1Γ(h− 1) (9)

This formula relates to a vector autoregressive process of the model. From Equation (9), we can compute

analytical second moments of the model, which will be used to match the empirical counterparts during

the MM estimation.

For the purposes of comparison between two models (A and B), we must estimate the model parameters

by minimizing a weighted objective function (the chosen goodness-of-fit measures):

JI(θ) ≡ min
θI∈Θ

∥∥W 1/2(m̂T −mI(θI))
∥∥2

, I = A,B (10)

where mI is a vector of moments, and m̂ is a consistent and asymptotically normal estimator of true

moments m0. The norm of the matrix X is defined as ||X || =
√
tr(X ′X), where tr denotes trace.
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To examine the macroeconomic effects of the expected future and lagged term on the NKPC and the

IS equation, we use auto- and cross-covariances at lag 1 (15 moments) from the interest rate gap (r̂t), the

output gap (xt), and the inflation rate gap (π̂t); see also appendix A. With reference to the alternative

moment conditions, we present a case for the auto- and cross-covariances up to lag 4 (42 moments). The

empirical results of moment estimates and their robustness will be discussed later. Note here that we use

the second moments to evaluate the NKM’s empirical performance and apply a formal test to the model

of purely forward-looking behavior and its hybrid variant.

In order to construct the objective function, we must estimate the weight matrix W . Here we simply

use the Newey-West estimator (Newey and West (1987)):

Σ̂m = Γ̂T (0) +

5∑

k=1

(
Γ̂T (k) + Γ̂T (k)

′

)
(11)

where Γ̂T (j) is
1
T

∑T
t=j+1(mt − m̄)(mt − m̄)′, and k is the number of lags.5 In particular, we ignore off-

diagonal elements of the weight matrix and compute the inverse of Σ̂m; i.e. W = 1/Σ̂m,ii, i = 1, · · · , nm.

The reason for this restriction is two-fold: (i) from a small sample size, the correlation between the

elements of the weight matrix and the second moments is likely to be high; e.g. see Altonji and Segal

(1996). (ii) If we consider a large set of the moment conditions up to lag of two or three years, the rows

in the weight matrix are correlated to some extent. To avoid the dependence between the moments, we

only use the diagonal components of the variance-covariance matrix.

Under standard regularity conditions, the asymptotic distribution of the parameter estimates is given

by:

√
T (θ̂T − θ0) ∼ N(0,Λ) (12)

where we can numerically compute the covariance matrix Λ using the first derivative of the moments

at optimum; i.e. Λ = [(DWD′)−1]D′WΣmWD[(DWD′)−1]′.6 Note here that D is a gradient vector of

moment functions evaluated at the estimated values:

D̂ =
∂m(θ;XT )

∂θ

∣∣∣∣
θ=θ̂T

(13)

5The lag order is chosen following a simple rule of thumb for sample size (∼ T 1/4). For the GI and GM data, we have 78

and 99 quarterly observations respectively. Therefore k is set to 5.
6If the weight matrix is chosen optimally (Ŵ = Σ−1

m ), the estimated covariance matrix Λ becomes (DWD′)−1; see chapter

1 of Anatolyev and Gospodinov (2011) among others. However, in our study, the estimated confidence bands become wider,

because the weighting scheme in the objective function is not optimal.
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Next, we consider hypotheses comparing the goodness-of-fit of the competing models. The null hy-

pothesis H0 is that two non-nested models fit the data equally:

H0 :
∥∥W 1/2(m̂T −mA(θA))

∥∥−
∥∥W 1/2(m̂T −mB(θB))

∥∥ = 0 (14)

The first alternative hypothesis is that model A performs better than model B when

H1 :
∥∥W 1/2(m̂T −mA(θA))

∥∥−
∥∥W 1/2(m̂T −mB(θB))

∥∥ < 0 (15)

The second alternative hypothesis is that model B performs better than model A when

H2 :
∥∥W 1/2(m̂T −mA(θA))

∥∥−
∥∥W 1/2(m̂T −mB(θB))

∥∥ > 0 (16)

To carry out the model comparison, we define the quasi-likelihood-ratio (QLR) statistic as

Q̂LR = JB(θ̂B)− JA(θ̂A) (17)

Following HMT, we consider the relationship between two models (A and B): (i) nested, (ii) strictly

non-nested and (iii) overlapping models. As long as the models share conditional distributions for the

data generating process and neither model is nested within the other, we assume that two models are

overlapping. Then we can consider two sequential steps of the hypothesis testing á la Vuong (1989). To

begin, we compute critical values of the QLR distribution for the first step of the model comparison.7 The

simulated QLR distribution is defined as the following χ2-type formula:

Z ′ Σ̂1/2
m W (V B − V A)W Σ̂1/2

m Z, Z ∼ N(0, Enm
) (18)

where Σ is a positive definite covariance matrix of the moment estimates, and Z is drawn from the

multivariate (nm) normal distribution. The nI
θ by nI

θ matrix V I is defined in appendix E. If Q̂LR exceeds

the critical value from a 95% confidence interval, then the null hypothesis is rejected. Next, the second step

investigates whether or not the source of the rejection asymptotically comes from the same goodness-of-fit.

The suggested test statistic has a standard normal distribution (z):

7Appendix E presents intermediate steps for simulating the QLR distribution. The theoretical QLR distribution is derived

from the mean value expansion to a binding function (or moment conditions).
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w0 = 2 ||W 1/2
0 (mB(θB)−mA(θA))|| (19)

The standard deviation w0 measures the uncertainty of the Q̂LR estimates of two models. Accordingly,

the null of the equal fits can be rejected when
√
T · QLR(θ̂B , θ̂A)/ŵ0 > z1−0.05/2 in which case A is the

preferred model, or
√
T ·QLR(θ̂B, θ̂A)/ŵ0 < −z1−0.05/2 in which case B is preferred.

3.2 Maximum likelihood and model selection

The ML estimator has been widely used to estimate parameters of the DSGE model over the last decade;

see Ireland (2004), Lindé (2005) and others. We briefly summarize the econometric steps for the ML

estimation and model selection. From Equation (4), we may write that:

yt = Ωyt−1 + Φ · (N · νt−1 + εt) (20)

= (Ω + ΦNΦ−1)yt−1 − ΦNΦ−1Ωyt−2 + Φ · εt

where we define the variable Φ ·εt as ηt. Now we assume that ηt follows a multivariate normal distribution.

ηt ∼ N(0,Ση), Ση ≡ Φ · Σε · Φ′ (21)

Hence we can obtain the following conditional probability for the vector of observable variables yt:

yt|yt−1, yt−2 ∼ N((Ω + ΦNΦ−1)yt−1 − ΦNΦ−1Ωyt−2, Ση) (22)

Given the normality assumption of shocks and data set, the likelihood function can be constructed as:

L(θ) = −n · T
2

ln(2π)− T

2
ln |Ση| −

1

2

T∑

t=2

η′t · Σ−1
η · ηt (23)

where n is the dimension of yt. Finally, we arrive at the ML estimates for the parameter θ by maximizing

Equation (23):

θml = arg max
θ∈Θ

L(θ) (24)
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Under standard regularity conditions, the ML estimation is consistent and asymptotically normal:

√
T (θ̂ml − θ0) ∼ N(0, (Υ/T )−1) (25)

where Υ = E(∂2L(θ)/∂θ∂θ′) is the information matrix. In our study, Υ is numerically computed using

the Hessian matrix of the log likelihood function at optimum. For the purposes of the formal test, we use

the well-known approach to model selection, the Akaike information criterion (AIC):

AIC = − 2

T
· lnL(θ) +

2 p

T
(26)

where p is the dimension of the parameter θ. Then, we choose the model for which AIC is the smallest.

As an alternative to the AIC, which cannot respect the need for parsimony, we also consider the Bayesian

information criterion (BIC):

BIC = − 2

T
· lnL(θ) +

p · lnT
T

(27)

where the second term, p · lnT penalizes the model with additional parameters.
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4 Empirical application

In this section, we present empirical results of MM and ML using the US data. First, we attempt to

disentangle the sources of persistence in inflation and output; we examine the empirical performance of

the model using the formal test of HMT. Second, the similarities and dissimilarities between the MM and

ML estimations are discussed. Finally, we investigate the validity of extra moment conditions based on

the model’s empirical performance.

4.1 Data

The data we use in this study comprise the GDP price deflator, the real GDP and the

federal funds rate. The series are taken from the US model datasets by Ray C. Fair;

http://fairmodel.econ.yale.edu/main3.htm. The trend rates underlying the gap formulation are

treated as exogenously given. The trend from a Hodrick-Prescott (HP) filter is used with the smoothing

parameter λ =1600. The data set covers the period 1960-2007. Due to the structural break beginning with

the appointment of Paul Volcker as chairman of the U.S. Federal Reserve Board, we split data into two sub-

samples: the Great Inflation (GI, 1960:Q1-1979:Q2) and the Great Moderation (GM, 1982:Q4-2007:Q2).

The data split in the US economy is standard in most existing empirical works.

4.2 Basic results on method of moments estimation and model comparison

In this section, we apply the MM estimation to the NKM and discuss the importance of the lagged

dynamics for inflation and output persistence. Auto- and cross-covariances at lag 1 are used as chosen

moment conditions. Next, we employ the model comparison method, which provides a formal assessment

of the performance of competing specifications.

4.2.1 Assessing the fit of the model to inflation persistence: 15 moments

The MM estimation is used to assess the performance of the two models to fit inflation persistence in the GI

data. Table 2 reports the parameter estimates for the model with forward-looking behavior and its hybrid

variant. As long as the profit maximizing rule without indexation to past inflation (or purely forward-

looking) determines the total amount of output in the economy, the inflation dynamics are primarily

captured by inherited and extrinsic persistence. Indeed, from the model with purely forward-looking

behavior, we obtain much higher estimated values for the parameters κ and ρπ than its hybrid variant;

i.e. κ̂ = 0.12 (forward) > 0.05 (hybrid), ρ̂π = 0.51 (forward) > 0.0 (hybrid).

Turning to the formal test, we classify the two models into the nested case. Since the hybrid variant of

the model can generate richer dynamics due to the lagged inflation with the price indexation parameter

α, it nests the other model; the model with the forward-looking expectations does not allow the effects of

intrinsic persistence on the NKPC.

To test the null hypothesis that the two models have an equal fit to the data, we compare the estimated

loss function values (Ĵ(θ)). We find QLR = 1.94. The simulated 1% and 5% critical values for the
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hypothesis testing are 2.42 and 1.31, respectively; see the left panel of Figure 3 in appendix F. Therefore

we reject the null hypothesis at 5% level. This implies that the backward-looking behavior plays a

significant role in approximating the inflation persistence of the GI.

Table 2: Parameter estimates for inflation persistence with 15 moments

GI GM

hybrid forward hybrid forward

α 0.768 0.0 (fixed) 0.105 0.0 (fixed)

(0.007 - 1.000) ( - ) (0.000 - 1.000) ( - )

κ 0.047 0.123 0.052 0.058

(0.009 - 0.084) (0.000 - 0.318) (0.000 - 0.136) (0.008 - 0.107)

ρπ 0.000 0.506 0.000 0.086

( - ) (0.078 - 0.933) ( - ) (0.000 - 0.269)

σπ 0.679 0.778 0.638 0.644

(0.103 - 1.255) (0.603 - 0.952) (0.454 - 0.823) (0.491 - 0.798)

χ 1.000 0.999 0.774 0.802

( - ) (0.441 - 1.000) (0.497 - 1.000) (0.499 - 1.000)

τ 0.094 0.089 0.000 0.000

(0.015 - 0.174) (0.000 - 0.192) ( - ) ( - )

ρx 0.0 (fixed) 0.0 (fixed) 0.0 (fixed) 0.0 (fixed)

( - ) ( - ) ( - ) ( - )

σx 0.727 0.662 0.404 0.369

(0.547 - 0.907) (0.416 - 0.909) (0.118 - 0.691) (0.068 - 0.671)

φπ 1.659 1.744 1.798 1.943

(1.000 - 2.334) (1.084 - 2.404) (1.000 - 4.039) (1.000 - 4.465)

φx 0.378 0.181 0.729 0.652

(0.026 - 0.731) (0.000 - 0.452) (0.226 - 1.231) (0.087 - 1.217)

φr 0.544 0.463 0.841 0.849

(0.323 - 0.765) (0.248 - 0.678) (0.698 - 0.984) (0.707 - 0.991)

σr 0.786 0.662 0.391 0.384

(0.382 - 1.190) (0.155 - 1.169) (0.099 - 0.684) (0.080 - 0.688)

J(θ) 1.30 3.24 2.26 2.44

Note: The discount factor parameter β is calibrated to 0.99. The 95% asymptotic confidence intervals are given

in brackets.

This finding is shown in Table 3. In particular, the results show that the hybrid variant of the model

can approximate the inflation dynamics better than the other. The inclusion of the lagged term can almost

provide perfect fit to the comovements between interest rate, inflation and output; e.g. see Cov(rt, xt−k),

Cov(xt, πt−k), Cov(πt, rt−k). However, this result does not indicate that the effects of the inherited and

extrinsic persistence alone cannot explain the empirical regularities in the US economy. This point should

be clear, since the evaluation of the fit of the nested model is not so bad; the estimated values of auto- and
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cross-covariances at lag 1 lie within the 95% confidence intervals of the empirical moments. According to

the formal test we can only say that there is a significant difference between model-generated moments of

the two model and the fit of the hybrid variant to the data is superior. Note here that we do not aim to

match the auto- and cross-covariances up to higher lags; this will be discussed later.

Table 3: Empirical and model-generated moments for inflation persistence: 15 moment conditions

Label Emp. 95% CI hybrid forward Label Emp. 95% CI hybrid forward

Var(r̂t) 3.296 1.297-5.296 3.400 3.524 Cov(xt,x−1) 2.523 1.356-3.690 2.365 2.495

Cov(r̂t, r̂−1) 2.886 1.142-4.629 2.572 2.388 Cov(xt, π̂t) 0.069 -0.415-0.552 0.160 0.236

Cov(r̂t, xt) 0.232 -0.611-1.075 0.256 0.270 Cov(xt, π̂−1) -0.350 -1.239-0.539 -0.342 -0.234

Cov(r̂t, x−1) 0.991 0.235-1.746 0.946 0.782 Cov(π̂t, r̂−1) 1.288 -0.021-2.597 1.067 0.846

Cov(r̂t, π̂t) 1.535 -0.026-3.097 1.854 2.155 Cov(π̂t, x−1) 0.588 0.199-0.977 0.527 0.442

Cov(xt, π̂−1) 1.401 0.038-2.765 1.731 1.714 Var(π̂t) 1.989 0.615-3.364 1.713 1.921

Cov(xt, r̂−1) -0.450 -1.622-0.722 -0.490 -0.369 Cov(π̂t, π̂−1) 0.893 -0.216-2.001 1.033 0.789

Var(xt) 3.001 1.728-4.275 3.191 3.176

Note: 95% CI means the 95% asymptotic confidence intervals for empirical moments.

Next, we consider the same steps for the model comparison using the GM data. However, most

parameter estimates of the two models do not differ too much. For example, the estimated value for the

price indexation is close to zero in the hybrid variant of the model; i.e. α̂ = 0.105. Accordingly, the result

of the formal test shows that the two models fit the data equally well. We find that the estimated QLR

statistic is small: QLR = 0.17. The simulated 1% and 5% criteria for the hypothesis testing are 0.51 and

0.27, respectively; see the right panel of Figure 3 in appendix F. Therefore the null hypothesis cannot be

rejected.

To save space, we do not report the model-generated moments for GM. Indeed, when we compare

trajectories of the model-generated moments (i.e. hybrid and forward), the model covariance profiles

almost overlap with each other. The two models provide a good fit to auto- and cross-covarainces at the

short lag. In other words, we conclude that the two models are not significantly different at 5% level.

We discuss the evaluation of the fit of the model using alternative moment conditions later, because the

model has a bad fit to the sample autocovariances up to relatively large lags (two or three years).

4.2.2 Assessing the fit of the model to output persistence: 15 moments

Turning to the output dynamics in the IS equation, we estimate the effects of habit persistence on the

NKM. The estimated parameters for the model with or without a habit formation are presented in Table 4;

in the purely forward-looking behavior χ is set to zero, whereas this parameter is subject to the estimation

in the hybrid variant of the model. The MM estimates of the two models have almost similar values except

for the degree of the supply shock σx, monetary policy shock σr and the Taylor rule coefficient φπ.

It can be seen from the GI data that the estimated demand shock is two times higher in an optimal con-

sumption behavior without habit persistence than the other model (σ̂x = 0.45 (forward) > 0.21 (hybrid)).

This implies that the output dynamics are more or less driven by the high level of the demand shocks when
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a simple rule of thumb behavior is not allowed in the IS equation. As a result, the persistence from the

demand shocks also affects inflation dynamics while offsetting the effects of inherited persistence. This is

indicated by a relatively moderate degree of backward-looking behavior; i.e. α̂ = 0.517 (hybrid) and 0.740

(forward). Moreover, concerning the hybrid model specification, which allows a fraction of consumers to

have a rule of thumb behavior, the estimation results indicate a low value for the monetary coefficients on

inflation; i.e. φ̂π = 2.26 (forward) > 1.86 (hybrid). Put differently, central banks react weakly to shocks

due to the fact that the transmission of the shocks endogenously affects the output persistence; since

the parameter estimates are imprecise with a large confidence interval, however, we might raise doubts

about appropriateness of this implication especially when the sample size is small. The reliability of the

parameter estimates will be investigated later via a Monte Carlo study.

Table 4: Parameter estimates for output persistence with 15 moments

GI GM

hybrid forward hybrid forward

α 0.517 0.740 0.039 0.036

(0.044 - 0.990) (0.204 - 1.000) (0.000 - 0.215) (0.000 - 0.205)

κ 0.061 0.066 0.064 0.057

(0.011 - 0.112) (0.004 - 0.128) (0.000 - 0.130) (0.000 - 0.117)

ρπ 0.0 (fixed) 0.0 (fixed) 0.0 (fixed) 0.0 (fixed)

( - ) ( - ) ( - ) ( - )

σπ 0.876 0.715 0.684 0.687

(0.576 - 1.175) (0.447 - 0.983) (0.545 - 0.824) (0.547 - 0.826)

χ 0.931 0.0 (fixed) 0.585 0.0 (fixed)

(0.000 - 1.000) ( - ) (0.000 - 1.000) ( - )

τ 0.441 0.422 0.480 0.506

(0.000 - 0.943) (0.000 - 0.995) (0.000 - 1.223) (0.000 - 1.315)

ρx 0.914 0.868 0.930 0.941

(0.756 - 1.000) (0.725 - 1.000) (0.864 - 0.996) (0.878 - 1.000)

σx 0.214 0.445 0.197 0.218

(0.039 - 0.390) (0.154 - 0.736) (0.000 - 0.452) (0.011 - 0.425)

φπ 1.857 2.256 1.109 1.354

(1.000 - 2.729) (1.000 - 3.661) (1.000 - 2.395) (1.000 - 2.905)

φx 0.838 0.797 1.526 1.438

(0.227 - 1.449) (0.244 - 1.349) (0.537 - 2.515) (0.464 - 2.412)

φr 0.725 0.835 0.863 0.898

(0.482 - 0.968) (0.681 - 0.989) (0.773 - 0.953) (0.804 - 0.993)

σr 0.695 0.240 0.294 0.215

(0.207 - 1.183) (0.000 - 1.326) (0.060 - 0.528) (0.000 - 0.612)

J(θ) 0.44 1.91 0.40 0.57

Note: The discount factor parameter β is calibrated to 0.99. The 95% asymptotic confidence intervals are given

in brackets.
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Now, we compute the loss function values to apply a formal test to the two specifications in the

IS equation. In GI, these values are respectively 0.44 and 1.91 for the model with and without habit

formation. The simulated 1% and 5% criteria for the hypothesis testing are 1.89 and 1.08, respectively;

see the left panel of Figure 4 in appendix F. Since the estimated value for QLR exceeds the criterion at

5% level, we reject the null hypothesis that the two models are equivalent. This implies that the output

dynamics are better approximated by the consumption behavior in a rule of thumb manner. This finding

is shown in Table 5. For example, the hybrid variant of the model can almost provide perfect fit to the

covariance profiles of (rt, xt−k), (xt, xt−k) and (πt, πt−k).

Table 5: Empirical and model-generated moments for output persistence: 15 moment conditions

Label Emp. 95% CI hybrid forward Label Emp. 95% CI hybrid forward

Var(r̂t) 3.296 1.297 ∼ 5.296 3.305 3.196 Cov(xt,x−1) 2.523 1.356 ∼ 3.690 2.468 2.187

Cov(r̂t, r̂−1) 2.886 1.142 ∼ 4.629 2.873 3.041 Cov(xt, π̂t) 0.069 -0.415 ∼ 0.552 0.094 0.073

Cov(r̂t, xt) 0.232 -0.611 ∼ 1.075 0.164 0.342 Cov(xt, π̂−1) -0.350 -1.239 ∼ 0.539 -0.417 -0.368

Cov(r̂t, x−1) 0.991 0.235 ∼ 1.746 0.984 0.789 Cov(π̂t, r̂−1) 1.288 -0.021 ∼ 2.597 1.048 1.025

Cov(r̂t, π̂t) 1.535 -0.026 ∼ 3.097 1.657 1.525 Cov(π̂t, x−1) 0.588 0.199 ∼ 0.977 0.578 0.579

Cov(xt, π̂−1) 1.401 0.038 ∼ 2.765 1.582 1.638 Var(π̂t) 1.989 0.615 ∼ 3.364 1.907 1.810

Cov(xt, r̂−1) -0.450 -1.622 ∼ 0.722 -0.252 -0.073 Cov(π̂t, π̂−1) 0.893 -0.216 ∼ 2.001 0.934 1.109

Var(xt) 3.001 1.728 ∼ 4.275 3.067 3.331

Note: 95% CI means the 95% asymptotic confidence intervals for empirical moments.

In the period of GM, the parameter estimates for the two models are found to be similar. This implies

that the difference in the loss function values is small (i.e., QLR = 0.17). The simulated 1% and 5% criteria

for the hypothesis testing are 7.58 and 12.37, respectively; see the right panel of Figure 4 in appendix F.

We cannot reject the null hypothesis that the two models are equivalent. To save space, we do not report

the model-generated moments for the GM period; the covariance profiles of the two models more or less

overlap with each other.

4.3 Basic results on maximum likelihood estimation

For comparison purposes, we present the ML estimation of the NKM. It is due to the fact that ML can

provide relevant information about the data generating process, which will be used as a benchmark to

the MM estimation. Indeed, the MM estimation is likely to be as efficient as ML when chosen moment

conditions can encompass empirical regularities of data. Table 6 shows that ML and MM give somewhat

similar parameter estimates to the hybrid variant of the model for inflation persistence. For example, the

parameter estimates for the price indexation α are 0.45 and 0.16 for the GI and GM data, respectively.

The ML estimates also provide evidence of (moderate) intrinsic inflation persistence in the model. In

other words, the backward-looking behavior in the price-setting rule accounts for inflation persistence.

Moreover, the ML estimation gives a very small value for the slope of the Phillips curve (κ̂ = 0.0 (GI)

and 0.04 (GM)). This implies that individual firms are likely to be less responsive to changes in economic
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activity (i.e., the Phillips curve is flat). Hence, inflation dynamics in GI are primarily driven by intrinsic

(moderate) and extrinsic (strong) persistence; i.e. α̂ = 0.446, σ̂π = 0.879.

Table 6: ML estimates for inflation and output persistence

inflation persistence output persistence

GI GM GI GM

α 0.446 0.157 α 0.478 0.126

(0.241 - 0.652) (0.149 - 0.164) (0.230 - 0.726) (0.008 - 0.243)

κ 0.000 0.036 κ 0.018 0.046

( - ) (0.034 - 0.037) (0.000 - 0.099) (0.015 - 0.077)

ρπ 0.000 0.000 ρπ 0.0 (fixed) 0.0 (fixed)

( - ) ( - ) ( - ) ( - )

σπ 0.879 0.654 σπ 0.869 0.663

(0.740 - 1.019) (0.649 - 0.660) (0.737 - 1.002) (0.597 - 0.729)

χ 1.000 0.998 χ 0.281 0.254

( - ) (0.978 - 1.000) (0.245 - 0.316) (0.133 - 0.374)

τ 0.037 0.016 τ 0.081 0.027

(0.001 - 0.073) (0.014 - 0.019) (0.038 - 0.125) (0.014 - 0.040)

ρx 0.0 (fixed) 0.0 (fixed) ρx 0.808 0.763

( - ) ( - ) (0.735 - 0.880) (0.692 - 0.835)

σx 0.523 0.253 σx 0.211 0.098

(0.442 - 0.604) (0.252 - 0.255) (0.174 - 0.248) (0.093 - 0.104)

φπ 1.353 1.001 φπ 1.394 1.000

(1.000 - 2.760) (1.000 - 1.112) (1.000 - 2.661) ( - )

φx 1.180 1.275 φx 1.352 1.456

(0.295 - 2.064) (1.225 - 1.324) (0.710 - 1.995) (1.135 - 1.777)

φr 0.809 0.830 φr 0.803 0.843

(0.690 - 0.927) (0.827 - 0.833) (0.754 - 0.852) (0.828 - 0.857)

σr 0.734 0.477 σr 0.741 0.476

(0.618 - 0.850) (0.472 - 0.481) (0.622 - 0.859) (0.435 - 0.518)

L(θ) -308.86 -233.99 L(θ) -309.53 -231.84

Note: The discount factor parameter β is calibrated to 0.99. The 95% asymptotic confidence intervals are given

in brackets.

As far as the output persistence is concerned, we find a slight difference between the ML and MM

estimation. For example, the comparison of the estimation results between ML and MM shows that the

former gives a much lower value for the habit formation parameter (χ=0.28 and 0.25 for the GI and

GM data). Further interesting observation from Table 6 is that the ML estimate for the intertemporal

elasticity of substitution is found to be much lower (τ=0.08 and 0.03 for the GI and GM data). This

implies that output persistence is not best captured by the substitution effects from the Fisher equation.
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Overall, the slight difference between ML and MM can be attributed to the assumption of normality of

the shocks; if the model is correctly specified, the ML estimation may be superior to the MM estimation.

Since we do not know the true data generating process in almost all cases, however, MM is likely to be

a relevant choice for evaluating the model’s goodness-of-fit to the data; the moment matching results

in a closer fit to the sample autocovariance. The statistical efficiency and consistency of the parameter

estimation adopted in this study will be investigated via a Monte Carlo study later.

Another important point is that the high dimension of the parameter space can induce multiple local

minima in the likelihood function. If we change the starting values in optimization, we often obtain differ-

ent values for the parameter estimation; more rigorous investigation with simulation-based optimization

methods (i.e., simulated annealing, random search method) would be worthwhile. However, in the current

study, we have a strong confidence in a global minimum for the parameter estimates, because we tested our

empirical results with different starting values and found that they converge to a unique minimum. In this

respect, the structural estimation based on the analytical solution of the system is able to overcome the

parameter identification problems in a small-scale hybrid NKM. To make a more systemic investigation

on our choice of moments, the next section examines the parameter estimation of the model using a large

set of moment conditions.

4.4 Validity of extra moment conditions

In this section, we examine the sensitivity of the MM estimation to the chosen moment conditions. From

this investigation, we will find that alternative moment conditions do not induce qualitative changes in

the parameter estimation. To make our choice of moment conditions more reliable, we make a case for

the vector autoregressive (VAR) model with lag 4 as a reference model; see appendix C for optimal lag

selection criteria. Accordingly, we analyze the persistence of the macro data in the U.S. economy using

auto- and cross-covariances up to lag 4.

4.4.1 Assessing the fit of the model to inflation persistence: 42 moments

With a focus on alternative moment conditions (42 moments), we now estimate two specifications of the

NKM: forward-looking (α = 0) and hybrid case (i.e. α is a free parameter). In Table 7, we find evidence of

strong backward-looking behavior in the NKPC; α̂ = 1.0. Moreover, the MM estimates with a small and

large set of moments give qualitatively similar values except for the policy shock parameter (σr=0.0).8

For example, in the model with purely forward-looking behavior, the effects of the inherited and extrinsic

persistence play an important role in order to compensate for the absence of intrinsic persistence in the

NKPC: κ = 0.155 (forward) > 0.044 (hybrid), ρπ = 0.675 (forward) > 0.0 (hybrid).

8Indeed, ML would avoid such an estimate provided that there is a stochastic singularity with zero policy shock (i.e., the

likelihood value becomes negative infinity at this point).
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Table 7: Parameter estimates for inflation persistence with 42 moments

GI GM

hybrid forward hybrid forward

α 1.0 0.0 (fixed) 0.509 0.0 (fixed)

( - ) ( - ) (0.126 - 0.924) ( - )

κ 0.044 0.155 0.037 0.102

(0.018 - 0.069) (0.000 - 0.395) (0.000 - 0.075) (0.017 - 0.187)

ρπ 0.000 0.675 0.000 0.596

( - ) (0.387 - 0.964) (0.000 - 0.813) (0.367 - 0.825)

σπ 0.470 0.518 0.364 0.231

(0.000 - 1.686) (0.233 - 0.790) (0.048 - 0.680) (0.093 - 0.369)

χ 1.0 1.0 0.770 0.915

( - ) ( - ) (0.515 - 1.000) (0.518 - 1.000)

τ 0.092 0.063 0.020 0.027

(0.045 - 0.140) (0.008 - 0.118) (0.000 - 0.055) (0.000 - 0.074)

ρx 0.0 (fixed) 0.0 (fixed) 0.0 (fixed) 0.0 (fixed)

( - ) ( - ) ( - ) ( - )

σx 0.716 0.600 0.547 0.468

(0.462 - 0.970) (0.348 - 0.853) (0.202 - 0.820) (0.185 - 0.751)

φπ 1.740 1.809 2.025 2.218

(1.255 - 2.225) (1.221 - 2.397) (1.000 - 2.870) (1.141 - 3.114)

φx 0.080 0.157 0.563 0.564

(0.000 - 0.542) (0.000 - 0.528) (0.216 - 1.059) (0.154 - 0.974)

φr 0.267 0.458 0.765 0.732

(0.000 - 0.905) (0.224 - 0.692) (0.619 - 0.881) (0.592 - 0.872)

σr 0.000 0.000 0.486 0.545

( - ) ( - ) (0.303 - 0.727) (0.351 - 0.739)

J(θ) 11.93 42.77 23.97 27.47

Note: The discount factor parameter β is calibrated to 0.99. The 95% asymptotic confidence intervals are given

in brackets.

Next, we draw attention to the model comparison. In the GI data, we found that the price indexation

parameter is a corner solution. Accordingly we treat α as being exogenously fixed at unity, because it

is assumed in HMT that the estimated parameters are in the interior of the admissible region (see their

assumption 2.5 (b)). Put differently, since we consider the price indexation parameter as being exogenously

set to different values, it can be seen that two models are now equally accurate and identical in population.

In this respect, we treat two models as being overlapping and apply a two step sequential test for model

comparison. On the contrary, a value for the estimated price indexation parameter lies in the interior of

the parameter space for fitting the GM data (α = 0.525). In this case, the hybrid version of the model

nests the one with the purely forward-looking expectations.
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In the period of GI, the hybrid variant of NKP has a better goodness-of-fit to the data (J = 11.93) than

the purely forward-looking version of the model (J = 42.77). As it is discussed above, the estimated AR

(1) coefficient for the cost push shock has no influence on the hybrid NKPC; ρ̂π = 0.0.9 The results also

show that inherited persistence has a smaller impact on the output dynamics in the hybrid variant of the

model (κ̂ = 0.044). This implies that the persistence is best captured by the backward-looking behavior

in the hybrid variant. As a result, we find almost perfect fit to the comovements between inflation and

output from the hybrid NKM.
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VAR(4)
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forward (α=0)
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Figure 1: Covariance profiles for inflation persistence in GI (dashed: empirical, △: hybrid, *: forward)

Note: The empirical auto- and cross-covariances are computed using an unrestricted fourth-order vector au-

toregression (VAR) model. The asymptotic 95% confidence bands are constructed following Coenen (2005).

In order to examine the significant difference of the fit of the two models, we subtract the objective

function value of purely forward-looking NKM from the one of its hybrid variant; i.e. QLR = 30.83.

According to the simulated test distribution, critical values for the 99% and 95% confidence intervals

9The estimated value for the parameter σr hit the boundary. This makes the objective function ill-behaved and partial

derivatives numerically unstable. We set it to zero and compute the numerical derivatives of the other parameters for the

model comparison. See appendix D for the matrix notation.
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are 16.99 and 9.96, respectively (see the left panel of Figure 5 in appendix F). Since the test statistic

exceeds the critical value at 5% level, we proceed to take the second step of the hypothesis testing, which

asymptotically evaluates the estimated moments of two models from the profiles of empirical data.
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Figure 2: Covariance profiles for inflation persistence in GM (dashed: empirical, △: hybrid, *: forward)

Note: The empirical auto- and cross-covariances are computed using an unrestricted fourth-order vector au-

toregression (VAR) model. The asymptotic 95% confidence bands are constructed following Coenen (2005).

In the second step of the formal test, we examine the uncertainty of the estimated difference between the

two models for evaluating their fit to the data. We compute the plug-in estimate of ŵ0 (2.54). Under the

null hypothesis, the test static follows a standard normal distribution; i.e.
√
T ·QLR(θA, θB) ∼ N(0, w2

0).

The estimate of
√
T · QLR/ŵ is 1.37, which is smaller than a critical value at the 5% significance level

of the two-tailed test. Therefore the results show that both models have the same goodness-of-fit to the

profile of the empirical moments, and the null hypothesis cannot be rejected.10 Figure 1 depicts the model-

generated moment conditions at three years for GI and contrasts them with the empirical counterparts of

the VAR (4) model. Indeed, a visual inspection of this figure indicates that the two models have different

10This statistical inference does not remain the same if the price indexation parameter is allowed to exceed unity. The

constraint on habit formation parameter (χ) is also removed. See Franke et al. (2011) for details.
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moments, but their matching to the empirical counterparts is not significantly different.

In the period of GM (Table 7), it is shown that the hybrid variant of NKP fits the data better (23.97).

The estimation results provide evidence of the (strong) inherited and extrinsic persistence in the model

with purely forward-looking behavior, because these can offset the impact of inherited persistence on

the output dynamics; i.e. κ̂ = 0.102 (forward) > 0.037 (hybrid), ρ̂π = 0.596 (forward) > 0.0 (hybrid).

However, the other parameter estimates are not different in both specifications.

These empirical findings also seem to strengthen the relevance of backward-looking behavior for the

GM data. However, the difference between the two models (3.49) does not exceed the critical value for the

95% confidence intervals in the formal test; i.e., critical values for 99% and 95% confidence intervals are

38.39 and 21.46, respectively; also see the right panel of Figure 5 in appendix F. Put differently, the effects

of inherited persistence on inflation can be adequately replaced by the inherited and extrinsic persistence,

which cannot distinguish between the sources of the persistence in the NKPC. Therefore we do not proceed

to take the second step of the model comparison method and conclude that the null hypothesis cannot be

rejected. Figure 2 depicts the model-generated moment conditions at three years for the GM data; the

comparison between the model-generated and empirical moments by a VAR (4) process is displayed here.

4.4.2 Assessing the fit of the model to output persistence: 42 moments

Table 8 reports the MM estimation for the output persistence using alternative moment conditions. The

results show that the output dynamics are strongly influenced by the inherited persistence. Indeed, the

intertemporal elasticity of substitution of the two models has high estimated values with the data: e.g.

in GI, τ̂ = 0.205 (hybrid), 0.676 (forward). In addition, we find that all the estimated values for ρx

exceed 0.7. Especially regarding the GI data, this value increases substantially in the model with purely

forward-looking expectations, which can cover the absence of intrinsic persistence in the IS equation; i.e.

χ=0.0 (fixed), τ̂ = 0.676.

Another point worthwhile mentioning here is that the estimation results of the purely forward-looking

model indicate high monetary policy coefficients on interest rate, inflation and output in GI; i.e. φ̂π = 2.05,

φ̂x = 1.10, φ̂r = 0.89. Moreover, in the hybrid variant, the parameter χ is almost a corner solution for both

the GI and GM data, which strengthens a rule of thumb behavior in consumption. This implies that the

rule of thumb behavior reinforces the degree of endogenous persistence in the output dynamics. However,

as long as the model predicts that the optimal behavior of household is described by consumption without

a simple rule of thumb behavior (χ = 0), the result indicates the strong degree of the demand shocks;

the estimated value is more than twice as high as the one of the hybrid model; i.e. σ̂x=0.519 (forward) >

0.213 (hybrid) for GI, 0.340 (forward) > 0.140 (hybrid) for GM.

Turning to the model comparison by using the GI data, we treat the two models as being overlapping,

because the habit formation parameter is now a corner solution. In the first step of the model comparison,

we compare the objective function values (QLR = 21.10). The simulated 5% and 1% criteria for the

hypothesis testing are 19.63 and 34.59, respectively (see the left panel of Figure 6 in appendix F). Since

the estimated QLR exceeds the 5% criterion for the model comparison, we support the hypothesis that
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two models have different moments. In the second step, we estimate
√
T ·QLR/ŵ which is 1.02. However,

this value does not exceed the criterion in the standard normal distribution. As a result, we conclude

that there is no significant difference between two models in matching the empirical moments; i.e. the two

models have different moments, but an equivalent fit to the empirical moments. To save space, we do not

provide the model covariance profiles for the output persistence. Note here that the result of the MM

estimation with a large set of moments provides a closer fit to the sample auto- and cross-covariances up

to large lags.

Table 8: Parameter estimates for output persistence with 42 moments

GI GM

hybrid forward hybrid forward

α 1.0 0.998 0.186 0.203

( - ) ( - ) (0.000 - 0.396) (0.000 - 0.441)

κ 0.054 0.037 0.086 0.088

(0.005 - 0.102) (0.010 - 0.065) (0.037 - 0.134) (0.027 - 0.149)

ρπ 0.0 (fixed) 0.0 (fixed) 0.0 (fixed) 0.0 (fixed)

( - ) ( - ) ( - ) ( - )

σπ 0.519 0.428 0.609 0.579

(0.099 - 0.939) (0.108 - 0.747) (0.461 - 0.757) (0.410 - 0.749)

χ 1.0 0.0 (fixed) 0.991 0.0 (fixed)

( - ) ( - ) ( - ) ( - )

τ 0.205 0.676 0.237 0.236

(0.000 - 0.436) (0.000 - 1.897) (0.000 - 0.547) (0.000 - 0.803)

ρx 0.707 0.890 0.854 0.790

(0.290 - 1.000) (0.743 - 1.000) (0.686 - 1.000) (0.583 - 0.997)

σx 0.213 0.519 0.140 0.340

(0.016 - 0.410) (0.169 - 0.869) (0.000 - 0.298) (0.037 - 0.642)

φπ 1.741 2.046 2.133 2.224

(1.154 - 2.327) (1.000 - 3.134) (1.000 - 3.279) (1.000 - 3.764)

φx 0.169 1.103 0.762 0.588

(0.000 - 0.584) (0.275 - 1.931) (0.189 - 1.335) (0.000 - 1.202)

φr 0.389 0.889 0.770 0.783

(0.000 - 0.853) (0.753 - 1.026) (0.640 - 0.900) (0.648 - 0.917)

σr 0.012 0.016 0.447 0.448

( - ) ( - ) (0.248 - 0.645) (0.212 - 0.685)

J(θ) 10.54 31.64 20.79 23.85

Note: The discount factor parameter β is calibrated to 0.99. The 95% asymptotic confidence intervals are given

in brackets.

Now we draw attention to the model comparison by using the GM data. To begin, we treat the two

models as being a nested case, since the estimated value for the habit formation parameter lies in an
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interior point. The model without habit persistence is nested within the other. Next, we compute the

difference between the objective function values of the two models (QLR = 3.06). Then this value is used

to evaluate the null hypothesis of the equal fit of the two models. Since the 5% and 1% criteria for the

hypothesis testing are 18.52 and 29.05, respectively (see the right panel of Figure 7), the null hypothesis

cannot be rejected. Therefore we conclude that two models have an equal fit to the empirical moments.

In sum, the MM estimation using a large set of moment conditions can provide a stronger evidence for

the backward-looking behavior in the price-setting and consumption rules compared to ML and MM with

15 moment conditions. This result is mainly attributed to the fact that we included more sample second

moments to be matched in the objective function. However, the result of the model comparison becomes

inconclusive, because the estimated values for the price indexation and habit persistence parameters were

corner solutions; we used the two-step sequential hypothesis testing and found that the null hypothesis

cannot be rejected provided that the sample size is small. An elaborate analysis of model selection will

be discussed in the next section.
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5 Attaining efficiency from moment conditions

In this section, first, we study the finite sample properties of MM and ML; in addition, we investigate the

effect of model misspecification on the parameter estimation. Second, we discuss the empirical performance

of the formal test of HMT along the lines of the Akaike’s and the Bayesian information criterion.

5.1 Monte Carlo study

The Monte Carlo (MC) experiment attempts to clearly demonstrate the statistical efficiency of the estima-

tion methods, which are used in the previous section. In this way, we aim to investigate the role of choice

of moments and its influence on the parameter estimation. To begin, we consider the model specification

of inflation persistence as the true date generating process; we simulate the artificial economy by using

the parameters near to the results of the MM estimation with 15 moments (see Table 2): e.g. high de-

gree of backward-looking behavior (α=0.750), moderate inherited persistence (κ=0.050) and no extrinsic

persistence (ρπ=0.0). Next, we generate 1,000 data sets each consisting of 550 observations. The first

50 observations are removed as a transient period. Three sample sizes are considered: 100, 200 and 500.

We use the Matlab R2010a for this MC study. In optimization, we use the unconstrained minimization

"fminicon" with the algorithm ’interior-point’; maximum iteration and tolerance level are set to 500 and

10−6, respectively.

We conduct the MC experiments by considering two cases of model specification; i.e. correctly specified

and misspecified. In the former, we discuss the finite sample properties of the MM and ML estimation.

Turning to the latter, we consider the model with purely forward-looking expectations and examine the

degree of bias in the parameter estimates; i.e. (1) to what extent the extrinsic persistence (ρπ) is inflated

due to the misspecification and (2) to what extent the model misspecification affects the estimates for the

other structural parameters.

The main findings for the correctly specified case in Table 9 can be summarized as follows:

• For both ML and MM, the estimate of the price indexation parameter α is downward-biased, whereas

the AR (1) coefficient of inflation shocks ρπ is estimated to be positive.

• ML has slightly poorer finite sample properties than MM. This implies that conventional Gaussian

asymptotic approximation to the sample distribution is not as much precise as MM, as long as the

sample size is small.

• The asymptotic efficiency of the ML estimation appears superior to MM, since the mean of standard

errors over 1000 estimations shows that the confidence intervals for the MM estimates are noticeably

narrow. However, the large sample size remarkably improves the asymptotic efficiency of MM with

15 and 42 moments; e.g. T=500.

• It can be seen from the MC results that the overall parameter uncertainty of MM with 42 moments

is higher than ML and MM with 15 moments. However, in this case, MM with 42 moments can

provide the most precise estimate on the price indexation parameter α. Note here that the accuracy

24



of statistical inference for the behavior of economic agents (i.e. backward- or forward-looking) comes

at the cost of allowing for large uncertainty in the estimates of other structural parameters; in other

words, incorporating more second moments in the objective function improves the fit of the model

to the persistence of inflation dynamics, but reduces efficiency in the other structural parameters.

• The results using MM with 42 moments show that we obtain the large asymptotic error for the

policy shock parameter σr; i.e. S.E = 1.407 for T=100. This is attributed to the fact that the

estimated values sometimes hit the boundary (i.e. σr = 0.0), which makes the numerical derivative

of the moments unstable. This problem does not occur in the case where the large sample size is

used (e.g. T=500).

Turning to the misspecified case, the MC results show that there is a high correlation between the price

indexation and AR (1) coefficient of the supply shocks; see appendix G. Indeed, it is shown in Table G.2

that the AR (1) coefficient is strongly upward-biased for both MM and ML. The parameter estimates

offset the effects of intrinsic persistence on the inflation dynamics; e.g. ρπ = 0.616 (ML), 0.632 (MM with

15 moments), 0.598 (MM with 42 moments) when the sample size is 100. The large sample size does

not correct the bias of this parameter. Fortunately, the other structural parameters are not influenced by

the model misspecification; i.e. we obtain the parameter estimation near to the true ones by using both

MM and ML. They converge at some reasonable rate towards the true parameters as the sample size gets

larger (consistency).

Similarly, the degree of the inflation shock σπ is more or less downward-biased. In addition, the slope

coefficient of the Phillips curve is upward-biased in ML, and the results of the MM estimation show very

strong bias: κ̂ = 0.096 (ML), 0.176 (MM with 15 moments), 0.205 (MM with 42 moments) when T=100.

This implies that (strong) extrinsic and (moderate) inherited persistence offset the absence of intrinsic

persistence from the model misspecification. When we compare this result with the correctly specified

case, however, we obtain a relatively higher value for the estimated objective function: e.g. Ĵ = 2.36

(misspecifed) > 0.30 (correctly specified) for T = 100, MM with 15 moments. In other words, redirecting

the intrinsic persistence to the inherited and extrinsic persistence is not satisfactory enough to provide a

good approximation to the data. This is in line with our empirical findings in the previous section; the

lagged term in the NKPC and IS equation plays an important role.
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Table 9: The Monte Carlo results on the MM and ML estimates, ( ): root mean square error, S.E : mean of standard error

ML MM with 15 moments MM with 42 moments

θ0 T = 100 T = 200 T = 500 T = 100 T = 200 T = 500 T = 100 T = 200 T = 500

α 0.750 0.523 (0.375) 0.573 (0.322) 0.651 (0.228) 0.614 (0.256) 0.654 (0.196) 0.692 (0.121) 0.700 (0.245) 0.702 (0.205) 0.729 (0.118)

S.E : 0.162 S.E : 0.170 S.E : 0.175 S.E : 0.319 S.E : 0.222 S.E : 0.138 S.E : 0.281 S.E : 0.190 S.E : 0.113

κ 0.050 0.074 (0.076) 0.066 (0.081) 0.056 (0.014) 0.083 (0.057) 0.068 (0.030) 0.058 (0.015) 0.093 (0.075) 0.073 (0.042) 0.058 (0.018)

S.E : 0.054 S.E : 0.048 S.E : 0.041 S.E : 0.042 S.E : 0.025 S.E : 0.013 S.E : 0.050 S.E : 0.030 S.E : 0.014

ρπ 0.000 0.218 (0.330) 0.172 (0.284) 0.097 (0.198) 0.175 (0.255) 0.129 (0.194) 0.082 (0.124) 0.194 (0.299) 0.147 (0.241) 0.078 (0.144)

S.E : 0.112 S.E : 0.1000 S.E : 0.076 S.E : 0.327 S.E : 0.238 S.E : 0.152 S.E : 0.313 S.E : 0.230 S.E : 0.150

σπ 0.675 0.602 (0.330) 0.619 (0.125) 0.640 (0.073) 0.613 (0.113) 0.624 (0.085) 0.639 (0.056) 0.564 (0.1778) 0.584 (0.136) 0.618 (0.088)

S.E : 0.044 S.E : 0.047 S.E : 0.048 S.E : 0.143 S.E : 0.106 S.E : 0.068 S.E : 0.172 S.E : 0.130 S.E : 0.086

χ 1.000 0.935 (0.113) 0.949 (0.090) 0.967 (0.053) 0.932 (0.108) 0.948 (0.078) 0.962 (0.055) 0.941 (0.075) 0.956 (0.083) 0.966 (0.059)

S.E : 0.159 S.E : 0.183 S.E : 0.201 S.E : 0.173 S.E : 0.126 S.E : 0.082 S.E : 0.207 S.E : 0.151 S.E : 0.098

τ 0.090 0.089 (0.031) 0.088 (0.023) 0.087 (0.014) 0.101 (0.039) 0.095 (0.026) 0.091 (0.016) 0.105 (0.044) 0.097 (0.030) 0.092 (0.018)

S.E : 0.045 S.E : 0.047 S.E : 0.048 S.E : 0.040 S.E : 0.028 S.E : 0.017 S.E : 0.041 S.E : 0.029 S.E : 0.018

σx 0.700 0.695 (0.059) 0.697 (0.043) 0.699 (0.025) 0.743 (0.102) 0.735 (0.073) 0.724 (0.048) 0.738 (0.123) 0.729 (0.086) 0.721 (0.054)

S.E : 0.050 S.E : 0.052 S.E : 0.053 S.E : 0.086 S.E : 0.062 S.E : 0.039 S.E : 0.121 S.E : 0.089 S.E : 0.057

φπ 1.650 1.666 (0.183) 1.654 (0.118) 1.652 (0.074) 1.681 (0.194) 1.664 (0.123) 1.659 (0.076) 1.705 (0.229) 1.679 (0.145) 1.665 (0.088)

S.E : 0.345 S.E : 0.316 S.E : 0.274 S.E : 0.210 S.E : 0.147 S.E : 0.093 S.E : 0.214 S.E : 0.151 S.E : 0.098

φx 0.375 0.362 (0.124) 0.361 (0.083) 0.366 (0.052) 0.337 (0.148) 0.343 (0.100) 0.352 (0.063) 0.294 (0.191) 0.317 (0.129) 0.344 (0.082)

S.E : 0.227 S.E : 0.224 S.E : 0.228 S.E : 0.137 S.E : 0.097 S.E : 0.062 S.E : 0.156 S.E : 0.110 S.E : 0.071

φr 0.550 0.543 (0.048) 0.545 (0.034) 0.547 (0.021) 0.525 (0.063) 0.531 (0.045) 0.538 (0.027) 0.524 (0.080) 0.532 (0.056) 0.542 (0.034)

S.E : 0.068 S.E : 0.070 S.E : 0.077 S.E : 0.074 S.E : 0.052 S.E : 0.033 S.E : 0.086 S.E : 0.061 S.E : 0.039

σr 0.750 0.738 (0.056) 0.743 (0.038) 0.748 (0.024) 0.723 (0.087) 0.736 (0.057) 0.746 (0.034) 0.617 (0.269) 0.672 (0.173) 0.721 (0.053)

S.E : 0.053 S.E : 0.055 S.E : 0.056 S.E : 0.109 S.E : 0.076 S.E : 0.048 S.E : 1.407 S.E : 0.675 S.E : 0.087

L(θ) or J(θ) -385.76 -800.93 -2015.15 0.30 0.25 0.23 7.55 5.84 4.92
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5.2 Model selection and discussion

From the empirical investigation using MM with a large set of moments, we found that the statistical

power of the model comparison test is weak and the result becomes inconclusive; in this case, we treat

two models as being overlapping. Note here that we use the small sample to estimate the parameters of

the NKM in which the asymptotic test of the model comparison is likely to make a Type II error; i.e. we

accept the null hypothesis when the equal fit of moments is false.11

Table 10: Model selection using information criteria: inflation persistence

GI (T=78) GM (T=99)

ML hybrid forward ML hybrid forward

L(θ)/T -3.96 -4.41 -4.82 -2.36 -2.69 -2.69

AIC 8.20 9.02 9.90 4.95 5.61 5.58

BIC 8.53 9.43 10.20 5.24 5.90 5.84

Ranking 1 2 3 1 3 2

Note: The backward- and forward-looking behaviors are examined using the MM estimation with

auto- and cross-covariances at lag 1.

To make the formal test more elaborate, we rank the model according to the well-known information

criteria in the ML estimation. For this purpose, we suppose that the parameter estimates using MM are

to be a possible minimum point in the likelihood function. Table 10 and 11 report the mean value for the

log-likelihood and the model selection criterion: the cases of inflation and output persistence, respectively.

Here we present MM with a small set of the moment conditions (auto- and cross-covariances at lag 1),

because MM with alternative moments (auto- and cross-covariances at lag 4) yields the zero policy shock

for the GI data.

According to AIC and BIC, by definition, we prefer the ML over the MM estimation with 15 moments

for both GI and GM data. If the assumption of normality is not violated and the model is correctly

specified, we can conclude that the ML estimation is the most efficient; this statistical inference is verified

by the MC study in the previous section. Nevertheless, the AIC and BIC of the MM estimation do not

differ too much from the ML estimation. This implies that matching the auto- and cross-covariances at

lag 1 can provide more or less the same efficiency as the ML approach. Also the statistical inference for

the behavior of economic agents does not change; i.e. the hybrid variant can approximate the dynamics

in inflation and output better than the model with purely forward-looking behavior when fitting the GI

data: e.g. AIC = 9.02 (hybrid) < 9.90 (forward). On the other hand, the inconclusive result using the GM

data shows that the price-setting rule without indexation to past inflation (or purely forward-looking) is

preferred due to its parsimonious description of the data: i.e. BIC = 5.90 (hybrid) > 5.84 (forward).

11Marmer and Otsu (2012) discuss the general optimality of comparison of misspecified models and propose a feasible

approximation to the optimal test, which is more powerful than Rivers and Vuong (2002).
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Table 11: Model selection using information criteria: output persistence

GI (T=78) GM (T=99)

ML hybrid forward ML hybrid forward

L(θ)/T -3.97 -4.62 -7.88 -2.34 -3.09 -4.22

AIC 8.22 9.51 16.01 4.91 6.41 8.64

BIC 8.55 9.85 16.31 5.19 6.69 8.90

Ranking 1 2 3 1 2 3

Note: The backward- and forward-looking behaviors are examined using the MM estimation with

auto- and cross-covariances at lag 1.

In Table 11, we have found essentially similar results for the output persistence; the results of the

model comparison indicate that the backward-looking behavior in the IS equation is more appropriate for

both GI and GM data. These exercises indicate that ML and MM have basically equivalent properties in

statistical inference; they result in the same conclusion for the model comparison.12 In other words, as

long as the chosen moment conditions are efficient, we do not find any difference between the formal tests

from the ML and MM estimations. Nonetheless, the formal test of HMT will be a very convenient tool

if we are interested in a certain dimension of the data generating process and attempt to find significant

differences between two models along the lines of chosen moment conditions.

In addition, we can see from our empirical application that the moment-matching method achieves a

high accuracy in taking the models to the data, but the parameter estimation becomes more uncertain

than ML; i.e. wide confidence intervals. Indeed, this empirical observations can relate to the uncertainty

of the model selection for the lagged term in the NKPC and the IS equation. Moreover, in our empirical

application, if we include additional second moments in the objective function, this improves the perfor-

mance of the model to fit inflation and output persistence, but will make the comparison results of two

models inconclusive. The take-home message from this analysis is that we should take into account the

power of the test for certain choices of moment conditions.

To address this issue on the trade-off between the fit of the model and the power of the formal test,

we would evaluate the empirical performance of competing models in terms of their predictive power.

Alternatively, we can adopt some parts of model specifications and indicate to what extent the model

selection procedure can be influenced by the model combination. For example, the method of the model

averaging is proven to be a useful tool in a Bayesian approach. The inclusion of this concept into the

model comparison will challenge the current framework for misspecified models.

12However, remember that according to the formal test of HMT, the better fit of the hybrid variant is not significantly

superior to the other model when the GM data is used. In this sense, the model comparison of HMT is more concerned with

the accuracy of the approximation to the underlying data generating process rather than a direct comparison between the

models.
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6 Conclusion

This paper considered the structural estimation of the NKM where we conducted a formal comparison

of the model with purely forward-looking behavior and its hybrid variant. Especially, we examined the

importance of the future expected and lagged values in the inflation and output dynamics using US data;

i.e. forward- and backward-looking behavior in the NKPC and the IS equation. The models are estimated

by the classical estimation methods of MM and ML. In the former, we derived the analytical moments

of the auto- and cross-covariances from a linear system of the NKM; we estimated the the parameters by

matching the model-generated moments with their empirical counterparts. These empirical findings are

compared with the ML estimation while their sensitivity to the moment conditions is also examined.

According to the estimated loss function values obtained by MM, we evaluated two competing models

using the formal test of HMT when they are overlapping or one model is nested within another. The

empirical results show that the inclusion of a lagged term in the NKPC and the IS equation improves

the model’s empirical performance. In other words, the backward-looking behavior in the NKM plays

an important role in approximating the persistence of inflation and output. This result suggests intrinsic

persistence as the main source of the inflation and output dynamics in GI. However, in GM, we cannot

reject the null hypothesis at 5% level, because the model with purely forward-looking expectations and

its hybrid variant have an equal fit to the data. These empirical findings are verified using the MC

experiments; we investigated the statistical efficiency of the estimators and the implications for the model

selection.

We close this paper by pointing out that (analytical) moment conditions provide a relevant information

about the data generating process, which can be used to estimate structural parameters in the model; from

this, we can directly compare the competing specifications in the NKM using the formal test. Moreover,

if the model does not have readily available expressions for moment conditions due to its non-linear model

structure, they can be replaced by an approximation based on simulations. For example, the model of

De Grauwe (2010) brings together the discrete choice theory and a monetary DSGE framework in which

agents’ belief can display endogenous waves of market optimism and pessimism. However, the non-linear

variant of the DSGE model does not have a simple closed-form expression for a VAR (q) process. If this is

the case, the simulated method of moments can offer an empirical analysis of the model by approximating

the non-linearities in the moment conditions; e.g. see Jang and Sacht (2012) regarding simulation based

inference for the non-linear group dynamics. Another example would be a DSGE model with recursive

preference and stochastic volatility; i.e. see also Caldara et al. (2012) for the comparison of the solution

methods. The non-linearity from recursive preferences and stochastic volatility can be simply simulated

and estimated via the method of moments adopted in this paper. We leave it to future research to

empirically examine this kind of non-linear models.
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Appendices

A Choice of moments

A.1 Auto- and cross-covariances at lag 1 (one quarter): 15 moment conditions

This section lists the moment conditions for the method of moment estimation. The auto- and cross-

covariances at lag 1 include the following 15 moment conditions after removing double counting of the

interest gap (r̂t), the output gap (xt), and the inflation gap (π̂t).

1. m1: Var (r̂t) 9. m9: Cov (xt, xt−1)

2. m2: Cov (r̂t, r̂t−1) 10. m10: Cov (xt, π̂t)

3. m3: Cov (r̂t, xt) 11. m11: Cov (xt, π̂t−1)

4. m4: Cov (r̂t, xt−1) 12. m12: Cov (π̂t, xt−1)

5. m5: Cov (r̂t, π̂t) 13. m13: Cov (π̂t, r̂t−1)

6. m6: Cov (r̂t, π̂t−1) 14. m14: Var (π̂t)

7. m7: Cov (xt, r̂t−1) 15. m15: Cov (π̂t, π̂t−1)

8. m8: Var (xt)

A.2 Auto- and cross-covariances at lag 4 (one year): 42 moment conditions

In the same vein, there are nine profiles of the sample covariance functions. Counting all the combination

of three observable variables gives 42 moment conditions for the auto- and cross-covariances at lag 4. To

save space, we abstract its list here by using the following notation:

Cov(ut, vt−h), u & v = r̂t, xt, π̂t (A.1)

where h denotes the lag length used in the auto- and cross-covariances (h = 0, 1, 2, 3, 4).
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B Reduced form of matrix and solution of the NKM

In this section we give a description of the matrix notation in Equation (3) and the solution procedure for

the system of the NKM. The matrices of A, B, C and N with yt = (π̂t, xt, r̂t)
′ are defined as follows.

A =




0 0 β
1+αβ

0 1
1+χ τ

0 0 0


 , B =




0 κ −1

−τ −1 0

−1 (1 − φr)φx (1 − φr)φπ




C =




0 0 α
1+αβ

0 χ
1+χ 0

φr 0 0


 , N =




0 0 ρπ

0 ρx 0

0 0 0




Using Equation (4), we redefine the vector of observable variables yt as terms of one-period-ahead.

yt+1 = Ωyt + Φνt+1

= Ω(Ωyt−1 + Φνt) + Φ(Nνt + εt+1)

= Ω2yt−1 + (ΩΦ + ΦN)νt + Φεt+1 (B.2)

Substitute Equations (B.2) and (4) into the canonical form of Equation (3).

Et

[
AΩ2yt−1 + A(ΩΦ + ΦN)νt + AΦεt+1 + BΩyt−1 + BΦνt + Cyt−1 + νt

]
= 0 (B.3)

Drop the expectation and rearrange things.

(AΩ2 + BΩ + C)yt−1 + (AΩΦ + AΦN + BΦ + In)νt = 0, where n = 3 (B.4)

This implies that the following equations must hold for all yt−1 and νt.

AΩ2 + BΩ + C = 0 (B.5)

(AΩ + B)Φ + AΦN + In = 0

An iterative method can provide the solution of the matrix Ω. The matrix Φ can be obtained by using

some matrix algebra; i.e. the solution of the Lyapunov equation.
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C VAR lag order selection

In our study, a VAR (q) model describes the relationship between the empirical auto- and cross-covariances

of interest rate, inflation and output. We employ the model of a K-dimensional multiple times series

yt := (y1t, · · · , yKt)
′ following Lütkepohl (2005):

yt = ν +A1yt−1 + · · ·+Aqyt−1 + ut (C.6)

where ν is a fixed (K×1) vector of intercept, and ut is a K-dimensional innovation process with E(ut) = 0,

E(utu
′

t) = Σu. The matrices Ai include fixed (K×K) coefficients. The following lag order selection criteria

are considered in Table C.1: final prediction error (FPE), Akaike information criterion (AIC), Hannan-

Quinn information criterion (HQ), Bayesian information criterion (BIC). The chosen lag order for both

periods is one year (VAR (4)).

Table C.1: VAR lag order selection criteria

GI GM

Lag FPE AIC HQ BIC FPE AIC HQ BIC

0 14931.714 9.534 9.534 9.534 8926.601 9.036 9.036 9.036

1 194.525 5.309 5.302 5.466 205.437 5.554 5.558 5.699

2 106.200 4.822 4.805 5.137 112.227 4.843 4.851 5.136

3 24.202 3.462 3.435 3.936 26.806 3.505 3.515 3.945

4 1.136 0.522* 0.482* 1.156* 1.696 0.839* 0.851* 1.427*

5 1.058 0.569 0.515 1.365 1.759 0.970 0.983 1.708

6 0.944* 0.571 0.501 1.528 2.094 1.238 1.251 2.127

7 0.970 0.709 0.620 1.830 1.611 1.068 1.081 2.110

8 1.050 0.893 0.783 2.177 1.563* 1.129 1.139 2.324

Note: The star (*) indicates an optimal lag length.
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D Matrix notation

This section gives a matrix notation for the derivative of the moment conditions. This notation is used

to implement the procedures for the model comparison of HMT; see appendix E. Let m(θ) be a mn by 1

vector. The parameter vector θ has a dimension of nI
θ. The gradient matrix ∂m(θ)

∂θ′
has dimension mmn

×
nI
θ. The second derivative matrix ∂

∂θI′
vec

(∂mI(θI)

∂θI′

)
has dimension mmn

· nI
θ × nI

θ

∂m(θ)

∂θ′
=




∂m1

∂θ1
∂m1

∂θ2
· · · ∂m1

∂θ
nI
θ

∂m2

∂θ1
∂m2

∂θ2
· · · ∂m2

∂θ
nI
θ

...
... · · ·

...

∂mmn

∂θ1

∂mmn

∂θ2
· · · ∂mmn

∂θ
nI
θ




.

∂

∂θI′
vec

(
∂mI(θI)

∂θI′

)
=




∂m1

∂θ1∂θ1
∂m1

∂θ1∂θ2
· · · ∂m1

∂θ1∂θ
nI
θ

...
...

. . .
...

∂mmn

∂θ1∂θ1

∂mmn

∂θ1∂θ2
· · · ∂mmn

∂θ1∂θnI
θ

∂m1

∂θ2∂θ1
∂m1

∂θ2∂θ2
· · · ∂m1

∂θ2∂θ
nI
θ

...
...

. . .
...

∂mmn

∂θ2∂θ1

∂mmn

∂θ2∂θ2
· · · ∂mmn

∂θ2∂θ
nI
θ

...
...

. . .
...

...
...

. . .
...

∂m1

∂θ
nI
θ

∂θ1
∂m1

∂θ
nI
θ

∂θ2
· · · ∂m1

∂θ
nI
θ

∂θ
nI
θ

...
...

. . .
...

∂mmn

∂θ
nI
θ

∂θ1

∂mmn

∂θ
nI
θ

∂θ2
· · · ∂mmn

∂θ
nI
θ

∂θ
nI
θ




.

37



E Technical note on the model comparison method

This section recapitulates the equations for the model comparison method of HMT. Assume that model

B is nested within model A. The quantitative goodness-of-fit of models to data is evaluated using the

method of moments in section 3.1. The "full" model is tested against the "restricted" model.

Let mT be a nm vector of moments. m̂(θ) is the consistent estimator of mT . The uncertainty of

moment estimates is assessed by estimating a Newey-West type weighted sum of autocovariance matrices

(Σ̂m). Given the assumption of normality, we can consistently estimate the covariance matrix of moment

conditions.

√
T (mT − m̂(θ)) −→

d
N(0, Σ̂m) (E.7)

The estimates θ̂I are obtained at the point where a weighted objective function is minimized:

J(θI) ≡ min
θI∈Θ

∥∥W 1/2(m̂T −mI(θ̂I))
∥∥2

, I = A,B (E.8)

‖W 1/2(m̂T −mI(θ̂I))‖ is defined as

√
(m̂T −mI(θ̂))′W (m̂T −mI(θ̂)). The weight matrix W is set to the

diagonal components of 1/Σ̂m,ii (ii = 1, · · · , nm). The quasi-likelihood ratio test statistic is constructed

as the difference in fits between two models:

QLR(θ̂B , θ̂A) = JB(θ̂B)− JA(θ̂A) (E.9)

JI (I = A,B) is a minimum value of the objective function given parameter estimates from Equa-

tion (E.8). It is assumed that the chosen moment functions in the models are twice continuously differen-

tiable in neighborhoods of θI ⊂ ΘnI

θ . Further, the matrix F and M are non-singular in neighborhoods of

θ.13:

F I =
∂mI(θI)′

∂θI
W

∂mI(θI)

∂θI′
−M I (E.10)

M I = (EI ⊗ (m̂T −mI(θI))′W )
∂

∂θI′
vec

(∂mI(θI)

∂θI′

)
, I = A,B (E.11)

EI is the identity matrix of which dimension is nI
θ × nI

θ. Note here that the dimensions of the matrices

∂mI(θI)

∂θI′
and ∂

∂θI′
vec

(∂mI (θI)

∂θI′

)
are nm × nI

θ and nm · nI
θ × nI

θ. The dimension of F I and M I are nI
θ by nI

θ.

The theorem 3.1 in HMT states that the quasi-likelihood ratio test T ·QLR converges in distribution

to Equation (18). The nI
θ by nI

θ matrix V I is defined as V I = V I
1 − V I

2 − V I
3 with I = A,B:

V I
1 =

∂mI(θI)

∂θI′
(F I′

)−1 ∂m
I(θI)′

∂θI
W

∂mI(θI)

∂θI′
(F I)−1 ∂m

I(θI)′

∂θI

V I
2 =

∂mI(θI)

∂θI′
((F I′

)−1 + (F I)−1)
∂mI(θI)′

∂θI

V I
3 =

∂mI(θI)

∂θI′
(F I′

)−1(M I′

+M I)(F I)−1 ∂m
I(θI)′

∂θI

13We use the built-in procedures gradp and hessp in the GAUSS software package. The optimal step size for the gradient

vector and the Hessian matrix is carefully adjusted, because difference approximations is likely to be imprecise provided that

the first derivative is small. See Gill et al. (1981, Ch.4, pp. 127-133) for the choice of the finite-difference interval.
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However, it is sometimes observed that the estimated V̂B − V̂A is not a positive-definite matrix where

some negative values are drawn in simulations. We should not discard the negative values of the test

distribution when making statistical inference for the model comparison. The hypothesis test is assessed

by critical values at the 1% and 5% confidence level (Q99, Q95) from the simulated asymptotic test dis-

tribution. When one model is nested within another, one rejects the null hypothesis at 5% level that two

models are equivalent if T ·QLR(θ̂A, θ̂B) > Q95.

F Simulated QLR distribution for model comparison

F.1 Auto- and cross-covariances at lag 1: 15 moment conditions
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Figure 3: Test distribution for inflation persistence: GI (left) and GM (right)
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Figure 4: Test distribution for the output gap persistence: GI (left) and GM (right)

39



F.2 Auto- and cross-covariances at lag 4: 42 moment conditions
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Figure 5: Test distribution for inflation persistence: GI (left) and GM (right)
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Figure 6: Test distribution for the output gap persistence: GI (left) and GM (right)
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G The Monte Carlo result of the misspecified case

Table G.2: Monte Carlo results on the MM and ML estimates of the misspecified model, ( ): root mean square error, S.E : mean of standard errors

ML MM with 15 moments MM with 42 moments

θ0 T = 100 T = 200 T = 500 T = 100 T = 200 T = 500 T = 100 T = 200 T = 500

κ 0.050 0.096 (0.186) 0.089 (0.212) 0.077 (0.031) 0.176 (0.140) 0.168 (0.125) 0.163 (0.118) 0.205 (0.175) 0.191 (0.152) 0.182 (0.136)

ρπ 0.000 0.616 (0.621) 0.618 (0.620) 0.617 (0.618) 0.632 (0.635) 0.646 (0.647) 0.653 (0.654) 0.598 (0.604) 0.614 (0.617) 0.623 (0.624)

σπ 0.675 0.491 (0.293) 0.487 (0.330) 0.474 (0.205) 0.560 (0.151) 0.543 (0.150) 0.531 (0.654) 0.661 (0.164) 0.633 (0.127) 0.612 (0.098)

χ 1.000 0.921 (0.132) 0.938 (0.100) 0.955 (0.066) 0.981 (0.053) 0.994 (0.020) 0.999 (0.015) 0.970 (0.083) 0.986 (0.047) 0.997 (0.014)

τ 0.090 0.085 (0.032) 0.085 (0.024) 0.085 (0.015) 0.089 (0.029) 0.086 (0.021) 0.084 (0.014) 0.088 (0.035) 0.083 (0.024) 0.080 (0.017)

σx 0.700 0.688 (0.064) 0.691 (0.046) 0.694 (0.026) 0.637 (0.123) 0.636 (0.103) 0.636 (0.082) 0.654 (0.132) 0.644 (0.106) 0.639 (0.083)

φπ 1.650 1.667 (0.182) 1.657 (0.118) 1.657 (0.075) 1.691 (0.182) 1.681 (0.117) 1.679 (0.075) 1.848 (0.291) 1.783 (0.203) 1.775 (0.156)

φx 0.375 0.352 (0.127) 0.352 (0.085) 0.356 (0.054) 0.227 (0.211) 0.227 (0.203) 0.226 (0.164) 0.315 (0.282) 0.238 (0.197) 0.237 (0.166)

φr 0.550 0.540 (0.049) 0.541 (0.035) 0.356 (0.054) 0.488 (0.086) 0.487 (0.077) 0.489 (0.067) 0.527 (0.070) 0.524 (0.053) 0.525 (0.038)

σr 0.750 0.738 (0.056) 0.743 (0.039) 0.748 (0.024) 0.733 (0.101) 0.744 (0.069) 0.756 (0.043) 0.597 (0.313) 0.616 (0.244) 0.649 (0.164)

L(θ) or J(θ) -398.38 -805.68 -2026.45 2.36 3.46 6.95 24.22 29.36 49.73

Note: The misspecified model does not include the parameter α in the NKPC. To save space, we do not report the asymptotic standard errors for the parameter estimates,

because these are not qualitatively different from the correctly specified case.
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