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In the classical newsvendor model, when demand is represented by the normal distribution 

singly truncated at point zero, the standard optimality condition does not hold. Particularly, 

we show that the probability not to have stock�out during the period is always greater than the 

critical fractile which depends upon the overage and the underage costs. For this probability 

we derive the range of its values. Writing the safety stock coefficient as a quantile function of 

both the critical fractile and the coefficient of variation we obtain appropriate formulae for the 

optimal order quantity and the maximum expected profit. These formulae enable us to study 

the changes of the two target inventory measures when the coefficient of variation increases. 

For the optimal order quantity, the changes are studied for different values of the critical 

fractile. For the maximum expected profit, its changes are examined for different 

combinations of the critical fractile and the loss of goodwill. The range of values for the loss 

of goodwill ensures that maximum expected profits are positive. The sizes of the relative 

approximation error which result in by using the normal distribution to compute the optimal 

order quantity and the maximum expected profit are also investigated. This investigation is 

extended to different values of the critical fractile and the loss of goodwill. The results 

indicate that it is naïve to suggest for the coefficient of variation a maximum flat value under 

which the normal distribution approximates well the target inventory measures. 
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�& Classical newsvendor model; truncated normal distribution; optimality condition;  

                    critical fractile; loss of goodwill; relative approximation error. 
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For the classical newsvendor model, the sufficient optimality condition to determine 

the order quantity is given by the well�known standard critical fractile formula (Khouja, 

1999). This formula states that the probability not to observe stock�out during the demand 

life�cycle (otherwise called as the period) is equal to a critical fractile which depends upon 

overage and underage costs. The overage cost equals to unit purchase cost minus salvage 

value, and the underage cost is the difference between profit margin and loss of goodwill. 

Setting a�priori the probability not to have stock�out during the period, the optimal order 

quantity is computed from the inverse cumulative distribution function of demand evaluated 

at the critical fractile. 

When demand is normally distributed, the standard critical fractile formula holds only 

when the coefficient of variation is sufficiently small. In this case, the probability to take 

negative demand is negligible. Taking the inverse of the cumulative distribution function 

evaluated at the critical fractile, the optimal order quantity is equal to the average demand 

plus the safety stock coefficient times the standard deviation of demand. In this optimal order 

quantity equation, the safety stock coefficient is a quantile function of the critical fractile. So, 

the computed order quantity ensures that the requested probability of not having stock�out 

during the period is eventually attained. 

The Normal distribution has been widely used in inventory management to model 

demand. A first reason is that the theoretical properties of normal distribution enable us to 

derive exact expressions for target inventory measures such as the optimal order quantity and 

the maximum expected profit. The second reason is that we can take good approximations for 

these measures when the coefficient of variation is low. Lau (1997) offered a simple formula 

to compute the expected cost of the classical newsvendor model when demand is normal with 

a coefficient of variation less than 0.3.  
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Perakis and Roels (2008) derived order quantities that maximize the newsvendor’s 

maximum regret and they stated that a normal distribution with small coefficient of variation 

is robust and is also entropy maximizing when only mean and variance are known. To 

investigate purchase decision of newsvendor products when demand distribution is unknown, 

Benzion et al. (2008) conducted an experiment during which demand data were generated 

from a normal distribution with coefficient of variation equal to one third. The normal 

distribution with the same coefficient of variation was also used in a similar experiment 

conducted by Benzion et al. (2010) where half of the participants knew the demand 

distribution and the other half did not.  

When the demand coefficient of variation is large, using again the normal distribution, 

the probability to take negative demand on a given period is not any more negligible. In such 

case, and if data for demand are available, Gallego et al. (2007) recommend the fit of the 

empirical distribution to one of the known non�negative random variables such as the 

Gamma, or the Negative Binomial, or the Lognormal. For the three distributions, the authors 

showed that the optimal order quantity first increase and then decrease when the demand 

standard deviation increases. 

To cope with negative values for demand, Strijbosch and Moors (2006) suggested two 

alternatives. The first alternative is to interpret negative demand as purchases being sent back 

to stores. However, in markets of newsvendor products (magazines, clothing, perishable food 

etc.), this explanation could not stand as it is very unlikely customers to have the possibility to 

return back to stores purchases of such products (unless the product is faulty). The second 

alternative is to regret negative values. In such case, the demand of the period should be 

modeled by the normal distribution singly truncated at point zero.  

In the current paper, we follow the second alternative and illustrate that when demand 

follows the singly truncated normal distribution at point zero, the standard critical fractile 
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formula does not hold. Particularly, we show that the probability of not having stock�out 

during the period is always greater than the critical fractile. Writing the safety stock 

coefficient as a quantile function of both the critical fractile and the coefficient of variation, 

we derive appropriate expressions for computing the optimal order quantity and the maximum 

expected profit. These expressions allow us to study analytically the changes of these two 

target inventory measures when the coefficient of variation is raising due to demand standard 

deviation increases. Particularly, these changes are examined at different sizes of the critical 

fractile. The changes of maximum expected profits are also explored at different values of the 

loss of goodwill for which the maximum expected profit is positive.   

The use of the non�truncated normal distribution for approximating the exact values of 

the optimal order quantity and the maximum expected profit (when the demand distribution is 

modeled by the truncated normal) is also investigated analytically. As criterion of 

investigation we use the approximation error as percentage of the exact values of the two 

target inventory measures. The derived expressions of the two target inventory measures for 

the singly truncated normal allow us to evaluate this criterion no matter what values the 

average demand of the period, the selling price, the purchasing cost and the salvage value take 

on. So, for both target inventory measures, this relative approximation error is studied at 

different sizes of the critical fractile. For the maximum expected profit the relative 

approximation error is also examined for different values of the loss of goodwill. Having 

established this experimental framework, to the extent of our knowledge, this study using the 

singly truncated normal at point zero is performed for the first time. 

Our work comes closest to the paper of Hu and Munson (2011). Assuming that 

demand follows the truncated normal distribution at point zero, the authors gave an 

expression to compute the optimal order quantity, and using this expression they derived the 

function for the maximum expected profit. Keeping fixed the probability of not having stock�
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out during the period, they examined the behavior of optimal order quantities and maximum 

expected profits when the coefficient of variation was getting larger.  

However, their study was based on Monte�Carlo simulations and on specific values 

for the average demand, the selling price, the purchase cost and the salvage value. Besides, 

their simulation results were generated under the restrictive assumptions that loss of goodwill 

is zero and the sum of overage and underage costs remains the same when the probability to 

have stock�out during the period is decreasing. The last two remarks differentiate our work, 

which is based on an analytic approach without making specific assumptions about the values 

of the overage and the underage cost.  

The paper of Strijbosch and Moors (2006) also handles the case of modeling demand 

with the normal distribution with large coefficients of variation. For the (R,S) inventory 

control system, the authors used the censored and the truncated normal distribution to derive 

safety factors and order�up�to�levels. Halkos and Kevork (2011) used three alternative 

distributions to construct confidence intervals for the optimal order quantity and the 

maximum expected profit when the demand follows the singly truncated normal at point zero. 

These distributions were the non�truncated normal, the lognormal and the exponential. They 

concluded that only for very few combinations of the critical fractile and the sample size the 

confidence intervals of the non�truncated normal and the lognormal distribution attained 

acceptable confidence levels. But these intervals are characterized by low precision and 

stability. Other works which dealt with the prons and cons of using the normal distribution 

with small or large coefficients of variation can be found in Janssen et al. (2009). 

The aforementioned arguments and discussion lead the rest of the paper to be 

structured as follows when demand follows the singly truncated normal at point zero: In the 

next section, we derive the optimality condition and determine the range of values for the 

probability not to have stock�out during the period. In section 3, we study the changes of the 
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optimal order quantity when the coefficient of variation increases. In section 4, we derive the 

expression for the maximum expected profit, and determine the range of values for the loss of 

goodwill where maximum expected profit is positive. In the same section, we derive analytic 

forms for the relative approximation errors so that to examine how well the use of the non�

truncated normal approximates the exact values of the two target inventory measures. Finally, 

the last section summarizes the most important findings of the current work. In each section, 

symbols which are used in the analysis are explained when required. Nonetheless, for the 

reader’s convenience, table 1 provides the list of symbols, which are used throughout this 

paper, with their explanation. 

�

*��+ �	���	���%�

	�	�
 

In the classical newsvendor model, the demand which will occur during the period 

should be a non�negative random variable X  with cumulative distribution function ( )x� . 

Having specified at the start of the period the critical fractile R from the equation 

( ) ( )svpscpR +−+−= , when X is continuous the order quantity maximizing the expected 

profit (or the expected cost) of the period satisfies the sufficient optimality condition 

( ) RQ* =�  and thus is determined from the equation ( )RQ* ���= . To satisfy the demand of 

the period, the newsvendor has available stock at the start of the period only the optimal order 

quantity, *Q . Further, receiving this ordered quantity, he is not charged with any fixed costs.  

Ordering *Q , the critical fractile R expresses the probability the newsvendor not to 

experience a stock�out during the period. Following the rule of thumb suggested by 

Schweitzer and Cachon (2000), if 5.0R >  (or alternatively 5.0R < ), the newsvendor product 

is classified as high�profit (or low�profit respectively). This principle implies that among 

different newsvendor products that one with the largest R has been purchased at the highest 

cost, it is sold at the highest price, and it yields the largest profit margin. 
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When X follows the normal distribution with mean �  and variance 2σ , the 

application of the formula ( ) RQ* =�  approximates well the optimal order quantity only 

when the coefficient of variation ( �σ=CV )  is sufficiently small. This happens because the 

probability of taking negative demand is negligible and so, in the profit function of the 

newsvendor model (e.g. see Khouja, 1999), it is legitimate to set the lower limit of X at minus 

infinity instead of zero. The probability of negative demand equals to θΦ−1 , where θ  is the 

inverse of coefficient of variation, and θΦ  is the cumulative distribution function of the 

standard normal evaluated at θ . Hence when CV is sufficiently small, the optimal order 

quantity will be well approximated from the known formula (e.g. see Silver et al., 1998) 

σ+�= R

*

ap zQ , (1) 

and the computed *

apQ  will ensure that the probability to observe a stock�out during the period 

is almost identical to R. 

On the contrary, when CV is not sufficiently small, how well formula (1) 

approximates the optimal order quantity is under question. This can be explained by 

considering a realization of values from the normal random variable X for a sufficiently large 

number of consecutive periods. If CV is large, then a significant number of negative values 

will appear in this realization. So regretting all the negative values, the remaining “truncated 

part” of the realization will follow the singly truncated normal distribution at point zero, 

which has probability density function 

( ) [ ] ( )
( )2

2
x

2

1

211
e2x

�−
σ

−−−
θ

+ ⋅π⋅Φσ=� ,  

and will be denoted as ( )2,N~X σ�++ . 

�

�

�
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��,���)& Notation and Terminology 

���,��� �- ��
��	�
�

Q : Order quantity at the start of the period 

p : Selling price per unit 

c : Purchase cost per unit 

v : Salvage value 

s : Loss of goodwill, where ( )cps −δ=  

R : Requested critical fractile, where ( ) ( )svpscpR +−+−=  

X : Demand of the period 

( )x� : Cumulative distribution function of demand 

( )2,N~X σ�  Demand follows the non�truncated normal distribution 

CV : Coefficient of variation, where �σ=CV  

Rz : Safety stock coefficient when ( )2,N~X σ�  and sufficiently small CV 
*

apQ : Optimal order quantity when ( )2,N~X σ�  

*

apξ : Maximum expected profit when ( )2,N~X σ�  

( )2,N~X σ�++  Demand follows the normal distribution singly truncated at point zero 

θ : Inverse of coefficient of variation, where CV1=θ  

zφ : Probability density function of the standard normal evaluated at 

( ) σ�−= Qz , 

zΦ : Cumulative distribution function of the standard normal evaluated at 

( ) σ�−= Qz , 

θΦ : Probability demand of the period to be positive 

ξ : Expected profit per period when ( )2,N~X σ�++  
*Q : Optimal order quantity maximizing ξ  when ( )2,N~X σ�++  

*ξ : Maximum expected profit when ( )2,N~X σ�++  

*
Q

RAE  Relative approximation error when *

apQ  is used to approximate *Q  

*RAE
ξ

 Relative approximation error when *

apξ  is used to approximate *ξ  

 

When the demand which will occur during the period follows +X , the expected profit 

function is derived in the Appendix and is given by  

( ) ( ) ( ){ } ( ) ( )








Φ
φ

σ−
Φ
Φ−

�−+−+ω⋅σ−�−−−−=ξ
θθ

zz1
QsvpQvpQcp . (2) 

The explanations of symbols in (2) are given in Table 1. Maximizing ξ  with respect to Q , 

and using the derivatives, z

1

z dQd φσ=Φ −  and z

1

z zdQd φσ−=φ − , first and second order 

conditions are given respectively from the following expressions: 
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( ) ( ) 0
1

1svpscp
dQ

d z =








Φ
Φ−

−+−−+−=
ξ

θ

, (3a) 

( )
0

svp

dQ

d z

2

2

<
Φσ

φ+−
−=

ξ

θ

. (3b) 

From (3a) and (3b), the optimal order quantity satisfies the sufficient optimality condition 

( ) ( )( ) ( ) θΦ−− Φ−−=≤=








σ
�−

≤=≤=
θ

R11zZPr
Q

ZPrQXPr R11

*
*� . (4)  

From (4), we reach the first important conclusion. Since ( )( ) 01R1 >Φ−− θ , it follows 

that ( ) RR11 >Φ−− θ  and hence ( ) RR11 zz >
θΦ−− . So, if the probability of taking negative 

demand is not negligible, by ordering the optimal quantity, *Q , the probability not to have a 

stock�out during the period is always greater than the critical fractile R. The rate of change of 

probability ( )*QXPr ≤=�  when CV is getting larger is studied in the next proposition. 

.�� ��	�	�
�)& Given the critical fractile R, the probability ( )*QXPr ≤=�  is: 

(a)  increasing in CV  with lower limit R and upper limit ( ) 21R + , 

(b) has inflection point at 22CV = . 

.����& See in the Appendix. 

�

 

An immediate implication of proposition 1 is the following. Even if the critical fractile 

R is below 0.5, there will be a range of values of the coefficient of variation (CV) where 

probability �  will exceed 0.5. In this case, the rule of thumb using R to classify the product as 

low or high�profit should be used with cautiousness. When demand follows distributions of 

non�negative random variables, like exponential, gamma, etc., this rule of thumb works well 

since it holds ( ) RQXPr * =≤ . But when demand follows the truncated normal +X , this 

equality is not true. So, with R below 0.5, there will be for certain a range of values for CV 
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where R would classify the product as low�profit, while the probability not to have stock�out 

during the period would classify it as high�profit. 

The results of proposition 1 are verified in Figure 1. Further, table 2 displays, for 

selected combinations of R and CV, the values of probability � . Given CV, the error of 

approximating probability �  with R depends upon the value of R. Setting the approximation 

error to be less than a certain size, R approximates well probability �  when the coefficient of 

variation is below a critical value which increases as R is getting larger. Setting, for example, 

the size of the approximation error below 510− , this critical value ranges between 0.22 and 

0.26 when R is between 0.3 and 0.95. This range of R is reasonable form the practice point of 

view.  

/	�����)& Graph of ( )*QXPr ≤=�  when CV is increasing 

 

�

The data of table 2 also verify the problem which we raise for using R to classify the 

product as low or high�profit when R is below 0.5. As an example we mention the case of 

R=0.4 and CV equal or greater than 1.5. Using the rule of thumb with R, the product is 

classified as low�profit. On the contrary, using the probability not to have a stock�out during 
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the period, the product is high�profit. Observe also that when CV is more than 3, this 

probability is greater than 62%.  

�

��,���*& Values of probability ( )*QXPr ≤=�   

CV R = 0.3 R = 0.4 R = 0.8 R = 0.95 

0.1 0.30000 0.40000 0.80000 0.95000 

0.2 0.30000 0.40000 0.80000 0.95000 

0.21 0.30000 0.40000 0.80000 0.95000 

0.22 0.30000 0.40000 0.80000 0.95000 

0.23 0.30001 0.40000 0.80000 0.95000 

0.24 0.30001 0.40001 0.80000 0.95000 

0.25 0.30002 0.40002 0.80001 0.95000 

0.26 0.30004 0.40004 0.80001 0.95000 

0.27 0.30007 0.40006 0.80002 0.95001 

0.28 0.30012 0.40011 0.80004 0.95001 

0.29 0.30020 0.40017 0.80006 0.95001 

0.3 0.30030 0.40026 0.80009 0.95002 

0.4 0.30435 0.40373 0.80124 0.95031 

0.5 0.31593 0.41365 0.80455 0.95114 

1 0.41106 0.49519 0.83173 0.95793 

1.5 0.47675 0.55150 0.85050 0.96263 

2 0.51598 0.58512 0.86171 0.96543 

3 0.55861 0.62167 0.87389 0.96847 

4 0.58091 0.64078 0.88026 0.97007 
 

 

0��+ �	������
��	
�� ��	�� 

In the current section, we express the optimal order quantity, *Q , as a function of the 

coefficient of variation (CV), and then, given the critical fractile, R, we study how *Q  

changes when CV is making larger. 

Using condition (4), the optimal order quantity is determined from the equation 

( )CVz1zQ* ⋅+�=σ+�= �� . (5) 

Given the average demand of period and increasing CV, the rate of change of *Q  depends 

upon the properties of the function ( ) CVz1CV ⋅+= �� . Differentiating �  given R, and using 

result (A9) of the Appendix, we obtain 
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( )
�

�
�

�

�

�

�

z

R1z
dCV

d

d

dz
CVz

dCV

d

φ
φ

θ−+=⋅+= θ . 

The derivative 1

zddz −φ=
�

��  was obtained using formula (2) of Steinbrecher and Shaw 

(2008). 

When R exceeds 0.5, we showed in the previous section that 0zz R >>� , and hence 

dCVd�  is positive for any 0CV > . But, when R is set below 0.5, we showed through 

proposition 1 that there is a range of values of CV for which 0z <� . In this case, dCVd� is 

made up of two terms of which the first is negative and the second is positive. Then to 

determine the final sign of dCVd� , we shall investigate its rate of change when CV is 

increasing. So we proceed to the next proposition: 

.�� ��	�	�
�*& Given that R is below 0.5, dCVd�  is increasing in CV with lower limit 

0zR <  and upper limit ( ) 0z 2R1 >+ . 

.����& See in the Appendix. 

 

From proposition 2 we deduce that setting R below 0.5 and increasing CV, there is 

only one value oo CV1=θ for which the derivative dCVd�  becomes zero. This value oθ  

satisfies the equation ( )
ooo

zR1 o �� φ−=φθ− θ . 

Summarizing, we conclude that for any 1R0 << , the optimal order quantity, *Q , is a 

convex function of CV  since 0dCVd 2 >��  from (A11) in the appendix. Further, the limiting 

values of   *Q  are 

( )( ) ( ) �=⋅+�=⋅+�=
→→

0z1CVzlim1Qlim R
0CV0CV

�

� , 

and 

( )( ) ( )( ) ∞=∞⋅+�=⋅+�= +∞→∞→
2R1

CVCV

z1CVzlim1Qlim �

� . 
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Additionally, when 5.0R > , then *Q is increasing in CV for any 0CV > , while for 5.0R < ,  

*Q  has global minimum at oo CV1=θ , and increases only when oCVCV > . 

To illustrate numerically the findings of this section, we consider four hypothetical 

newsvendor products whose R has been set up at 0.3, 0.4, 0.8, and 0.95 respectively. From the 

principle of low/high�profit products of Schweitzer and Cachon (2000), a product with higher 

R has larger profit margin, which follows from higher price and higher purchasing cost. 

However, with larger R and higher price, p, the average demand of period, O, should be 

reduced such that a negative relationship between p and O to hold.  The selected values of O 

are displayed in table 3. In the same table we have also included the values of the safety stock 

coefficient, �z , and the optimal order quantity, *Q , computed from (5). For the selected 

values of O and R the graphs of ( )CVgQ* ⋅�=  are presented in Figure 3.  

From the data of table 3 and the graphs of figure 3, the remarks which have been made 

in this section are verified. Observe also that oCV , from which *Q  is starting to increase, 

becomes smaller as R is approaching 0.5. So, for R=0.3, oCV  is approximately equal to 0.69, 

while for R=0.4, oCV  is approximately equal to 0.54.  

 

1��2�-	�����- ����
�.���	� 

When Q  takes on its optimal value, using (3a) and ( ) ( )svpscpR +−+−= , the 

following relationship is obtained 

svp

vc
R1

1
1 z

+−
−

=−=
Φ
Φ−

−
θ

. (6) 

Also from (5) and the definition of the standardized value z, which is given in Table 1, we 

take 

�z
Q

z
*

=
σ

�−
= . (7) 
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��,��� 0& Exact values for the optimal order quantity when demand follows the normal 

distribution singly truncated at zero  
 
 R = 0.3 , O =300 R = 0.4 , O =200 R = 0.8 , O =100 R = 0.95 , O =50 

CV �z  *Q  �z  *Q  �z  *Q  �z  *Q  

0.2 �0.5244 268.54 �0.2533 189.87 0.8416 70.10 1.6449 39.87 

0.3 �0.5235 252.88 �0.2527 184.84 0.8419 75.15 1.6451 44.81 

0.4 �0.5119 238.57 �0.2437 180.50 0.8461 80.31 1.6479 49.77 

0.53 �0.4657 225.95 �0.2076 177.99 0.8630 87.44 1.6594 56.38 

0.54 �0.4610 225.33 �0.2039 177.98 0.8647 88.02 1.6606 56.90 

0.55 �0.4561 224.75 �0.2001 177.99 0.8665 88.60 1.6618 57.42 

0.6 �0.4304 222.53 �0.1798 178.43 0.8763 91.55 1.6685 60.03 

0.68 �0.3867 221.11 �0.1448 180.30 0.8933 96.44 1.6801 64.27 

0.69 �0.3812 221.10 �0.1404 180.63 0.8954 97.07 1.6816 64.81 

0.7 �0.3756 221.12 �0.1359 180.97 0.8976 97.70 1.6832 65.35 

0.8 �0.3214 222.86 �0.0919 185.30 0.9197 104.14 1.6984 70.76 

0.9 �0.2708 226.89 �0.0503 190.95 0.9410 110.81 1.7132 76.26 

1 �0.2248 232.55 �0.0120 197.59 0.9610 117.66 1.7272 81.82 

1.5 �0.0583 273.75 0.1294 238.83 1.0386 153.47 1.7820 110.19 

2 0.0401 324.03 0.2150 286.01 1.0880 190.56 1.8175 139.05 

3 0.1474 432.70 0.3099 385.91 1.1450 266.09 1.8588 197.29 

4 0.2042 545.05 0.3605 488.43 1.1763 342.31 1.8817 255.81 

 

 

/	�����*& Graph of  *Q  when CV is increasing 
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So replacing Q  with *Q  in (2), and using (6) and (7), the maximum expected profit is given 

by  ( )( ) ( )( ) ( ) ( ) =
Φ

φ
σ+−−σ−+σω−−−σ+�−=ξ

θ

�

���

z* svpzvczvpzcp  

( ) ( ) ( ) =
Φ

φ
σ+−−σω−+�−=

θ

�z
svpvpcp  

      ( ) ( ) ( ) ( )
θΦ

φ
σ+−−σω+�−σω+−+�+−= �z

svpssvpscp , (8) 

where θΦφ=ω z . 

Following Lapin (1994), the loss of goodwill, s, is defined as the present value of 

future profits which are expected to be lost from present unsatisfied customers who will not 

come back to the store to purchase the same product in the future. So it is legitimate to set 

( )cps −δ= , where 0≥δ . Hence, from ( ) ( )svpscpR +−+−=  we obtain  

( )( )
R

cp1
svp

−δ+
=+− , (9) 

and replacing (9) into (8), we take the final expression for the maximum expected profit 

( ) ( )




















−−

φ

φω⋅
δ−









φ

φ
−

ω⋅
+�−=ξ

θθ

R1
R

CV
1

R

CV
1cp

zz* �� . (10) 

Considering R, cp − , and O as given, the expression within the brackets in (10) 

defines the size of the maximum expected profit. To study the behavior of *ξ  when CV is 

increasing, initially we shall determine the range of parameter δ, where maximum expected 

profits are non�negative. The next proposition gives a prerequisite result to specify this range. 

.�� ��	�	�
�0& For 1R0 << , the function ( ) ( )R1CV
z −−

φ

φ
=

θ

�	  is decreasing in CV and has 

upper limit ( ) ( ) 0R12 2R1 >−−φπ + . 

.����& See in the Appendix. 

 



16 

 

Hence *ξ  is positive when δ satisfies the inequality 

( )R1

1
CV

R

z

z

o

−−
φ

φ










φ

φ
−+

ω⋅
=δ≤δ

θ

θ

�

�

. (11) 

For different values of R, figure 3 illustrates the graph of oδ  when CV is increasing. 

Given R, the range [ ]o,0 δ  is getting narrower as CV is getting larger. If we consider CV as 

given, then the range [ ]o,0 δ  becomes wider as R increases.  

�

/	�����0&�Graph of oδ  when CV is increasing 

�

 

When CV tends to infinity, then for each R, oδ  tends to a corresponding limiting 

value 

( )

( )
( )R12

21
lim

2R1

2R1

z

z

CV
o

−−πφ

πφ−
=δ=δ

+

+

∞→
∞ . (12) 

This limit is obtained since when ∞→CV  then 0→θ  and ∞→ω⋅CV , ( ) 2R1z +φ→φ
�

, and 

( ) 1

2
−

θ π→φ . So, from (11) and (12) we deduce that for any R, if δ is less than or equal to 
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the corresponding limiting value ∞δ , then the maximum expected profit will be positive for 

any ∞<CV . This is verified in Figure 4, where for different R’s and with δ to be equal to the 

corresponding ∞δ , we display  the graph of ( )[ ]�−ξ cp*  when CV is increasing. For each R, 

*ξ  decreases as CV is getting larger, and given CV, the expression within the brackets in (10) 

takes on larger values when R is increasing. 

 

/	�����1�&Graph of ( )[ ]�−ξ cp*  when CV is increasing 

 

 

We are closing this section by examining the approximation error in computing both 

the optimal order quantity and the maximum expected profit if we used the non�truncated 

normal distribution. For the optimal order quantity, the relative approximation error is defined 

as ( ) **

ap

* QQQ − , and using (1) and (5), this is given by 

( )
( )CVz1

zzCV
RAE R

Q*

⋅+
−⋅

=
�

� . (13) 

When demand is modeled by the non�truncated normal distribution, the maximum 

expected profit is computed from (e.g. see Kevork, 2010), 
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( ) ( )






 φ

δ+−�−=ξ CV
R

11cp Rz*

ap . 

So, the corresponding RAE is obtained using (10) from 

( )

( )
CV1

R

CV1
1

CV1
R

CV1

RAE
z

z

z

*

*

ap

* R

*

⋅ω⋅δ−








φ

φ
−

ω⋅⋅δ+
+

⋅ω⋅δ−








φ+








φ

φ
−ω

δ+

=
ξ

ξ−ξ
=

θ

θ

ξ
�

�

. (14) 

 

Table 4 displays the values of (13) and (14) when CV is increasing. The relative 

approximation error of both *Q  and *ξ  depends upon the critical fractile. For *ξ , its *RAE
ξ

 

depends also on the loss of goodwill. For this reason, the values of δ were restricted on the 

interval from zero up to ∞δ . This range of δ values ensures that at the corresponding R, 

maximum expected profits will be positive for any ∞<CV . Given the value of CV, both 

*
Q

RAE  and *RAE
ξ

 are decreasing as R is getting larger. Given R and CV, with zero loss of 

goodwill *RAE
ξ

 is larger than *
Q

RAE . Further, *RAE
ξ

 is making larger as the loss of 

goodwill is increasing. 

The previous arguments indicate that it seems naive to suggest for the coefficient of 

variation a maximum flat value under which the optimal order quantity and the maximum 

expected profit to be well approximated by using the non�truncated normal distribution. Table 

4, or alternatively formulae (13) and (14), offer the required information such that, according 

to the case and the desired size of the approximation error, to be able to decide in favour of 

the normal distribution singly truncated at point zero. 
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In the classical newsvendor model, the optimality condition for expected profit 

maximization (or expected cost minimization) states that the probability not to have stock�out 

during the period equals to a critical fractile whose value depends upon the overage and the 

underage cost. In the current paper we point out that this condition is true only when demand 

of the period is a continuous non�negative random variable. If demand distribution is normal 

but with coefficient of variation not sufficiently small, the probability the stochastic law of 

generating demand to give negative values is not negligible. In this case, the demand should 

be modeled by the normal distribution singly truncated at point zero.  

With demand to follow the truncated normal distribution, we prove that for any value 

of the critical fractile, the probability not to experience a stock�out during the period is always 

greater than the critical fractile. Particularly, we give for the first time, the range of values for 

this probability at any critical fractile. Furthermore, if the critical fractile is less than 0.5, we 

emphasize that the rule of thumb to classify the product as low or high�profit should be used 

with cautiousness. We show that there is a range of values for the coefficient of variation 

where the critical fractile would classify the product as low profit, while the probability of not 

observing stock�out during the period would give a high�profit product.   

Writing the safety stock coefficient as a quantile function of both the coefficient of 

variation and the critical fractile, appropriate formulae to compute exactly the optimal order 

quantity and the maximum expected profit are developed when demand follows the normal 

distribution singly truncated at point zero. These formulae allows to study the changes of the 

two target inventory measures when the coefficient of variation is increasing, no matter which 

values the selling price, the purchasing cost and the salvage value take on. So, the behavior of 

the optimal order quantity in changes of the coefficient of variation depends upon only the 

critical fractile. For the maximum expected profit, its behavior depends on the critical fractile  
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��,��� 1&�Relative approximation error in computing the optimal order quantity and the maximum expected profit using the classical normal 

distribution instead of the truncated normal 

 

 R = 0.3 R = 0.4 R = 0.8 R = 0.95 

 *Q
RAE  *RAE

ξ
 *Q

RAE  *RAE
ξ

 *Q
RAE  *RAE

ξ
 *Q

RAE  *RAE
ξ

 

CV  δ = 0 δ = 0.15 δ = 0.3  δ = 0 δ = 0.2 δ = 0.4  δ = 0 δ = 1 δ = 2  δ = 0 δ = 2 δ = 4 

0.2 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

0.25 0.00% 0.01% 0.02% 0.02% 0.00% 0.01% 0.01% 0.01% 0.00% 0.00% 0.01% 0.01% 0.00% 0.00% 0.00% 0.01% 

0.26 0.00% 0.03% 0.03% 0.03% 0.00% 0.02% 0.02% 0.03% 0.00% 0.01% 0.01% 0.01% 0.00% 0.01% 0.01% 0.01% 

0.27 0.01% 0.04% 0.05% 0.06% 0.00% 0.03% 0.04% 0.05% 0.00% 0.02% 0.02% 0.03% 0.00% 0.01% 0.02% 0.02% 

0.28 0.01% 0.08% 0.09% 0.11% 0.01% 0.06% 0.07% 0.08% 0.00% 0.03% 0.03% 0.04% 0.00% 0.02% 0.03% 0.04% 

0.29 0.02% 0.12% 0.15% 0.17% 0.01% 0.09% 0.11% 0.13% 0.00% 0.04% 0.05% 0.07% 0.00% 0.03% 0.04% 0.06% 

0.3 0.03% 0.19% 0.22% 0.27% 0.02% 0.14% 0.17% 0.20% 0.01% 0.06% 0.08% 0.11% 0.00% 0.05% 0.07% 0.09% 

0.31 0.05% 0.28% 0.34% 0.40% 0.03% 0.21% 0.25% 0.30% 0.01% 0.09% 0.12% 0.16% 0.01% 0.07% 0.10% 0.14% 

0.32 0.07% 0.40% 0.48% 0.58% 0.05% 0.29% 0.36% 0.43% 0.02% 0.13% 0.18% 0.24% 0.01% 0.10% 0.14% 0.20% 

0.33 0.10% 0.56% 0.68% 0.82% 0.07% 0.41% 0.50% 0.61% 0.02% 0.18% 0.25% 0.33% 0.01% 0.14% 0.20% 0.28% 

0.34 0.14% 0.76% 0.92% 1.12% 0.09% 0.55% 0.68% 0.83% 0.03% 0.25% 0.33% 0.45% 0.02% 0.19% 0.27% 0.38% 

0.35 0.18% 1.01% 1.23% 1.50% 0.13% 0.73% 0.90% 1.11% 0.04% 0.32% 0.44% 0.60% 0.02% 0.26% 0.36% 0.50% 

0.4 0.63% 3.18% 3.95% 4.97% 0.43% 2.28% 2.85% 3.61% 0.13% 0.98% 1.35% 1.91% 0.07% 0.76% 1.09% 1.60% 

0.5 2.98% 13.4% 17.5% 23.6% 1.97% 9.41% 12.3% 16.5% 0.57% 3.84% 5.56% 8.40% 0.30% 2.96% 4.41% 6.99% 

0.6 7.60% 31.6% 43.2% 63.1% 4.95% 21.9% 29.7% 42.6% 1.36% 8.59% 12.9% 20.8% 0.71% 6.53% 10.1% 17.3% 

0.7 14.1% 55.5% 79.1% 125.0% 9.08% 38.1% 53.6% 81.5% 2.41% 14.5% 22.5% 38.7% 1.23% 10.9% 17.5% 32.1% 

0.8 21.9% 82.5% 121.9% 207.8% 13.9% 56.3% 81.4% 131.1% 3.60% 21.0% 33.4% 60.9% 1.82% 15.7% 25.8% 50.6% 

0.9 30.2% 110.4% 168.3% 308.5% 19.1% 75.1% 111.2% 188.7% 4.84% 27.6% 44.8% 86.0% 2.42% 20.5% 34.4% 71.6% 

1 38.6% 138.1% 216.0% 423.7% 24.4% 93.6% 141.5% 251.8% 6.09% 34.1% 56.2% 113.0% 3.02% 25.1% 43.0% 94.4% 

1.5 76.6% 256.2% 435.8% 1129.9% 48.1% 172.6% 278.7% 592.8% 11.5% 61.0% 106.3% 254.9% 5.60% 44.3% 80.4% 218.0% 

2 104.5% 339.1% 603.1% 1914.4% 65.5% 228.2% 381.2% 910.1% 15.5% 79.7% 142.9% 383.5% 7.45% 57.4% 107.6% 335.8% 

3 139.7% 440.9% 820.5% 3427.0% 87.6% 296.4% 512.8% 1405.2% 20.5% 102.5% 189.4% 581.3% 9.76% 73.4% 142.1% 528.8% 

4 160.4% 499.6% 951.0% 4755.5% 100.5% 335.8% 591.1% 1753.3% 23.5% 115.6% 216.9% 719.2% 11.1% 82.5% 162.5% 672.4% 
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and the size of the loss of goodwill. To the extent of our knowledge, this study is conducted 

for the first time in the context of the experimental framework which we are establishing in 

the current paper. 

 

The behavior of the optimal order quantity in changes of the coefficient of variation is 

differentiated accordingly if the critical fractile is less or greater than 0.5. When the critical 

fractile is below 0.5, then as the coefficient of variation is getting larger, the optimal order 

quantity initially decreases, and then there is a turning point after which it is starting to 

increase. This turning point corresponds to a value of the coefficient of variation which 

becomes smaller as the critical fractile is approaching 0.5. If on the other hand the critical 

fractile is greater than 0.5, the optimal order quantity is an increasing function of the 

coefficient of variation. 

 For each critical fractile we showed that there is a range of values of the loss of 

goodwill where maximum expected profit is positive for any finite value of the coefficient of 

variation. For different values of the loss of goodwill within this range, we examined the 

changes of the maximum expected profit for different values of the critical fractile. We found 

out that no matter if the critical fractile is less or greater than 0.5, maximum expected profits 

are reducing with increasing the coefficient of variation. On the other hand, given the value of 

the coefficient of variation, maximum expected profits become larger as the critical fractile is 

increasing. 

 Finally, when the size of the coefficient of variation is not very small, we examined 

how well the use of the non�truncated normal distribution can approximate the values of the 

optimal order quantity and the maximum expected profit. As criterion of evaluation we used 

the approximation error as percentage of the exact value of either the optimal order quantity 

or the maximum expected profit. For both target inventory measures, this relative 
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approximation error depends on the coefficient of variation and the critical fractile. For the 

maximum expected profit, it depends also upon the loss of goodwill. 

 From the results which were obtained, we concluded that it is too simple to suggest a 

maximum flat value for the coefficient of variation under which the use of the non�truncated 

normal distribution can give accurate approximations for the two target inventory measures. 

The reason is that the size of the relative approximation error differs among the two target 

inventory measures. When the loss of goodwill is zero, maximum expected profit gives higher 

relative approximation errors than the optimal order quantity. When the critical fractile is 

increasing, the relative approximation error for both target inventory measures is reducing. 

And, as the loss of goodwill is rising, then the relative approximation error for the maximum 

expected profit is making larger. 

 Closing this paper, for using the non�truncated normal distribution, we recommend 

researchers or practitioners first to specify the size of the approximation error for either the 

optimal order quantity or the maximum expected profit. For the maximum expected profit, the 

knowledge of the loss of goodwill is necessary. And, unfortunately, this is not easy to know in 

real life situations. Then, using the formulae of the relative approximation errors, which we 

offer, or alternatively from the data of table 4, to determine the maximum value of the 

coefficient of variation under which the use of the non�truncated normal distribution is 

accepted. 

�
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Using formula (1) of Khouza (1999), we give the following alternative form of the 

profit function, 

( ) ( )( )
( ) ( )





>−+−

≤−−−−
=π

++

++

QX  if           XQsQcp

QX if   XQvpQcp
. (A1) 

The expected value of (A1) is  

( ) ( )( ){ } ( ) ( ) ( ){ } ( ) =−+−+−−−−=ξ ∫∫
∞

++

Q

Q

0

dxxxQsQcpdxxxQvpQcp ��  

( ) ( ) ( ) ( ) ( ) ( ) .dxxsdxxsvpdxxQsvpQscp
0

Q

0

Q

0

∫∫∫
∞

+++ −+−++−−+−= 
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��  (A2) 

The first integral in (A2) is given in Hu and Manson (2011) as 

( )
θθ−
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Φ
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1
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� . (A3) 

To find the second integral, we take the intermediate result by setting 2uv 2= , 
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Then, using (A3) and (A4) 
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The last integral in (A2) is the expected value of  +X , which is obtained from formula 

(13.134) of Johnson et al. (1994, p.156) as 
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� . (A6) 

 Replacing (A3), (A5), and (A6) into (A2), 
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and 
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Hence 
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The positive sign of (A11) is explained as follows. When 5.0≥� , then 0z ≥�  and hence 

22 dCVd � is positive. On the other hand, when 5.0<� , then 0z <�  and thus the expression 

inside the brackets of (A11) is made up of two terms with the first one to be positive and the 

second one negative. Even in this case, the net result of the sum of the two terms in brackets 

is positive, and this is explained by using the following relationships which are deduced from 

the properties of the standard normal curve: 
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(a)  As R>� , it holds that ( ) RzzzR1 <<− �� . 

(b) Since 01R2R2 2 <−+− , we take 
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R1 . Thus the expression inside the brackets of (A11) is also positive 

when 5.0<� . 

 

The proof is completed by taking the following limits using (A7) and (A8): 
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From (A10) and (A11), 
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Using (A7) and (A8), 
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To prove that 
∞→CV

lim	   is positive, we take the following limits  
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Further, 
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Hence 
( )

( ) 0R12
2R1z >−−φπ

+
, since this function is concave for any R, and its lower and 

upper limit is zero. 
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