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Abstract 

A general equilibrium model has been constructed in a stochastic endogenous growth economy driven by an Itô-Lévy 

diffusion process. The minimum time to “economic maturity” for an underdeveloped economy has been computed both in 

the preference manifold of  the modified Ramsey fashion and in that of  the modified Radner fashion with its support, 

i.e., fiscal policies and savings strategy, endogenously determined. Furthermore, the effects of  different information 

structures to the endogenous time have been thoroughly investigated, and local sensitivity analyses of  optimal 

consumption per capita with respect to the initial level of  capital stock per capita have been smoothly incorporated into 

the current macroeconomic model. 
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For any underdeveloped economy, like China, both the government and the people are motivated to 

choose appropriate fiscal policies and optimal investment strategies, respectively, to make the 

economy reach its maturity level1 as quickly as possible. The state of  “economic maturity” can be, in 

the category of  macroeconomics, translated into the well-known von Neumann equilibrium (see, 

Neumann, 1945-1946; Kemeny et al, 1956; Howe, 1960; Yano, 1998), “turnpike”2 (e.g., Hicks, 1961; 

Radner, 1961; Morishima, 1961; McKenzie, 1963a, 1963b; Atsumi, 1965; Cass, 1966; and Gale, 1967), 

the Golden Age or modified Golden Age (e.g., Champernowne, 1962; Pearce, 1962; Phelps, 1961, 

1962, 1965; Samuelson, 1965). And in turn, provided the existence of  the von Neumann path or the 

“turnpike” of  the economy, the problem facing us, including the government and the representative 

agent, is to choose appropriate fiscal policies and savings strategy, respectively, to effectively support 

the convergence of  the economical system, thereby implying the economy will spend almost all time 

staying at least in the neighborhood of  the von Neumann equilibrium or the “turnpike” (see, Cass, 

1966; Yano, 1984b; McKenzie (1998) and references therein), which indeed represents the maximal 

and sustainable terminal path level (e.g., Kurz, 1965; McKenzie, 1976; Dai, 2012) of  the 

corresponding economy in the present model. 

And the current paper is devoted to confirm the existence of  the unique von Neumann path or 

the well-known “turnpike” of  an aggregate endogenous growth economy equipped with AK 

production technology (e.g., Barro, 1990; Rebelo, 1991; Turnovsky, 2000; Aghion, 2004), in the 

background of  a general equilibrium framework. Nonetheless, the major goal of  this paper is to 

explicitly compute the minimum time needed to reach the “economic maturity” for an underdeveloped 

economy and in an uncertainty environment. Moreover, it’s easy to notice that our paper is a natural 

extension of  the seminal and interesting paper of  Kurz (1965)3, where optimal paths of  capital 

accumulation under the minimum time objective are thoroughly investigated. It is, nevertheless, 

worth emphasizing that our results are based upon the general equilibrium framework and the 

minimum time is endogenously determined provided the welfare of  the representative agent is 

maximized4. 

The advantage of  the method used here is that the endogenous time5 or the minimum time to 

“economic maturity” can be explicitly computed6 in some conditions, e.g., when the preference or the 

criterion of  the modified Radner fashion (1961) is employed. Noting that the minimum time is 

endogenously determined, even applying economic intuitions, by the optimal savings strategy of  the 

representative agent and the optimal taxation policies of  the government, which are thoroughly 

explored under different information distributions or information structures, thereby implying that 

                                                        
1 Undoubtedly, it should reflect not only high speed of  economic growth but also high quality of  economic development. More about 
this topic of  growth and development, one can refer to Solow (2003). 
2 Related preferences see, Inada, 1964; Morishima, 1965; Nikaidô, 1964; Tsukui, 1966, 1967; McKenzie, 1982; Winter, 1967; Coles, 
1985; Yano, 1984a, 1985; Bewley, 1982; Gantz, 1980; Drandakis, 1966; Araujo and Scheinkman, 1977; and Joshi, 1997; Dai, 2012. 
3 It is regarded as a continuation of  Srinivasan's work (1962) in a certain sense. 
4 In other words, pursue of  speed of  economic growth is based upon the quality of  economic development. 
5 In the current paper, we will take no difference between “the endogenous time” and “the minimum time to ‘economic maturity’”. 
6 That is, a simple formula is supplied for the first time. And also, it is easy to see that the maximal terminal path level of  capital stock 
per capita is utility-optimal and simultaneously determined with the endogenous time in the present model. 
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the endogenous time can be completely characterized and comparatively studied in different 

information structures, which obviously throws new insights into our understanding of  the 

minimum time needed to reach “economic maturity” for an underdeveloped economy. 

The current paper proceeds as follows. Section 2 introduces the general model and the basic 

idea behind the macroeconomic model. Section 3 computes the endogenous time in preference 

manifold one. Section 4 computes the endogenous time in preference manifold two. Section 5 

analyzes the effects of  different information structures to the corresponding endogenous time. 

Section 6 gives the local sensitivity analyses of  the optimal consumption strategy, which supports the 

existence of  the endogenous time in section 3, with respect to the initial level of  capital stock per 

capita. There is a brief  concluding section. All proofs, unless otherwise noted in the text, appear in 

the Appendix. 

2. The General Model 

In current section, we will introduce two types of  preference manifolds, i.e., the modified Radner 

fashion and the modified Ramsey fashion, that are widely used in economics, and also the 

computation algorithm of  the minimum time needed to economic maturity is presented. And we just 

introduce the basic and general modeling idea in the present section while leaving the computation 

details to the following sections. 

2.1. Two Types of  Preference Manifolds 

In order to determine the minimum time needed to reach the so-called von Neumann path or 

“economic maturity” for an underdeveloped economy, the following two kinds of  criterions are 

naturally and indeed comparatively investigated. 

The first one has been widely employed to prove the well-known turnpike theorems, and noting 

that it is pioneered by Radner (1961), we call it the Radner fashion. However, it is worth noting that the 

discount factor is naturally incorporated into the criterion while it is excluded in the seminal paper of  

Radner, that is, we employ the modified Radner fashion in the current paper. Formally, given a probability 

space ( , , )W  , similar to Dai (2012), the corresponding problem can be written as, 

( )sup ( )e u c
rt

t
t

t-
{ <¥}

Î

é ùê úë û


1 , 
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where   denotes admissible stopping times, 0 1r< <  denotes subjective discount factor, c  

denotes consumption per capita, :u +    is a strictly concave instantaneous utility function, 

and t{ <¥}1  represents the indicator function of  set ; ( )w t w{ ÎW <¥} . 

The second one has been widely used in studying aggregate economic growth and optimal fiscal 

policies. And the idea is certainly due to Ramsey (1928), who studied endogenous saving with this 

kind of  criterion. As a consequence, we call it the Ramsey fashion. As usual, and to meet the regular 

requirements, only finite time horizon, endogenously determined, and discounted sum are discussed 

in the current paper, i.e., only the modified Ramsey fashion is considered. Formally, based on the same 

stochastic basis ( , , )W  , the corresponding problem is expressed as, 

( ) ( )
0

sup ( ) ( )t
e u c t dt e u y
t

r rt

t
t

t- -
{ <¥}

Î

é ù
+ê úê úë ûò


1 , 

where y denotes national income per capita and other notations are the same as in the modified Radner 

fashion. And it is worth emphasizing that the modified Ramsey fashion internally requires perfect foresight 

of  the representative agent. 

REMARK. It is easy to see from our specification that there is a natural one to one 

correspondence between the optimal stopping time and the minimum time needed to “economic 

maturity” for any underdeveloped economy. Accordingly, this equivalence reflects the fact that the 

above two kinds of  preference manifolds, i.e., the modified Radner fashion and the modified Ramsey fashion, 

imply different standards characterizing the corresponding state of  “economic maturity”. Notice that 

the modified Radner fashion reflects some psychological effects that would be called as “the peak 

preference”7 or its natural correspondence “the Ratchet effect” in traditional consumption theory. 

Consequently, we may claim that the modified Radner fashion is much stronger than the the modified 

Ramsey fashion in certain sense. In other words, the modified Radner fashion requires much higher level of  

standard about “economic maturity”. Therefore, the “turnpike” of  the modified Radner fashion should 

be located above that of  the modified Ramsey fashion for any given economy. 

2.2. Computation Algorithm of  the Endogenous Time 

As usual, the environment consists of  the firm, the representative agent and the government. And 

                                                        
7 That is, the representative agent pursues the highest level of  utility or welfare of  any single period. And it is just the highest level of  
the welfare that represents the corresponding state of  “economic maturity” in the current model. 
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the firm is, without loss of  any generality, assumed to be competitive. There are alternative goals for 

the government, that is, government is either motivated to choose taxation policies so as to maximize 

the welfare of  the representative agent or directly to minimize the time to “economic maturity”. For 

the representative agent, she will first determines the minimum time to “economic maturity” given 

the taxation policies of  the government, then to choose optimal savings strategy based upon the 

objective of  discounted sum of  future instantaneous utility in finite time horizon provided the 

taxation policies of  the government. That is to say, the order of  action is like this: the government 

moves first to choose optimal taxation policies, then the representative agent determines the 

minimum time to “economic maturity” or the time horizon based upon the optimal taxation policies, 

and finally, the representative agent chooses optimal savings strategy conditional on the optimal 

taxation policies and the endogenous time horizon representing the process leading to “economic 

maturity”. 

Therefore, based on the backward induction rationality principle in computing sub-game 

perfect Nash equilibrium in dynamic game theories, we introduce the following computation 

algorithm of  the current model, 

STEP 1: The representative agent chooses optimal savings strategy given the taxation policies and the finite time 

horizon of  the program. 

STEP 2: Based on the results of  Step 1, the representative agent will determine the minimum time to reach 

“economic maturity” with the criterions introduced in section 2.1. 

STEP 3a: If  the goal of  the government is to choose taxation policies so as to maximize the welfare of  the 

representative agent, thus based upon the results of  Step 1 and Step 2, the optimal tax rates are derived. 

STEP 3b: If  the goal of  the government is to choose taxation policies in order to directly minimize the time to 

“economic maturity” derived in Step 2, then the corresponding optimal taxation policies are endogenously determined 

and hence the endogenous time is completely characterized with these optimal tax rates. 

STEP 4: The step is necessary only when Step 3a is chosen. Substituting the optimal tax rates into the 

endogenous time derived in Step 2, and so the minimum time to “economic maturity” is finally and completely 

determined. 

3. Preference Manifold One 

In this section, our discussion will be based upon the preference manifold of  the modified Radner 

fashion introduced in the previous section. And we will bring the basic framework of  stochastic 

dynamic general equilibrium economy, optimal savings rate as well as optimal taxation rates are 

derived with the natural purpose of  supporting the minimum time needed to economic maturity for 

any underdeveloped economies. 
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3.1. Firm 

In the current paper, we introduce the following Cobb-Douglas type production function8, 

1( ) ( ) ( )
p

Y t G t K ta a-= , 0 1a< <                                              (1) 

where K  denotes the capital stock and 
p

G  represents the flow of  services from government 

spending9 on the economy’s infrastructure. Particularly, suppose that these services are not subject to 

congestion so that 
p

G  is a pure public good. Further to put 
p p

G g Y= 10, that is government will 

claim a fraction, 
pg , of  aggregate output Y , for expenditure on infrastructure. And, in particular, 

to make things easier and without loss of  any generality, 
p

g  will be assumed to be exogenously 

given11 with 0 1
p

g< <  throughout the paper, then the production function in (1) can be rewritten 

as, 

1( ) ( )
p

Y t g K ta a-= , or 1( ) ( )
p

y t g k ta a-=                                       (1’) 

which reveals that the Cobb-Douglas type function given in (1) rather exhibits AK production 

technology, which indeed enssures ongoing economic growth. Therefore, equilibrium wage rate is 

equal to zero and equilibrium return to capital reads as follows, 

1
k p

r g
a a-= ,                                                              (2) 

where the depreciation rate is assumed to be zero for the sake of  simplicity. 

                                                        
8 For simplicity’s sake, endogenous labor supply has been excluded in the present paper. However, it is easy to show that endogenous 
labor supply can be naturally incorporated into the current model, thereby inducing a much more complicated model. 
9 Gong and Zou (2002) set up a theoretical model linking the growth rate of  the economy to the growth rate and volatility of  
different government expenditures. On a theoretical basis, they found that volatility in government spending can be positively or 
negatively associated with economic growth depending on the intertemporal elasticity in consumption. And it follows from our 
specification of  the government spending that the volatility is endogenously determined by the unbalanced macro-economy as a whole. 
That is to say, the volatility of  government spending is not exogenously given but internally and closely linked to the whole economic 
body. And we argue from the specification that government in reality is indeed deeply involved with the whole economy and therefore 
it itself  will unavoidably be affected by the macroeconomic activities. One may certainly exogenously add volatility to the government 
spending, which however will be strongly disagreed by the theory of  real business cycle (see, Kydland and Prescott, 1982; Long and 
Plosser, 1983). 
10 This specification follows from Turnovsky (2000). 
11 This in some extent follows from Kydland and Prescott (1977)’s analyses that policymakers should follow rules rather than have 
discretion. 
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3.2. Representative Agent 

It is assumed that the economy consists of  ( )L t  identical individuals at time t , each of  whom 

possesses perfect foresight. Suppose that 0( )
t T

B t £ £{ }  is a standard Brownian motion defined on the 

following filtered probability space ( ) ( ) ( ) ( )
0( , , , )B B B B

t t T£ £W { }   with ( )
0

B

t t T£ £{ } the ( )B -  

augmented filtration generated by 0( )
t T

B t £ £{ }  with ( ) ( )B B

T=  . Furthermore, we assume that a 

Poisson random measure ( , )N dt dz  associated with a Lévy process is defined on the stochastic 

basis 
   ( ) ( ) ( ) ( )

0( , , , )N N N N

t t T£ £W { }   . And we denote by ( , ) ( , ) ( )N dt dz N dt dz dz dtn= -  the 

compensated Poisson random measure associated with a Lévy process 
00

( ) ( , )
t

t zN ds dzh ò ò  

with jump measure ( , )N dt dz  and Lévy measure ( ) ([0,1], )O N On = [ ]  for 0( )OÎ B , i.e., O  

is a Borel set with its closure 0OÌ , where 0 -{0}   . In what follows, our reference 

stochastic basis will be 0( , , , )t t T£ £W { }   with
( ) ( )B NW=W ´W , 

( ) ( )B N= Ä   , 

( ) ( )B N

t t t= Ä    and 
( ) ( )B N= Ä    and also the underlying probability measure space is 

assumed to satisfy the so-called “usual conditions”12. Based on the above constructions and 

assumptions, we now define13, 

0

( ) ( ) ( ) ( , )dL t L t ndt dB t zN dt dzs g- é ù
= + +ê úê úë ûò ,                                  (3) 

where n denotes the natural growth rate of  population, 0s Î  is an exogenously given constant, 

1zg >-  a.s. n- , (0) 0B =  a.s.-  and, 

                                                        
12 That is, the probability space is complete and the filtration satisfies right continuity. 
13 It is in line with Merton (1975) that the uncertainty comes from the growth of  population. Itô-Lévy process has been widely 
applied in finance, e.g., Yan et al (2000). And here we apply Lévy diffusion to macroeconomics, which would be regarded as reasonable 
via noting the properties of  both Lévy diffusions and macroeconomic phenomenon. 
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( , ) ( ) ( , ),               
( , )

( , ),                                                  

N dt dz dz dt N dt dz z Z
N dt dz

N dt dz z Z

nìï - <ïïíï ³ïïî


                        (4) 

for some [0, ]Z Î ¥ . As usual, we define the following law of  motion of  capital accumulation, 

( ) 1 ( ) 1 ( )
k k c

K t r K t C tm t t= [( - ) -( + ) ]  

    1 1 1 1 ( )p k c p sg g r K t
a am t t-= [( - )-( + )( - - )] ,                               (5) 

where 0mÎ  is some exogenously given parameter, 
kr  denotes the equilibrium return to capital 

given in (2), 
kt  denotes tax rate on capital income,

ct represents consumption tax rate, C  denotes 

aggregate consumption level and sr  denotes the savings rate. Hence, combining (3) with (5) and by 

applying Itô formula for Itô-Lévy process, we get, 

{ }1 2( ) 1 1 1 ( )p k c p sdk t g g r n k t dt
a am t t s- -= [( - )-( + )( - - )]- +  

2( )

1 ( ) ( )z

z
z Z

dz k t dt
g

g
n -

+<
+ò ( ) ( )k t dB ts --

0
1( ) ( , )z

z
k t N dt dz

g

g

-
+- ò ,              (6) 

Without loss of  any generality, we put Z =¥ , then by (4), (6) becomes, 

{ }1 2( ) 1 1 1 ( )p k c p sdk t g g r n b k t dt
a am t t s- -= [( - )-( + )( - - )]- + +  

           ( ) ( )k t dB ts -- 
0

1( ) ( , )z

z
k t N dt dz

g

g

-
+- ò ,                                (7) 

where, 
2( )

1 ( )z

z
b dz

g

g
n+ò ,                                                         (8) 

Suppose that the representative agent performs log preferences and the intertemporal 

objective function is specifically given as, 

ˆ
ˆ( )

0
ln ( )s t

U e c t dt U
t

r t- +é ù
= +ê úê úë ûò  

( )
ˆ

ˆ( ) 1

0
ln (1 ) ( )s t

p s p
e g r g k t dt U
t

r a a t- + -é ù
= - - +ê úê úë ûò .                           (9) 

where   denotes expectation operator with respect to probability measure  , r  is the 
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subjective discount factor, ˆ0 s t" £ <  and t̂  is an 
t
- optimal stopping time, which with the 

term ˆ
U t  are simultaneously determined by the following optimal stopping problem of  the modified 

Radner fashion, 

( )( , ) ( ) 1ˆ ( , ( )) sup ln ( )s k s

p
g k e g k

r t a a

t
t

t t t- + -
{ <¥}

Î

é ù
ê úë û 


1  

( , ) ( )sup ln( ( ))s k s
e y
r t

t
t

t- +
{ <¥}

Î

é ù= ê úë û


1  

( )ˆ( , ) ( ) 1
ˆˆln ( )s k s

pe g k
r t a a

tt- + -
{ <¥}

é ù= ê úë û 1 .                              (10) 

subject to the stochastic differential equation (SDE) in (7), ( , )s k  denotes expectation operator 

based on initial condition ( , ) ( , (0))s k s k , t{ <¥}1  is an indicator function of  set 

( )w t w{ ÎW; <¥} , and { -  stopping times} . 

Now it follows from Step 1 introduced in section 2.2 that we are to consider the following 

stochastic optimal control problem facing the representative agent, 

( )
ˆ

ˆ( ) 1

0 1 0
max ln ( ) ( )

s

s t

p s p
r

e g r g k t dt U
t

r a a t- + -

< <

é ù
1- - +ê úê úë ûò .                           (9’) 

s.t.  

{ }1 2( ) 1 1 1 ( )p k c p sdk t g g r n b k t dt
a am t t s- -= [( - )-( + )( - - )]- + +  

           ( ) ( )k t dB ts -- 
0

1( ) ( , )z

z
k t N dt dz

g

g

-
+- ò ,                                (7’) 

where t̂  and ˆ
U t  are taken as exogenously given up to present. We prove that there exists a 

continuously differential function ( , ( ))V t k t , satisfying the following stochastic Bellman partial 

differential equation (PDE), 

2 21
2( , ( )) ( ) ( , ( ))

t kk
V t k t k t V t k ts- -  

( )
0

1 1, ( ) ( ) ( , ( )) ( ) ( , ( )) ( )z z

kz z
V t k t k t V t k t k t V t k t dz

g g

g g
n+ +

é ù- - - +ê úë ûò  
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{ }

1

1 20 1

exp( ( )) ln (1 ) ( ) ( , ( )) ( )
max

1 1 1s

p s p k

r
p k c p s

s t g r g k t V t k t k t

g g r n b

a a

a a

r

m t t s

-

-< <

ì üï ï- + [ - - ]+ï ïï ï= í ï ï´ [( - )-( + )( - - )]- + +ï ïï ïî 
.                (11) 

with the boundary condition, 

ˆˆ ˆ( , ( ))V k U
tt t = ,                                                        (12) 

Thus, we get, 

LEMMA 1. Conditional on the above constructions and assumptions, and up to the present step, we obtain the 

optimal savings rate as follows, 

1
ˆ 1

( )
s p

p c

r g
g
a a

r

m t-= - -
1+

, 

Moreover, the value function ( , ( ))V t k t  satisfies the following boundary condition, 

ˆ1
1

ˆ ˆ ˆ ˆ( , ( )) exp( ( )) ln ( )V k s C k U tt t r t r t-= - + [ + ]= . 

where, 

( )
0

1 1 2

( )
1

1 2 1 11 1
2 1 1

ln (1 )

1 ln ( )

c p k

z

z z

g n b

C
dz

r a a

m t

g

g g

r m t s

r
s r r n

- -
1+

-
- -

+ +

ì üï ï+ [ - - + + ]ï ïï ïí ï ï- - + +ï ïï ïî ò
 . 

Proof. See Appendix A. ▌ 

REMARK. Lemma 1 represents a conclusion of  Step 1 introduced in section 2.2. That is, 

provided the taxation policies of  the government and the finite time horizon of  the program, the 

optimal savings rate is derived. And the boundary condition shown in Lemma 1 will be useful in 

computing the exact form of  the endogenous time as is shown in the sequel. 

Now, by applying Step 2 of  the computation algorithm in section 2.2, we are in the position to 

calculate the term ˆ
U t  and the optimal stopping time t̂ , given in (9), in a stochastic diffusion 

process. Firstly, via applying Lemma 1, (7) can be rewritten as, 

{ }1 2ˆ( ) 1 1 1 ( )p k c p sdk t g g r n b k t dt
a am t t s- -= [( - )-( + )( - - )]- + +  

       ( ) ( )k t dB ts -- 
0

1( ) ( , )z

z
k t N dt dz

g

g

-
+- ò ,                               (7’’) 

Let ( ) ( , ( ))Y t s t k t+  , (0) ( , )Y s k  , then the generator of  ( )Y t  reads as follows, 

{ }1 2ˆ( , ) 1 1 1p k c p ss k
s k g g r n b k

f fa af m t t s¶ ¶-
¶ ¶= + [( - )-( + )( - - )]- + +  
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2

2

0

2 21
2 1 1( , ) ( , ) ( )z z

z z kk
k s k k s k k dz

f g g f

g g
s f f n

¶ ¶
+ + ¶¶

+ + [ - - + ]ò ,             (13) 

for 2 2( )Cf" Î  . If  we try a function f  of  the form, 

( , ) s
s k e k

r bf -= , for some constant b Î  

We obtain, 

{ }( )1 2ˆ( , ) 1 1 1s

p k c p ss k e k g g r n b
r b a af r b m t t s- -= - + [( - )-( + )( - - )]- + +  

0

21 1
2 1 1( 1) ( ) 1 ( )zs s

z z
e k e k dz

g br b r b b

g g
s b b n- -

+ ++ - + [ - + ]ò  

       ( )s
e k h
r b b-= , 

in which, 

{ }1 2ˆ( ) 1 1 1p k c p sh g g r n b
a ab r b m t t s-- + [( - )-( + )( - - )]- + +  

       
0

21 1
2 1 1( 1) ( ) 1 ( )z

z z
dz

g bb

g g
s b b n+ ++ - + [ - + ]ò .                           (14) 

Notice that, 

(0) 0h r=- <   and 
| |
lim ( )h
b

b
¥

=¥ . 

Therefore, there exists 0b>  such that ( ) 0h b =  and with this value of  b , we put 

1

,                       ( , )
( , )

ln( ),           ( , )

s

s

p

e Ck s k D
s k

e g k s k D

r b

r a a
f

-

- -

ìï Îï=íï Ïïî
                                   (15) 

for some constant 0C>  and the continuation region D , to be determined. Thus, if  we define 

1( , ) ln( )s

pg s k e g k
r a a- - . 

We have, by (13), 

{ 1 1 ˆ( , ) ln( ) 1 1 1s

p p k c p sg s k e g k g g r
r a a a ar m t t- - -= - + [( - )-( + )( - - )]  

}21
2n b ds- + + +                                         (16) 

0>  

{ }1 21
2

ˆ1 1 11 exp p k c p sg g r n b d

p
k g

a am t t sa a

r

- [( - )-( + )( - - )]- + + +- - <  

where 
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( )
0

1
1 1ln ( )z

z z
d dz

g

g g
n+ ++ò ,                                               (17) 

Hence, we can define, 

( ){ }1 21
2

ˆ1 1 11( , ); exp p k c p sg g r n b d

pU s k k g
a am t t sa a

r

- [( - )-( + )( - - )]- + + +- -= < ,                   (18) 

Thus, it is natural to guess that the continuation region D  has the form, 

ˆ( , );0D s k k k={ < < } .                                                   (19) 

for some k̂  such that U DÍ , i.e., 

( )1 21
2

ˆ1 1 11ˆ exp p k c p sg g r n b d

pk g
a am t t sa a

r

- [( - )-( + )( - - )]- + + +- -³ ,                             (20) 

Thus, (15) can be rewritten as follows, 

1

ˆ,                       0
( , )

ˆln( ),                 

s

s

p

e Ck k k
s k

e g k k k

r b

r a a
f

-

- -

ìï < <ïï=íï ³ïïî
                                   (21) 

where ˆ 0k>  and C  remain to be determined. Moreover, continuity and differentiability of  f  

at ˆk k=  give, 

1ˆ ˆ( ) ln( )
p

C k g k
b a a-=  

1 1ˆ ˆ( ) ( )C k k
bb - -=  

Combining the above equations reveals that, 

ˆ( ) 1
ˆ( )

ˆln( )C k

pC k
g k

b

b

a a

b

-=  

1 1ˆ exp( )
p

k g
a a

b

- - =                                                    (22) 

And 

11 1 1ˆ( ) exp( )pC k g
b a a b

b b b

- - - -= = [ ] .                                          (23) 

To summarize, we have, 

LEMMA 2. Under the above assumptions and constructions, if  0s< , 1 0zg- < <  a.s. n- , 

0

21
1( ) 1 ( )

z
dz

b

g
n+ò [ - ] <¥  and 

21
2 ( )n z dzs g n- -ò  
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1 ˆ1 1 1p k c p sg g r
a am t t-< [( - )-( + )( - - )] 

{ }
0

2 2 23 1 1
2 2 1min , ( ) 1 ( ) ( )

z
n b n dz z dz

g
r s r s n g n+£ + - - + - - [ - ] -ò ò 

, 

And, 

1 ˆ2 1 1 1 2 ( )
p k c p s

g g r z dza abm t t b g n- [( - )-( + )( - - )]+ ò  

0

2 2 21
12 ( 2 ) ( ) 1 ( )

z
n dz

b

g
b b b s n+- + + + [ - ] <¥ò , 

where b  is defined in (8). Then we obtain the optimal 
t - stopping time, ˆˆ inf 0; ( )t k t kt { ³ = } . In other 

words, 

ˆ1 ˆˆ ( , ) ( )s
g s k e k k U

r b b t

b

- -= = , 

which is a supermeanvalued majorant of  ( , )g s k  with k̂  given by (22) and b  is a solution of  ( ) 0h b =  

in (14). 

Proof. See Appendix B. ▌ 

REMARK. Obviously, Lemma 2 can be regarded as a conclusion of  Step 2 introduced in 

section 2.2. And k̂  given in (22) would be seen as the maximal and sustainable terminal path level 

of  capital stock per capita that is criterion-of-the-modified-Radner-fashion optimal. Noting that k̂  is 

endogenously determined in the current paper while the maximal terminal path level is usually 

exogenously specified in existing literatures14, for instance, the interesting paper of  Kurz (1965). 

Consequently, we argue that the advantage of  the theory of  optimal stopping time employed here is 

that it is available for us to make the minimum time to “economic maturity” and the utility-optimal 

and sustainable terminal path level of  capital stock per capita simultaneously and endogenously 

determined. 

3.3. Government 

It is assumed that the government continues to tie expenditure levels to aggregate output as before, 

                                                        
14 See, Cass, 1966; and McKenzie, 1976. 
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i.e.,
p p

G g Y=  with 0 1
p

g< < , thus, in the absence of  debt, tax revenues and government 

expenditures must satisfy the following balanced budget constraint, 

( ) ( ) ( ) ( )k k c pr K t c t L t g Y tt t+ = ,                                             (24) 

Using (1’), (2) and Lemma 1, (24) can be rewritten as, 

ˆ(1 )
k c p s p

g r gt t+ - - = .                                                 (25) 

Now, following from Step 3a shown in section 2.2, we consider the following case, 

CASE 1. The goal of  the government is to maximize the welfare of  the representative agent. 

Substituting (25) into (7’’) gives, 


0

1 2

1
ˆ( ) ( ) ( ) ( ) ( , )z

p s z
dk t k t g r n b dt dB t N dt dz

ga a

g
m s s- -

+

é ù
= - + + - -ê úê úë ûò ,             (26) 

And hence the stochastic optimal control problem facing the government can be expressed as 

follows, 

( )
ˆ

ˆ( ) 1

0 1 0
0 1

ˆmax ln ( ) ( )
c

k

s t

p s pe g r g k t dt U
t

r a a t

t
t

- + -

< <
< <

é ù
1- - +ê úê úë ûò .                          (9’’) 

s.t. 


0

1 2

1
ˆ( ) ( ) ( ) ( ) ( , )z

p s z
dk t k t g r n b dt dB t N dt dz

ga a

g
m s s- -

+

é ù
= - + + - -ê úê úë ûò . 

Accordingly, the corresponding stochastic Bellman partial differential equation (PDE) amounts to, 

2 21
2( , ( )) ( ) ( , ( ))

t kk
W t k t k t W t k ts- -  

( )
0

1 1, ( ) ( ) ( , ( )) ( ) ( , ( )) ( )z z

kz z
W t k t k t W t k t k t W t k t dz

g g

g g
n+ +

é ù- - - +ê úë ûò  

1

1 20 1
0 1

ˆexp( ( )) ln (1 ) ( )
max

ˆ( , ( )) ( )( )c

k

p s p

k p s

s t g r g k t

W t k t k t g r n b

a a

a at
t

r

m s

-

-< <
< <

ì üï ï- + [ - - ]ï ïï ï= í ï ï+ - + +ï ïï ïî 
.                             (27) 

with the following boundary condition, 

ˆˆ ˆ( , ( ))W k U
tt t = ,                                                        (28) 

where ( , ( ))W t k t  denotes the value function. To solve the above dynamic optimal control problem, 

the following lemma is derived, 

LEMMA 3. Provided the balanced budget constraint given in (25) and the optimal control problem expressed 
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in (9’’), then the optimal capital income tax rate is equal to 
k pgt* =  while optimal consumption tax rate is zero. 

Moreover, we have, 

ˆ1
3

ˆˆ ˆ ˆ( , ( )) exp( ( ))( ln )W k s C k U tt t r t r-= - + + = , 

where t̂  and 
ˆ

U t  are defined in Lemma 2, k̂  is given in (22) and, 

1 1

1
3 2 2 1 11

2

ln (1 )

1

p pg g n
C

b d

r a a

m
r m

r
s s r r

- -
-

- -

ì üï ï+ [ - -ï ïï ïí ï ï+ + ]- - +ï ïï ïî 
 , 

where b  and d  are given in (8) and (17), respectively. 

Proof. See Appendix C. ▌ 

REMARK. Lemma 3 would be regarded as a conclusion of  Step 3a of  the computation 

algorithm introduced in section 2.2, and the boundary condition given in Lemma 3 will play a 

crucial role in determining the exact form of  the endogenous time in the sequel. Moreover, it is 

worthwhile mentioning that Lemma 3 provides us with a case against the well-known argument that 

capital income should not be taxed (Chamley, 1986; Judd, 2002) and even that the optimal income 

tax rate should be negative (Judd, 1997). Not only that, the optimal capital income tax rate is equal 

to an exogenously given constant which is known and controlled by the government, and which 

therefore implies a simple rule of  taxation for the government. And it is from this character that we 

claim that our model is in accord with Kydland and Prescott (1977). 

Hence, by combining Lemma 3 with Lemma 1, we have, 

1ˆ 1
p

s p g
r g a a

r

m -= - - ,                                                      (29) 

And substituting (29) and the results in Lemma 3 into (14) produce, 

1 2( ) (1 )p ph g g n b
a ab r b m r s-- + [ - - - + + ]  

          
0

21 1
2 1 1( 1) ( ) 1 ( )z

z z
dz

g bb

g g
s b b n+ ++ - + [ - + ]ò ,                            (14’) 

Now, by Lemma 2, we have, 

ˆ 1 ˆ( )s
U e k k
t r b b

b

- -= ,                                                     (30) 

where (0) 0k k= > , k̂  is given in (22), and b  is a solution of  equation ( ) 0h b =  in (14’). 

Combining (30) with Lemma 3 shows that, 

1
3

ˆˆ ˆ ˆ( , ( )) exp( ( ))( ln )W k s C kt t r t r-= - + +  

1 ˆexp( ) ( )s k k
b b

b
r -= -  



 16

 ˆ
U t= . 

which implies that, 

ˆ1 1
3

ˆˆ ln ( ) ( ln )k
k

C kbt r b r- -= [ + ] ,                                            (31) 

To summarize, we have the following theorem, 

THEOREM 1. Based on Lemma 1 to Lemma 3, and suppose the goal of  the government is to maximize the 

welfare of  the representative agent, we have, 

ˆ1 1
3

ˆˆ ln ( ) ( ln )k
k

C k
bt r b r- -= [ + ] , 

where (0) 0k k= > , k̂  is given in (22), b  is a solution of  ( ) 0h b =  in (14’), and 3C  is given in 

Lemma 3. 

REMARK. It is by Theorem 1 that we confirm that the minimum time needed to “economic 

maturity” is endogenously determined and explicitly represented. And, in particular, the 

endogenous time depends on the following relevant parameters: the subject discount factor, the 

initial level of  capital stock per capita, the utility-optimal and sustainable terminal path level of  

capital stock per capita, the natural growth rate of  population, the exogenous level of  government 

spending and also the volatility of  the macro-economy. And one may, if  motivated, develop more 

thorough comparative static analyses of  the endogenous time with respect to the above relevant 

parameters. 

Noting that Theorem 1 is a conclusion of  Step 4 of  the computation algorithm in section 2.2, 

we now consider the following case corresponding to Step 3b of  the computation algorithm. 

CASE 2. The goal of  the government is to minimize the optimal stopping time of  the representative agent. 

Now by Lemma 2, we have, 

ˆ 1 ˆ( )s
U e k k
t r b b

b

- -= ,                                                     (32) 

where (0) 0k k= > , k̂  is given in (22), and b  is a solution of  equation ( ) 0h b =  in (14). 

Combining (32) with Lemma 1 and Lemma 2 shows that, 

1
1

ˆ ˆ ˆ ˆ( , ( )) exp( ( )) ln ( )V k s C kt t r t r t-= - + [ + ] 

1
1

ˆˆexp( ( ))( ln )s C kr t r-= - + +  

1 ˆexp( ) ( )s k k
b b

b
r -= -  

 ˆ
U t= . 

which implies that, 
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ˆ1 1
1

ˆˆ ln ( ) ( ln )k
k

C k
bt r b r- -= [ + ] .                                            (33) 

where 1C  is given in Lemma 1. Thus, the problem facing the government can be expressed as, 

PROBLEM 1. The government is motivated to choose taxation policies so as to minimize the stopping time 

defined in (33). 

REMARK. Problem 1 is actually a nonlinear optimization problem and here we don’t try to 

solve it due to its complication. Moreover, it is worth emphasizing that the stopping time given in 

(33) may be fundamentally different from that given in Theorem 1. It is easy to notice that different 

goals of  the government usually lead to different fiscal policies, thereby resulting different short-run 

and direct economic consequences and even different speeds and paths of  economic development. 

And it is especially worth noting that there is a conjecture or possibility that the minimum time 

needed to “economic maturity” when the goal of  the government is to minimize the endogenous 

time may be much longer than that when the goal of  the government is to maximize the welfare of  

the representative agent. And here we provide one reasonable explanation that the incentive or 

motivation of  investment of  the representative agent may be terribly distorted when the goal of  the 

government is not to maximize the welfare of  the representative agent but to directly minimize the 

time needed to “economic maturity”, thereby implying the micro-foundation of  economic 

development is also distorted and hence retarding the speed of  economic development. That is, 

there may exist a trade-off for the government, i.e., the speed of  long-term economic development 

on the one hand and the short-term welfare of  the representative agent on the other hand. 

Therefore, the lesson for us is that for the government of  an underdeveloped economy, choosing 

an appropriate development strategy and hence appropriate fiscal policies are of  crucial importance 

in affecting and even determining the long-term speed and path of  the convergence of  the 

corresponding economical system, and thus the long-term equilibrium level of  the economy and 

welfare level of  the representative agent. 

4. Preference Manifold Two 

In this section, our goal is to introduce a new type of  preference manifold of  the representative 

agent different from that in section 3. The firm will employ the same kind of  production 

technology as is shown in section 3.1, so we begin our analyses from the representative agent. 

4.1. Representative Agent 
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Our analyses will proceed according to the computation algorithm introduced in section 2.2, that is, 

the representative agent will choose an optimal savings rate and then the optimal stopping time. 

Different from (9), we introduce the following objective function of  the modified Ramsey fashion, 

( )( ) ( )

0
ln (1 ) ( ) ln ( )s t s

p s
U e g r y t dt e y

t
r r t t

*
*- + - + *é ù

ê ú= - - +
ê úë û
ò .                     (34) 

where 0 s t*£ <  and t*  is an 
t - optimal stopping time, which is determined by the 

following optimal stopping problem, 

( , ( ))g kt t*  

( ) ( )( , ) ( ) 1 ( ) 1

0
sup ln (1 ) ( ) ln ( )s k s t s

p s p pe g r g k t dt e g k
t

r a a r t a a

t
t

t- + - - + -
{ <¥}

Î

é ù
- - +ê úê úë ûò 


1  

( ) ( )( , ) ( ) ( )

0
sup ln (1 ) ( ) ln ( )s k s t s

p se g r y t dt e y
t

r r t

t
t

t- + - +
{ <¥}

Î

é ù
= - - +ê úê úë ûò


1  

( ) ( )( , ) ( ) 1 ( ) 1

0
ln (1 ) ( ) ln ( )s k s t s

p s p p
e g r g k t dt e g k

t
r a a r t a a

t
t

*
*

*
- + - - + - *

{ <¥}

é ù
ê ú= - - +
ê úë û
ò 1    (35) 

subject to the SDE defined in (7), and one may easily tell the difference between (35) and (10). Next 

similar to (9’), we consider the optimal control problem as follows, 

( )( ) ( )

0 1 0
max ln (1 ) ( ) ln ( )

s

s t s

p s
r

e g r y t dt e y
t

r r t t
*

*- + - + *

< <

é ù
ê ú- - +
ê úë û
ò ,                     (36) 

s.t. 

{ }1 2( ) 1 1 1 ( )p k c p sdk t g g r n b k t dt
a am t t s- -= [( - )-( + )( - - )]- + +  

           ( ) ( )k t dB ts -- 
0

1( ) ( , )z

z
k t N dt dz

g

g

-
+- ò .                               (37) 

where t*  is taken as exogenously given up to present step. To solve the above dynamic 

optimization problem and employ ( , ( ))V t k t  as the corresponding value function, then we get, 

LEMMA 4. Provided the above constructions and assumptions, the following optimal savings rate is derived, 

1
1

( )
s p

p c

r g
g
a a

r

m t

*
-= - -
1+

, 
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And the value function ( , ( ))V t k t  satisfies the following boundary condition, 

( ) 1 ( ) 1
1( , ( )) ln ( ) ln ( )s s

pV k e C k e g kr t r t a at t r t t
* ** * - + - * - + - *= [ + ]= [ ] . 

where 1C  is defined in Lemma 1. 

REMARK. Lemma 4 is a natural correspondence to Lemma 1. 

Noting that the proof  of  Lemma 4 is the same as that of  Lemma 1, so we take it omitted. In 

what follows, we will determine the optimal stopping time t* . After applying Lemma 4, the 

optimal path of  capital accumulation can be expressed as follows, 

{ }1 2( ) 1 1 1 ( )p k c p sdk t g g r n b k t dt
a am t t s- * -= [( - )-( + )( - - )]- + +  

       ( ) ( )k t dB ts -- 
0

1( ) ( , )z

z
k t N dt dz

g

g

-
+- ò ,                               (37’) 

Let ( ) ( , ( ))Y t s t k t+  , (0) ( , )Y s k  , then the generator of  ( )Y t  reads as follows, 

{ }1 2( , ) 1 1 1p k c p ss k
s k g g r n b k

f fa af m t t s¶ ¶- *
¶ ¶= + [( - )-( + )( - - )]- + +  

         
2

2

0

2 21
2 1 1( , ) ( , ) ( )z z

z z kk
k s k k s k k dz

f g g f

g g
s f f n¶ ¶

+ + ¶¶
+ + [ - - + ]ò ,             (38) 

for 2 2( )Cf" Î  . If  we try a function f  of  the form, 

( , ) ( )s
s k e k

rf j-= , for 2 ( )CjÎ   

Then we have, 

{ }( )1 2( , ) ( ) 1 1 1 ( )s

p k c p ss k e k g g r n b k k
r a af rj m t t s j- - * ¢= - + [( - )-( + )( - - )]- + +  

{ }
0

2 21 1
2 1 1( ) ( ) ( ) ( ) ( )zs

z z
e k k k k k k dz

gr

g g
s j j j j n-

+ +
¢¢ ¢+ + [ - + ]ò  

       0 ( )s
e k
r j-  .                                                        (39) 

Define 1( ) ln( )pg k g k
a a- , 1( ) ln (1 )p s pf k g r g k

a a* -[ - - ] , by (35) and (39), we see that, 

0 ( ) ( ) 0g k f k+ >  

1 1ln( ) ln (1 )p p s pg k g r g k
a a a ar - * - - [ - - ]<  
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1 21
21 1 1p k c p sg g r n b

a am t t s- *[( - )-( + )( - - )]- + +  
0

1
1 1ln( ) ( )z

z z
dz

g

g g
n+ ++ [ + ]ò  

{ }1 21
2

1 1 11 1 ( 1)

1(1 ) exp p k c p sg g r n b d

p p s
k g g r

a am t t sa a r

r

- *[( - )-( + )( - - )]- + + +- - * -
- < - - . 

where b  and d  are defined in (8) and (17), respectively. Hence, 

( ){ }1 21
2

1 1 11 1 ( 1)

1( , ); (1 ) exp p k c p sg g r n b d

p p sU s k k g g r
a am t t sa a r

r

- *[( - )-( + )( - - )]- + + +- - * -
-= < - -      (40) 

In view of  U DÍ  it is natural to guess that the continuation region D  has the form, 

( , );0D s k k k
*={ < < } .                                                  (41) 

for some k
*  satisfying, 

( )1 21
2

1 1 11 1 ( 1)

1(1 ) exp p k c p sg g r n b d

p p s
k g g r

a am t t sa a r

r

- *[( - )-( + )( - - )]- + + +* - - * -
-³ - - ,              (42) 

Now, in D  we try to solve the equation, 

0 ( ) ( ) 0k f kj + = .                                                      (43) 

The homogenous equation 0 0 ( )kj  has a solution 0 ( ) r
k kj =  if  and only if, 

{ }1 2( ) 1 1 1p k c p sh r r g g r n b
a ar m t t s- *- + [( - )-( + )( - - )]- + +  

          
0

21 1
2 1 1( 1) ( ) 1 ( ) 0zrr

z z
r r dz

g

g g
s n+ ++ - + [ - + ] =ò ,                          (44) 

Since (0) 0h r=- <  and | |lim ( )
r

h r¥ =¥ , we see that the equation ( ) 0h r =  has two 

solutions 1r , 2r  such that 2 10r r< < . We let r  be a solution of  this equation. To find a 

particular solution 1( )kj  of  the non-homogenous equation, 

1
0 1( ) ln (1 ) 0p s pk g r g k

a aj * -+ [ - - ]= ,                                       (45) 

We try, 

1 5 6( ) lnk C C kj = + ,                                                     (46) 

for some constants 5C , 6C  to be determined. Substituting (46) into (45) and applying (39), we 

have, 

{ }1 2
5 6 6ln 1 1 1p k c p sC C k g g r n b C

a ar r m t t s- *- - + [( - )-( + )( - - )]- + +  
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0

2 11 1
6 62 1 1ln( ) ( ) ln (1 ) 0z

p s pz z
C C dz g r g k

g a a

g g
s n * -

+ +- + [ + ] + [ - - ]=ò . 

which implies that, 

1
6C r-= ,                                                              (47) 

Hence, 

{ }
( )

0

1 1 2

1
5 2 1 1 11 1

2 1 1

(1 ) (1 )(1 )

ln ( ) ln (1 )

p k c p s

z

p s pz z

g g r n b

C
dz g r g

a a

g a a

g g

r m t t s

r
s r r n

- - *

-
- - * -

+ +

ì üï ï[ - - + - - ]- + + -ï ïï ï= í ï ï+ + + [ - - ]ï ïï ïî ò
.           (48) 

Consequently, for all constants C  the function, 

1
5( ) lnrk Ck k Cj r-= + + ,                                                (49) 

is a solution of  the equation defined in (43) with 5C  given by (48). Thus, one can try to put, 

1
5

1

ln ,                       0
( )

( ) ln( ),                             

r

p

Ck k C k k
k

g k g k k k
a a

r
j

- *

- *

ìï + + < <ï=íï ³ïî 
                           (50) 

where 0k* >  and C  remain to be determined. Continuity and differentiability of  j  at k k*=  

give the following equations, 

1 1
5( ) ln ln( )r

pC k k C g k
a ar* - * - *+ + = ,                                      (51) 

1 1 1 1( ) ( ) ( )r
Cr k k kr* - - * - * -+ = .                                             (52) 

By (52) we get, 

11( )r

rC
k

r--* = ,                                                           (53) 

Inserting (53) into (51) produces, 

(1 )(1 ) 51
1exp( )

C

p r
k g

ar

a r r

r

- -*
-= + ,                                                 (54) 

And by (52) we get, 

1

( )rr k
C

r

r *

-= .                                                             (55) 

which implies that we should choose, 

2 0r r= < ,                                                             (56) 

in (44). To sum up, we have the following lemma, 
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LEMMA 5. Under the above assumptions and constructions, if  0s< , 1 0zg- < <  a.s. n- , 

(1 ) ( )r r
r k k

*- >  and 

ln(1 )p sg rr *- - -  

1 21
2(1 ) (1 )(1 )p k c p sg g r n b d

a am t t s- *³ [ - - + - - ]- + + + , 

where b  and d  are defined in (8) and (17), respectively. And, 

21
2 ( )n z dzs g n- -ò  

1 1 1 1p k c p sg g r
a am t t- *< [( - )-( + )( - - )] 

0

2 23 1 1
2 2 1( ) 1 ( ) ( )

z
n dz z dz

g
r s n g n+£ + - - [ - ] -ò ò 

 

Then we obtain the optimal
t - stopping time, inf 0; ( )t k t kt* *{ ³ = } . That is to say, 

1 1
5( )

( , ) lnr

s r

r k
g s k e k k C

rr

r
r*

-* - -= [ + + ]  is a supermeanvalued majorant of  ( , )g s k  with k
*  given by 

(54), (0) 0k k= > , 0r<  determined by (44) and 5C  given in (48). 

Proof. See Appendix D. ▌ 

REMARK. Lemma 5 is a natural correspondence to Lemma 2. And one can clearly and easily 

tell the differences between the two lemmas. 

4.2. Government 

Similar to section 3.3, and applying Lemma 4, the balanced budget constraint (24) can be expressed 

as follows, 

(1 )k c p s pg r gt t *+ - - = .                                                 (25’) 

CASE 1. The goal of  the government is to maximize the welfare of  the representative agent. 

Hence, the stochastic optimal control problem facing the government can be written as 

follows, 

( ) ( )( ) 1 ( ) 1

0 1 0
0 1

max ln (1 ) ( ) ln ( )
c

k

s t s

p s p pe g r g k t dt e g k
t

r a a r t a a

t
t

t
*

*- + - - + - *

< <
< <

é ù
ê ú- - +
ê úë û
ò          (57) 
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s.t. 


0

1 2

1( ) ( ) ( ) ( ) ( , )z

p s z
dk t k t g r n b dt dB t N dt dz

ga a

g
m s s- - *

+

é ù
= - + + - -ê úê úë ûò .             (58) 

Solving the problem gives, 

LEMMA 6. Provided the balanced budget constraint given in (25’) and the optimal control problem expressed 

in (57) and (58), then the optimal capital income tax rate is 
k pgt* =  and optimal consumption tax rate is zero. 

Moreover, the corresponding value function satisfies the following boundary condition, 

( ) 1 ( ) 1
3( , ( )) ( ln ) ln( )s s

pW k e C k e g kr t r t a at t r
* ** * - + - * - + - *= + = , 

where t*  is defined in Lemma 5, k
*  is given in (54) and 3C  is given in Lemma 3. 

REMARK. Lemma 6 is a natural correspondence to Lemma 3. 

Noting that the proof  is the same as that of  Lemma 3, we take it omitted here. Applying 

Lemma 6 to Lemma 4, we get, 

11
p

s p g
r g a a

r

m -
* = - - .                                                      (59) 

Inserting (59) into (58) produces the following optimal law of  motion of  capital accumulation, 

{ }
0

1 2

1( ) ( ) (1 ) ( ) ( , )z

p p z
dk t k t g g n b dt dB t N dt dz

ga a

g
m r s s- -

+= [ - - - + + ] - -ò       (60) 

Moreover, applying Lemma 6 and (59) to (44) and (48) shows, 

1 2( ) (1 )p ph r r g g n b
a ar m r s-=- + [ - - - + + ]  

          
0

21 1
2 1 1( 1) ( ) 1 ( ) 0zrr

z z
r r dz

g

g g
s n+ ++ - + [ - + ] =ò ,                         (44’) 

And, 

1 1

1
5 2 2 1 11

2

(1 )

ln

p pg g n
C

b d

a a

r

m

r m r
r
s s r r

- -

-

- -

ì üï ï[ - - - +ï ïï ï= í ï ï+ ]- + +ï ïï ïî 
.                                   (48’) 

where b  and d  are defined in (8) and (17), respectively. So k
*  in (54) can be expressed as, 

(1 )(1 ) 51
1exp( )

C

p r
k g

ar

a r r

r

- -*
-= + ,                                                (54’) 

where 0r<  is a solution of  (44’) and 5C  is defined in (48’). Therefore, we conclude the 

following theorem, 

THEOREM 2. Based on Lemma 4 to Lemma 6, and provided the goal of  the government is to choose tax 
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policies so as to maximize the welfare of  the representative agent, then the optimal stopping time given in Lemma 5 

can be completely characterized as follows, 

inf 0; ( )t k t kt* *{ ³ = } ,                                                 (61) 

where ( )k t  is determined by (60) and k*  is given in (54’). 

REMARK. Theorem 2 is a natural correspondence to Theorem 1. 

Furthermore, it follows from Theorem 2 that, 

COROLLARY 1. Suppose 
0

2( 1) ( )z dznò  <¥ , and 
0 1( ) ( )z p

z
dz

g

g
n+ò <¥  for p" Î  and 

2p³ . Then the solution of  (60) is in 2 ( , )L W   and 

( )( ),
0

sup ( ) 1
p p

M T p
t T

k t k k k
* *

< £

é ù
- £ + -ê ú

ê úë û
 Y , 

where (0) 0k k= > , k*  is given in (54’) and 

{ 0

2 21 2 2
( ), 1exp ( ) 1 (1 ) ( ) ( )z

M T p p p z
M T g g n b dz

ga a

g
m r s s n-

+
é + - - - + + + +ò +êë Y  

( ) }0 0

2
1 2 2

1 1(1 ) ( ) ( ) ( ) ( )
pp p z z p

p p z z
g g n b dz dz

g ga a

g g
m r s s n n-

+ +
ù- - - + + + + ò +ò ú
û  , 

for some constant 0M >  and M  depends on T  with 0 T< £¥ . 

Proof. See Appendix E. ▌ 

CASE 2. The goal of  the government is to minimize the optimal stopping time of  the representative agent. 

As a matter of  fact, we get the following interesting theorem, 

THEOREM 3. Suppose that 
0

2( 1) ( )z dznò  <¥  and 
0 1( ) ( )z p

z
dz

g

g
n+ò <¥  for p" Î  

and 2p³ , then the solution of  (58) is in 2 ( , )L W   and 

 ( )( ),
0

sup ( ) 1
p p

M T p
t T

k t k k k* *

< £

é ù
- £ + -ê ú

ê úë û
 Y , 

where (0) 0k k= > , k*  is given in (54’), ( ),M T pY  is minimized by letting 
k pgt =  and 0ct = , and 


( ), ( ),M T p M T p

Y Y  point-wise as 0ct   or 
k p

gt  . 

Proof. See Appendix F. ▌ 

REMARK. In view of  Theorem 1 and Theorem 2 shows that there is a technical difference 
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between the modified Radner fashion and the modified Ramsey fashion, that is, the endogenous time can be 

explicitly computed and represented in the preference manifold of  the modified Radner fashion shown 

in Theorem 1 while this cannot be realized in that of  the modified Ramsey fashion. Therefore, noting 

that the endogenous time can not be explicitly represented as in Theorem 2, Corollary 1 and 

Theorem 3 are of  crucial economic intuitions and implications. Specifically, Theorem 3 reveals that 

in the case of  p ( p" Î  and 2p³ ) order moment of  uniform topology, the goal of  the 

government expressed in the above Case 2 can be equivalently expressed as choosing optimal tax 

rates corresponding to the best constant ( ), ( ),0,
|

c k p
M T p M T pgt t* *= =

=Y Y . Obviously, one may choose 

different distance functions equipped with different topologies, thereby resulting different 

equivalent expressions of  the above Case 2 and thus even different corresponding optimal tax rates. 

Finally, it is worthwhile emphasizing that the utility-optimal and sustainable terminal path level of  

capital stock per capita is usually not the same between the above two different preference 

manifolds, and thus the corresponding endogenous times may be not equivalent. That is to say, one 

type of  preference manifold may imply a faster speed to its corresponding “economic maturity” 

than that of  other types of  preference manifolds15. 

5. The Effect of  Information Structure 

In this section, we will investigate the influences of  different information structures on the 

endogenous time, and we will take preference manifold one in section 3 for example. 

5.1. Definitions and Notations 

First of  all, besides the filtration 0t t T£ £{ }   introduced in section 3.2, we suppose that we are 

given another two filtrations 0t t T£ £{ }H   and 0t t T£ £{ }M   with, 

                                                        
15 The current paper shows that different preference structures lead to different levels of  “economic maturity” with a high probability 
and thus different speeds and paths of  economic development. However, it is also possible that the convergence rate is equal between 
different economical systems with different preference manifolds although they have totally different sustainable terminal path levels 
of  capital stock per capita. 
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t t tÍ Í   , 0 t T£ £ . 

which represent three kinds of  information levels available to the agent at time t . And we give the 

following definitions16, 

DEFINITION 1. ( Incomplete Information): If  the control of  the agent is H- predictable, we say that 

the agent has incomplete information. 

DEFINITION 2. (Complete Information): If  the control of  the agent is - predictable, we say that 

the agent has complete information. 

DEFINITION 3. (Perfect Information): If  the control of  the agent is M- predictable, we say that the 

agent has perfect information. 

Moreover, based upon the above three definitions, we can define, 

DEFINITION 4. (Symmetric Information): For any two agents, if  they share the same level of  

information, no matter it is incomplete, complete or perfect information, we say that the information is symmetric 

between the two agents. 

DEFINITION 5. (Asymmetric Information): For any two agents, if  they don’t share the same level of  

information, we say that the information is asymmetric between them. 

5.2. Representative Agent 

It is worth emphasizing that we focus on different information structures between the 

representative agent and the government, so the firm in this section is the same as that in section 

3.1. And hence, we begin our analyses from the representative agent. Firstly, a little different from 

the SDE defined in (3), we introduce, 


0

( ) ( ) ( ) ( , )d L t L t ndt d B t zN d t dzs g- - -é ù
= + +ê úê úë ûò ,                              (3’) 

where we have put Z =¥  in (4) and ( )d B t
- , ( , )N d t dz-  denote forward integrals. Then, 

combining (3’) with (5) and applying Itô-Ventzell formula for forward processes, 

{ }1 2
0( ) 1 1 1 ( )p k c p sd k t g g r n b k t dt

a am t t s- -= [( - )-( + )( - - )]- + +  

            ( ) ( )k t d B ts -- 
0

1( ) ( , )z

z
k t N d t dz

g

g

-
+- ò ,                              (62) 

where, 

                                                        
16 Similar definitions can be found in Miao (2009), who studies optimal consumption and portfolio choice in a Merton-style model 
with incomplete information when there is a distinction between ambiguity and risk. 
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2

0

( )

0 1 ( )z

z
b dz

g

g
n+ò ,                                                       (8’) 

Hence, by (1’), (62) and Itô-Ventzell formula, we have, 

{ }1 1 2
0( ) 1 1 1 ( )p p k c p sd y t g g g r n b k t dt

a a a am t t s- - -= [( - )-( + )( - - )]- + +  

            1 ( ) ( )pg k t d B t
a as- -- 

0

1

1( ) ( , )z

p z
g k t N d t dz

ga a

g

- -
+- ò  

          
0

( , , ) ( , ) ( ) ( , , ) ( , )t dt t d B t t z N d t dzV x w w q w- -+ +ò  ,                    (63) 

where w ÎW  and, 

1
p s

g rx - - ,                                                          (64) 

And hence, a little different from (9’) and (7’), we consider the following stochastic optimal control 

problem facing the representative agent, 

( )
ˆ

ˆ( )

0 1 0
max ln ( )

s

s t

r
e y t dt U
t

r tx- +

< <

é ù
+ê úê úë ûò ,                                        (65) 

s.t. 


0

( ) ( , , ) ( , ) ( ) ( , , ) ( , )d y t t dt t d B t t z N d t dzV x w w q w- - -= + +ò , 

Thus, the corresponding Hamiltonian17 can be expressed as follows, 

( , , , ) exp( ( )) ln ( ) ( ) ( , , ) ( , )tH t y s t y t t t D tx w r x G V x w w+
é= - + [ ]+ +ë   

0
, ( , , ) ( ) ( , ) ( )t z tD t z dz t D tq w n w G+

ù
+ +úúûò   

0
, ,( ) ( , , ) ( , , ) ( )

t z t z
D t t z D t z dzG q w q w n++ [ + ]ò ,                     (66) 

where w ÎW , 
tD , 

tD + , ,t z
D  and ,t z

D +  denote Malliavin derivatives and,  

ˆ
( )( ) ln ( )s

y
t

t e y d
t

r lG x l l- + ¶
¶ [ ]ò  

ˆ
( ) 1

( )

s

y
t

e d
t

r l

l
l- += ò ,                                                 (67) 

Then we have the following proposition, 

PROPOSITION 1. Based on Definition 1 to Definition 3, and provided the above specifications, we have: 

(i) If  the representative agent has incomplete information, then the optimal savings rate is, 

                                                        
17 See Meyer-Brandis et al (2009). 
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2 1

1

exp( ( )) (1 ) ( ) ( )|
( ) 1

p c t
s p s t g k t t

r t g a ar m t G-+ [ + ]
= - -  

,                                   (68) 

where  ( ( ))( ) ( )sr t
k t k t  and  ( ( ))( ) ( )sr t

t tG G  with ( )sr t  -H predictable. 

(ii) If  the representative agent has complete information, then the optimal savings rate is, 


2 1

1

exp( ( )) (1 ) ( ) ( )|
( ) 1

p c t
s p s t g k t t

r t g a ar m t G-+ [ + ]
= - -  

,                                   (69) 

where  ( ( ))( ) ( )sr t
k t k t  and  ( ( ))( ) ( )sr t

t tG G  with ( )sr t  - predictable. 

(iii) If  the representative agent has perfect information, then the optimal savings rate is, 


2 1

1

exp( ( )) (1 ) ( ) ( )|
( ) 1

p c t
s p s t g k t t

r t g a ar m t G-+ [ + ]
= - -  

,                                  (70) 

where  ( ( ))( ) ( )sr t
k t k t  and  ( ( ))( ) ( )sr t

t tG G  with ( )sr t  M-predictable. 

Proof. See Appendix G. ▌ 

REMARK. Proposition 1 is a natural correspondence to Lemma 1. And we may easily tell the 

differences between Proposition 1 and Lemma 1, which reflects the fact that consideration of  

different information structures is not only necessary but also important. 

Now, we are in the position to calculate the term ˆ
U
t  and the optimal stopping time t̂  

given in (65). That is, we are to solve the optimal stopping problem defined in (10) subject to the 

following SDE, 

 { }1 2
0( ) 1 1 1 ( ) ( )p k c p sd k t g g r t n b k t dta am t t s- -= [( - )-( + )( - - )]- + +  

        ( ) ( )k t d B ts --  
0

1( ) ( , )z

z
k t N d t dz

g

g

-
+- ò ,                              (71) 

where ( )sr t  and ( )k t  are given in Proposition 1, and 0b  is defined in (8’). It is easy to see that 

the construction of  this problem is quite similar to that one in section 3.2, and rather, we have the 

following proposition, 

PROPOSITION 2. Conditional on the same assumptions and constructions as that of  Lemma 2, if 

1 2
01 1 1 (0)p k c p sg g r n ba am t t r s- [( - )-( + )( - - )]< + - - , 

21
02n b ds- - -  

1 1 1 1 ( )
p k c p s

g g r t
a am t t-< [( - )-( + )( - - )] 

21
02n b dr s£ + - - - , a.e. 
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And, 

1 21
021 1 1 ( )p k c p sg g r t n b da am t t s- [( - )-( + )( - - )]- + + + <¥ , a.e. 

where 0b  and d  are defined in (8’) and (17), respectively, and ( )sr t  is given in Proposition 1. Then we obtain 

the optimal 
t - stopping time ˆˆ inf 0; ( )t k t kt { ³ = } . In other words, 

ˆ1 ˆˆ ( , ) ( )s
g s k e k k U

r b b t

b

- -= = , 

which is a supermeanvalued majorant of  ( , )g s k  with k̂  given by (22), and b  is a solution of, 

 { }1 2
0( ) 1 1 1 (0)p k c p sh g g r n ba ab r b m t t s-- + [( - )-( + )( - - )]- + +  

       
0

21 1
2 1 1( 1) ( ) 1 ( ) 0z

z z
dz

g bb

g g
s b b n+ ++ - + [ - + ] =ò , 

with (0)sr  determined by Proposition 1. 

Proof. See Appendix H. ▌ 

REMARK. Proposition 2 is a natural correspondence to Lemma 2. And a comparison of  

Proposition 2 and Lemma 2 shows that different information structures will intrinsically lead to 

different sustainable terminal path levels of  capital stock per capita thanks to Proposition 1, where 

optimal savings rate strictly depends on the given level of  information. Therefore, noting that the 

utility-optimal and sustainable terminal path level of  capital stock per capita changed, thereby 

implying a different minimum time needed to “economic maturity” relative to Lemma 2. 

5.3. Government 

Firstly, similar to section 3.3, the balanced budget constraint defined in (24) can be expressed as 

follows, 

(1 ( ))
k c p s p

g r t gt t+ - - = ,                                              (25’’) 

And we specifically consider the following case, 

ASSUMPTION 1. The goal of  the government is to choose tax policies so as to maximize the welfare of  the 

representative agent. 

Inserting (25’’) into (71) gives, 
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0

1 2
0 1( ) ( ) ( ( ) ) ( ) ( , )z

p s z
d k t k t g r t n b dt d B t N d t dz

ga a

g
m s s- - - -

+

é ù
= - + + - -ê úê úë ûò ,        (72) 

Thus applying Itô-Ventzell formula leads to, 

   
0

1 1 2
0 1( ) ( ) ( ( ) ) ( ) ( , )z

p p s z
d y t g k t g r t n b dt d B t N d t dz

ga a a a

g
m s s- - - - -

+

é ù
= - + + - -ê úê úë ûò  


0

ˆˆˆ( , , ) ( , ) ( ) ( , , ) ( , )ct dt t d B t t z N d t dzV t w w q w- -+ +ò  ,                   (73) 

Hence, the stochastic optimal control problem facing the government can be written as follows, 

 ( )
ˆ

ˆ( )

0 1 0
0 1

max ln (1 ( )) ( )
c

k

s t

p se g r t y t dt U
t

r t

t
t

- +

< <
< <

é ù
- - +ê úê úë ûò ,                             (74) 

s.t. 

 
0

ˆˆˆ( ) ( , , ) ( , ) ( ) ( , , ) ( , )cd y t t dt t d B t t z N d t dzV t w w q w- - -= + +ò , 

where ˆ
U t  and t̂  are given in Proposition 2, and ( )sr t  is given in Proposition 1. Accordingly, 

the corresponding Hamiltonian18 amounts to, 

   ˆ ˆˆ( , , , ) exp( ( )) ln (1 ( )) ( ) ( ) ( , , ) ( , )c p s c tH t y s t g r t y t t t D tt w r G V t w w+
é ù é= - + - - + +ê ú ëë û

  


0

,
ˆ ˆ( , , ) ( ) ( , ) ( )t z tD t z dz t D tq w n w G+

ù
+ +úúûò   


0

, ,
ˆ ˆ( ) ( , , ) ( , , ) ( )

t z t z
D t t z D t z dzG q w q w n++ [ + ]ò ,                    (75) 

where w ÎW , 
tD , 

tD + , ,t z
D  and ,t z

D +  denote Malliavin derivatives and,  

  ˆ
( )

ˆ( ) ln (1 ( )) ( )s

p sy
t

t e g r y d
t

r lG l l l- + ¶
¶
é ù- -ê úë ûò  



ˆ
( ) 1

( )

s

yt
e d
t

r l

l
l- += ò ,                                                 (76) 

where ( )y t  is determined by SDE in (73). Therefore, the following proposition is derived, 

PROPOSITION 3. Based upon Assumption 1 and the above specifications, we establish, 

(i) If  the information is symmetric between the representative agent and the government, then the optimal 

                                                        
18 See Meyer-Brandis et al (2009). 
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consumption tax rate is zero and the optimal capital income tax rate is equal to 
p

g . 

(ii) If  the information is asymmetric between the representative agent and the government, and particularly, the 

representative agent gets more information than the government, then we obtain that the optimal consumption tax rate 

is zero and the optimal capital income tax rate is equal to 
p

g . 

(iii) If  the information is asymmetric between the representative agent and the government, and particularly, the 

government has more information than the representative agent, then, 

(iii-a) If  the government has perfect information while the representative agent has complete information, then 

we have, 

   (1 ) ( ) ( ) ( ) ( )c t tk t t k t tt G G
* ** **é ù é ù+ =ê ú ê ú

ë û ë û
   ,                                 (77) 

where 
c
t*  denotes the optimal consumption tax rate and 

  ( )

( ) ( )
c

k t k t
t**

 ,  ( )

( ) ( )
c

t t
t

G G
**

 , 

with 
c
t*  M-predictable. 

(iii-b) If  the government has perfect information while the representative agent has incomplete information, then 

we get, 

   (1 ) ( ) ( ) ( ) ( )c t tk t t k t tt G G
* ** **é ù é ù+ =ê ú ê ú

ë û ë û
   ,                                 (78) 

where   ( )

( ) ( )
c

k t k t
t**

  and   ( )

( ) ( )
c

t t
t

G G
**

  with 
c
t*  M-predictable. 

(iii-c) If  the government has complete information while the representative agent has incomplete information, 

then we get, 

   (1 ) ( ) ( ) ( ) ( )c t tk t t k t tt G G
* ** **é ù é ù+ =ê ú ê ú

ë û ë û
   ,                                  (79) 

where   ( )

( ) ( )
c

k t k t
t**

  and   ( )

( ) ( )
c

t t
t

G G
**

  with 
c
t*  - predictable. 

Proof. See Appendix I. ▌ 

REMARK. Proposition 3 is a natural correspondence to Lemma 3. And it is worth emphasizing 

that Proposition 3 itself  is very interesting and important especially for the case where the 

government gets more information than the representative agent. Specifically, for the current 

endogenous growth economy, if  the information is symmetric between the government and the 

representative agent or the representative agent gets more information than the government, then 

the optimal capital income tax rate is always equal to the exogenously given constant 
p

g . However, 

optimal tax rate on capital income may be zero when the government gets more information than 
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the representative agent. 

Thus, combining Proposition 3 with Proposition 1 gives the following corollary, 

COROLLARY 2. (i) For this case of  symmetric information or the representative agent has more information, 

we have: 

(i-a) If  the representative agent has incomplete information, then the optimal savings rate is, 


 2 1

1

exp( ( )) ( ) ( ) |
( ) 1

p t

s p
s t g k t t

r t g
a ar m G

* *-

*

+ [ ]
= - -

 
,                                    (80) 

(i-b) If  the representative agent has complete information, then the optimal savings rate is, 


 2 1

1

exp( ( )) ( ) ( ) |
( ) 1

p t

s p
s t g k t t

r t g
a ar m G

* *-

*

+ [ ]
= - -

 
,                                    (81) 

(i-c) If  the representative agent has perfect information, then the optimal savings rate is, 


 2 1

1

exp( ( )) ( ) ( ) |
( ) 1

p t

s p
s t g k t t

r t g
a ar m G

* *-

*

+ [ ]
= - -

 
,                                    (82) 

(ii) For the case of  asymmetric information and particularly the government has more information: 

(ii-a) If  the government has perfect information while the representative agent has complete information, then 

the optimal savings rate is, 


 2 1

1

exp( ( )) ( ) ( ) |
( ) 1

p t

s p
s t g k t t

r t g
a ar m G

* *-

*

+ [ ]
= - -

 
,                                    (83) 

(ii-b) If  the government has perfect information while the representative agent has incomplete information, then 

the optimal savings rate is, 


 2 1

1

exp( ( )) ( ) ( ) |
( ) 1

p t

s p
s t g k t t

r t g
a ar m G

* *-

*

+ [ ]
= - -

 
,                                    (84) 

(ii-c) If  the government has complete information while the representative agent has incomplete information, 

then the optimal savings rate is, 


 2 1

1

exp( ( )) ( ) ( ) |
( ) 1

p t

s p
s t g k t t

r t g
a ar m G

* *-

*

+ [ ]
= - -

 
,                                    (85) 

Now, by Proposition 2, we have, 

ˆ 1 ˆ( )s
U e k k
t r b b

b

- -= , 

Thus, 

ˆ ˆ( ) 11 ˆ ˆ( ) ln( )s s

pU e k k e g k
t r b b r t a a

b

- - - + -= =  

ˆ1 1 ˆˆ ln ( ) ln( )k
pk

g k
b a at r b- - = [ ] ,                                            (86) 

Therefore, we conclude the following theorem, 

THEOREM 4. Based on the above propositions and Corollary 2, we have, 

(i) The corresponding optimal stopping time is given by (86), where (0) 0k k= > , k̂  is given in (22) and 
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b  is a solution of, 

 ( )1 2
0( ) (0)p sh g r n b

a ab r b m s
* *-- + - + +  

      
0

21 1
2 1 1( 1) ( ) 1 ( ) 0z

z z
dz

g bb

g g
s b b n+ ++ - + [ - + ] =ò ,                         (87) 

where (0)
s

r
*
 is determined by (80). 

(ii) The optimal stopping time is given by (86), where (0) 0k k= > , k̂  is given in (22) , and b  is a 

solution of  (87) with (0)sr
*
 determined by (81). 

(iii) The optimal stopping time is given by (86), where (0) 0k k= > , k̂  is given in (22) , and b  is a 

solution of  (87) with (0)
s

r
*
 determined by (82). 

(iv) The optimal stopping time is given by (86), where (0) 0k k= > , k̂  is given in (22) , and b  is a 

solution of, 

 { }1 2
0( ) 1 1 1 (0)p k c p sh g g r n b

a ab r b m t t s
* *- * *é ù- + ( - )-( + )( - - ) - + +ê ú

ë û
  

       
0

21 1
2 1 1( 1) ( ) 1 ( ) 0z

z z
dz

g bb

g g
s b b n+ ++ - + [ - + ] =ò ,                        (88) 

where 
c
t*  is determined by (77), 

k
t*  is determined by (77) and (25’’), and (0)sr

*
 is determined by (83). 

(v) The optimal stopping time is given by (86), where (0) 0k k= > , k̂  is given in (22) , and b  is a 

solution of  (88), where 
ct
*  is determined by (78), 

kt
*  is determined by (78) and (25’’), and (0)

s
r

*
 is 

determined by (84). 

(vi) The optimal stopping time is given by (86), where (0) 0k k= > , k̂  is given in (22) , and b  is a 

solution of  (88), where 
c
t*  is determined by (79), 

k
t*  is determined by (79) and (25’’), and (0)sr

*
 is 

determined by (85). 

REMARK. This theorem shows that different information structures lead to different 

endogenous times directly on the one hand and indirectly by leading to different utility-optimal and 

sustainable terminal path levels of  capital stock per capita on the other hand. That is to say, 
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information constraint is of  crucial importance in determining the minimum time needed to 

“economic maturity”. The economic implication is that certain level of  information would make 

the economy reach its “maturity” faster than other levels of  information, and also certain kind of  

information structure would make the economy reach its “economic maturity” much faster than other 

kinds of  information structure. Accordingly, Theorem 4 implies that the issue of  information 

constraint consists of  at least two parts: one is that the absolute quantity of  information is 

nontrivial and the other is that the distributive functions of  information among the agents are also 

of  great importance from the viewpoint of  economic development. All in all, this theorem provides 

us with an efficient mechanism to build a close linkage between the micro-information-structure 

and the macro-economic-development. 

6. Local Sensitivity Analyses 

In this section, we will make local sensitivity analyses of  optimal consumption strategy of  the 

representative agent with respect to the initial level of  capital stock per capita. And, in particular, we 

will take preference manifold one discussed in section 3 for example. In order to make local 

sensitivity analyses, some preparations should be firstly supplied. And, specifically, the following 

theorem and corresponding corollary are employed to prove our results. 

For any given Itô-Lévy process defined on the probability space ( , , )W  , 


0

( ) ( ) ( ) ( ) ( , ) ( , ), 0,

(0)

dQ t t dt t dB t t z N dt dz t T

Q q

Jìï = + + Î[ ]ïïíïï = Îïî

ò


 ψ
 

Thus, the following theorem is established, 

THEOREM 5. (Representation Theorem for Functions of  Jump Diffusions)19: Let :F    

be a function with Fourier transform, 

 1
2( ) ( )i x

e x dx
l

p
l -F = Fò , l Î  

satisfying the Fourier inversion property, 

( ) ( )i
e d
lkk l lF = Fò , kÎ  

Then, 

                                                        
19 See Theorem 14.13 in pp. 259 of  Di Nunno et al (2009). 
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( ) ( ) ( ) exp ( )q q
Q t t dll làF = F {L }ò , 0,t TÎ[ ] 

where, 


0

( , )

0 0
( ) ( ) ( ) 1 ( , )

t t
q i s z

t i q i s dB s e N ds dz
l

l l lL + + [ - ]ò ò ò  ψ  

{ }
0

2 2 ( , )1
2

0
( ) ( ) 1 ( , ) ( )

t
i s z

i s s e i s z dz ds
llJ l l n+ - + [ - - ]ò ò ψ ψ , 0,t TÎ[ ]. 

Moreover, we have, 

COROLLARY 320. Let F  be a real function as in Theorem 5, then we have, 

( ) ( ) ( ) exp( ( ))q
Q t i q t dll l lé ùF = F +ê úë û ò F , 

where 

{ }
0

2 2 ( , )1
2

0
( ) ( ) ( ) 1 ( , ) ( )

t
i s z

t i s s e i s z dz ds
l

l lJ l l n- + [ - - ]ò ò  ψ ψF . 

Now, we begin our local sensitivity analyses. Firstly, inserting (29) into (26) produces, 

{ }
0

1 2

1( ) ( ) (1 ) ( ) ( , )

ˆ(0) 0, 0,

z

p p z
dk t k t g g n b dt dB t N dt dz

k k t

ga a

g
m r s s

t

-
+

ìïï = [ - - - + + ] - -ïïíïï = > Î[ ]ïïî

ò       (89) 

And by (29), the optimal consumption strategy is given by, 

( ) ( )c t k t
r

m
= , ˆ0,t tÎ[ ].                                                   (90) 

where ( )k t  is determined by (89). Noting that m , s  and zg  are deterministic and suppose 

that 1zg e>- +  for a.a. z , for some 0e> , and, 

0

ˆ
1 2 2 2

1
0

(1 ) ( ) ( )z

p p z
g g n b dz dt

t
ga a

g
m r s s n-

+

é ù
- - - + + + + <¥ê úê úë ûò ò ,              (91) 

By the Itô formula for Lévy processes, the solution of  (89) is given as follows, 

{ 1 21
2( ) exp (1 )k

p pk t k g g n b d t
a am r s-= [ - - - + + + ]  

 }
0

1
1

0
( ) ln ( , )

t

z
B t N ds dz

g
s +- +ò ò  

                                                        
20 See Corollary 14.14 in pp. 259 of  Di Nunno et al (2009). 
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( )exp ( )q
Q t ,                                                      (92) 

where b  and d  are defined in (8) and (17), respectively, and, 


0

( ) ( ) ( ) ( ) ( , ) ( , )q
dQ t t dt t dB t t z N dt dzJ= + +ò ψ ,                             (93) 

with 

lnq k ,                                                               (94) 

1 21
2( ) (1 )p pt g g n b d

a aJ m r s- - - - + + + ,                                 (95) 

( )t s- ,                                                             (96) 

1
1( , ) ln

z
t z

g+ψ ,                                                         (97) 

If  :h   , then by (90), 

( ) ( ) ( )( ) ( )( ) ( ) exp ( ) ( )k q qh c t h k t h Q t Q t
r r

m m
é ùé ù é ùé ù = = = Fê ú ê úê úë û ë ûë û ë û

    ,                  (98) 

where 

( )( ) exp( )h
r

m
k kF  , for kÎ                                              (99) 

If  F  satisfies the conditions of  Theorem 5, then by Corollary 3, 

( ) ( )ln( ) ( )kd d
dk dk

h c t Q té ùé ù = Fê úë û ë û   

              ( ) exp( ln ( ))d
dk

i k t dll l l= F +ò F  

              ( ) exp( ln ( ))i
k

i k t dl
ll l l= F +ò F ,                              (100) 

where, 

{ }1
1

0

ln1 2 2 21 1 1
2 2 1

0
( ) (1 ) 1 ln ( )z

t i

p p z
t i g g n b d e i dz dsg

la a

l g
l m r s l s l n+-

+[ - - - + + + ]- + [ - - ]ò òF (101) 

Noting that we focus on local sensitivity analyses, and without loss of  any generality, we put, 

,
( ) ( )

M M
h r r

m m

k k
[ ]

 1 , with 0 M M< < <¥ .                                  (102) 

which combines with (99) produces, 

( )
,

( ) exp( )
M M
r r

m m

r

m
k k

[ ]
F  1 , kÎ                                           (103) 

and, 

 ( ) ( )1

,
2 ( ) ( ) exp( )

iii i

iM M
e d e d M Mr r

m m

llrlk lk

m l
p l k k k k

--- -

[ ]
F = F = = -ò ò 

1 ,       (104) 
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Substituting (104) into (100) leads to, 

( ) ( )1
2,

( ) exp( ln ( ))
iid

dk kM M
c t M M i k t dr r

m m

ll

lp
l l

--

[ ]

é ùD = - +ê ú
ë û ò  1 F ,             (105) 

where ( )tlF  is defined in (101). Moreover, by Di Nunno et al (2009)21 we see that, if  for some 

0d> , 

( )
0

ˆ
2 2 21

1
0

1 cos( ln ) ( )
z

dz ds
t

g
l s l n dl+

é ù
+ - ³ê úê úë ûò ò ,                              (106) 

Then the integral in (105) converges. Therefore, the following theorem has been established, 

THEOREM 6. Based on preference manifold one introduced in section 3, if  1zg e>- +  for a.a. z , for 

some 0e> , and (91), (106) are fulfilled, and also, 

( ) exp(Re ( ))t dll l lF <¥ò F , 

Then we get, 

( ) ( )1
2,

( ) exp( ln ( ))
iid

dk kM M
c t M M i k t dr r

m m

ll

lp
l l

--

[ ]

é ùD = - +ê ú
ë û ò  1 F , 

with ( )tlF  given in (101). 

REMARK. It is well-known that sensitivity analyses have been widely applied in literatures of  

finance. Theorem 6 shows that this kind of  analysis method can be naturally brought into 

macroeconomic analyses. And so by Theorem 6, we can tell the extent of  the dependence of  

optimal consumption strategy on the initial conditions of  the corresponding economical system. 

That is to say, we can show how much would the optimal consumption change for a given scale 

change of  the initial conditions of  the economical system. Most importantly, local sensitivity 

analyses can be applied to different preference manifolds corresponding to different endogenous 

times. Therefore, we have been supplied an appropriate variable instrument to tell the differences 

between different preference manifolds and hence different minimum times to “economic 

maturity”. Finally, we need to argue that different economical systems may share the same level of  

D , while different levels of  D  absolutely correspond to different economical systems. 

7. Concluding Remarks 

                                                        
21 See pp. 262. 
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The major goal of  the current paper is to determine the minimum time needed to reach “economic 

maturity” for an underdeveloped economy in the background of  stochastic endogenous growth. 

And the major novelties can be summarized as follows: first, the minimum time to “economic 

maturity” and the sustainable and utility-optimal terminal path level of  capital stock per capita are 

simultaneously and endogenously determined; second, the endogenous time can be explicitly computed 

in some conditions, specifically for the criterion or the preference of  the modified Radner fashion, 

which will completely support comparative static analyses; third, two kinds of  preference manifolds 

are simultaneously incorporated into our model and the resulting different endogenous times are 

comparatively studied for the first time, which, in other words, implies that there may exist a 

one-to-one correspondence between the preference manifold and the endogenous time; forth, the 

effects of  the endogenous time with respect to optimal fiscal policies and different information 

structures are thoroughly explored for the first time to the best of  our knowledge in the 

background of  general equilibrium framework; and fifth, local sensitivity analyses22 of  the optimal 

consumption strategy with respect to initial level of  capital stock per capita are incorporated into 

the unbalanced macroeconomic models. 

Finally, it would be clear that the methodology introduced here can be easily employed to 

compute the optimal stopping times in finance. Noting that a considerable number of  literatures 

(see, Myneni, 1992; Shepp and Shiryaev, 1993; Hobson, 1998; Guo and Shepp, 2001; Avram et al, 

2004; Choi et al 2004; Alili and Kyprianou, 2005) have been devoted to the issue of  optimal 

stopping problems in finance, the advantage of  the current method is that it will support the 

explicit computation23 of  the corresponding optimal stopping times in certain conditions and 

therefore to further analyze the influences of  other parameters, e.g., those reflect different financial 

institutions and different preferences of  information structure, on the optimal stopping times. 

Appendix 

A. Proof  of  Lemma 1 

Applying the maximization operator in (11) yields, 

11
1exp( ( )) ( , ( )) ( ) (1 ) 0

p s k p cg r
s t V t k t k t g

a ar m t-
- -- - + + + =  

                                                        
22 One can easily tell the differences between the method used here and those in empirical literatures, see, Kydland and Prescott, 1982; 
Levine and Renelt, 1992; Canova, 1995; and Fernández and Rogerson, 1998. 
23 That is to say, a simple formula of  the optimal stopping time can be derived in certain conditions. 
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1
1

exp( ( )) ( , ( )) ( ) (1 )
1

k p c
p s s t V t k t k t g

g r a ar m t-+ +
 - - = ,                                  (A.1) 

Substituting (A.1) into (11) gives, 

2 21
2( , ( )) ( ) ( , ( ))

t kk
V t k t k t V t k ts- -  

( )
0

1 1, ( ) ( ) ( , ( )) ( ) ( , ( )) ( )z z

kz z
V t k t k t V t k t k t V t k t dz

g g

g g
n+ +

é ù- - - +ê úë ûò  

( )( )exp( ( )) ln ( , ( )) (1 ) 1s t

k cs t e V t k t
rr m t+é ù=- - + + +ê úë û  

1 2( , ( )) ( ) 1k p kV t k t k t g n b
a am t s-+ [ ( - )- + + ] ,                              (A.2) 

Naturally, one can try, 

1 2( , ( )) exp( ( )) ln ( )V t k t s t C C k tr= - + [ + ] ,                                   (A.3) 

for some constants 1C , 2C  to be determined. Hence, by (A.3), 

1 2( , ( )) exp( ( )) ln ( )tV t k t s t C C k tr r=- - + [ + ] ,                                (A.4) 

1
2( , ( )) exp( ( )) ( )

k
V t k t C s t k tr -= - + ,                                       (A.5) 

2
2( , ( )) exp( ( )) ( )

kk
V t k t C s t k tr -=- - + ,                                     (A.6) 

Inserting (A.3)-(A.6) into (A.2) produces, 

( )
0

21 1
1 2 2 22 1 1ln ( ) ln ( )z

z z
C C k t C C dz

g

g g
r r s n+ ++ + - +ò  

1 2
2 2ln ln ( ) ln (1 ) 1 1c p kC k t C g n b

a am t m t s-=- + - [ + ]+ [ ( - )- + + ]- ,            (A.7) 

which implies that, 

1
2C r-= ,                                                             (A.8) 

And combining (A.7) with (A.8) leads to, 

( )
0

1 1 2

( )
1

1 2 1 11 1
2 1 1

ln (1 ) 1

ln ( )

c p k

z

z z

g n b

C
dz

r a a

m t

g

g g

r m t s

r
s r r n

- -
1+

-
- -

+ +

ì üï ï+ [ - - + + ]-ï ïï ï= í ï ï- + +ï ïï ïî ò
.                      (A.9) 

Thus, it follows from (A.1), (A.5) and (A.8) that, 

1 ( )
ˆ 1

p c
s p g

r g a a

r

m t- 1+
= - - ,                                                 (A.10) 

And by (A.3), (A.8) and (12), we obtain, 
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ˆ1
1

ˆ ˆ ˆ ˆ( , ( )) exp( ( )) ln ( )V k s C k U tt t r t r t-= - + [ + ]= .                           (A.11) 

where 1C  is given in (A.9). ▌ 

B. Proof  of  Lemma 2 

It follows from the “Integro-variational inequalities for optimal stopping” (see, Theorem 2.2, pp. 29) 

of  Øksendal and Sulem (2005), we are to prove, 

(i) We need to prove that gf³  on D , i.e., 

1ln( )pCk g k
b a a-³  for ˆ0 k k< <                                          (B.1) 

Define 1( ) ln( )pl k Ck g k
b a a-- . By our chosen values of  C  and k̂ , we see that 

ˆ ˆ( ) ( ) 0l k l k¢= = . Moreover, noting that 2 2( ) ( 1)l k C k k
bb b - -¢¢ = - + . Thus, if  we put 1b> , we 

get ( ) 0l k¢¢ >  for ˆ0 k k< < , and also we have ( ) 0l k >  for all ˆ0 k k< < . Notice by (14) that, 

1 2ˆ(1) 1 1 1 0p k c p sh g g r n b
a ar m t t s-=- + [( - )-( + )( - - )]- + + <  

1 2ˆ1 1 1p k c p sg g r n b
a am t t r s- [( - )-( + )( - - )]< + - - ,                   (B.2) 

Thus, (B.1) follows as long as (B.2) is fulfilled. 

(ii) Outside D  we have 1( , ) ln( )s

ps k e g k
r a af - -=  and by (16), 

{ 1 1 ˆ( , ) ln( ) 1 1 1s

p p k c p sg s k e g k g g r
r a a a ar m t t- - -= - + [( - )-( + )( - - )]  

}21
2 0n b ds- + + + £    for all ˆk k³  

{ }1 21
2

ˆ1 1 11 exp p k c p sg g r n b d

p
k g

a am t t sa a

r

- [( - )-( + )( - - )]- + + +- - ³ , ˆk k" ³  

{ }1 21
2

ˆ1 1 11ˆ exp p k c p sg g r n b d

p
k g

a am t t sa a

r

- [( - )-( + )( - - )]- + + +- - ³ . 

which holds by (20). 

(iii) To check if  t̂ <¥  almost surely. It is easy to see that one can choose parameters such that 

the geometric Lévy diffusion process defined in (7’’) satisfies the “At most linear growth” and 
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“Lipschitz continuity” conditions, thereby implying a unique càdlàg (right continuous with left limits, 

i.e., RCLL processes) strong solution ( )k t . Then by (4), (8) and Itô formula, we obtain, 

{ }1 21
2

ˆln ( ) 1 1 1p k c p sd k t g g r n b dt
a am t t s-= [( - )-( + )( - - )]- + +  

          ( ) 
0

1 1
1 1 1( ) ln ( ) ln( ) ( , )z

z z z
dB t dz dt N dt dz

g

g g g
s n+ + +- + + +ò ò 

 

{ }1 21
2

ˆ1 1 1p k c p sg g r n dt
a am t t s-= [( - )-( + )( - - )]- +  

          
2

0

( ) 1
1 1 1( ) ( ) ( ) ln( ) ( , )zz

z z z
dB t dz dz dt N dt dz

gg

g g g
s n n+ + +

é ù- + + +ê úë ûò ò ò  
 

{ }1 21
2

ˆ1 1 1 ( )
p k c p s

g g r n z dz dta am t t s g n-= [( - )-( + )( - - )]- + +ò             

0

1
1( ) ln( ) ( , )

z
dB t N dt dz

g
s +- +ò . 

Hence, we get, 

{( 1 21
2

ˆ( ) exp 1 1 1p k c p sk t k g g r n
a am t t s-= [( - )-( + )( - - )]- +  

}
0

1
1

0
( ) ( ) ln( ) ( , )

t

z
z dz t B t N ds dz

g
g n s +

ö÷+ - + ÷÷øò ò ò 
                    (B.3) 

We see that if, 

1 21
2

ˆ1 1 1 ( )p k c p sg g r n z dz
a am t t s g n- [( - )-( + )( - - )]> - -ò                    (B.4) 

0zg <  a.s. n-                                                          (B.5) 

And, 

0s< .                                                                (B.6) 

by the law of  the iterated logarithm of  Brownian motion, then we have, 

lim ( )
t

k t
¥

=¥   a.s. 

And particularly, t̂ <¥  almost surely. 

(iv) Noting from (22) that k̂ <¥ , thus ˆ0, k[ ]  is compact set by Heine-Borel theorem. 

Accordingly, f  is bounded on ˆ0,k[ ] via applying the fact that 2 2( )CfÎ   and the well-known 

Weierstrass theorem. So, it suffices to check that, 

1ln ( )pe g k
rt a a

tt- -
Î{ [ ]}   is uniformly integrable on ˆ[ , )k ¥ . 



 42

where   denotes the set of  admissible stopping time and the uniform topology is naturally 

induced by the norm, which is induced by inner product, of  Hilbert space 2 ( , , )L W  . For this to 

hold, it suffices to show that there exists a constant M <¥  such that 

2 1 2ln( ( ))pe g k M
rt a a t- -{ [ ] }£  for all t Î  and ˆ( )k kt ³ .                    (B.7) 

Since  

1 10 ln ( ) ( )p pg k t g k t
a a a a- -< [ ]<  on ˆ[ , )k ¥ . 

Hence, by (4) and (B.3), we have, 

2 1 2ln( ( ))
p

e g krt a a t- -{ [ ] }  

2 1 2 2( )pg e k
a a rt t- -£ [ ]  

{(2 1 2 1 ˆexp 2 ( ) 2 1 1 1p p k c p sg k z dz g g r
a a a ag n m t t- -é

= + [( - )-( + )( - - )]êêë ò  

}
0

2 1
1

0
2 3 2 2 ln( ) ( , )

z
n N ds dz

t

g
s r t +

ùö÷- + - + ú÷÷øúûò ò  

{(2 1 2 1 ˆexp 2 ( ) 2 1 1 1p p k c p sg k z dz g g r
a a a ag n m t t- -é

= + [( - )-( + )( - - )]êêë ò  

} 
0

2 1 1
1 1

0
2 3 2 2 ln( ) ( ) 2 ln( ) ( , )

z z
n dz N ds dz

t

g g
s r n t+ +

ùö÷- + - + + ú÷÷øúûò ò ò 
             (B.8) 

{(2 1 2 1 ˆexp 2 ( ) 2 1 1 1p p k c p sg k z dz g g r
a a a ag n m t t- -é

= + [( - )-( + )( - - )]êêë ò  

}
0

2 21 1 1
1 1 1

0
2 3 2 2 ln( ) ( ) ( ) 1 2 ln( ) ( )

z z z
n dz dz ds

t

g g g
s r n t n+ + +

ùö÷- + - + + [ - - ] ú÷÷øúûò ò ò 
   (B.9) 

{(2 1 2 1 2ˆexp 2 1 1 1 2 3 2p p k c p sg k g g r na a a am t t s r- -é= [( - )-( + )( - - )]- + -êë
  

}
0

21
1( ) 1 ( ) 2 ( )

z
dz z dz

g
n g n t+

ùö÷ú+ [ - ] + ÷÷øúû
ò ò 

. 

We conclude that if, 
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1 ˆ2 1 1 1p k c p sg g r
a am t t- [( - )-( + )( - - )]  

0

2 21
1

2 2 3 ( ) 1 ( ) 2 ( )
z

n dz z dz
g

r s n g n+£ + - - [ - ] -ò ò 
,                        (B.10) 

Then (B.7) holds and so does (iv). Specifically, from (B.8) to (B.9), we have used the following fact. 

For the following equation, 


0

( , )( ) ( ) ( 1) ( , )t z
dX t X t e N dt dz

y-= -ò , (0) 1X = .                            (B.11) 

which has the solution, 

{ }
0 0

( , )

0 0
( ) exp ( , ) ( , ) ( 1) ( )

t t
s z

X t s z N ds dz e dz ds
yy n= - -ò ò ò ò 

 

{ }
0 0

( , )

0 0
exp ( , ) ( , ) 1 ( , ) ( )

t t
s z

s z N ds dz e s z dz ds
yy y n= - [ - - ]ò ò ò ò 

           (B.12) 

Suppose 

0

( , ) 2

0
( 1) ( )

t
s z

e dz ds
y n- <¥ò ò , 

Then by (B.11) we see that ( ) 1X t[ ]=  and hence by (B.12) we obtain, 

 { }
0 0

( , )

0 0
exp ( , ) ( , ) exp 1 ( , ) ( )

t t
s z

s z N ds dz e s z dz ds
yy y n

é ùæ ö÷ç = [ - - ]ê ú÷ç ÷è øê úë ûò ò ò ò 
  

If  we put 21
1( , ) ln( )

z
s z

g
y += , then (B.9) follows. 

(v) We need to prove that, 

(ˆ 2

0

ˆ( ( )) ( ( )) ( ) ( ( ))k

kk k t k t k t
t

f t f s f
é

+ + -êêë ò   

0

2

1( ( ) ( )) ( ( )) ( )z

z
k t k t k t dz dt

g

g
f f n+

ùö÷+ - - <¥ú÷÷ø úûò     for t" Î             (B.13) 

where ( ( )) ( )k t Ck t
bf =  with C  given in (23) and b  satisfying ( ) 0h b =  in (14). Noting that, 

{ }1 2ˆ ˆ( ( )) 1 1 1 ( )
p k c p s k

k t g g r n b k t
fa af m t t s ¶-
¶= [( - )-( + )( - - )]- + +             

2

2

0

2 21
2 1 1( ) ( ( ) ( )) ( ( )) ( ) ( )z z

z z kk
k t k t k t k t k t dz

f g g f

g g
s f f n

¶ ¶
+ + ¶¶

+ + [ - - + ]ò  
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( ) ( ( ))h k tb r f=[ + ]  

( ( ))k trf= .                                                   (B.14) 

2 2 2( ) ( ( )) ( ) ( )kk t k t C k t bs f sb- = ,                                         (B.15) 

And 

0

2

1( ( ) ( )) ( ( )) ( )z

z
k t k t k t dz

g

g
f f n+- -ò  

0

2 21
1

( ) 1 ( ) ( ( ))
z

dz k t
b

g
n f+= [ - ] [ ]ò ,                                         (B.16) 

Consequently, given, 

0

21
1

( ) 1 ( )
z

dz
b

g
n+[ - ] <¥ò ,                                              (B.17) 

and via applying (iii), (B.13) follows as long as we show that 2( )k
k t

b[ ]<¥  almost everywhere 

on ˆ0,t[ ] . In particular, here we have 1b>  by (B.2). Obviously, our following proof  is similar to 

that of  (iv). By (4) and (B.3), we have, 

2( )k
k t
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= + [( - )-( + )( - - )]êêë ò  

} 
0

2 2 1 1
1 1

0
2 ( 2 ) 2 ln( ) ( ) 2 ln( ) ( , )

t

z z
n dz t N ds dz

g g
b b b s b n b+ +

ùö÷- + + + + ú÷÷øúûò ò ò 
 

{(2 1 ˆexp 2 ( ) 2 1 1 1k

p k c p sk z dz g g r
b a ab g n bm t t-é

= + [( - )-( + )( - - )]êêë ò  

}
0

2 2 21 1 1
1 1 1

0
2 ( 2 ) 2 ln( ) ( ) ( ) 1 2 ln( ) ( )

t

z z z
n dz t dz ds

b

g g g
b b b s b n b n+ + +

ùö÷- + + + + [ - - ] ú÷÷øúûò ò ò 
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{(2 1 2 2ˆexp 2 1 1 1 2 ( 2 )k

p k c p sk g g r nb a abm t t b b b s-é= [( - )-( + )( - - )]- + +êë
  

}
0

21
1

( ) 1 ( ) 2 ( )
z

dz z dz tb

g
n b g n+

ùö÷ú+ [ - ] + ÷÷øúû
ò ò 

. 

Consequently, we show that if, 

1 ˆ2 1 1 1 2 ( )
p k c p s

g g r z dza abm t t b g n- [( - )-( + )( - - )]+ ò  

0

2 2 21
12 ( 2 ) ( ) 1 ( )

z
n dz

b

g
b b b s n+- + + + [ - ] <¥ò ,                         (B.18) 

Then we get 2( )k
k t

b[ ]<¥  almost surely. ▌ 

C. Proof  of  Lemma 3 

Performing the maximization in (27) produces, 

1ˆ ˆ1
ˆ1exp( ( )) ( , ( )) ( ) 0

p s c c

r r
k pg r

s t W t k t k t g
a a

t t
r m -¶ ¶

- - ¶ ¶- - + + = ,                      (C.1) 

1ˆ ˆ1
ˆ1exp( ( )) ( , ( )) ( ) 0

p s k k

r r
k pg r

s t W t k t k t g
a a

t t
r m -¶ ¶

- - ¶ ¶- - + + = .                      (C.2) 

Noting by Lemma 1 and (25) that ˆ 0
c

r
t
¶
¶ ¹  and ˆ 0

k

r
t
¶
¶ ¹ , so (C.1) and (C.2) becomes, 

1
1

exp( ( )) ( , ( )) ( )
ˆ1

k p
p s s t W t k t k t g

g r a ar m -+
- - = ,                                        (C.3) 

Substituting (C.3) into (27) gives rise to, 

2 21
2

( , ( )) ( ) ( , ( ))
t kk

W t k t k t W t k ts- -  

( )
0

1 1
, ( ) ( ) ( , ( )) ( ) ( , ( )) ( )z z

kz z
W t k t k t W t k t k t W t k t dz

g g

g g
n+ +

é ù- - - +ê úë ûò  

( )( )exp( ( )) ln ( , ( )) 1s t

ks t e W t k t
rr m+é ù=- - + +ê úë û  

1 2( , ( )) ( ) 1k p pW t k t k t g g n b
a am s-+ [ ( - )- + + ] ,                              (C.4) 

If  we choose ( , ( ))W t k t  of  the following form, 

3 4( , ( )) exp( ( )) ln ( )W t k t s t C C k tr= - + [ + ] ,                                  (C.5) 
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for some constants 3C , 4C  to be determined. Then, 

3 4( , ( )) exp( ( )) ln ( )tW t k t s t C C k tr r=- - + [ + ] ,                               (C.6) 

1
4( , ( )) exp( ( )) ( )

k
W t k t C s t k tr -= - + ,                                       (C.7) 

2
4( , ( )) exp( ( )) ( )

kk
W t k t C s t k tr -=- - + ,                                     (C.8) 

Inserting (C.5)-(C.8) into (C.4) yields, 

( )
0

21 1
3 4 4 42 1 1

ln ( ) ln ( )z

z z
C C k t C C dz

g

g g
r r s n+ ++ + - +ò  

1 2
4 4ln ln ( ) ln 1 1p pC k t C g g n b

a am m s-=- + - + [ ( - )- + + ]- ,                  (C.9) 

which implies that, 

1
4C r-= ,                                                            (C.10) 

And hence, 

( )
0

1 1 2

1
3 2 1 11 1

2 1 1

ln (1 ) 1

ln ( )

p p

z

z z

g g n b

C
dz

r a a

m

g

g g

r m s

r
s r r n

- -

-
- -

+ +

ì üï ï+ [ - - + + ]-ï ïï ï= í ï ï- + +ï ïï ïî ò
.                        (C.11) 

Thus, by (C.7) and (C.10), (C.3) becomes, 

1ˆ1
p

p s g
g r a a

r

m -- - = ,                                                    (C.12) 

which combining with Lemma 1 shows that, 

0
c
t* = .                                                              (C.13) 

Hence, by (25), we have, 

k pgt* = .                                                             (C.14) 

And by (C.5), (C.10), (28) and Lemma 2, we obtain, 

1
3

ˆ ˆ ˆ ˆ( , ( )) exp( ( )) ln ( )W k s C kt t r t r t-= - + [ + ]  

1
3

ˆˆexp( ( ))( ln )s C kr t r-= - + +  

 ˆ
U t= . 

where 3C  is given in (C.11). ▌ 



 47

D. Proof  of  Lemma 5 

(i) We need to prove that gf³  on region D , i.e., 

1 1
5ln ln( )r

pCk k C g k
a ar- -+ + ³  for 0 k k*< <                              (D.1) 

Define 1 1
5( ) ln ln( )r

pk Ck k C g k
a az r- -+ + - . By our chosen values of  C  and k* , we see 

that ( ) ( ) 0k kz z* *¢= = . And, 

2 1 2

0 0

( ) ( 1) (1 )rk Cr r k kz r- - -

> <

¢¢ = - + -  , 

by (55) and (56). And using (55), we obtain, 

( ) 0 (1 ) ( )r r
k r k kz *¢¢ >  - > ,                                             (D.2) 

where (0) 0k k= >  and 5C  is defined in (48). Thus, as long as (D.2) holds, we have ( ) 0kz ¢¢ >  

for all 0 k k*< < , and also we have ( ) 0kz >  for all 0 k k*< < . Therefore, (D.1) follows as long 

as (D.2) is satisfied. 

(ii) Outside of  D , we have 1( ) ln( )pk g k
a aj -= , and by (39), 

1
0 ( ) ln( )pk g k

a aj r -=-  

{ }1 21
21 1 1p k c p sg g r n b d

a am t t s- *+ [( - )-( + )( - - )]- + + + k k
*" ³  

{ }1 21
2

1 1 11 exp p k c p sg g r n b d

p
k g

a am t t sa a

r

- *[( - )-( + )( - - )]- + + +- - ³ ,       k k
*" ³  

{ }1 21
2

1 1 11 exp p k c p sg g r n b d

p
k g

a am t t sa a

r

- *[( - )-( + )( - - )]- + + +* - - ³ .                 (D.3) 

Combining (42) with (D.3) shows that, 

( )1 21
2

1 1 11 1 ( 1)

1(1 ) exp p k c p sg g r n b d

p p s
g g r

a am t t sa a r

r

- *[( - )-( + )( - - )]- + + +- - * -
-- -  

{ }1 21
2

1 1 11 exp p k c p sg g r n b d

p
g

a am t t sa a

r

- *[( - )-( + )( - - )]- + + +- -³  

ln(1 )p sg rr *- - -  
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1 21
2(1 ) (1 )(1 )p k c p sg g r n b d

a am t t s- *³ [ - - + - - ]- + + + ,                  (D.4) 

Thus, (D.3) follows as long as (D.4) holds. 

It is easy to check that the remaining proof  is quite similar to that of  Lemma 2, so we take it 

omitted. ▌ 

E. Proof  of  Corollary 1 

Firstly, we introduce a Lévy process ( )Z t  and denote by ( )Z sD  the jump of  ( )Z t  at time s , 

i.e., ( ) ( ) ( )Z s Z s Z sD - - . Then, combining with the SDE defined in (60) shows that the 

corresponding Lévy process ( )Z t  has the following Lévy decomposition, 

1 2( ) ( ) (1 )p pZ t B t g g n b t
a as m r s-=- +[ - - - + + ]  

       
0

( ) 11
0

( , ) ( )z

Z sz

s t

N dt dz Z s
g

g {|D |³ }+
< £

+ + Dåò 1 ,                            (E.1) 

where ( ) 1Z s{|D |³ }1  denotes the indicator function of  the set | ( , ) | 1Z sw w{ ÎW; D ³ } . Moreover, we 

define a sequence of  stopping times as follows, 

inf 0 | ( ) | 0
m

t k t mt { ³ ; > > } .                                            (E.2) 

Hence, it is easy to see that 
mt  is increasing with respect to m , i.e., limm mt¥ =¥  almost 

surely. And we put, 

( ) ( ) ( )m

m mt m tk t k t k
t

t tt-
{ < } { ³ }+ - 1 1 ,                                        (E.3) 

Then if  we suppose that, 

0

2( 1) ( )z dzn <¥ò , 

And 

0
1( ) ( )z p

z
dz

g

g
n+ <¥ò . 

for p" Î  and 2p³ . We can apply Lemma 4.1 and Lemma 5.1 of  Protter and Talay (1997) to 

produce, 
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0

sup ( )m
p

s t

k s k
t - *

< £

é ù
-ê ú

ê úë û
  

00

sup ( ) ( ) (0)m

p
s p

p
s t

C k dZ k k
t
l l

- *

< £

æ öé ù ÷ç ê ú ÷ç= - + - ÷ç ê ú ÷÷çè øë û
ò   

0

2 21 2 2

11 (1 ) ( ) ( )z

p p z
g g n b dz

ga a

g
m r s s n-

+
é£ + - - - + + + +òêë   

( )
0

2
1 2 2

1(1 ) ( ) ( )
pp p z

p p z
g g n b dz

ga a

g
m r s s n-

++ - - - + + + + ò   

0 1
0

( ) ( ) ( ) (0)m

T p p
z p

pz
dz k d C k k

g t

g
n l l- *

+
ù+ò - + -úû ò   ,                    (E.4) 

where 0pC >  is a constant depends on p , k*  is given in (54’). And noting that the right hand 

side of  (E.4) is finite because ( )mk mt - £ <¥ , and by triangle inequality, 

( ) ( )m mk k k k
t tl l- - * *- £ - - + , 

Thus, applying Gronwall’s lemma to (E.4) leads to, 

( )( ),
0

sup ( ) 1 (0)m
p p

M T p
s t

k s k k k
t - * *

< £

é ù
- £ + -ê ú

ê úë û
 Y ,                            (E.5) 

where, 

{ 0

2 21 2 2
( ), 1exp ( ) 1 (1 ) ( ) ( )z

M T p p p z
M T g g n b dz

ga a

g
m r s s n-

+
é + - - - + + + +ò +êë Y  

( ) }0 0

2
1 2 2

1 1(1 ) ( ) ( ) ( ) ( )
pp p z z p

p p z z
g g n b dz dz

g ga a

g g
m r s s n n-

+ +
ù- - - + + + + ò +ò ú
û  . 

with ( ) 0M T >  and 0 T< £¥ . Noting that the right hand side of  (E.5) is independent of  m , 

so employment of  Fatou’s lemma and Levi lemma gives the result in our theorem. ▌ 

F. Proof  of  Theorem 3 

The proof  is the same as that of  Corollary 1. Hence, combining with (58), we see that, 

 { 0

2 21 2 2
( ), 1exp ( ) 1 ( ) ( )z

M T p p s z
M T g r n b dz

ga a

g
m s s n- *

+
é + - + + + +ò +êë Y  
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( ) }0 0

2
1 2 2

1 1( ) ( ) ( ) ( )
pp p z z p

p s z z
g r n b dz dz

g ga a

g g
m s s n n- *

+ +
ù- + + + + ò +ò ú
û  ,         (F.1) 

where ( ) 0M T >  and 0 T< £¥ . So, ( ),M T pY  is an increasing function of  sr
* , which is itself  

an increasing function of  
ct  by Lemma 4. Hence, ( ),M T pY  is minimized by sending 

ct  to zero. 

And by the balanced budget constraint given in (25’), we see that 
k p

gt = . Thus, substituting 

0ct =  into Lemma 4 shows that, 

11
p

s p g
r g a a

r

m -
* = - - ,                                                     (F.2) 

Inserting (F.2) into (F.1) gives ( ),M T p
Y  defined in Corollary 1. And this completes the proof. ▌ 

G. Proof  of  Proposition 1 

By (66) and (63), we have, 

2 11exp( ( )) (1 ) ( ) ( )H
p cs t g k t t
a a

x x
r m t G-¶

¶ = - + - + ,                             (G.1) 

Thus, if  the representative agent has incomplete information, the corresponding first order 

condition (FOC) is, 

ˆ| 0H
tx x x

¶
¶ =
[ ] =  ,                                                       (G.2) 

Substituting (G.1) into (G.2) shows, 

2 11
ˆˆexp( ( )) (1 ) ( ) ( ) |p c ts t g k t t

a a

x xx
r m t G-

=
- + = [ + ]   

2 1
ˆ

1

exp( ( )) (1 ) ( ) ( )|
ˆ

p c ts t g k t ta a

x x
r m t G

x -
=+ [ + ]

 =  
,                                       (G.3) 

Combining (G.3) with (64) gives, 


2 1

1

exp( ( )) (1 ) ( ) ( )|
( ) 1

p c t
s p s t g k t t

r t g a ar m t G-+ [ + ]
= - -  

,                                  (G.4) 

where, 

 ( ( ))( ) ( )sr t
k t k t  and  ( ( ))( ) ( )sr t

t tG G ,                                      (G.5) 
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with ( )sr t  -H predictable. And hence (G.4)-(G.5) give the result in (i) of  the proposition. Noting 

that the proof  of  (ii) and (iii) is quite similar to the above one, so we take it omitted. ▌ 

H. Proof  of  Proposition 2 

The proof  of  Proposition 2 proceeds as follows, 

(i) To prove that gf³  on region D . This proof  is quite similar to that of  Lemma 2. Hence, we 

argue that (i) follows as long as, 

1 2
01 1 1 (0)p k c p sg g r n ba am t t r s- [( - )-( + )( - - )]< + - - ,                     (H.1) 

(ii) To prove that outside D  we always have ( , ) 0g s k £  for ˆk k" ³ . This proof  is the same 

as that of  Lemma 2. 

(iii) To check that t̂ <¥  almost surely. By (71) and Itô-Ventzell formula, we have, 

 { }1 21
02ln ( ) 1 1 1 ( )p k c p sd k t g g r t n b d dta am t t s- -= [( - )-( + )( - - )]- + + +  

              ( )d B ts -- 
0

1
1ln( ) ( , )

z
N d t dz

g

-
++ò ,                              (H.2) 

Hence, we get, 

 { }1 21
02

0
( ) exp 1 1 1 ( )

t

p k c p sk t k g g r n b d d
a am t t l s l-æç= [( - )-( + )( - - )]- + + +çèò  


0

1
1

0 0
( ) ( ) ln( ) ( , )

t t

z
d B N d dz

g
s l l- -

+

ö÷+ - + ÷÷øò ò ò ,                         (H.3) 

It follows from Duality formula for forward integrals that, 

0 0
( ) ( ) ( ) 0

T T

td B t D dts s-
+

é ù é ù
- = - =ê ú ê úê ú ê úë û ë ûò ò  , 0T" >                           (H.4) 

And, 


0 0

1 1
,1 1

0 0
ln( ) ( , ) ln( ) ( ) 0

T T

t zz z
N d t dz D dz dt

g g
n-

++ +

é ù é ù
= =ê ú ê úê ú ê úë û ë ûò ò ò ò 

  , 0T" >        (H.5) 

So, we get by Lebesgue monotone convergence theorem, 
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0
( ) ( )d B ts

¥
-- <¥ò  a.e.                                               (H.6) 

And 


0

1
1

0
ln( ) ( , )

z
N d t dz

g

¥
-

+ <¥ò ò  a.e.                                       (H.7) 

Hence, by (H.3), we see that if, 

21
02n b ds- - -  

1 1 1 1 ( )p k c p sg g r ta am t t-< [( - )-( + )( - - )], a.e.                               (H.8) 

Then we get, 

lim ( )
t

k t
¥

=¥   a.s. 

And also, t̂ <¥  almost surely. 

(iv) Similar to that of  Lemma 2, we need to prove that, 

1ln ( )pe g krt a a

tt- -
Î{ [ ]}   is uniformly integrable on ˆ[ , )k ¥ .                     (H.9) 

By (H.3) we get, 

 2
2 ( )e k
rt t-é ù

ê ú
ë û

  

{ }2 1 21
02

0
exp 2 1 1 1 ( )p k c p sk g g r t n b d dt

t
a am t t s r-é æç= [( - )-( + )( - - )]- + + + -ê çèêë ò  


0

1
1

0 0
2 ( ) ( ) 2 ln( ) ( , )

z
d B t N d t dz

t t

g
s - -

+

ùö÷+ - + ú÷÷øúûò ò ò ,                         (H.10) 

So combining (H.10) with (H.6) and (H.7) shows that, if 

1 1 1 1 ( )p k c p sg g r ta am t t- [( - )-( + )( - - )]  

21
02n b dr s£ + - - - , a.e.                                             (H.11) 

Then (H.9) holds and so does (iv). 

(v) Similar to the proof  of  Lemma 2, we need to prove that  2

( )k t
bé ù <¥ê ú

ë û
  almost everywhere on 

ˆ0,t[ ]  with t̂ <¥  a.s. and 1 b< <¥ . By (H.3), we see that, 
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 2

( )k t
bé ù

ê ú
ë û

  

{ }2 1 21
02

0
exp 2 1 1 1 ( )

t

p k c p s
k g g r n b d db a ab m t t l s l-é æç= [( - )-( + )( - - )]- + + +ê çèêë ò  


0

1
1

0 0
2 ( ) ( ) 2 ln( ) ( , )

t t

z
d B N d dz

g
b s l b l- -

+

ùö÷+ - + ú÷÷øúûò ò ò , 

Thus, applying (H.6) and (H.7), we find if, 

1 21
021 1 1 ( )p k c p sg g r t n b da am t t s- [( - )-( + )( - - )]- + + + <¥ , a.e.           (H.12) 

Then (v) follows. ▌ 

I. Proof  of  Proposition 3 

The proof  will be naturally divided into two parts. 

(i) Symmetric information: 

For instance, if  both the representative agent and the government have complete information, then 

by (69) in Proposition 1, we get, 


2 1

1

exp( ( )) (1 ) ( ) ( )|
( ) 1

p c t
s p s t g k t t

r t g a ar m t G-+ + [ ]
= - -  

,                                  (I.1) 

By (75), (73) and (I.1), we see that, 




  ( ) ( )2 11

1 ( )
exp( ( )) ( ) ( )s s

c c cp s

r t r tH
pg r t

s t g k t t
a a

t t t
r m G

¶ ¶-¶
¶ ¶ ¶- -
=- - + + ,                      (I.2) 

Since we have the following FOC, 


0

c
c c

H
tt
t t*

¶
¶ =
é ù =ê úë û  ,                                                        (I.3) 

which combining with (I.2) implies that, 


 2 11

1 ( )
exp( ( )) ( ) ( )

p s

t p t
g r t

s t g k t t
a am G*

**-

- -

é ù é ù- + =ê ú ê úê ú ë ûë û
   ,                         (I.4) 

where   ( )

( ) ( )
c

s sr t r t
t**

 ,   ( )

( ) ( )
c

k t k t
t**

  and   ( )

( ) ( )
c

t t
t

G G
**

  with 
c
t*  - predictable. Then, 

inserting (I.1) into (I.4) and applying the law of  iterated expectation, 

   (1 ) ( ) ( ) ( ) ( )c t tk t t k t tt G G
* ** ** é ù é ù+ =ê ú ê ú

ë û ë û
   ,                                   (I.5) 

which yields, 
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0
c
t* = ,                                                                 (I.6) 

Hence, by (25’’), we obtain, 

k p
gt* = ,                                                               (I.7) 

(ii) Asymmetric information: 

(ii-a) As usual, suppose that the representative agent has private information, that is, the 

representative agent has more information than the government. For example, the representative 

agent has perfect information while the government has complete information, then by (70) in 

Proposition 1 we get, 


2 1

1

exp( ( )) (1 ) ( ) ( )|
( ) 1

p c t
s p s t g k t t

r t g a ar m t G-+ + [ ]
= - -  

,                                   (I.8) 

And the corresponding FOC is given in (I.3). Thus, combining (I.2) and (I.3) with (I.8), we obtain by 

the law of  iterated expectation, 

  (1 ) ( ) ( ) ( ) ( )
c c

c t t tk t t k t t
t t

t G G
*

***

=

é ùé ùé ù+ = ê úê úê úë ûë û ë û
     ,                           (I.9) 

   (1 ) ( ) ( ) ( ) ( )c t tk t t k t tt G G
* ** ** é ù é ù + =ê ú ê ú

ë û ë û
    

which implies that, 

0
c
t* = ,                                                               (I.10) 

Hence, by (25’’), we obtain, 

k pgt* = ,                                                              (I.11) 

Similarly, it is easy to show that (I.10) and (I.11) follow for other cases as long as the representative 

agent gets more information than the government. 

(ii-b) Suppose that the government has more information than the representative agent. For example, 

the government has perfect information while the representative agent has complete information. 

Then the FOC is, 


0

c
c c

H
tt
t t*

¶
¶ =
é ù =ê úë û  ,                                                      (I.12) 

Then combining (I.2), (I.12) with (69) given in Proposition 1, we get by the law of  iterated 

expectation, 

  (1 ) ( ) ( ) ( ) ( )
c c

c t t tk t t k t t
t t

t G G
*

**

=

é ùé ùé ù+ = ê úê úê úë ûë û ë û
      

   (1 ) ( ) ( ) ( ) ( )c t tk t t k t tt G G
* ** **é ù é ù + =ê ú ê ú

ë û ë û
   ,                               (I.13) 

which gives the desired result. Noting that the proof  of  other cases is similar to this one, so we take 

it omitted. ▌ 
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