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onsider the g( t i )+Vi ,  I _ < i _ < n .  Were 

I 

) is an unknown eter, g(.) is an unknown 

funct~on over I, and V2 / ins  a class of linear 

g(.j estimated b y  nonpara  e t r ic  kernel  est imation or 

approximated by a finite series expansion, the asyrn 

rmafities and the str consistencies of the L 

an estimator of = E V , ~  are investngated. 
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1, DUCTION 

e r  the model 

(1.1) 
t 

1 ere  xi = x i  x an are known and non- 

:er, g ( ~ j  i s  an un nown function over R" an Tq is a class of 

linear processes defined by Assumption I 

The model defiried in i l  1) belongs to a class of partly h e a r  

regreasior, models,  which was first  iscussed by Ansley & 

;and Cao, e l  

some estimates under the case where 

errors  and jx i , f i )  are i . i .  . random design points ,  More  

recent ly,  G a o  an 

norrnalaty of r case where the 

(.u, ,$ ) bed, 

"rn, and g(.) is esti y a class of kernel 

e s t i m a t e s .  

is  paper, we investigate t 

and the rates of strong convergence of the estimator of 

v,' for  the case where g ( ~ )  is 

estimated by a ~ 1 3 s ~  of nonparametric kernel estimates or  
k 

ated by a f m t e  serles ex  f , ( , ) l g , ,  where 
i = l  

f i = 2 .  is  a respecified family of fanct lons from 
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v e c t o r .  

Consider the model ucting some estimates 

and stating the main re er,  we Introduce the 

ose ( 'i/;) is the linear process 

wi t  ci%woz:, and o n e  of the  
j = O  

fourth curnulant 

(iil) e, are 1,1. / " I P <  00 for  ~ o r n e  

ax,,,,,i,l p,~(logn)' -+ 

rank element of the 

o o r e - P e n i o ~ e  icverse 

Assumption 3. or  k = k , < n - p ,  k,, --+m as TI---+- and 

{ f , ( . ) 9 i  = 192 5 e . n  1 i v e n  above,  there ex i s t s  an u n k n o w n  

parameter vector y = (E ,. . ,, y k )  4uch t 
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k 

f , ( t > ~  - &')I= o(n-"". (2.2) 
r=i 

Assumption 4. There exist so e bounded functions hj( . )  over 

wkere u, = (ui,,, ..,up)' are real sequences satisfying 

for  any permutat ion j , .  j ) of the integers (172 ,.*,, TI), 
n 

where atrix with the order p x  p an 

l l . l l  denotes the uclidean norm. 

o r e o v e r '  

(2.6) 

. For k = k , , < r z - p ,  k, --+m as n--+m and {f,(.), 

i =. 1,2,. . . )  given above, there exist unknown arameter vectors 

k 

( t )  yL, - h, ( t ) !  = o(n-"'). ( 2 . 7  

satisfy Llpschitz condition of order 

(a compact subset of 

tion 7. The p r o b a b ~ l ~  eight functions 
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Remark 1,  Assurn tions 2(il)(lii) restrict the growth rate 

of k,. For  example,  they hold for  the polynomial, trl-  

gonometric,  and Fourier flexib FF) funst ions.  (See 

ernark 2,  Assum 5 are some smoothness 

itions. In almost ail cases, the as 

h,(.) are sufficiently smoot 

ave Irke zero 

uncorrelared random v 

lying the law of strong nuan ers and (2.5) holds wlth 

1 by using I e same reason as an f 

(i i)  As a matter of fact, It ns easy to s h o ~  that 1 h,,(~)) i s  

determined uni rrngeions 4, 6 and 7. This is 

necessary for the ex lanation of the unl 

ption 4(2,6) is an 

for constructin the law of t i terated logarithm of some 

estimators,  wk llu,i14 < for  the 
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emark 4, As a matter of fact, t ere exist some weights 

satisfying Assumption 'I, For weights 

a n d  

- 1 
where si = 2  (ti +ti+,), 15 i 5 n - 1 ,  < t , < . . , I t E 5 1 ,  s,=O, s,=1, 

K(.) is a kernel function, is a positive number sequence, 

where  = hn or r,, hn is bandwi  a m m e t e r  an 

r, - r,(t;t ,,..., t,) is I e distance from t  to the k,-t 

ere ;LC, is an i n k  

The details of justification follow by the si ilas reason as in 

in to define some estimators. 

at {x,,t,, Yi ; l  5 i < n) satisfies the 

( r , ) + % q ,  i = i , 2  ,,.., n. (2.8) 

is known to be arameter, then by El7, = 0 

Hence, the natural estimator of g(.) is 
n 

(2.10) 
i=l  

where Wni( t )  = i ( t ; t  ,,..., t,) are defined as in Assu-m 

be low.  

Now, based on the model .Yi = xi' 

~ r t m a t n r  can  he, defined bv 
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Next, by using Assu tion 3 we define the I, 

n , - 
. - xi pn - Fk(ti 1 (2.4 3) 

1=  

y ('213) we get 

n (2.14) 
- 

where ( I - P I X ,  

n the other hand, by Lemma 2 

(2.15) 

-, - 
So we can assume t (% x)-' exist as n lar 

ain results of this pa 

Theorem 1 ,  (i) Assume that Assu tions 4, 6, 7, and l( i)  with 
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hold. Then 

n a 

2 jj 112 
.-P,I=(ab 3 a.s., (2.18) 

2 log log n 

where  p ,  and pi denore the jth components of 

respectively, and { b"}  denotes the jth diagonal element of the 

Theorem 2. (i) Assume that Assumptions 4, 6, 7, and l(ii) with 
m 

jcj% c-0 . Then as n -+ = 

(219) 

w h e r e  

eorern 3, (i) Assume that Assumptions 2 through 5 and l ( i )  

with j'cj2 < 00 hold. Then as n --+ m 

( i i )  Assume that Assumptions 2 through 5 and l ( i i i )  with 

jlc,l< .o hold. T 
,= ! 

?t 2 jj l i 2  

j l =  (cr b ) a,s., (2.22) 
2 log log n 

- - 
. irzLorn ! R 1 denntec the itk r n r n n n n ~ n l  nf 8 
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Theorem 4. ji) Assu ssumptions 2 t h r m g  

(2.23) 

( i i )  Assume that Assu tions 2 t h o u  5 and l ( i )  with 

orems only give the asgirnptoaics 

e results about the 

estimators of 

), we can define t e estimator of 

n 
n ): 

s,, ( t )  = 
r = I  

Also, based on ( 2 . Z )  t e estimator of g(.) can be defined 

Neu, by Theorems 4 an 3 ivc can obfaln the siron 

weak convergence rates of g,,* and g7,. Here we o m t  the detarls 

for they are trivial, 

er the case where {x , , t , )  are j,i.d. rando 

ive  the corres ing results for  the case 

.-.I-.--,% t v + A rsniinm v ~ r i a h l ~ q  
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Theorern l o .  (i) Assume that Assumptions 4 ,  5, and 7 with 
w 

ability 1 and 14i) with j2cj' < hold. Let ( x i , t , )  and Vi 
]= I  

endent, Then (2.17) holds. 

(ii) Assume that Assumptions 4,  5,  and 7 with pro 

l (iii j wit . Let ( x , , l ' , )  and V,  be independent. 
j=1 

ifications of Theorems 2 e k 4 follow by 

e given in the 

ecrrern l o  through 4O will be 

hose of Theorems 1 through 

3.1 For proving the we introduce the 
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Lemma 2,  ji) Assu e that Assumptions 6 and 7(iii) hold. Then 

(ii) Assume that Assum hen as n + - 
(3 2) 

,. 
where h, ( t , )  = 

roof of (3.1) is trivial. 

Here we only 

43.3),  u/e intro 

2 s  Theorem 1 

oss o f  generality (W,l.o.g.), we can assu 

e permutation ( j  ,,,.*, jr,) of the 
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GAO 

(1,2 ,..,, 1 1 ) .  Mow applyin 

Now, we have completed t e proof of Lemma 2. 

Lemma 3. (i) Assume that Assu p i o n s  4, 6, and 7 hold, T 

n 

at Assumptions 2, 4, and 5 hold, Then 

y Assumption 4, we have 
n 

On the other han 

n - * 

where hnj (ti) = 4 (ti > - kj (ti > and hnQ -- hj (ti) - 
k = l  

In the following, we only prove J,, = o(n) ,  the other 

e same reason. 

y the similar reason as ( 3 . 5 ) ,  and applying Abel 's 

inequality, we can show that 

Thus, by Lemma %(ii) we have for all ( j , k )  and n + 
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e now finish the proof of Lemma 3(i),  T 

Lemma S(i i )  follows from t roof of Lemma 6,f of Gao 

( I  993b)). 

Lern~na 4. (i) Assm 

T h e n  

roof: Here we only prove (3,131, e other follows by the  

same reason, 

(lei& ill" and e,' -el  -ei' 

Now, by Assurn (ii), and apiplyi 

inequality (see some C, 9 0 and 

oosing the proper and applying the 
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-114 
el4 = o(n ( l ~ ~ n ) - ~ ) .  (3.18) 

erefore, (3.13) follows from (3.15) through (3.18). 
ce 

2 
Lemma 5. Assume that Assumption i(ii) with SC, < BO holds. 

r = l  

roof: See Theorem 3.8 of 

3,2  Proofs of Theore 

(i) Now, we begin to prove (2.17). 

First, by the similar reason as the proof of ( 3 . 5 ) ,  and 

ma 2 we have for n -+ = and a11 I I j 5 p 
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ce 

er holds if ~ l i ? , l ~  < i.., which holds if 

j=1  

The latter is equivalent to 
n 

e(1980), page 53, an 

~[2,91(2,~ > nc)] -+ 0 (3.29) 

c o n v e s g e ~ c e  since j2%' <GQ ensures that  

econdly, by Assu ption 4(2.3) we have 

e reason as (3.23) t sough ( 3 . 2 9 ,  and usin 

lions 4(2.5) and 7(ii), we obtain 

for i = 2 , 3  
112 

.Win =op(n  >. 

by (3.23) we get 

And by the similar season as (3 .25) ,  and using 

Assumption 4(2.6), for all i < j 5 p 
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The latter condition hol 2,' < =(which by Lem 
J =l 

"a 

s) and Assumption l(iii) with q < p. 

On the other hand, observe that 

m 

Thus, note t ~ i ? ~ l e - ~ I <  m ass .  (since its 
i= l  

expectation is finite), in order to prove (3.40), i t  suffices to 

n)-lt2 r n a ~ , , , ~ ~  lei/--+ (3.43) 

which follows from L7e12 < =. 

The next thing is to 

ote that (3.23: we find 

e similar reason as (3.331, an using (3.39) and 
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Before completing the proof of (3,37), we introduce the 

next proposition, 

Proposition: Let endent random variables 

with EZt ===8 and r some c > 0 .  Let again 
n 

/ I  

, and f a 2  = ee Comllary 5.2.3 of 
,=: [==I 

the above Pro osilion we complete the 

roof of (3.34). 

Up to no%, we finish the roof of Theorem I(ir). 
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h e o r m  2,(ii), nore that (3,481, i t  

suffices to show that as i.z -+ - 

4, -+ 0 a.s,. 

roof o f  13.55) follows fr eorern 3.4 of 

SoIo(1932) 

ma 3(1), (3 211, and ( 3 . 3 5 )  r rough 13.371, ive 

have for k = 2 , 4  

(3.57) 

-+ 0 a s., note r 1, I T  s~fifnces to 

13.39), (3.601, an the following (us i  

similar reason as (3.5333 

The remainder t ing is to show that 

which  fo l lows  f rom t 

f o l i o w i n  
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e computation of (3.61) is omitted here for it is lengthy. 

Hence, we finish the proofs of Theorems 1 and 2. 

Xow: by  the similar reason as the proof of Lemma jj-iij, 

e similar reason as (3.3 ) through (3,341, and 

us, the proof of Theore 3(i) follows from Lemma 3(ii) 

Theorem 3(i1) 

i= l  r = l  i= l  i = l  

{u,,,] denotes the ith corn onent of PU = 

(~in""'~,n"",~,,) . 

at (3,37), (3.62) through (3. 3), and (3 .65) ,  in order 

orem 3(ii), it suffices to show that for i = 2,3 

(3.66) 

ptions 3(ij(ii) and the proof of (3.66) 

y the similar reason as (3.36). 

proof of Theorem 4 follows by the similar reason as 
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