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ABSTRACT
Consider the model Y =x f+g(t)+V, 1<i<n. Here

1

x; = {(Xy,...,%,) and {, are known and nonrandom design points,
ﬁz(ﬁl,.a.aﬁp)i is an unknown parameter, g(-) is an unknown
function over R', and V, is a class of linear processes. Based on
g() estimated by nonparametric kernel estimation or

approximated by a finite series expansion, the asymptotic

normalities and the strong consistencies of the LS estimator of
§ and an estimator of o," = EV,” are investigated.

1088
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L INTRODUCTION
Consider the model given by
Yo=x B+glt)+V, i=12,.., (1.1

i

1
where  x;, =(x,,...,x,) and €T CR are known and non-

i
random design points, S=(f,..B,) is an unknown parame-

ter, g(-) is an unknown function over R', and V. is a class of

linear processes defined by Assumption 1 below,

The model defined wn (1.1) belongs to a class of partly linear
regression models, which was first discussed by Ansley &
Wecker(1983) using a state space approach. Other related work
is that of Heckman(1986), Rice(1986), Chen{1988), Speckman
(1988), Robinson{i988), Andrews{1991)}, FEubank, et al(1993),

and Gao, et al{19%43), which discussed asympiotic properties of
some estimates under the case where V, are ii.d. random

errors  and (x,,7,) are iid. random design points, More

recently, Gao and Zhao(1993) investigated the asymptotic
normality of the LS estimator of [ for the case where the
(x,,t,) are fixed, V. are i.i.d. random disturbances with £V, =0

and EVI,.Q::GOQ<<>@, and g(-) is estimated by a class of kernel

estimates.
In this paper, we investigate the asymptotic normalities
and the rates of strong convergence of the LS estimator of J3

and an estimator of o, =EV’ for the case where g(-) is

estimated by a class of nonparametric kernel estimates or
i

e 5 1 E] an

approximated by a finite series expansion };ff(ﬂ)}g, where
i=1

{f()i=12,...,} is a prespecified family of functions from
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TcR w R and y=(y,..Y,) is an usknown parameter

veclor.
2. MAIN RESULTS
Consider the model (1.1). For constructing some estimates
and stating the main results of this paper, we introduce the

following assumptions.

Assumption 1. Suppose [V} is the linear process

V.=C(Le,= Y ce,, C(L)= 9 ¢, I/ 2.1
j=0 =0

i 2
with  0<lC(Dl<es and C(L)= Y ¢ <o, and one of the
=0

following assumptions 1s satisfied
(i) ¢ are Li.d. with zero mean and ©,° = Fe,” < oo,
(it) e, are i.id. with zero mean and fourth cumulant f[,;

ii1) e, are i.i.d. with zero mean and F£lel"<e for some

i U

28 p<oo,
Assumption 2. (i) {&,} is full column rank k, for »n large;

(it) max, p, — 0 and maxigz»’jgﬂipgi(iﬂgm)z =0 as n-»eo,

where {p,} denotes the ith row and jth rank elementi of the

i 3 §
nxn projection matrix F (F, F }%Fﬂk, and  where

Fo=(F 0.  Fn., FO=(0),. (), and (O denotes
the Moore-Penrose inverse.
Assumption 3. For k=k <n-p, k -—>e as n->c and

{f;(hi=12,...} given above, there exists an unknown

parameter vector ¥ =(%,,...,7,) such that
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k
sup,.,1 Y f{(1)y, — g(Dl=o(n™"*), (2.2)

i=i
Assumption 4. There exist some bounded functions hj(-) over

R' such that

x; =h(5)+u, 1sisn, 1< p, (2.3)
where i.:(1,,«11.,,.,.,Le:i[,})‘f are real sequences satisfying |
. I
lim -—2, wu, =B (2.4)
iz
and
1 mn
limsup, ,,—=——max,, > u ll<oee (2.5)
Pr Vnlogn ; &

for any permutation (ji”""jn) of the integers (1,2,...,n),

where B is a positive definite matrix with the order pX p and

1l denotes the Euclidean norm.
Moreover

max, . s C < oo, (2.6)
Assumption 5. For k=k <n—-p, k -3 as n-—>e and {f{),

i=12,...} given above, there exist unknown parameter vectors

v, :(*}fij,ﬂ.‘,ykj)‘ such that for 1S7<p

i)
k
sup,..1 p fi(Dy,; —hOl=o(n™"). 2.7
i=!
Assumption 6. g() and h,() satisfy Lipschitz condition of order

1 on T (a compact subset of R').
Assumption 7. The probability weight functions W (-} satisfy

(i) max, ., > W, ()=0(1),

=

(i) max,, ., W,(t)=0(b,),
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(i) max,.., W, ()1t —gi>¢,) = 0(d,),
f=1

—-1/2 . - . . 4
where b =o(n 2llogm)™), ¢, satisfy limsup, | nc " logn <o

n

. . 4
and d_satisfy limsup, _nd "logn <o,

Remark 1. Assumptions Z(11)(i11) restrict the growth rate
of %, For example, they hold for the polynomial, tri-
gonometric, and Fourier flexible form (FFF) functions. (See
Gallant{(1981})).

Remark 2. Assumptions 3 and 5 are some smoothness

L]

conditions. In almost all cases, the assumptions 3 and 5 hold if
g{-) and hj(-) are sufficiently smooth (See Schumaker(1981)).
More generally, they hold whenever T is compact

Remark 3. (i) The above u; behave like zero mean,
uncorrelated random wvariables, and hj(fj) are the regression
of x, on f. Specifically, suppose that the design points (x.,1)
are i.i.d. random variables, and let A ()= E(xir) and

W, =x, —h(1,) with Ewy, >0. Then (2.4) holds with probability

1 by applying the law of strong numbers and (2.5) holds with
probability 1 by using the same reason as in the proof of
Lemma 4 below.

(i) As a matter of fact, it is easy to show that {h()} is
determined uniquely under the Assumptions 4, 6 and 7. This 1is
necessary for the explanation of the unigueness of B in (2.4).
(1i1) The above Assumption 4{(2.6) is an additional assumption

for constructing the law of the iterated logarithm of some
estimators, which should be replaced by Ellull®<oe for the

case where {u} is i.i.d. random error.
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Remark 4. As a matter of fact, there exist some weights
satisfying Assumption 7. For weights
W00 = [k
H H

n S['—-I L4

Yds

and
r—1. 1 t—1t.
W PN =K(—L)/ YK /
L2 <H>;<H

),

where 5, =27'(1,+¢t,), 1<isn-1,0<, <€t <1, 5,=0, 5, =1,
K(-}) is a kerne! function, A is a positive number sequence,
where H, =#h or r, h, 1is bandwidth parameter and

[ 4]

r, =r,(6t,....1,) is the distance from ¢ to the k -th nearest
neighbor among the 1 s, and where k, is an integer sequence.

The details of justification follow by the similar reason as in
Gaon(1992).
Now we begin to define some estimators.
Assume that {x,1,,Y;1<i<n} satisfies the model
Yo=x,f+g(t)+V, i=12,..n (2.8)
If f is known to be the true parameter, then by EV, =0

we  have

gt)=EY, -x,0), i=12,...,n (2.9)

Hence, the natural estimator of g(') is
8,(0=g,(t.p) =2 W, (Y, - xp). (2.10)
i=1
where W _(5)=W _(#1,....,t;) are defined as in Assumption 7

below.
Now, based on the model Y, =x f+2(t)+V, the LS

~

sctimatar 3 of A can he defined bv
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Z(Yi “““3‘5;;@” - §’n(fp£n)}z = min! (2.11)
=1

By (2.11) we obtain

A

B,=(XXy'XY, (2.12)

and Y=(¥,,...,1,).
Next, by using Assumption 3 we define the LS estimators
En and g ()= F. () é; of § and g(*) by

Z(Yi “‘x;i-i “Fk(fij g,,}}z = minl (2.13)
i=]

By (2.13) we get
B =(XX)'XY, (2.14)
where X=(-P)X,Y=(U~-P)Y, and P=F(FF)'F .
On the other hand, by Lemma 2 below we have
lim,_ n'XX=R (2.15)

and
lim_,_ n"'XX=8 (2.16)

So we can assume that {X X)) and (X X)7' exist as n large
enough.
Now, we give the main results of this paper.

Theorem 1. (i) Assume that Assumptions 4, 6, 7, and 1(i) with

[2=]

Z jzsz < oo hold. Then as 71— oo

ji:}

V(B By —, N©O,c*B™, (2.17)
where o° = ﬁezC{i)z,

(Y Asenme that Ascumniions 4. 6. 7. and 1(ii1) with ? jle <o
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hold. Then
. ) ~ .
limsup, ,_(———)"1B, = B1=(co’p")? as, (218
2loglogn

— where énj and [, dencte the jth components of Bn and f3
S .
?3 respectively, and {b”} denotes the jth diagonal element of the
e pXp matrix B,
O
Q
A Theorem 2. (i) Assume that Assumptions 4, 6, 7, and 1(il) with
g > je < hold. Then as n = oo
S =
N oA
5 V(5 - 0,0 =, N0V, (2.19)
>
= where
= i o
a3 . - = 2 T
2 @22731 ( f‘“"n.ﬁr)zs ﬁozzgez% ; !/02;#4C02+2 ‘Z%Z» an
§ _ i=1 j=—oo
SRIEDNLH
= i=0
N oS
= . . . N N
§ (11) Assume that Assumptions 4, 6, 7, and 1(1) with 2 jiC‘j!<°ﬂ
>
Hal
@ hold, Then as n— =
2 lim, .. &°=0, as. (2.20)
=
2
S Theorem 3. (i) Assume that Assumptions 2 through 5 and (i)

with D j’c;’ <o hold. Then as n— oo
j=1

Vn(B, — By, N(0,c°B"). (2.21)
(i1) Assume that Assumptions 2 through 5 and 1(iii) with

Z jle;i< oo hold. Then

J=1

limsupﬁ_m(_ﬁ———)”zi[zj - 1= (o*b"? as., (222
7 2loglogn !

whaea R 1 Aanntec the ith camnonent of 3
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Theorem 4. (i) Assume that Assumptions 2 through 5 and 1(i1)

with . je <o hold. Then as n = oo
j=i
Vn(G - o,2) =, NO, VD, (2.23)
where G, =n"Y (I-Pg)Y and P, =X(X X)X .

(ii) Assume that Assumptions 2 through 5 and 1(i) with

Z JleI<ee hold. Then as n—> oo

j=i
. — 2 , e
lim_, . 0,"=0, as (2.24)

Remark 5. The above theorems only give the asymptotics
for the estimators of f§ and o,°. In fact, some results about the
estimators of g{(-) can be obtained easily.

Based on (2.10) and (2.12), we can define the estimator of
g() by

i N
g, (=2 W (Y, ~xp,). (2.25)
i=]

Also, based on (2.13) the estimator of g{(-) can be defined

by
2,M)=F ()8, (2.26)
Now, by Theorems ! and 3 we can obtain the strong and
weak convergence rates of g~ and Z,. Here we omit the details

for they are trivial,
Remark 6. Under the case where (x,/) are iLid. random

variables, the above Assumption 4 should be replaced by
Assumption 40, EllxiF <o, max, ., sup, E(xlr)’ <oo, and B=

Cov(x, — E{(x,1f;}} 1s positive definite,

Now, we give the corresponding results for the case

bnwn fv #Y ava i34 randam variahleg
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Theorem 19, (i) Assume that Assumptions 4, 6, and 7 with
probability 1 and 1() with 3 j’c/ <eo hold. Let (x,7) and V,
j=1

be independent. Then (2.17) holds.

(ii) Assume that Assumptions 4, 6, and 7 with probability 1 and
1(i1i) with Z jle;l<ee hold. Let (x,,7) and V; be independent

Jj=1

Then (2.18) holds.

Also, the modifications of Theorems 2 through 4 follow by
the similar reason as Theorem 19,

The proofs of Theorems | through 4 will be given in the
following section. The proof of Theorem 1© through 49 will be
obtained by the similar reason as those of Theorems 1 through
4.

3. PROOFS OF MAIN RESULTS
3.1 For proving the above theorems, we Iintroduce the

following lemmas.

Lemma 1. Let C(L}zz Cjiff. Then
-

Downloaded by [Monash University Library] at 20:03 01 December 2011

C(L)= C(1)— (1= LYC(L),
where @(L)zz Ejif and ¢, = Z c,. If p21, then

i=0 k=j+1

N el <o = Y <oo and IC(D)I< oo
i=1 i=0

If p<l, then

207, <o = 3 I <o,
j=1 i=0
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Lemma 2. (i) Assume that Assumptions & and 7(iii) hold. Then
as n -~y oo

i
MaXge i<, maxmsﬂ!(}gi

= MaXgg jg, MaX g, G (1) D W (1)G, (1)
k=1

= O(c,)+ 0(d,), | (3.1)
where G () =g() and G,()=h{) (155 p).
(ii) Assume that Assumptions 4, 6, and 7 hold. Then as #— oo
=0(c,)+ 0, )+ O(a,b,), (3.2)
where ﬁnj(z‘j)f—“ngk(fi)xkj and a, =n""logn.
k=1
Proof: The proof of (3.1) is trivial.
Here we only prove (3.2).
To prove (3.2), note that (3.1), it suffices fo show that
max, ., maxisiﬂniﬁ W, (t)u,l=0(a,b,). (3.3)
k=1

For proving (3.3), we introduce the following elementary
inequality (see FP,,, Theorem 1 of Mitrinovic(1970)).

Abel inequality: Let @,,...,q,; b,....0, (b 2b,2..25 20) be two

e
sequences of real numbers. Let SkﬁZai, M, = Ml e, S, and

3y,

i
=1

M, =max,._ S, Then
b, <Y ab SbM,. (3.4)
i=1
For applying Abel's inequality, let g, =u, and b, =W (1).

Without loss of generality (W.lLo.g.), we can assume that
b, zb,_ 2.2b,  for some permutation (j,...,J,} of the integers
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(1,2,...,n). Now applying Abel's inequality,

!iafbﬁ:iia;!bﬂ
i=1 i=1

i
< bh (miﬁlgmﬁlz% {+ maxlSmSn{Zajf D

1=1 i=1
il
S 2max ge,lb; i-maxlgmgnlz% |=0(b,a,). (3.5
i=i
Now, we have completed the proof of Lemma 2.

Lemma 3. (i) Assume that Assumptions 4, 6, and 7 hold. Then

lim,__ liyz-n (3.6)
e

{(it) Assume that Assumptions 2, 4, and 5 hold. Then

lim, ‘¥%-8 (3.7)
)

Proof: (i) By Assumption 4, we have
lim, n-lz%%" =B= (bjk)is;,ks,u‘ (3.8)
i=1

On the other hand, we obtain

zafﬁf}ufk = zhnfj”z’k - Zz W (1w, = L= J (3.9)
i=1 i=1

i=t 3=l
where D, (£)=h,(1,) = h (1) and h, =h ()= > W, (6)h ).
k=1
In the following, we only prove J, =o(n), the other

follows by the same reason.
By the similar reason as (3.3), and applying Abel's
inequality, we can show that

= O W, () IS O(b,a,”) = o(n). (3.10)

i=1 s=i

Thus, by Lemma 2(ii) we have for all (j,k) and n— =
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o~

%ZJ ik =n z;ulj ik +n Zﬂn (I )Mzk
i

k(r >uij+n*‘zhﬁj(f Vi (2) = by (3.11)

=
L
'Mrﬂ

H
—

.

+
I M::
"""‘i

We now finish the proof of Lemma 3(1). The proof of
Lemma 3(ii) fellows from the proof of Lemma 6.1 of Gao
{15940). |
Lemma 4. (i) Assume that Assumption 1(1) holds. Then for any
permutation  (f,...,7,) of the integers (1,2,...,n)

.
max,gkm!;ejiiz O(n'"* logn) as.. (3.12)

(ii) Assume that Assumption 7 holds. Let £e =0 and Eei4<oo.

Then
~1/4

max!simé; W, (e l=o(n™" (logn)™") as.. (3.13)

Proof: Here we only prove (3.13), the other follows by the
same reason,

Let ¢ =ei(lel<i") and e =e —e,.

Now, by Assumptions 7{(i) and (ii), and applying Bennett's
inequality (see Bennett{1962)), for some C >0 and (, >0

P(max, | z W (t)e, — Ee = Cn " logn) )

< T PUS W, (1)(e, - Eek'ﬂz Con™ " (logny™"?)

=1 k=1

1[2{}0‘%}2\ 1

(2max, ¢, Z k(i) Ee1 +2Cb, (logn)™ ”2}

S Z2nexp(—

<2n exp(-—Csz logn). (3.14)
Thus, by choosing the proper (| and applying the Borel-
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max,..., | 2 W, (1), — Ee, )= O(n™" (logn)™?) as. (3.15)
k=1
Next, by Fe® <o we obtain

Yle l<oo as, (3.16)

i=1

and

s z (e, I< O(iﬁn)iiek"I:o(n‘llz(logn)"z), (3.17)
k=1 k=1

Also, by Fef<:oe again,

maxX,c,| z (1) Ee, 1< O(b, )zE e lI(le, 2 k")
k=
<O0(b,) W ‘Ee* = o(n " (logn)™). (3.18)
k=1

Therefore, {3.13) follows from (3.15) through (3.18).

Lemma S. Assume that Assumption 1(ii) with ZSCSZ<OO holds.
5=1

Then as 71 —» oo
1z 2 2 2
b1 Z(V,. - O, )-——)DN(GSVG . (3.19)

i=1
Proof: See Theorem 3.8 of Phillips & Solo(1992).
3.

2 Proofs of Thegrems

Downloaded by [Monash University Library] at 20:03 01 December 2011

(i) Now, we begin to prove (2.17).
By (2.12) we have

B, mﬁ~(Z§éi ) 1(2;,%{‘/{-—§5§5Vj+2i5gm.), (3.20)
i=1 i=1 i=! i=1
where V, = ZWnk(z‘i)Vk and g, =g(t,)— ;éz.}Wnk(z‘i)g(Ik),
k=1 =

First, by the similar reason as the proof of (3.5), and
using Lemma 2 we have for n—>90 and all 1S j<p

Z,x 8= iwggm + 3,8, ~ L3 W, ()8, =o(n'), (321

i=1 i=1 i=1 k=1 i=]
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where h, =h (1)~ éwnk@)kj(;k}.

Also, we Obtam

(z‘k)ugﬂvi -+ i( i Wi (1, >hﬁkj)vz'

f=1 k=] i=1 k=i

Zl(kzi( Zl (fk)“,;j)wm‘(fk})vg = JU + jgj + j3j’(5ﬂy}‘ (3.22)

In the following, we only prove J,, =0,

It Mx
E‘;’!
M

(n''*), the others

follow by the same reason.

On the other hand, applying Lemma to Assumption 1(2.1)

we get
V.=Cl)e, +e_ —¢, (3.23)
where ¢, :—-é(L)efz 2.ce _; and C, = ZC
j=0 k=j+l1
Now sum (3.23) to find
2V, =C)e, +e,—¢, ,1sm=n,. (3.24)
=1 i=1 o

For simplicity and without loss of generality, it can be
assumed that (j.Jj,,....Jj,)=(L2,...,n) in Assumption 4(2.5).

Thus, by the similar reason as the proof of (3.5) we obtain

for some C>0

CAQ

I 1s Cmax1<m<ﬂiZe b max, ..., Z drmax, g e, Wit

i=] i=1

-é—CmaXKMiZulmaxmﬁn W () (gl +max,., ., 1e,l). (3.25)

Now note that Assumption 4(2.5), Assumption 7{(i1), and
Lemma 4, in order toc prove
J, =0, (3.26)

it suffices to show that
n'gy —, 0 and n” max,,12,1F - 0. (3.27)
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The former holds if El&,[°< oo, which holds if Zj2€j2<oo.

j=1
The latter is equivalent to

ﬁ-1zém2](§mz >nc)—>, 0 for any ¢>0 (3.28)

m=1

[ cf. Hall & Heyde(1980), page 33, and (36) below].

But (3.28) holds because
El2°I(z >nc)l - 0 (3.29)

by dominated convergence since ijcf<oo ensures  that
j=1

Elg 1 < oo
Secondly, by %ssumption 4(2.3) we have

i

25V, Zu +-ZH V= XY WiV,

i=1 i= i=1 k=1

:Minﬁ-Mz” M,, (say), (3.30)

where H_ =(h )

nil?” mp}

By the same reason as (3.23) through (3.29), and using
Lemmas 2 and 4, and Assumptions 4(2.5) and 7(ii), we obtain
for (=23

Downloaded by [Monash University Library] at 20:03 01 December 2011

M, =o0,(n"") (3.31)
On the other hand, by (3. 23) we get

M, = Zu C(l)Zu +2uj(éi_1~éi)

i=1
= M4n + MSn’ (3.32)

And by the similar reason as (3.25), and using
Assumption 4(2.6), for all 1S j=<p

Zu(el ,—€)=0, (n'"). (3.33)
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Now, note that (3.20) through (3.33), in order to prove
(2.17), it suffices to show that
nm(iuiu; M, -, NO,C(1Y'6,’B7), (3.34)
i=1
which holds because the Lindeberg condition is met by
Assumption 4(2.4) and Lemma 3(i). (Here Lemma 3 of Wu(l1981)
and Proposition 2.2 of Huber(1973) may be used for checking
the Lindeberg condition).
(ity In the following, we will prove Theorem 1{11).
In order to prove Theorem 1(ii), note that (3.20) through
(3.25) and (3.30) through (3.33), 1t suffices to show that for
i=12,3 and k=2,3

172

Ji = o{(nloglogn)”) as, (3.35)
M, = o((nloglogn)'?) as., (3.36)

and
limsupﬁwii(ibiku&)‘/ﬁf@nlegiogn)m =(o?b")"? as. (3.37)

i=1 k=i

In the following, we only prove (3.35) with i=1, the
others follow by the similar reason.

Now, note that (3.25), Lemma 4, and Assumptions 4(2.5)

and 7(ii), in order io prove

Ji; = 0((n10g§0gn)”2) a.s., (3.38)
it suffices to show that
é, = o((nloglog )Y as. (3.39)
and
max,. _ 12 I=o((nloglogn)'®) as. (3.40)

But (3.39) holds by the Borel-Cantelli lemma if
Elz V! < oo for some g >2.
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The latter condition holds under 25}.2<w(which by Lemma 1
j=I

holds if ijcj2<w holds) and Assumption 1(iii) with g < p.
j=l

On the other hand, observe that

m n
18,1 Y 15 lle, i+ Y &, le]
=0 i=l

m ES)
S MaXggie,, 61D IED + D Eile_l (3.41)
i=0 i=1

Siz 1Y e =3 Vel jic i< (3.42)

j=1 i=1 j=1i=j+1 i=1
Thus, note that (3.41) and ZE‘fie‘iMw a.s. (since its
i=1
expectation is finite), in order to prove (3.40), 1t suffices to

show that as n— o
(nloglogn)”

Y2 max, ., lel— 0 (3.43)

which follows from Ee~ < oo,
The next thing is to prove (3.37).
Note that (3.23) we find

i(i b u, )V, = ani(ib*uﬁa@ + i(ibf"u,~k><a_l —¢)

=] k=l =t k=] i=l k=1

=L,+L,,. (3.44)

Now, by the similar reason as (3.33), and using (3.39) and
(3.40),

L, = Z(i b u, &, — &)= o((nloglogn)’®) as..  (3.45)

i=1 k=l
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Before completing the proof of (3.37), we introduce the
next proposition,
Proposition: Let Z,Z,,...,, be independent random variables
with EZ =0 and max,, ElZI" <o for some ¢>0. Let again

timinf,_ 2" Var(Z)>0. Then
i=1

limsup, | 1S,1/(2s,  loglogs ) =1 as, (3.46)

where 5, :2,25 and 5°=% EZ’. (See Corollary 5.2.3 of Stout

(1974},

p
. Jk . . I 2N -
Let Z,= Zb uze,, then we obtain EZ, =0 and

B

o R AN VAL ‘ Jk 12+¢ 2+c ; 12 2+

ENZ =Y bR 7 Ele ' £ €, (pymax,, max,, Ju, 7 Ele, 77 < oo,
k=]

Now, applying Assumption 4(2.4), we have

#
-1 A -1 ik, 2 -
Hminf, | » E EZ =lmint, |, n % {g b"u, ) Ee/f

=1 imi k=i

= g*(b’) (lim, .. ;f;lzgu ! =t (b)) B(b Y= o'h7 >0, (3.47)
je=
where b =", b7, b"Y.
Thus, applying the above Proposition we complete the
proof of (3.37).
Up to now, we finish the proof of Theorem 1(ii).
(ii1) Thirdly, we begin to prove Theorem 2(i).
Observe that
Grl=nTU-X(XXy'X)¥
= VY- VIX XV GU-X(XDTX)G
m?n“ia X(X X v+2GY

- AT (1A
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where é:(g(l‘l)“§ﬁ(i‘1}s.,=,g(tﬂ)-§n{zﬁ)}’, V:(Vp”wyﬂ)'a and
g () is defined as in (2.10).
Now, using (3.23) and Lemma 4(ii), we can obtain that

E[3, () W, (1)E,_ — &N = 0(n) (3.49)
=t j=1
and

E{Z§ (1)V)? €2nC(1))* max, q(niZW (t)e, P

i=1 j=1 j=1

23 (X Wy (1) oy =) = 0,01 (3.:50)

i=l =1

Thus, by Lemma 2(i) we get
n21 L, 1< ”QZ(gft) g,(t))"

<2nt* max . lg(t) - Z (gt )P +2n””ZZ(ZWm(z}V)

k=1 i=1 j=1
=0,(1). (3.51)
Next, by (3.21) through (3.34), and using Lemma 3(1), we
have for k=2,4
I,=o0,(n"). (3.52)

On the other hand, by the straightforward computation,

and applying Markov's inequality, we can obtain that
i
nls, = 3 (8() = &,V
i=1
ﬂ 7
:Z ngs“EWm(%)Vz Z( z VOV,
i=1 i=1 i=1 k=1i
=0,(n""). (3.53)

Therefore, note that (3.48) through (3.53), in order to



Downloaded by [Monash University Library] at 20:03 01 December 2011

ASYMPTQOTIC THEGRY FOR PARTLY LINEAR MODELS 2005

n(l, - oty =, N0V, (3.54)
which follows from Lemma 5.
(iv) In order to prove Theorem 2(ii), note that (3.48), it
suffices to show that as n—> oo )
I, - o, as, (3.55)
and for k=2,3.4,5
i, =0 as. (3.56)
The proof of (3.55) follows from Theorem 3.7 of Phillips &
Solo(1992).
Next, by Lemma 3(i), (3.21), and (3.35) through (3.37), we
have for k=2,4
I, —0as. (3.57)
For proving I, — 0 as., note that (3.50), it suffices to

show that

max .., | 2 W, ()E,, —&)l=o(l) as., (3.58)
£

which follows from (3.39), (3.40), and the following (using the
similar reason as (3.33)

A
maxiszgnizwnk(fzxgkq — & )

frz=i

S OmaX g, leg — e, b max, . W, ()
=o((nlognlogm*). G(ﬁ”g’iz(f{@gn}’z) =o{l) as.. (3.59)

The remainder thing is to show that
i, —» 0 as., | (3.60)

which follows from the Borel-Canielli lemma and the

following

E{i( 2 W (t)V V] = oln(logn)™). (3.61)

=t k=1 =i
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The computation of (3.61) is omitted here for it is lengthy.
Hence, we finish the proofs of Theorems 1 and 2.
(v) The proof of Theorem 3{i)
By (2.14) we have
B, -B=(XX)yXG+XV)
=(XX)y"NXG+XV), (3.62)
where G =(I—P)G and V =(I-P)V.
Now, by the similar reason as the proof of Lemma 3(ii},
and using Assumpiion 3, we obtain
X G =o', (3.63)
Next, by the similar reason as (3.30) through (3.34), and
using Lemma 3{i1), we get
V(X X)XV =, NO,C()*0,’B ™). (3.64)
Thus, the proof of Theorem 3(i) foliows from Lemma 3(i1)
and (3.62) through (3.64).

(vi) For proving Theorem 3(ii), observe that

ifiVi = iuiv!. + iEVE - iumVi
i=1 =1 i=1 i=1
=K, +K,, +K,, (say), (3.65)
where {;1:.} denotes the ith component of H=([-P)H=
(/;“Ll,.,n,fi{,..,,?z;)' and {u,} denotes the ith component of PU=
Note that (3.37), (3.62) through (3.63), and (3.65), in order
to prove Theorem 3(ii), it suffices to show that for i=23
K, = o((nloglogn)"?) as.. (3.66)
By using Assumptions 3(i1)(ii) and 5, the proof of (3.66)
follows by the similar reason as (3.36).

The proof of Theorem 4 follows by the similar reason as
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Theorem 2, which can also be obtained by the similar reason

as the proof of Theorem 3.3 of Gao(1994b). #
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