Best-worst scaling approach to predict customer choice for 3PL services

Tim Coltman and Timothy M. Devinney and Byron W. Keating

2010

Online at https://mpra.ub.uni-muenchen.de/40492/
MPRA Paper No. 40492, posted 5. August 2012 00:08 UTC
BEST-WORST SCALING APPROACH TO PREDICT CUSTOMER CHOICE FOR 3PL SERVICES

Tim Coltman¹
University of Wollongong

Timothy M. Devinney
University of Technology Sydney

Byron Keating
University of Canberra

¹ Corresponding author. Tim Coltman, University of Wollongong, Northfields Ave, Wollongong, NSW 2522, Australia. +61 2 42 21 3912 (phone) +61 2 42 21 4170 (fax) tcoltman@uow.edu.au
INTRODUCTION

In the business logistics literature value is commonly viewed from the supply side, as something created by the providers of products and services in the supply chain. Each firm makes its own unique contribution to value—combining and modifying raw materials—and, in turn, strives to capture a proportional share of end user payments. Yet, according to Drucker (1974) value is never an absolute associated with a product or service, it is always customer utility; that is, value is what the product or service allows a customer to do. Although Drucker’s point is widely accepted, companies struggle to determine what customers truly value and to convert these demands across their own functional boundaries to appropriate value (Flint, Larsson, and Gammelgaard 2008; Gattorna 2006; Priem 2007).

The purpose of this paper is to illustrate recent advances in the science of discrete choice elicitation that can be easily applied to enable a deeper understanding of what customers value. Recent work in marketing and transportation demonstrates that market-utility-based frameworks, especially discrete choice analysis (hereinafter, DCA) and conjoint analysis, can be very effective in understanding what customers value (Iqbal et al. 2003; Swait 2001; Swait and Ben-Akiva 1987). Lenk and Bacon (2008 p.1) succinctly explain the benefits of DCA:

Discrete choice elicitation is often preferred to other measurement methods because it better aligns with actual choice behaviour and avoids some of the well documented biases inherent to alternative methods, such as ratings.

Moreover, to differentiate this paper from prior work and to explicate a more easily applied method we apply a reduced form of DCA known as maximum difference scaling or best-worst analysis (Marley and Louviere 2005). Best-worst offers design, execution and analysis advantages over the more traditional DCA techniques without any substantive loss in analytical rigor. The surveys
are simple to construct, trouble-free to administer and do not require sophisticated software packages for analysis (Buckley, Devinney, and Louviere 2007).

In order to demonstrate the value of best-worst analysis we measure the demand components for third party logistics providers. Third party logistics (hereinafter, 3PL) is a burgeoning business-services industry that can be defined as a dyadic relationship where all or part of a firm’s delivery service is contracted to an independent service provider. Services provided by 3PLs are diverse and may include outsourced freight forwarding, order management, packaging, warehousing, distribution, transport, logistics information systems and supply chain management (Knemeyer and Murphy 2004; Murphy and Poist 2000; Sink and Langley 1997; Vaidyanathan 2005).

The sample used in this study is representative of customer demand for market leading 3PL brands such as DHL, FedEx and UPS. Traditionally these firms have sought to offer tangible product features—such as overnight or 2nd day delivery, the choice of air or ground reliability, and comparative costs (Sawhney, Balasubramanian and Krishnan 2004; da Silveira 2005). True to the spirit of Drucker (1974), the key issues for 3PL providers today are not products but benefits. These benefits include, helping customers to achieve reliability levels high enough to create inventory cost savings, or to provide complete visibility and transparency throughout all aspects of the supply chain to meet rising expectations for customer service (DHL 2004). The increased focus on service benefits implies that a deeper investigation of customer value is required to enhance our understanding of the factors that influence customer demand in the logistics industry.

Furthermore, it is widely accepted that the logistics service attributes that any one firm considers most and least important to their choice of a provider can vary for several reasons. For example, customers may face quite different strategic and operational circumstances that directly influence whether logistics is critical or not. Additionally, even firms in similar strategic and operational circumstances can still vary because of preference heterogeneity amongst decision makers.
Hence, we require segmentation approaches that can better capture the heterogeneity that actually exists between firms. Consistent with the discussion above we propose three research questions that provide the focus for this paper:

1. What demand components (attributes) do customers prefer from a 3PL provider?
2. How do these demand components (attributes) stand relative to one another?
3. To what extent are these demand components (attribute) preferences segment specific?

All three questions are of practical and theoretical importance and the remaining sections of this paper are organised as follows. The next section develops the theoretical background as it applies to our understanding of customer value creation and segmentation in a third party logistics context. Next, we describe the methodology that is based on a two-phase data estimation approach: (1) best-worst scaling, and (2) latent class segmentation. Lastly, we discuss the results and the implications of this work to academics and practitioners.

THEORITICAL BACKGROUND

The cornerstone of competitive strategy is to create customer value and the business logistics literature has devoted considerable attention to the investigation of value in 3PL services. To illustrate the point Marasco (2008) identified 152 articles published between 1989 and 2006 in an ambitious attempt to review the field. Within this literature a small number of studies have investigated the 3PL selection process directly (McGinnis, Kochunny, and Ackerman 1995; Daugherty, Stank and Rogers 1996; Stank and Maltz 1996; Sink and Langley 1997; Menon, McGinnis and Ackerman 1998; Murphy and Poist 2000; Knemeyer and Murphy 2005; Vaidyanathan 2005). Notwithstanding the important contributions in this work, the unit of analysis employed was based on managerial perceptions of importance. This represents a critical limitation because as Verma and Pullman (1998) demonstrate the perceived importance held by managers is not necessarily consistent with their actual choices.
These scholars found strong inconsistencies between perceived and actual choices on a range of 3PL performance attributes such as cost, quality, delivery and flexibility.

Scholars in business logistics have also used a variety of methods in an attempt to accurately measure supplier selection processes. For example, work has focused on single attribute ranking methods (Blenstock, Mentzer, and Bird 1997) and two attribute comparisons (Christopher and Peck 2003; Mantel, Tatikonda, and Liao 2006). Others have used preference elicitation approaches such as analytical hierarchy process (Danielis, Marcucci and Rotaris 2005; Göl and Catay 2007) or videotaped focus groups can be used to graphically describe differences in desired values, benefits and attributes (Mentzer, Rutner, and Matsuno 1997). These methods are all limited because customers do not trade-off service features in isolation during the 3PL selection process but weigh up a number of attributes in complex multidimensional ways.

Ratings-based conjoint analysis provides a more sophisticated approach where respondents rate their preference for different product profiles. This method has been used to estimate individual level attribute partworths that reflect the actual tradeoffs associated with supplier selection (Verma and Pullman 1998; Li et al. 2006). Others have sought to understand the trade-offs in the selection process using choice elicitation methods (Tsai, Wen and Chen 2007; van der Rhee, Verma and Plaschka 2009).

Although both approaches are considered useful additions to the operations research (Karniouchina, Moore, van der Rhee and Verma 2009), the biggest difference is that conjoint analysis is essentially a theory of numbers where judgment (i.e., preference ratings) are measured. Alternatively, choice-based models are based on a theory of behaviour (i.e., random utility theory) where respondents make choice from a series of sets of alternative product or service profiles.

The purpose of this paper is to respond to the call by Karmarkar (1996) for alternative models, methods and techniques in operations research that borrow from disciplines such as marketing. Specifically, the best-worst analysis technique proposed represents a choice elicitation method that has
not previously been applied to the logistics literature but has been applied in marketing (Lee, Soutar, and Louviere 2007) and international business (Buckley et al. 2007) to investigate supplier selection processes.

Third-party logistics selection process

Traditionally, 3PL providers have offered customers three primary competitive benefits—reduced cost, faster delivery and improved reliability (Silveira 2005; Sink and Langley 1997; Voss et al. 2006). But research in this area using a wide variety of methods and techniques has shown that the selection of a logistics provider is based on a wider range and greater number of factors, including relational and organizational factors, as well as operational factors. One difficulty is the very large number of different attributes that have been suggested by different authors. This reflects the richness of the bundle of services that a 3PL provider offers as well as the usual difficulties of precisely defining the nature of quality dimensions in a service environment. For example, Sarkis and Talluri (2002) list 31 potential factors and Stank et al. (2001) list 38 items in their factor analysis. Christopher and Peck (2005) suggest that customer value involves a much smaller trade off that is usually based on three or four key success factors or what they call “market winners”.

In broad terms, the business logistics literature has identified cost factors (which will potentially be wider than simply an initial price); logistics performance (encompassing delivery speed, reliability etc); technology (primarily IT related capabilities); relational attributes (e.g. understanding the customer, and fit between cultures); flexibility (being able to respond to changes in requirements); as well as a range of other factors that do not fit easily into these categories such as reputation, ability to innovate, trust, customer closeness and managerial involvement (Bowersox 1990; Droge, and Stank 2001; McGinnis et al. 1995; Morash 2001; Stank, Keller, and Closs 2001; Treacy and Wiersema 1995; Vaidyanathan 2005).
Accepted wisdom also recognises that firms can benefit from understanding the segments that drive value in their markets. Accordingly, the advantages of segmenting markets and offering different service packages to different customer groups are widely recognised. However, in practice, it can be difficult to identify meaningful segments and integrate the requirements of these customer groups into operations strategy (Fisher 1997; Lilien 2007; Olhager and Selldin 2004). Yet concerns about how best to link segmentation and supply chain strategy do not imply that the reasoning is flawed.

We know that different companies operate with different supply chains and, therefore, are by definition heterogeneous. We also know that the popularity of segmentation with practitioners suggests that there must be some perceived value. Rather, the mixed findings most likely reflect that: (1) the prior emphasis on product-based segmentation techniques in isolation is misplaced (e.g., Fisher, 1997), and (2) the specific segmentation techniques used may not have been appropriate for the task at hand. With regard to (1), an argument has been made that the focus on “products” needs to be replaced by a focus on “customer behavior” (Dibb and Wensley 2002). This is the point Gattorna (2006) also makes in suggesting that it is possible to develop an appropriate supply chain strategy by developing a more sophisticated understanding of the underlying “behavioral logics” that interact and are traded off in the final selection decision. With regard to (2), the question is what methods are sufficiently rigorous to discover true heterogeneity? We address both these issues in this paper.

RESEARCH METHODOLOGY

An effective method for evaluating customer demand for various service features (such as those offered by different 3PL providers) is to model the trade-off that customers are willing to make. In this study we draw on a reduced form of DCA, known as maximum difference scaling or best-worst analysis (see Appendix A for a detailed description of the method) to measure the attribute trade-off in a manner that is consistent with the motivations for decisions surrounding 3PLs.

Best-worst scaling method of estimation
Best–worst scaling is based on a multiple-choice extension of the paired comparison approach that is scale free. In other words, the method requires respondents to make a discriminating choice among alternatives that reflect the cost of real market decisions. The formal statistical and measurement properties for best-worst scaling analysis can be found in Marley and Louviere (2005).

The method is based on an ordering task that requires respondents to make a selection from a group of items by choosing the “best” (most preferred) and “worst” (least preferred) items in a series of blocks that contain three or more items. The items could be attributes of a product, options in a decision, or bundles of services and products. Best-worst estimation assumes that there is some underlying subjective dimension, such as “degree of importance”, “extent of preference”, “degree of concern”, etc., and that the researcher wishes to measure the location or position of some set of objects or items on that dimension.

The approach is particularly effective in creating a numerical ordering for the item preferences when the number of items is large; as individuals are better able to determine which two items from a group N of items are “best” and “worst” than they are at the specific ordering of 1, 2, 3, …, N. Best-worst scaling has the added benefit that it is quick and simple to execute, provides results that are empirically consistent with more complex ordering tasks and is theoretically in line with the precepts of random utility theory (McFadden 1974).

One of the important properties of best-worst scaling is that it measures all of the attributes on a common scale (Auger et al. 2007). Marley and Louviere (2005) demonstrate that subtracting the number of times an item is selected “worst” from the number of times an item is selected “best” is a close approximation of the true scale values obtained from Multinomial Logit Analysis (for a more detailed elaboration see Auger et al. 2007). Additionally, the method addresses the scalar inequivalence problem that characterises the way people use rating scales (Cohen and Neira 2003). Scalar inequivalence arises primarily from differences in response styles, and is defined as “tendencies
to respond systematically to questionnaire items on some basis other than what the items were specifically designed to measure” (Paulhus 1991). Unlike traditional ranking tasks (Christopher and Peck 2003) or multi-point Likert scales (Swafford, Ghosh, and Murthy 2006) that have been used previously in service operations research, every respondent works with a scale that has known measurement properties.

Best-worst scaling has some distinct advantages over alternative preference elicitation approaches such as self-explication methods and analytic hierarchical processing (AHP). Traditional self-explication methods (Srinivasan, 1988) do not require respondents to make direct comparative evaluations (trade-offs), and the data is collected using rating scales that are subject to the scalar inequivalence issue discussed previously. The AHP approach (Saaty, 1980) extends the self-explication method by introducing pairwise comparisons between attributes. However, as the number of decision attributes becomes large, the number of possible paired comparisons increases significantly. More specifically, there are $J \times (J-1)/2$ possible pairs, where J is the number of attributes. Thus, for an evaluation with 21 attributes—as conducted in this study—each respondent would be required to complete 210 possible paired comparisons. Best-worst scaling overcomes the ratings scale issue through the use of a choice-based evaluations, which Elrod et al. (1992) demonstrate has at least equivalent predictive properties as the rating scale approach in measuring preferences but without the biases. To reduce the number of comparisons we use a fixed orthogonal design to create partial profiles. The individual level frequency data is then aggregated to elicit preference rankings for each attribute. Capturing information on the “best” (most preferred) and “worst” (least preferred) options in a given choice task also reduces problems associated with sparse data and the reliance on more complicated estimation techniques such as hierarchical Bayesian methods (Pinnell and Fridley, 2001).

Latent class method of estimation

Research has shown that customers with relatively similar observable characteristics often behave in very different ways (Wedel and DeSarbo 1995). Neglecting this unobserved heterogeneity can lead to
weak relationships between explanatory attributes and result in a biased assessment of customer
demand. In response, a variety of latent class techniques have been developed and applied to generate
more accurate cluster or segment solutions (Bensmail, Celeux, and Raftery 1993; Vermunt
and Magidson 2002). These models are particularly useful in estimating the likelihood that a specific firm
(or individual) fits into a class of firms (or individuals) for which a particular model applies.

More specifically, with latent class modeling we are able to derive a maximum likelihood-
based statistical model that accounts simultaneously for both the similarity and differences between
firms. It allows us to: (1) classify subtypes of related cases based on unobserved (latent)
heterogeneity, (2) estimate posterior probabilities that a specific firm falls into a class for which the
model is statistically appropriate, and (3) include exogenous variables to enable simultaneous segment
classification and description. The advantage of using this model-based approach is well documented
(see Wedel and Kamakura 2000 for a general explanation) and provides a more elegant interpretation
of the cluster or segment criterion that is less arbitrary and statistically more appropriate.

OPERATIONAL MEASURES, SAMPLE AND SURVEY CONSTRUCTION

Operational measures

A detailed pre-testing procedure was employed to capture the full range of attributes (demand
components) that are potentially important in the selection of a 3PL service provider. The range of
attributes selected were sourced from extensive rounds of qualitative work that included reviewing the
academic literature (Bowersox, Closs, and Stank 1999; Mentzer et al. 1999; Morash 2001; Tsai et al.
2007) industry reports and websites, along with insight gained from numerous discussions with
experienced academics, customers and practitioners. More than 40 interviews were conducted with
senior managers in the Asia-Pacific region (Australia, China, Japan, Korea, and Singapore), to assist
with attribute selection and definitions. The selection process was based on a stratified sample drawn
from the client revenue list of a 3PL provider—all customers interviewed were involved in the 3PL
selection process for their firm. Additionally, an extensive series of interviews were held with Vice President level executives from a market leading 3PL provider to validate the attribute selection process.

This preliminary analysis identified 21 attributes in five general categories that reflect the common themes in the literature and were potentially relevant to the current evaluation and selection of a 3PL provider. Operational definitions were developed to capture the domain for each of the 21 attributes to ensure that each responding decision-maker understood the meaning of these attributes in exactly the same way. The specific definitions of these attributes are given in Table 1.

--- Insert Table 1 here ---

Experiment construction and procedures

The experiment required each individual to examine 21 sets of five attributes and indicate which issue of the five they considered “the feature that matters most to you” or “the feature that matters least to you” when selecting a logistics and transportation service provider. As noted earlier, rating scale bias is avoided using this approach because there is only one way to choose something as most (or least) important (Cohen and Neira 2003). Additionally, the decoy-enriched nature of the choice set design mitigates the attraction effect problem of choosing between two equally desirable (or undesirable) attributes (Hedgcock and Rao 2009). The 21 sets of five attributes were constructed using a 2^K fractional factorial design, which ensured that each attribute is orthogonal and appears an equal number of times (Burgess and Street 2003; Street and Burgess 2004). Also, the experimental design principles used to construct the best-worst instrument allow us to obtain more data from each respondent, which in turn, increases the effective sample size allowing us to obtain reliable estimates of demand preferences with smaller sample sizes. This feature of discrete choice methods is based on assumptions regarding the independence of individual choices and the distribution and variance of measurement errors (see Louviere et al., (2000) for a more detailed explanation). This enables
extraction of utility estimates for each attribute without needing every respondent to consider every possible pairwise combination of attributes.

Because each of the 21 attributes appeared a total of five times in the experiment, individual-level scales for each attribute can only range from +5 to −5. If a respondent chose an attribute as most important (best) four times and least important (worst) once, then the resulting best-worst score would be +3. This also highlights how our approach is scale equivalent. For any respondent, +5 is the maximum—achieved when an item is “best” in all appearances—and −5 is the minimum—achieved when an item is “worst” in all appearances. These scales are invariant to the decision maker’s response style and only vary with actual choices. An example of the first choice task is provided in Figure 1 (the other 20 sets are not presented due to space limitations). In addition to the experimental best-worst task, respondents were also asked questions about the characteristics of their firms and open-ended descriptions of the process by which they choose a 3PL. Key findings related to these questions are presented in Table 2.

--- Insert Figure 1 here ---

Sample

Ninety-six 3PL customers completed either an online or paper based version of the questionnaire, yielding a 38 percent response rate. The distribution of respondents covers most of the main segments of business activity: wholesale trade (23%), retail trade (16%), transportation and storage (15%), business services (13%), communication services (6%), manufacturing (8%), finance and insurance (8%), mining (6%), government administration and defence (5%). Firm size was also well distributed, with 46 percent small-to-medium sized firms (200 employees or less) and 54 percent large firms (more than 200 employees). The mean and median sizes for the entire sample were 20,417 and 250 employees respectively. The results indicate that our sample is slightly skewed towards larger firms. A review of the sample also indicates the majority of these firms are subsidiaries of multinational
companies and typically require multi-modal 3PL solutions comprising air, ocean, land transportation, inventory management and order fulfilment services.

ANALYSIS AND RESULTS

A variety of statistical tests were conducted based on a two-step approach that included a: (1) a detailed assessment of the ranked (best-worst) order for all 21 attributes, and (2) latent class segmentation analysis based on the top ten attributes only. The reduced set of attributes included in the segmentation analysis was intended to improve interpretation and reduce the confounding effects of non-significant attributes.

Analysis of the best-worst scores

We first calculated a best-worst frequency score for each of the 21 attributes according to the number of times the attribute was selected by respondents. The simple rank ordering process creates individual-level scales for each attribute that are easily comparable across the entire sample (see Table 2). The “best” column illustrates the frequency that the particular attribute will be ranked “best” or matters “most” to respondents from the attribute group. For example, the top-scoring attribute was reliable performance (selected 333 times), followed by delivery speed (selected 211 times), through to surcharge option (selected only 12 times).

--- Insert Table 2 here ---

The “worst” column shows the frequency with which respondents selected an attribute as the “least” important feature. This column is read in the opposite way to the “best” column—the attribute selected the least number of times as “least important”, was reliable performance (selected only twice). It is worth noting that the attributes in this column appear to be almost perfect reciprocals of the “best” column, implying consistency in the decisions (or selection of features as “most” or “least” important) made by the respondents.
Second, to determine the attribute rank ordering we calculated a “maximum difference” scale that is simply the difference between the “best” and “worst” columns (Marley and Louviere 2005). This provides a rank position for each attribute. To develop a ratio scale of “best” we calculated the square root (SQRT) of the “Best/Worst” based on the mathematical proofs that SQRT \(\sqrt{\frac{f(b)}{f(w)}} = \frac{f(b)}{\sqrt{k}} \), where \(k \) is a constant, provided by Marley and Louviere (2005). To support interpretation, Figure 2 plots the SQRT of the “best/worst” ratio as a graphical representation.

--- Insert Figure 2 here ---

The interpretation of Figure 2 requires some discussion because the scores are on a relative scale. This means that reliable performance (3.82) is four times more important than relationship orientation (0.93) and twelve times more important than surcharge option (0.33). Likewise, global network (1.04) is twice as important as top management team presence (0.47), billing service (0.54) and management reporting (0.53). Furthermore, the graphical representation clearly indicates a logarithmic line of best fit. The implication here is that as the tail of the curve flattens out our ability to determine meaningful differences disappear. For example, the range of scores among the last 11 attributes differs by only 0.6 indicating that respondents are more or less indifferent about these attributes.

Latent class segmentation results

The ratio scale measures of relative importance enable us to identify the top ten attributes for inclusion in the segmentation analysis. Focusing on this narrower set of the top attributes rather than the entire set of 21 attributes allows us to differentiate demand based on the most economically important items rather than simply items where differences might exist independent of the strength of their importance to the final choice. For example, in terms of cumulative impact, the top ten attributes account for 75% of the variation with the other 25% distributed across the remaining 11 attributes. By focusing on a more parsimonious set of important attributes, we are able to remove noise from the solution, which in
turn, reduces the number of resulting segments and increases the practical interpretability of the findings.

The first step used to formally identify the number of classes or segments was based on the information criteria. Information criteria scores are derived by assessing the degree of improvement in explanatory power adjusted by the degrees of freedom. The most common information criteria are the Akaike information criterion (AIC) and the Bayesian information criterion (BIC). The consistent Akaike information criterion (CAIC) and Akaike information criterion 3 (AIC3) provide more conservative estimates of fit because they take into account parsimony by adjusting the log likelihood goodness-of-fit values to account for the number of parameters in the model. The results shown in Table 3 can be interpreted as the lower the value, the better the model fit. In this regard, the “low value” is a relative measure of the information criterion in one model vis-à-vis the other models, where the lower the value, generally speaking, the more attractive the model. As there are numerous information criterion that can be evaluated, and all provide some specific limitation on the underlying log likelihood scores, the goal is to identify the model with improvement across the greatest number of criteria (Coltman et al. 2007).

--- Insert Table 3 here ---

The second step was to examine the classification statistics for the preferred model. These scores were examined to ensure that the model had an acceptable and comparatively low ratio of classification errors. Lastly, the estimates for each segment in the preferred model were plotted against one another to ensure that the segment solution represented actual differences rather than systematic variance.

Based on this three-step procedure, a two-segment solution was identified that best describes the data modeled here. A likelihood ratio test also demonstrated that this model provided a statistically significant improvement over the null model (-2LL=109.114, p<0.001). Table 4 presents specific
information on how the various attributes contributed to the two segments in the preferred model; and consequently, how this model differed to the null model. In particular, Table 4 presents two statistics of interest, mean best-worst scores and Wald statistics. The mean best-worst scores are based on the segment level conditional probabilities for each attribute and provide a general indication of importance. The Wald statistics reported are a measure of the extent to which the segment level means for each attribute differ from the grand means of the attribute across both segments.

--- Insert Table 4 here ---

Segment one includes those companies that place emphasis on attributes associated mainly with operational criteria: reliable performance (3.57), delivery speed (2.57), track and trace (1.96) and customer service recovery (1.60). The segment two model best represents those companies that place more emphasis on strategic criteria (Morash 2001): reliable performance (3.29), supply chain flexibility (2.05), professionalism (1.90), proactive innovation (1.51), and relationship orientation (0.53). With the exception of reliable performance, the Wald statistics confirm that the segment level means for each attribute differ significantly between the segment solutions.

In the case of reliable performance the high mean scores indicate that it is an important attribute in both segments. However, the lack of variance within this attribute inhibits its value as a discriminator between the segments. This implies that in terms of its impact on 3PL selection, reliable performance could be considered as an order qualifier—a necessary requirement to get a start at the bidding table. In other words, reliable performance reflects a common strategic priority attached to this attribute by all firms.

One of the most interesting aspects of the best-worst based segment solution is that it shows quite clearly which attributes respondents are willing to abandon earliest. Hence, the segments can not only be described based on the issues that customers favor, but also by the ones they are willing to abandon should they be forced to make a trade-off. For example, respondents in segment one clearly
favored reliable performance, delivery speed and service handling support but were most likely to abandon customer relationship orientation and proactive innovation. Similarly, respondents in segment two favored supply chain flexibility but were most willing to abandon track and trace, and service recovery when a choice had to be made. One possible reason for this is that customers in segment two have no desire to spend time and effort working through a track and trace system; rather, they expect the parcel will arrive as scheduled and, if there is a delay, then it is the 3PL’s role to notify them.

Figure 3 provides a graphical representation of the differences and similarities between the two segments. The class-specific means presented in Table 4 were re-scaled to lie within the 0–1 range. Scaling of these “0–1 means” was accomplished by subtracting the lowest observed value from the class-specific means and then dividing the results by the range, which is simply the difference between the highest and the lowest observed value. The figure serves two primary purposes. First, it demonstrates clearly that the two segments are conceptually different, satisfying the previously introduced requirement that the segments not be the result of systematic variance. Second, the figure provides for simple comparison of the relative attractiveness of each attribute for the two segments.

---Insert Figure 3 here---

Several covariates were introduced into the segmentation analysis to assist in characterising the domain of each of the segments. Covariates represent the differences between the segment classes where the covariate differences are not estimated simultaneously with the parameters in the model. They are post hoc descriptors of the segments and not a priori predictors of segment membership. The descriptive statistics considered include: (1) corporate status of the business unit; (2) locus of decision making control; (3) occupation of the respondent; (4) size of the company; and (5) type of exchange relationship preferred. Only corporate status, occupation and size accounted for significant differences across segments (see Table 5). The most interesting differences are between the different respondent
occupations and firm size where the table shows the percentage of respondents that make up each segment. For example, segment one has a high composition of logisticians (42%) while segment two is comprised mostly of C-level executives (30%). Conceptually, this result makes sense; logisticians prefer operational excellence while C-level executives prefer more strategic service-based attributes. However, this result was not reflected in the data on strategic orientation towards 3PLs; which provides support for our claims regarding the unreliable nature of rating-scale based data. Likewise, we see that 50 percent of firms in segment 1 are classified as medium (with 20 to 200 employees) and 75 percent of firms in segment 2 are classified as large (more than 200 employees). This suggests that the larger firms see strategic benefits in service-based attributes. Likewise, we see that customers in segment 2 were also more inclined to value collaboration over customers in segment 1. However, we need to exercise caution when interpreting these results due to the susceptibility of the Chi-square test to small sample sizes.

---Insert Table 5 here---

Finally, to demonstrate external validity, the two segments were evaluated against variables other than those used to generate the solution (Punj and Stewart 1983). Using the two-segment solution as the dependent variable, a discriminant analysis was conducted using two additional variables chosen to reflect the domain of the two segments. The first function was based on a preference for “dependable delivery”, which is closely aligned with the domain of segment one. The function correctly identified 81 percent of the cases within segment one. The second function was based on a preference for “customer responsiveness”, which is closely aligned to the domain of segment two. The function correctly identified 57 percent of the cases within segment two. These results provide some external validity to the segment solution and suggest that the two-segment solution is a useful guide to further our understanding of customer demand.

DISCUSSION
This study has explored new ground in proposing a method to identify the structural factors that contribute to genuine demand for a 3PL provider. The contribution is not only theoretically important but of immense practical relevance to 3PL providers desiring to better understand their customers, to 3PL customers wishing to better appreciate how they are positioned relative to their peers, and to industry stakeholders such as 4PLs who seek to develop service solutions to support both customers and providers. As shown by a Georgia Institute of Technology report, 76-79 percent of firms in Western Europe and 83 percent of firms in Asia-Pacific rely on 3PL providers (Langley, Dort, and Ross 2005), facts highlighting the economic importance of efficient express logistic services on in modern business.

Implications for research

Academically, the reduced form of DCA used in this study is theoretically sound. The efficacy of results reported is confirmed by the almost perfect reciprocity reported between the best and worst scores. Further, a growing body of research suggests that binary (“yes-no” or “best-worst” or “least-most”) responses are reliable estimates of customer demand (Auger et al. 2007). It is cognitively straightforward for respondents to indicate that “I prefer A” or “I do not like B” and “I think A is the most important attribute, and B is the least important attribute in the set of (A B C D E).”

Furthermore, the approach is scale free and avoids problems that commonly arise in traditional research where respondents are required to rate attributes according to a set scale (e.g., 1-5 or 1-7). The problem with traditional rank order and Likert scale methods is that the scores can mean different things to different respondents (Kampen and Swyngedouw 2000). Additionally, respondents often suffer from biases such as “yea-saying”, “nay-saying” and “middle of the road.” The best-worst scaling procedure used in this study forces the respondent to make a choice that provides data that is scale free and less susceptible to respondent biases.
The study also sheds new light on the relative importance of the various customer needs or what Theodore Levitt (1960) defines as the “augmented” product. This timeless contribution has forced managers to think more broadly and attribute variation in business success to unique combinations of tangible and intangible features. In segment one; the augmented product is based heavily on operational efficiency. Transactional efficiency is front of mind and any attempt to convert customers towards a more collaborative world would not only be unnecessary but create a negative effect. Alternatively, there are equal numbers of customers in segment two, where a relational approach is dominant. These customers display a preference for an inclusive arrangement that values information flows, professionalism and long-term relationships. This finding is particularly interesting in the light of the work of Stank and colleagues (Stank et al. 1999, 2003) who have extensively examined the importance of operational and relational capabilities to firm performance. While our research finds general support for the existence of two distinct demand structures impacting on choice of provider, our research extends this earlier work in two important ways. First, we examine the interaction between operational and relational capabilities, something that Zhao and Stank 2003 acknowledge has been lacking in prior studies on supplier selection. Second, in focusing on the service delivery components that support the development and delivery operational and relational capabilities, we also respond to a call by Stank and colleagues for research that provides different operationalizations of the constructs. We believe that our research presents the first attempt at moving from a reflective measurement model to a formative measurement model (Coltman et al 2008).

The two-segment solution seen arising from our data is important when one considers that scholarly work on the structural characteristics of 3PL has emphasised a relationship marketing perspective. Such an approach links relational attributes of 3PL arrangements to firm outcomes (e.g., Marasco 2008; Stank et al. 2001) and relies on operations management and optimisation models to maximise this connection. For example, separate demand structures imply that models based on assumptions of unitary demand or a “pooling equilibrium”—one in which all customers are treated the
same—must be viewed cautiously, both for theoretical and practical reasons. Normatively, a more efficient approach would be to take into account the two types of demand reported in this study or to consider characterizing heterogeneous customer demand using methods presented here in the first instance. Based on our data, a natural “separating equilibrium” should arise as the attributes that segment one demands differ significantly from those demanded by segment two. The implication is that providers who meet the two demands more specifically will get higher sales simply because customers will gravitate to the 3PL provider that fits best with what they want.

Implications for practice

From a practitioner standpoint the strategic challenge for 3PL service providers is that they must not just determine what their customers want but must also be able to translate the implications of these demands across their own functional boundaries to maximise customer value. This study directly assists practitioners by providing the rationale for management decisions about strategic, operational and tactical responses. This is important given that research in business settings indicates customers are not motivated strictly by the attributes of the products/services their suppliers provide (Knemeyer and Murphy 2005).

Our results also provide a justification for the reverse engineering of 3PL business processes to bring them more in line with the requirements of the market. Operationally, this is valuable to the manager who may be bombarded by long lists of attributes that they believe create customer value without any effective guide as to the relative value (or validity) of this ordering (Anderson and Narus 1998). Indeed, one of the most important contributions in this paper is that it addresses the issue of priority and where best to invest resources and capability development. Any scan of the popular press quickly indicates that the top few attributes identified in this paper are widely understood and well developed by the leading companies in the 3PL market. However, the nature of competitive advantage implies that one needs capabilities that are not enjoyed by key competitors (Anderson, Narus, and Rossum 2006). The present study directs attention towards those capabilities that have traditionally
been less black and white (e.g., service recovery, flexibility, professionalism, and innovation), but nevertheless may be the key to success or failure.

Lastly, from a profit maximisation standpoint most optimisation models focus on the impact of demand pooling on expected profits (Eppen 1979; Kim, Yang, and Kim 2008). The justification for this is based on: (1) economies of scale, and (2) reduced demand fluctuations whenever sufficient firm size exists. As noted earlier, our results imply that a natural separating equilibrium is possible should a company choose to accommodate the differing demands. At the level of the individual service provider, this does not mean that the decision to treat customer segments differently means that one needs to give up scale advantages obtained by aggregating customer demand. It is well understood in the operations management literature that firms comprise multiple supply chains and, therefore, one can organise different parts of the supply chain in different ways (Rabinovich and Bailey 2004).

Limitations and future work

In common with all research, this paper has several limitations that confine the generalizability of our results. First, the range of attributes examined was restricted to a set of 21 only. Dickson (2006) has suggested that additional attributes influence the vendor selection process and future research may benefit by investigating attributes not considered in this study. Additionally, our use of “parity price” was deliberately designed to minimise the impact of price. The reasoning was based on a common agreement in the literature regarding the high correlation between price and customer demand. What is interesting about this study is that it reveals the 11 attributes that are preferable to price when price matches (or is very close to) that of the competition.

Second, segmentation models are, at best, workable approximations of reality and one should be mindful of their limitations. One cannot claim with complete certainty that segments exist or that the distribution of unobserved heterogeneity can be captured (i.e., that it is discrete rather than continuous). Like any segmentation or clustering technique, the appropriateness of latent class models
is determined first by theory and second by the ability to find meaningful and significant differences in
the population at hand. Further research is required to examine the extent that these results can be
replicated and the extent to which a strategy based on such segmentation was superior to one based on
a singular model of customer demand.

Thirdly, our study suffers from sample based limitations related to the use of the client list of a
single 3PL provider, and that are associated with all cross-sectional survey-based research. As such,
caution needs to be exercised when attempting to generalize beyond the present sample. Although
prior research demonstrates that 3PL customers tend to utilize multiple providers (Langley et al. 2005),
the use of convenience sampling could have introduced systematic error that would influence the
results. In this regard, the generalizability of the two-segment solution would be improved by sampling
randomly from the population of customers that utilize second- and third-tier 3PL providers. Further,
the generalizability of the findings would also benefit from a longitudinal examination of changes over
time, and from identifying a broader set of secondary data that could be used to describe the resulting
segments. Although the attributes used in this study are specific to tier one 3PL providers, we suggest
that future research should expand the range and number of covariates to assist with interpretation and
generalization to the broader 3PL population.

Lastly, our study assumes that all respondents are willing to purchase services from a 3PL
provider. In other words, we did not provide an opt-out option to capture unconditional demand where
a respondent may desire to stay with some status quo and “not demand or require” the services of a
3PL provider. The next logical stage is to address demand as a function of actual choice of a 3PL; this
should also include the choice to opt-out of an option.

CONCLUSION

We started this study with a relatively simple objective. First, we sought to identify the attributes that
are most and least important to the customers of a 3PL service provider. Using a theoretically based
best-worst methodology we calculate the relative importance of 21 attributes on a common scale. Second, we sought to identify the extent to which these attribute preferences are segment specific. Latent class segmentation allowed us to capture the heterogeneity amongst 3PL customers and generate a picture of preference structures for operational excellence and relationship orientations. The normative implications are that firms can improve service value and develop stronger relationships with customers when they align their service offerings with the right customer preference segment.

ACKNOWLEDGMENTS

This research has been supported by a linkage program grant from the Australian Research Council (ARC), DHL Asia-Pacific and the Institute for Business and Social Research (IIBSoR) at the University of Wollongong. The views expressed here are solely those of the authors who have been listed alphabetically. The authors wish to thank Professor Eddie Anderson, Dr John Gattorna and Stuart Whiting for their contribution to discussions and the direction of the paper.

ABOUT THE AUTHORS

Tim R. Coltman (Ph.D in Strategic Management from the Australian Graduate School of Management) is currently the Director, Centre for Business Services Science and Deputy Director, Institute for Innovation in Business and Social Research at the University of Wollongong, Australia. He has published in journals such as California Management Review, Journal of Information Technology, Journal of Business Research, Interfaces, European Management Journal, Supply Chain Management and the Journal of the Academy of Marketing Science.

Timothy M. Devinney (Ph.D in Economics from the University of Chicago) is Professor of Strategy at the University of Technology, Sydney. His research interests are in the areas of international business, social consumerism and corporate strategy. He has published more than 80 articles in leading international journals such as Management Science, Journal of Business, Academy of Management Review, Journal of International Business Studies, Strategic Management Journal, Journal of Marketing and Organisation Science.
Byron W. Keating (Ph.D in Service Management from the University of Newcastle) is Associate Professor of Service Management at the University of Canberra. His research interests focus on service science and modeling complex decisions in service supply chains. He has published in *Proceedings of the IEEE, Journal of the Academy of Marketing Science, Electronic Markets, Supply Chain Management: An International Journal* and *Managing Service Quality.*
FIGURE 1

EXAMPLE BEST-WORST TASK

<table>
<thead>
<tr>
<th>Question Number</th>
<th>Which feature matters LEAST to you? (Select ONLY ONE)</th>
<th>Sets of features for you to consider</th>
<th>Which feature matters MOST to you? (Select ONLY ONE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>o Professionalism</td>
<td>o Global Network</td>
<td>o</td>
</tr>
<tr>
<td></td>
<td>o</td>
<td>o Management Reporting</td>
<td>o</td>
</tr>
<tr>
<td></td>
<td>o</td>
<td>o Surcharge Option Contract</td>
<td>o</td>
</tr>
<tr>
<td></td>
<td>o</td>
<td>o Top Management Team Availability</td>
<td>o</td>
</tr>
</tbody>
</table>
FIGURE 2
RATIO SCALE OF RELATIVE ATTRIBUTE IMPORTANCE
FIGURE 3
DISTRIBUTION OF RESPONDENTS BY SEGMENT
<table>
<thead>
<tr>
<th>Attribute</th>
<th>Definition</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Account Representative Presence</td>
<td>A high presence account representative would call you, make a presentation, or address your concerns many times a month.</td>
<td>Account management</td>
</tr>
<tr>
<td>Billing Service</td>
<td>Accuracy, flexibility and currency of billing service.</td>
<td>Account management</td>
</tr>
<tr>
<td>Brand</td>
<td>Reflects overall competence that the supplier will deliver. In a supply chain context we can distinguish between a market leader and a new player in the market.</td>
<td>External factors</td>
</tr>
<tr>
<td>Culture</td>
<td>Includes the unwritten rules that guide appropriate “norms” of behaviour. In other words, it is the “way we do things around here” and can either be similar to your own company or not.</td>
<td>External factors</td>
</tr>
<tr>
<td>Delivery Speed</td>
<td>Amount of time from pickup to delivery.</td>
<td>Performance</td>
</tr>
<tr>
<td>Global Network</td>
<td>Whether a supplier is fully represented at a global level and can reliably deliver to remote locations.</td>
<td>Internal factors</td>
</tr>
<tr>
<td>Management Reporting</td>
<td>Report customizability, range and flexibility. Highly customised reports can be delivered at a frequency determined by the customer.</td>
<td>Account management</td>
</tr>
<tr>
<td>Parity Price</td>
<td>This is what the customer pays for the service or product. A parity price is one that matches (or is very close to) that of the competition.</td>
<td>Customer charges</td>
</tr>
<tr>
<td>Proactive Innovation</td>
<td>Proactive activity aimed at providing new solutions to improve the customers business and address any potential problems and challenges.</td>
<td>Internal factors</td>
</tr>
<tr>
<td>Professionalism</td>
<td>Employees exhibit sound knowledge of products and services in the industry and display punctuality and courtesy in the way they interact and present to the customer.</td>
<td>Internal factors</td>
</tr>
<tr>
<td>Quality Certification</td>
<td>Such as ISO certification, TAPA (Technology Asset Protection Association) and Corrective Action Process etc. This certification would also cover associated third parties.</td>
<td>Internal factors</td>
</tr>
<tr>
<td>Relationship Orientation</td>
<td>Characterised by sharing of information and trust in the exchange partner.</td>
<td>Internal factors</td>
</tr>
<tr>
<td>Reliable Performance</td>
<td>Consistent “on time” delivery without loss or damage of shipment.</td>
<td>Performance</td>
</tr>
<tr>
<td>Category</td>
<td>Description</td>
<td>Factor</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---</td>
<td>--------------</td>
</tr>
<tr>
<td>Risk Management</td>
<td>This relates to the security of supply chain systems. It could include, for example correct levels of insurance for the company and third parties, capability to ensure packages are as stated using x-ray equipment, or other audit trail systems.</td>
<td>Internal factors</td>
</tr>
<tr>
<td>Service Handling & Support</td>
<td>Prompt and effective handling of customer requests and questions.</td>
<td>Internal factors</td>
</tr>
<tr>
<td>Service Recovery</td>
<td>Prompt and empathetic recovery and resolution of errors or problems concerning customers.</td>
<td>Internal factors</td>
</tr>
<tr>
<td>Supply Chain Capacity</td>
<td>The ability to cope with significant changes in volumes e.g., demand surges and deliver through multi-modal transport services including: international express and domestic, by air; ocean; and land.</td>
<td>Performance</td>
</tr>
<tr>
<td>Supply Chain Flexibility</td>
<td>Ability to meet unanticipated customer needs e.g., conduct special pickups, seasonal warehousing.</td>
<td>Performance</td>
</tr>
<tr>
<td>Surcharge Option in Contract</td>
<td>The contract includes the right to add surcharges due to unanticipated costs e.g., fuel, unusual fluctuations in levels of currency exchange rate, security surcharges.</td>
<td>Customer charges</td>
</tr>
<tr>
<td>Track & Trace</td>
<td>Transparency and “up to the minute” data about the location of shipments end-to-end.</td>
<td>Account management</td>
</tr>
<tr>
<td>Top Management Team Availability</td>
<td>The frequency and quality of involvement by the “top management team” with your management team during the exchange relationship.</td>
<td>Account management</td>
</tr>
<tr>
<td>Attribute Name</td>
<td>“Best” (freq)</td>
<td>“Worst” (freq)</td>
</tr>
<tr>
<td>------------------------------</td>
<td>---------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Reliable performance</td>
<td>333</td>
<td>2</td>
</tr>
<tr>
<td>Delivery speed</td>
<td>211</td>
<td>17</td>
</tr>
<tr>
<td>Professionalism</td>
<td>138</td>
<td>12</td>
</tr>
<tr>
<td>Service support</td>
<td>151</td>
<td>24</td>
</tr>
<tr>
<td>Supply chain flexibility</td>
<td>162</td>
<td>33</td>
</tr>
<tr>
<td>Track & Trace</td>
<td>143</td>
<td>36</td>
</tr>
<tr>
<td>Service recovery</td>
<td>97</td>
<td>32</td>
</tr>
<tr>
<td>Supply chain capacity</td>
<td>88</td>
<td>53</td>
</tr>
<tr>
<td>Proactive innovation</td>
<td>119</td>
<td>75</td>
</tr>
<tr>
<td>Relationship orientation</td>
<td>73</td>
<td>66</td>
</tr>
<tr>
<td>Global network</td>
<td>80</td>
<td>95</td>
</tr>
<tr>
<td>Parity price</td>
<td>77</td>
<td>114</td>
</tr>
<tr>
<td>Risk management</td>
<td>42</td>
<td>67</td>
</tr>
<tr>
<td>Account representative</td>
<td>47</td>
<td>91</td>
</tr>
<tr>
<td>Culture</td>
<td>45</td>
<td>108</td>
</tr>
<tr>
<td>Billing service</td>
<td>33</td>
<td>138</td>
</tr>
<tr>
<td>Management reporting</td>
<td>34</td>
<td>153</td>
</tr>
<tr>
<td>Top mgmt team availability</td>
<td>30</td>
<td>183</td>
</tr>
<tr>
<td>Quality certification</td>
<td>22</td>
<td>171</td>
</tr>
<tr>
<td>Brand</td>
<td>14</td>
<td>236</td>
</tr>
<tr>
<td>Surcharge option</td>
<td>12</td>
<td>245</td>
</tr>
</tbody>
</table>
TABLE 3
MEASURES OF MODEL FIT AND PARSIMONY BY SEGMENT

<table>
<thead>
<tr>
<th>Number of Segments</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Likelihood</td>
<td>–1790</td>
<td>–1740</td>
<td>–1728</td>
<td>–1713</td>
</tr>
<tr>
<td>AIC</td>
<td>3933</td>
<td>3881</td>
<td>3909</td>
<td>3928</td>
</tr>
<tr>
<td>BIC</td>
<td>3735</td>
<td>3656</td>
<td>3655</td>
<td>3646</td>
</tr>
<tr>
<td>AIC3</td>
<td>3812</td>
<td>3744</td>
<td>3754</td>
<td>3756</td>
</tr>
<tr>
<td>CAIC</td>
<td>4010</td>
<td>3969</td>
<td>4008</td>
<td>4038</td>
</tr>
<tr>
<td>Npar</td>
<td>77</td>
<td>88</td>
<td>99</td>
<td>110</td>
</tr>
<tr>
<td>Class Error</td>
<td>0.00</td>
<td>0.06</td>
<td>0.07</td>
<td>0.06</td>
</tr>
</tbody>
</table>

Bold items indicates best fit (i.e., minimum score).
<table>
<thead>
<tr>
<th>Segment Attributes</th>
<th>Null Model (n=96)</th>
<th>Segment 1 (n=50)</th>
<th>Segment 2 (n=46)</th>
<th>Wald Statistic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reliable performance</td>
<td>3.45</td>
<td>3.57</td>
<td>3.29</td>
<td>0.69</td>
</tr>
<tr>
<td>Delivery speed</td>
<td>2.02</td>
<td>2.57</td>
<td>1.31</td>
<td>7.75***</td>
</tr>
<tr>
<td>Service handling & support</td>
<td>1.32</td>
<td>2.00</td>
<td>0.45</td>
<td>13.37***</td>
</tr>
<tr>
<td>Track and trace</td>
<td>1.11</td>
<td>1.96</td>
<td>0.04</td>
<td>10.35***</td>
</tr>
<tr>
<td>Service recovery</td>
<td>0.68</td>
<td>1.60</td>
<td>–0.50</td>
<td>8.25***</td>
</tr>
<tr>
<td>Supply chain flexibility</td>
<td>1.34</td>
<td>0.79</td>
<td>2.05</td>
<td>6.82***</td>
</tr>
<tr>
<td>Professionalism</td>
<td>1.31</td>
<td>0.85</td>
<td>1.90</td>
<td>7.57***</td>
</tr>
<tr>
<td>Proactive innovation</td>
<td>0.46</td>
<td>–0.36</td>
<td>1.51</td>
<td>11.66***</td>
</tr>
<tr>
<td>Supply chain capacity</td>
<td>0.36</td>
<td>–0.19</td>
<td>1.07</td>
<td>7.94***</td>
</tr>
<tr>
<td>Relationship orientation</td>
<td>–0.16</td>
<td>–0.69</td>
<td>0.53</td>
<td>5.75***</td>
</tr>
</tbody>
</table>

*** p<0.001 ** p<0.01 * p<0.05.
TABLE 5

SEGMENT DIFFERENCES BY FIRM AND RESPONDENT CHARACTERISTICS

<table>
<thead>
<tr>
<th>Corporate status</th>
<th>Segment</th>
<th>1</th>
<th>2</th>
<th>χ²</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Headquarters for a multi-national enterprise</td>
<td>0.22</td>
<td>0.19</td>
<td>0.32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Part of a larger multi-national (i.e., subsidiary)</td>
<td>0.58</td>
<td>0.56</td>
<td>1.43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Local independent company</td>
<td>0.15</td>
<td>0.07</td>
<td>0.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Government entity</td>
<td>0.05</td>
<td>0.17</td>
<td>3.58*</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Occupation of respondent</th>
<th>Segment</th>
<th>1</th>
<th>2</th>
<th>χ²</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corporate/general manager</td>
<td>0.15</td>
<td>0.30</td>
<td>3.99*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Financial/operations manager</td>
<td>0.18</td>
<td>0.21</td>
<td>0.99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chief customer/service/support manager</td>
<td>0.06</td>
<td>0.03</td>
<td>0.88</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marketing/sales manager</td>
<td>0.09</td>
<td>0.04</td>
<td>2.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Logistics/transport/procurement manager</td>
<td>0.42</td>
<td>0.26</td>
<td>4.50*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>0.08</td>
<td>0.16</td>
<td>0.65</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Size</th>
<th>Segment</th>
<th>1</th>
<th>2</th>
<th>χ²</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small business (less than 20 staff)</td>
<td>0.10</td>
<td>0.06</td>
<td>1.26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medium (20 to 200 staff)</td>
<td>0.50</td>
<td>0.23</td>
<td>9.46**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Large (more than 200 staff)</td>
<td>0.40</td>
<td>0.72</td>
<td>9.34**</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*** p<0.001 ** p<0.01 * p<0.05. *Data collected using 5-point Likert scale (critical value 11.13, 4 df). **Data collected using 100-point Ipsative scale (critical value 27.49, 15 df).
APPENDIX A: Explication of the best-worst scaling method

Best–worst scaling (BWS) is a theory for how people make decisions about the “best” and “worst” attributes from a group of three or more attributes. Based on Thurstone’s (1927) random utility theory for paired comparison judgements, BWS is used to find the position of these attributes on some underlying latent dimension such as degree of importance, degree of interest etc. The conditional logit model is used to estimate the location of each attribute on the underlying latent dimension.

The probability that respondent i selects alternative m as “best” in subset j is given attribute values β_{ij}, choice set characteristics δ_{ij}, and the scale factor s_{ij}. This probability is denoted by $P(y_{ij} = m \mid \beta_{ij}, \delta_{ij}, s_{ij})$. Within this model, attribute values are characteristics of the alternatives; that is, attribute m will have different values to attribute m'. While choice set characteristics are common across all respondents (i.e., balanced), scale factors on the other hand, allow the utilities to be scaled differently for ‘best’ and ‘worst’ choices. The conditional logit model for the response probabilities associated with the first-choice, or “best” only model, has the form:

$$P(y_{ij}) = \frac{\exp(s_{ij} \cdot \eta_{ij})}{\sum_{j} \exp(s_{ij} \cdot \eta_{ij})}$$

where η_{ij} is the systematic component of the utility associated with attribute m for case i in subset j. The term η_{ij} is a linear function of the attribute effects β_{ij} and the predictor effects δ_{ij}. The utility is also affected by an error component ε_{ij}, but this is assumed to be identically and independently distributed according to some Type 1 random function for identification purposes.
REFERENCES

REFERENCES TO OTHER WORKS

