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ABSTRACT 

We explore bifurcation phenomena in the open-economy New Keynesian model developed by Gali and Monacelli 

(2005). We find that the open economy framework brings about more complex dynamics, along with a wider variety 

of qualitative behaviors and policy responses. Introducing parameters related to the open economy structure affects 

the values of bifurcation parameters and changes the location of bifurcation boundaries. As a result, the stratification 

of the confidence region, as previously seen in closed-economy New Keynesian models, remains an important 

research and policy risk to be considered in the context of the open-economy New Keynesian functional structures. 

In fact, econometrics and optimal policy design become more complex within an open economy. Dynamical 

inferences need to be qualified by the risk of bifurcation boundaries crossing the confidence regions.  Policy design 

needs to take into consideration that a change in monetary policy can produce an unanticipated bifurcation, without 

adequate prior econometrics research.  
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1. Introduction 

Dynamical economic systems are subject to bifurcations. As Grandmont (1985) has shown, even 

simple dynamic economic systems may exhibit various types of dynamic behaviors within the 

same functional structure, with the parameter space stratified into bifurcation regions associated 

with the different dynamical solution-path behaviors. Therefore, analyzing bifurcation 

boundaries is required to understand the dynamic properties of an economic system. Barnett and 

He (1999) investigated the stability of the Bergstrom, Nowman, and Wymer (1992) continuous 

time macroeconometric model of the UK economy and found both transcritical and Hopf 

bifurcations. Barnett and He (2006) more recently detected a singularity bifurcation in the Leeper 

and Sims’ (1994) Euler equations macroeconometric model of the U.S. economy. Barnett, 

Banerjee, Duzhak, and Gopalan (2011) found that including industrial organization features into 

a Zellner’s Marshallian macroeconomic model, permitting entry and exit of firms, does not 

decrease the relevancy of bifurcation phenomena. Barnett and Duzhak (2008, 2010) analyzed 

bifurcation using a closed economy New Keynesian model, based on Walsh (2003), and found 

both Hopf and period doubling bifurcations within the parameter space.  

 Occurrence of bifurcation boundaries stratifies the parameter space.  As observed by 

Barnett and He (1999, 2002, 2006) and Barnett and Duzhak (2008, 2010), the existence of 

bifurcation bundaries in parameter space indicates the presence of different solution types 

corresponding to parameter values close to each other, but on different sides of the bifurcation 

boundary. Dynamic properties of the system can change dramatically on different sides of a 

bifurcation boundary. As a result, robustness of inferences about dynamical solution properties 

can be damaged, if parameter values are close enough to a bifurcation boundary so that the 

parameters’ confidence regions cross the boundary. 

 

2. Model 

We investigate the possibility of bifurcations in the open-economy New Keynesian model 

developed by Gali and Monacelli (2005). We thereby extend the conclusions of Barnett and 

Duzhak (2008, 2010) to the open economy case. Barnett and Duzhak (2008, 2010) analyze 

bifurcation with a closed-economy New Keynesian model and found both Hopf and period 

doubling bifurcations. 



3 

 

Gali and Monacelli (2005) define a small open economy to be “one among a continuum 

of infinitesimally small economies making up the world economy”. Thus, domestic policy does 

not affect the other countries and the world economy. In their model, each economy is assumed 

to have identical preferences, technology, and market structure, although the economies might 

encounter different, imperfectly correlated productivity shocks.  In the Gali and Monacelli 

model, both consumers and firms are assumed to behave optimally.  Consumers maximize 

expected present value of utility, while firms maximize profits.  

The utility maximization problem yields the following dynamic intertemporal IS curve, 

which is a log-linear approximation to the Euler equation:       

   1 1

1 1
t t t t t t t

x E x r E r
 


 

 
    ,       (1) 

where 
tx  is the gap between actual output and flexible-price equilibrium output, tr   

is the small open economy’s natural rate of interest, and   1
1        and 

  1 1        are composite parameters. The lowercase letters denote the logs of the 

respective variables, 1 1     denotes the time discount rate, and 
ta  is the log of labor’s 

average product.  

 The maximization problem of the representative firm yields, after some algebra, the 

aggregate supply curve, often called the New Keynesian (NK) Philips curve in log-linearized 

form: 

 1
1 1

t t t tE x
    

 

 
      

 ,       (2) 

where 
  1 1 




 
  and   1 1       . 

As stated in Gali and Monacelli (2005), while the closed economy model is nested in the 

small open economy model as a limiting case, both versions differ in two aspects.  First, some 

coefficients of the open economy model depend on the parameters that are exclusive to the open 

economy framework, such as the degree of openness, terms of trade, and substitutability among 

domestic and foreign goods. Second, the natural levels of output and interest rate depend upon 

both domestic and foreign disturbances, in addition to openness and terms of trade. 
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The model is closed by adding a simple (non-optimized) monetary policy rule, conducted 

by the monetary authority, such as: 

t t t x tr r x      ,          (3) 

where the coefficients 0x   and 0   measure the sensitivity of the nominal interest rate to 

changes in output gap and inflation rate, respectively. In this form, the policy rule (3) is called 

the Taylor rule (Taylor (1993)). Various versions of the Taylor rule are often employed to design 

monetary policy in empirical DSGE models. Equations (1) and (2), in combination with a 

monetary policy rule such as equation (3), constitute a small open economy model in the New 

Keynesian tradition.  

To determine whether a Hopf bifurcation exists in the Gali and Monacelli model, our 

methodology is that of Gandolfo (1996) and Barnett and Duzhak (2008, 2010). We first evaluate 

the Jacobian of the system at the equilibrium point, 0t tx   , for all 1,2,...t  , and then  we 

check whether the conditions of the Hopf Bifurcation Theorem are satisfied. For two 

dimensional systems, we apply the existence part of the Hopf Bifurcation Theorem given in 

Gandolfo (1996, page 492): 

 

Theorem 1: Consider the class of two-dimensional first-order difference equation systems 

produced by the map  ,y f y , 
2y , with  vector of parameters,

N . Assume for each 

 , there exists a local fixed point,  * *y y  , in the relevant interval at which the eigenvalues 

of the Jacobian matrix, evaluated at   * ,y   , are complex conjugates, 1,2 a ib   , and 

satisfy the following properties: 

(i) 
2 2

1 2 1a b      , with 1i   for 1,2i  ,     

where i
  is the modulus of the eigenvalue 

i . Also assume there exists  j = 1, 2, ..., N  such that 

(ii) 
 

*

0
i

j










 


 for i = 1,2.        

Then, there exists a Hopf bifurcation at the equilibrium point   * ** ,y   . 
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Note that condition (ii) applies for any one value of j, and not necessarily for all j, so the 

search for bifurcation can proceed with one parameter at a time, conditionally upon fixed values 

of the other parameters. But since Theorem 1 is valid only for two dimensional systems, the 

following theorem from Wen, Xu, and Han (2002) is employed for three dimensional dynamic 

systems.  

 

Theorem 2: Consider the class of three-dimensional first-order difference equation systems 

produced by a map  ,y f y , with 3y , and vector of parameters, N .  Let the 3×3 

matrix C be the Jacobian of the system, having a third order characteristic polynomial in the 

following form: 

3 2

2 1 0 0a a a      . 

Assume that for an equilibrium point   * ,y   , there exists  j = 1, 2, ..., N  such that the 

following transversality condition holds 

 
*

0
i

j










 


  

for i = 1, 2, where i
  is the modulus of the eigenvalue; and the following eigenvalue conditions 

hold 

(i) 0 1,a             

(ii) 0 2 21a a a   ,       

(iii) 
2

1 0 2 01a a a a   .  

Then, there exists a Hopf bifurcation at the equilibrium point   * ** ,y   . 

         

Regarding the general relationship between Theorem 2 and the eigenvalues, see Barnett 

and Duzhak (2010, pp. 107-108) and Wen, Xu, and Han (2002, p. 351). For Hopf bifurcation to 

arise with the class of dynamical systems relevant to the Gali and Monacelli model, Theorem 2 

requires a pair of complex conjugate eigenvalues on the unit circle and one real-valued 

eigenvalue lying outside the unit circle. 
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For the numerical analysis, we follow the methodology developed by Govaerts, 

Kuznetsov, Khoshsiar, and Meijer (2008) and use the CL MatCont software within MatLab. We 

follow Barnett and Duzhak (2008, 2010) to derive the conditions for the existence of Hopf 

bifurcation. In computations we always use CL MatCont for Hopf and all other forms of 

bifurcation that the program can detect. We provide Theorems 1 and 2 for Hopf bifurcation, and 

not the theorems relevant to other forms of bifurcation, primarily because Hopf bifurcation has 

been the most important and most commonly found in economics as well as in this research, but 

we do not constraint CL MatCont to search for bifurcation consistent with Theorems 1 and 2. 

Indeed we do find other types, in some cases, such as period doubling (flip) bifurcation. 

We consider contemporaneous, forward, and backward looking policy rules, as well as 

their hybrid combinations. We summarize analytical results and discuss numerical results for 

each case. We use the calibration values of the parameters as given in Gali and Monacelli (2005), 

which are 0.99  , 0.4  , 1   , 3  , 0.086  ; and for the N = 3  policy 

parameters, we use
 

0.125x  ,
 

1.5  , and 0.5r  .  In our applications, we use the 

subscripts  j = π, x, r , rather than 1, 2, 3, to designate the subscripts of the three parameters of the 

New Keynesian policy rules, as defined in equation (9) below. 

2.1. Current-Looking Taylor Rule 

Consider the following model, in which the first two equations describe the economy, while the 

third equation is the monetary policy rule followed by the central bank with N = 2 policy 

parameters: 

 1
1 1

t t t tE x
    

 

 
      

 ,       (4) 

   1 1

1 1
t t t t t t t

x E x r E r
 


 

 
     ,       (5) 

t t t x tr r x     .          (6) 

Rearranging the terms, the system can be written in the form 1t t tE  y Cy , 
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       

 

1

1

1 1 1
1 1 1

1

1 1

x

t t t

t t t

E x x

E

     
  

  
   





    
     

                     

.  (7) 

We assume the eigenvalues of the system (7) are complex conjugates. Using Theorem 1, 

the conditions for the existence of Hopf bifurcation in the system (7) are presented in the 

following Proposition. 

 

Proposition 1: Let   be the discriminant of the characteristic equation. Then system (7) 

undergoes a Hopf bifurcation, if and only if 0   and 

 
   

*
1

1 1 1 1
x 

     
   

 
        

.       (8) 

 

In the closed economy case, the corresponding value of the bifurcation parameter is 

 * 1
x       , as given by Barnett and Duzhak (2008). For 0  , Proposition (1) gives 

the same result as the closed economy counterpart.  

We numerically find a period doubling bifurcation at 2.43x    and a Hopf bifurcation 

at 0.52x   . Decreasing the value of   results in a higher absolute value of the bifurcation 

parameter value, except when 0  . Then changes in   do not make any difference. On the 

other hand, decreasing the value of   results in a lower absolute value of the bifurcation 

parameter, except when 1  . Then, changes in   do not make a difference.  

Numerical computations indicate that the monetary policy rule equation (6) should have 

* 0x   for a Hopf or period doubling bifurcation to occur. That negative coefficient for the 

output gap in equation (6) would indicate a procyclical monetary policy: rising interest rates 

when the output gap is negative or vice versa. Schettkat and Sun (2009) identify situations, such 

as exchange rate stabilization or an underestimation of the potential output level, which can 

produce such a result; but otherwise it is difficult to rationalize a negative policy parameter on 

the output gap.  

There is a large literature seeking to explain procyclicality in monetary policy. Demirel 

(2010), for example, shows that the existence of country spread can explain how optimal fiscal 
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and monetary policies can be procyclical. Leith, Moldovan, and Rossi (2009) argue that with 

superficial habits, the optimal simple rule might exhibit a negative response to the output gap. 

Such a perverse policy response to output gap or to inflation can induce instability in the model. 

A countercyclical monetary policy, on the other hand, would be bifurcation-free and would yield 

more robust dynamical inferences with confidence regions not crossing a bifurcation boundary. 

 

 

Figure 1: Phase diagram displaying Hopf bifurcation under the current-looking Taylor Rule. 

 

The phase diagram in Figure 1 illustrates a Hopf bifurcation under the current-looking 

Taylor Rule. There is only one periodic solution, while the other solutions diverge from the periodic 

solution as t→∞. The periodic solution is called an unstable limit cycle. 

In conclusion, by assuming 0x   and 0  , the Gali and Monacelli Model with 

current-looking Taylor rule is not subject to bifurcation within the feasible parameter space, 

although bifurcation is possible within the more general functional structure of system (7).  

2.2. Current-Looking Taylor Rule With Interest Rate Smoothing 

Consider the model consisting of equations (4) and (5), along with the following policy 

rule having N = 3 policy parameters: 
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1t t t x t r tr r x r         .         (9) 

 We can write that system of three equations in the form 
1 tt t tE   y Cy d : 

1

1

1
1

1

0

1

t
t t t

t t t

t t t
t t x t

r
E x x

E

E r r
E r r

 


 
 









      
          
           
 

C        (10) 

where 

 

1 1 1
1 1

1
0

1 1

1 1 1 1 1
1

x x x r x 

      


   

 


   

        
       

     

     
  

  
 

       
     

  
   

 
  
    

     
          

C . 

 Assuming the system (10) has a pair of complex conjugate eigenvalues and a real-valued 

eigenvalue outside the unit circle, the following proposition states the conditions for the system 

to undergo a Hopf bifurcation. 

 

Proposition 2: The system (10) undergoes a Hopf bifurcation, if and only if the following 

transversality condition holds 

 
*

0

j j

i

j  

 








  

and also 

(i) 0r   ,           (11) 

(ii) 
       
2 2 2

1 1 0
1 1 1 1

r x 

          
     

   
                   

,  (12) 

(iii)  2

4 3 2 1 0 1
r r x r x                  .      (13) 

 

Since condition (12) in Proposition (2) does not hold, Hopf bifurcation cannot occur in 

the Gali and Monacelli Model under the current-looking Taylor rule with interest rate smoothing. 
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We also analyze the system (10) for the existence of a period doubling bifurcation. 

Keeping the structural parameters and policy parameters,  and 
r , constant at their baseline 

values, while varying the policy parameter 
x  over a feasible range, we numerically find period 

doubling bifurcation at 0.83x  . Lowering   and raising   increase the value of the 

bifurcation parameter. There is no bifurcation of any type at    , 0, 1   . 

Airaudo and Zanna (2005), using a non-separability, money-in-utility-function model, 

show that cyclical and chaotic dynamics become more likely as the openness of the economy 

increases and as the exchange rate pass-through into import prices increases. Airaudo and Zanna 

also show that the existence of cyclical and chaotic dynamics depends upon open economy 

features and is robust to different timings in the policy rule.  

 

Figure 2: Period doubling bifurcation boundary at 0.827x   for model (10).  

 

Figure 2 illustrates the period-doubling bifurcation boundary for the parameter x . Note 

that along the bifurcation boundary, which is the set of bifurcation points of the same type, the 

values of the bifurcation parameter x  lie between 0 and 0.83. As the magnitude,  , of the 
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reaction of central bank to inflation increases, small values of the parameter 
x  

would be 

sufficient to induce period doubling bifurcation. 

When we consider   as the bifurcation parameter, we numerically find a period 

doubling bifurcation at 5.57   and a branching point at 1.5   . Lowering   and raising 

  increase the value of the bifurcation parameter. There is no bifurcation of any type at 

   , 0, 1   . 

 

Figure 3: Period doubling bifurcation boundary at 5.57   for model (10).  

 

Figure 3 displays the bifurcation boundary for the parameter  . Along the bifurcation 

boundary, the values of bifurcation parameter   lie between 5.5 and 6.3. This is a relatively 

small interval for bifurcation to emerge. As the magnitude, 
x , of the reaction of central bank to 

output gap increases, lower values of the parameter   would be sufficient to cause a period 

doubling bifurcation. 

2.3. Forward-Looking Taylor Rule 
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Consider the model consisting of equations (4) and (5) along with the following policy 

rule: 

1 1t t t t x t tr r E E x       .         (14) 

Rearranging terms, we have the reduced system in normal form, 
1t t tE  y Cy : 

    
  

    
  

  
 

1

1

1 1 1 1 1 1

1 1 1 1

1 1 1

1

x xt t t

t t t

E x x

E

         

       

    

   





       

     


  


 

 
            
  

. (15) 

Assuming a pair of complex conjugate eigenvalues, and using Theorem 1,  we provide 

the conditions for the existence of a Hopf bifurcation in the following proposition. 

 

Proposition 3: The system (15) undergoes a Hopf bifurcation, if and only if 0   and 

 
 

*
1

1 1
x

 
  



 

.         (16) 

 

 Figure 4 provides several phase diagrams displaying Hopf bifurcation in model (15) . 

 

Diverging trajectory at 2.8   

and 0.4x   

Limit cycle at 2.8   and 

0x   

Converging trajectory at 2.8   

and 0.4x    

 Figure 4: Phase diagrams showing Hopf bifurcation in model (15). 

  

Numerical analysis with CL MatCont indicates a period doubling bifurcation at 

1.913x   and a Hopf bifurcation at 0.01x   . Given the baseline values of the parameters, 

Hopf bifurcation occurs outside the feasible set of parameter values. Decreasing the value of   
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results in a higher value of the bifurcation parameter in absolute value, except when 0  .  

Then changes in   do not make a difference. But decreasing the value of   results in a lower 

value of the bifurcation parameter in absolute value, except when 1  .  Then changes in   do 

not make any difference.  All bifurcations disappear, when 1   and 0  .  

 

 

Figure 5: Period doubling bifurcation boundary for x  in model (15). 

 

Figure 5 displays the boundaries of period doubling bifurcation under a forward looking 

Taylor rule. Along the bifurcation boundary, the values of the bifurcation parameter, 
x , lie 

between 0 and 2.8. As the weight,  , of central bank reaction to expected inflation increases, 

smaller values of parameter 
x  would be sufficient to cause period doubling bifurcation. 
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Figure 6: Phase diagrams showing a periodic solution in model (15). 

 

Figure 6 illustrates the phase diagrams, constructed at 2.8   and 0x   for two 

different numbers of iterations. The system has a periodic solution at these parameter values. The 

origin is a stable spiral point. Any solution that starts around the origin in the phase plane will 

spiral toward the origin. Since the trajectories spiral inward, the origin is a stable sink. 

2.4. Pure Forward Looking Inflation Targeting 

Consider the model consisting of equations (4) and (5) along with the following policy 

rule: 

1t t t tr r E    .          (17) 

Rearranging the terms, we have the following reduced system in normal form 1t t tE  y Cy : 

    
    

 

1

1

1 1 1 1 1
1 1

1

1 1

t t t

t t t

E x x

E




      
  

   
   





      
               

     
       

  (18) 

 Figure 7 illustrates a solution path for 1   and 8  . The solution path is periodic and 

oscillates around the origin without converging or diverging. The origin is a stable center. 
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Figure 7:  Phase space plot for 1   and 8   in model (18). 

. 

 Assuming the presence of a pair of complex conjugate eigenvalues, Hopf bifurcation can 

occur, if the transversality conditions are satisfied. Using Theorem 1, the conditions for the 

existence of a Hopf bifurcation are presented in the following Proposition. 

 

Proposition 4: The system (18) undergoes a Hopf bifurcation, if and only if  

0  and * 1  .          (19) 

 

This result shows that setting the discount factor equal to 1 puts the system on the Hopf 

bifurcation boundary and creates instability. We also numerically find a period doubling 

bifurcation at 0.91   . But that point is outside the feasible parameter space subset. 

Furthermore, Hopf bifurcation appears at 1   regardless of the values of   and  . 
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Bifurcation analysis in an open economy framework yields the same results as in the closed 

economy case under forward-looking inflation targeting. Barnett and Duzhak (2010) report a 

Hopf bifurcation at 1   for the closed economy case. But setting the discount factor at 1 is not 

justifiable for a New Keynesian model, whether within an open or closed economy framework. 

 

Figure 8: Phase plots for various values of the parameter   in  ,x  -space in model (18). 

 

Phase plots in Figure 8 display Hopf bifurcation. There is only one periodic solution, and 

other solutions diverge from the periodic solution as t→∞.The periodic solution is an unstable 

limit cycle. 

If we vary the policy parameter  , while setting 1   and keeping the other parameters 

constant at their baseline values, we numerically find a Hopf bifurcation at 1.0176  , a period 

doubling bifurcation at 12.76  , and a branching point at 1.    

Decreasing the value of   results in a higher value of the period doubling bifurcation 

parameter   in absolute value, except when 0  . Then changes in   have no effect. On the 

other hand, decreasing the value of   results in a lower value of the bifurcation parameter   in 

absolute value, except when 1  . Then changes in   have no effect. Hopf bifurcation at 

1  appears independent of the values of   and  . 
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2.5. Backward-Looking Taylor Rule 

Consider the model consisting of equations (4), (5), and the following policy equation: 

1 1t t t x tr r x       .         (20) 

We can write the system in the standard form 
1t t tE  y Cy + dt: 

 

1

1

1 1

0

t

t t t t

t t

r

E

E r

 






  
 
 

   
 
 
  

y Cy  ,        (21) 

where 

      

 

1 1 1 1 1 1
1 1

1
0

1 1

0
x 

      
   

  
   

 

       
       

 
          

 
 
  

C . 

In order for a 3-dimensional system to exhibit a Hopf bifurcation, the system should have 

a real root and a pair of complex conjugate roots on the unit circle. The following proposition 

states the conditions for the system (21) to exhibit a Hopf bifurcation. 

 

Proposition 5: The system (21) undergoes a Hopf bifurcation, if and only if the following 

transversality condition holds, 

 
*

0
i

j










 


 for some j, 

and the following conditions also are satisfied: 

(i) 
   

0
1 1 1 1

x 
    

   
 

         
,      (22) 

(ii)      1 1 0
1 1

x 
    

 
 

        
,      (23) 
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(iii) 
   

2

1 2 3
1 1 1 1

x x x 
            

   

      
                           

. (24) 

 

We numerically detect a period doubling bifurcation at 1.91x  . Lowering   and 

raising   increase the value of the bifurcation parameter. Starting from the point 1.91x  , we 

construct the period doubling bifurcation boundary by varying 
x  and   simultaneously, as 

shown in Figure 9.
 
Note that along the bifurcation boundary, the positive values of the 

bifurcation parameter 
x  lie between 0 and 13. As the magnitude,   , of the central bank 

reaction to inflation increases, smaller values of parameter 
x  

would be sufficient to cause period 

doubling bifurcation under a backward-looking Taylor rule. 

 

Figure 9: Period doubling bifurcation boundary for x  in model (21). 

 

While varying both parameters x  and   simultaneously, our numerical analysis with 

CL MatCont detects a codimension-2 fold-flip bifurcation (LPPD) at    , 0.94, 2.01
x     and 

a flip-Hopf bifurcation (PDNS) at    , -6.98, 3.36
x    . 
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 But treating the policy parameter   as the potential source of bifurcation, while keeping 

the other parameters constant at their benchmark values, our numerical analysis with CL 

MatCont indicates a period doubling bifurcation at 11.87  .We find period doubling 

bifurcation at relatively large values of the parameter  , but still within the subset of the 

parameter space defined to be feasible by Bullard and Mitra (2002). Lowering   and raising   

increase the value of the bifurcation parameter  . 

2.6. Backward-Looking Taylor Rule with Interest Rate Smoothing 

Consider the following model, consisting of equations (4) and (5) and the following 

policy rule: 

1 1 1t t t x t r tr r x r                 (25) 

The system can be written in the form 1t t tE  y Cy + dt, 

1

1

1

0

t

t t t

t t

r

E

E r

 






   
 

   
 
 
 

y Cy ,        (26) 

where 

1 1 1 1
1

1 1
1 0

x r

      
   

  
 

  

       
    

  
       

  
 
 
  

C . 

 Based on Theorem 2, the following Proposition states the conditions for the system (26) 

to exhibit a Hopf bifurcation. 

 

Proposition 6: The system (26) undergoes a Hopf bifurcation at  *, if and only if the 

transversality condition 
 

*

0
i

j










 


 holds and the following conditions are satisfied: 
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(i) 
 1 1 1

1

1

x r 
    
   


 

 
         

 

, 

 with 
2 3

1
x r 

    
 

  
 

, 

 and 2 1r x         , 

 

(ii) 

1 1 1 1 1 1 1 1 1 1
1 1 1

x r r r x

           
         

         

           
            

     
     
     

 

with  2 1 01 0
x r         , 

and  3 4 1 0
x r        , 

 

(iii) 

2

1 1 1 1 1 1 1 1 1
1 1

1 1 1
1 .

r x x r r

x r





            
        

         

    
   

   

           
          

   
    

     
     
     

  
  
  

  

Given the benchmark values of the parameters and setting 0.5r  , a period doubling 

bifurcation is detected numerically at 3x  . When 1r  , period doubling bifurcation occurs at 

4.09x  .  

Starting from this bifurcation point, we construct the bifurcation boundary by varying x  

and  simultaneously, and then x  and r  simultaneously, as shown in Figure 10. Note that in 

 ,
x   -space, the bifurcation boundary lies between 3x   and 3.25x  . As a result, period 

doubling bifurcation occurs for a very limited set of values of the parameter x , regardless of the 

value of the parameter  . This is not the case in  ,
r x
  -space, as shown in the second part of 
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the Figure 10. The bifurcation parameter 
x  varies more elastically in response to changes in 

parameter 
r  along the period-doubling bifurcation boundary. 

 

 

 
 

 

Figure 10: Period-doubling bifurcation boundaries for 
x  in  ,

r x
  -space and  ,

x   -space 

for model (26). 

 

Our numerical analysis with CL MatCont indicates codimension-2 fold-flip bifurcations 

at    , 0.41, 3.19
x     and at    , 0.78, 0.52

x r
    , as well as flip-Hopf bifurcations at 

   , -10.44, 5.04
x     and    , -0.74, -1.23

x r
   . While treating x  as the bifurcation 

parameter, we found that lowering   or raising   increases the value of the bifurcation 

parameter. Bifurcation disappears at    , 1, 0   . 

2.7. Hybrid Taylor Rule 

Consider the model consisting of equations (4) and (5), along with the following policy 

rule: 

1t t t t x tr r E x              (27) 

The model can be written in normal form, 1t t tE  y Cy , as follows: 

1

1

t t t

t t t

E x x

E 




   
   

   
C ,          (28) 
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where  

   

 

    

 

1
1 1 1 1 1

1

1 1

1

1 1

x 


   
    

 
 

  
   

  
            

    
          

C . 

Assuming the system has a pair of complex conjugate eigenvalues, we can expect to find 

Hopf bifurcation, if certain additional conditions are satisfied. Using Theorem 1 with respect to 

the policy parameter 
x , the conditions for the existence of a Hopf bifurcation are stated in the 

following Proposition. 

 

Proposition 7: The system (28) exhibits a Hopf bifurcation, if and only if 0   and 

 
 

*
1

1 1
x

 


 



 

.          (29) 

 

Numerical analysis with CL MatCont indicates a period doubling bifurcation at 

1.92x   , as well as a Hopf bifurcation at 0.01x   , given the benchmark values of the 

system parameters.
 
Under the hybrid Taylor rule, values of the bifurcation parameters are outside 

the feasible region of the parameter space, since the New Keynesian economic theory normally 

assumes positive values for policy parameters. Therefore, we conclude that the feasible set of 

parameter values for 
x  does not include a bifurcation boundary. 
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Figure 11:  Period doubling bifurcation boundary for 
x  in model (7). 

 

Figure 11 illustrates the values of parameters 
x  and   along the bifurcation boundary. 

Notice that in  ,
x  -space, the bifurcation parameter 

x  varies in the same direction as   

along the period-doubling bifurcation boundary. As the policy maker’s choice for   increases, 

higher values of 
x  are required to cause a period doubling bifurcation.  

Decreasing the value of   results in a higher absolute value of the period doubling 

bifurcation parameter, except when 0  . Then changes in   have no effect. On the other 

hand, decreasing the value of   results in a lower absolute value of the bifurcation parameter, 

except when 1  . Then changes in   have no effect.  

Figure 12 illustrates solution paths from model (28) with stability properties indicating 

Hopf bifurcation. The inner spiral trajectory is converging to the equilibrium point, while the 

outer spiral is diverging. The limit cycle is unstable  

 



24 

 

 

Figure 12: Phase diagram indicating a Hopf bifurcation under the hybrid Taylor rule. 

3. Conclusion 

We ran bifurcation analyses on the open-economy New Keynesian model developed by Gali and 

Monacelli (2005). We have shown that in a broad class of open-economy New Keynesian 

models, the degree of openness has a significant role in equilibrium determinacy and emergence 

of bifurcations. We acquired that result with various forms and timings of monetary policy rules. 

The open economy framework brings about more complex dynamics along with a wider variety 

of qualitative behaviors and policy responses. We established the conditions for Hopf bifurcation 

with each model, based on the Hopf Bifurcation Theorem. Numerical analyses are performed 

using our theoretical results and also to search for other types of bifurcation. Limit cycles and 

periodic behaviors are found, but in some cases only for unrealistic parameter values. Our 

numerical analyses with CL MatCont also identify the existence of the period doubling 

bifurcations. In each case, we then numerically constructed corresponding bifurcation boundary 

diagrams. 

The most important findings of this study regard the effects of the openness of economy 

on the values of bifurcation parameters. Under the monetary policy rules, the degree of openness 
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in New Keynesian models changes the value of bifurcation parameters. But the bifurcation 

stratification of the confidence regions remains a serious issue. Inferences from New Keynesian 

models and policy designs using those models should be qualified by the risk that the simulations 

and inferences could have been produced with parameter settings on the wrong side of a nearby 

bifurcation boundary. Stratification of the confidence regions, as found in the closed-economy 

New Keynesian models examined by Barnett and Duzhak (2008, 2010), remains equally as 

problematic to open economy New Keynesian functional structures.  

Comparing the results from Barnett and Duzhak’s (2010) closed economy analysis with 

our open economy cases does not provide clear conclusions about whether openness makes the 

New Keynesian model more sensitive to bifurcations. One reason is the Gali and Monacelli 

model’s broader set of parameters, including deep parameters relevant to the open economy. The 

fact that the studies use different sets of benchmark values for the parameters makes direct 

comparison harder. While the bifurcation phenomena exist in both open and closed economy 

New Keynesian models, we do not find evidence that open economies are more vulnerable to the 

problem than closed economies. 

Our analysis is restricted to special cases within the framework of open-economy New 

Keynesian structures, closely following Gali and Monacelli (2005). Therefore, generalizing our 

results to real economies would require more results with other open-economy New Keynesian 

models. While a large change in policy parameters can produce unanticipated bifurcation, our 

research is not about endogenous bifurcations. Our model's parameters, including the policy rule 

parameters, are fixed and do not move on their own. 
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