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Abstract

Assuming an ARIMA(p, I,q) model represents the data, I show how optimal forecasts can be computed and

derive general expressions for its main properties of interest. Namely, I present stepwise derivations of expres-

sions for the variances of forecast errors, and the covariances between them at arbitrary forecasting horizons.

Matricial forms for these expressions are also presented to facilitate computational implementation.

1 Preliminaries

Lets say that a time series of observations yt was found (or estimated) to be represented by the ARIMA(p, I,q)

model given by

φ (L)(1−L)I
yt = θ (L)vt , (1)

where vt is a white noise sequence with given (or estimated) variance σ2
v , φ (L) and θ (L) are lag polynomials

given by

φ (L) = 1−
p

∑
j=1

a jL
j
, θ (L) = 1−

q

∑
j=1

b jL
j
, (2)

which are taken as the p-order stationary autoregressive operator and the q-order invertible moving average oper-

ator, respectivelly. As usual, to ensure stationarity and invertibility the roots of

1−
p

∑
j=1

a jx
j = 0 and 1−

q

∑
j=1

b jx
j = 0 (3)

must lie outside the (complex) unit circle, respectivelly.

Although our main purpose here is to analyze the properties of the forecast errors obtained from the ARIMA(p, I,q)

model, to facilitate our derivations we neglect the difference operator at some moments by using a simple change

of variable given by

xt = (1−L)I
yt , (4)

∗This is written for didactic purposes, supposedly a handy reference. Famous textbook references on the topic are found in Hamilton

(1994); Box et al. (2008). Although not aimed for publication, citations, comments, and suggestions are welcome.
†Email: jakaga2002@yahoo.com.br. Website: https://sites.google.com/site/jkgeconoeng/.
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such that (1) reduces to an ARMA(p,q) form given by

φ (L)xt = θ (L)vt . (5)

In what follows we first show how optimal forecasts for yt+h, as given by the conditional expectation operator

Et−1 [yt+h], can be computed from the model specification in (4)-(5). Next, in section §3 we obtain expressions

for the forecast errors and use these to compute conditional variances and covariances of these errors for varying

forecasting horizons h.

2 Optimal Forecasts

2.1 For the differenced series

Focusing on the ARMA(p,q) form of (5), notice that from (2) we can represent xt as determined by its own lagged

values and the sequence of innovations,

xt =
p

∑
j=1

a jxt− j −
q

∑
j=1

b jvt− j + vt , (6)

which in turn can be easily extended for any desired horizon h,

xt+h =
p

∑
j=1

a jxt+h− j −
q

∑
j=1

b jvt+h− j + vt+h. (7)

For the computation of forecasts and its errors it is helpful to decompose the summations in (7) into the pieces of

information that are known at the period at which the forecast is being made, here t −1, and those not yet known,

which leads to

xt+h =
h

∑
j=1

a jxt+h− j −
h

∑
j=1

b jvt+h− j + vt+h +

+
p

∑
j=h+1

a jxt+h− j −
q

∑
j=h+1

b jvt+h− j, (8)

where the first line contains the information not yet known to the forecaster, and the second line contains only

information already observed. Optimal forecasts can then be obtained using the conditional expectation operator,

Et−1 [•], which applied to (8) leads to

Et−1 [xt+h] =
h

∑
j=1

a jEt−1

[

xt+h− j

]

+
p

∑
j=h+1

a jxt+h− j −
q

∑
j=h+1

b jvt+h− j, (9)

from which forecasts for any horizon h can be computed recursively based solely on information available on

period t −1.

2



2.2 For the integrated series

Once the forecasts for the differenced series xt were computed, to obtain the forecasts for the integrated series yt

first notice that substituting (4) back into Et−1 [xt+h] we obtain

Et−1 [xt+h] = Et−1

[

(1−L)I
yt+h

]

. (10)

The issue now is to find a way to disentangle Et−1 [yt+h] from the RHS of (10). To do this notice that from the

binomial theorem of elementary algebra we have that the difference operator can be expressed as an Ith order

polynomial in the lag operator as given by

(1−L)I =
I

∑
j=0

(

I

j

)

(−1) j
L j
, (11)

where
(

I
j

)

denotes a binomial coefficient, which in factorial form can be computed as I!
j!(I− j)! . Substituting (11)

into (10) we find that

Et−1 [xt+h] = Et−1

[

I

∑
j=0

(

I

j

)

(−1) j
yt+h− j

]

, (12)

= Et−1 [yt+h]+Et−1

[

I

∑
j=1

(

I

j

)

(−1) j
yt+h− j

]

, (13)

where the last equation is found by separating the first element of the summation and solving for the coefficient

given j = 0. We can decompose the remaining summation even further by noticing that Et−1

[

yt+h− j

]

= yt+h− j

for any j > h, given that the value inside of the expectation brackets was already observed for these cases. Thus,

decomposing the summation in (13) and rearranging terms we arrive at

Et−1 [yt+h] = Et−1 [xt+h]−
min{h,I}

∑
j=1

(

I

j

)

(−1) j
Et−1

[

yt+h− j

]

+

−
I

∑
j=h+1

(

I

j

)

(−1) j
yt+h− j, (14)

which provides a recursive formula for computation of forecasts for the integrated series at any forecasting horizon

using only the observations of the integrated series known at period t − 1 and the forecasts previously computed

for the differenced series, as given by (9).
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3 Forecast Errors and Its Properties

3.1 For the differenced series

Letting e(xt+h) denote the error of the forecast made using information from period t − 1 for the value of the

differenced series at period t +h, we have that

e(xt+h) = xt+h −Et−1 [xt+h] , (15)

=
h

∑
j=1

{

a j

(

xt+h− j −Et−1

[

xt+h− j

])

−b jvt+h− j

}

+ vt+h, (16)

where (16) is obtained by simple substitution of (8) and (9) into the definition of the forecast error in (15). But

notice that, from (15), e
(

xt+h− j

)

= xt+h− j −Et−1

[

xt+h− j

]

for any j = 1, ...,h. Substituting this into (16) we arrive

at a recursive formula for the forecast error,

e(xt+h) =
h

∑
j=1

{

a je
(

xt+h− j

)

−b jvt+h− j

}

+ vt+h. (17)

It is important to remember that though the forecasts errors for any horizon h can be computed recursively from

(17), these measures, obviously, cannot be computed numerically before the actual realizations of the forecasted

series have been observed. Our interest here is of course on the symbolic expressions for these forecast errors so

that we can compute conditional variances and covariances for them. Before going through that, notice that there

is an even simpler recursive form for the forecast errors given by

e(xt+h) =
h

∑
j=0

δ jvt+h− j, (18)

with

δ0 = 1 and δ j =
j

∑
k=1

akδ j−k −b j. (19)

Now, letting σ2
e(xt+h)

denote the conditional variance of the forecast error e(xt+h) we have that from its defini-

tion

σ2
e(xt+h)

= Et−1

[

(e(xt+h)−Et−1 [e(xt+h)])
2
]

, (20)

= Et−1

[

e(xt+h)
2
]

, (21)

= Et−1





(

h

∑
j=0

δ jvt+h− j

)2


 , (22)

where the simplification in (21) is obtained by direct application of the expectation operator to (15) (or 18), and

(22) substitutes (18) into (21). Further, from the assumption that vt ∼ IID
(

0,σ2
v

)

we have that the expectation

of the cross-products between the terms of the summation in (22) are null, i.e., Et−1 [vtvs] = 0∀t 6= s, while the
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expectation of the squared terms are the variance of vt , i.e., Et−1

[

v2
t

]

= σ2
v . Thus the conditional variance of the

forecast errors for any horizon h are given by

σ2
e(xt+h)

= σ2
v

h

∑
j=0

δ 2
j . (23)

Conditional covariances of the forecast errors can be computed in a similar way. Letting σe(xt+h,xt+h−l) denote

the conditional covariance between the forecast errors e(xt+h) and e(xt+h−l), for any l = 1, ...,h, we have from

definition that

σe(xt+h,xt+h−l) = Et−1 [e(xt+h)e(xt+h−l)] , (24)

= Et−1

[(

h

∑
j=0

δ jvt+h− j

)(

h−l

∑
j=0

δ jvt+h−l− j

)]

. (25)

Now, it is evident from (25) that the product of the two summations lead to a total of (h+1)(h− l +1) terms.

However, only the (h− l +1) terms of the second summation will lead to squared terms of v, such that following

the same reasoning as for the computation of the variance, from the assumption that vt is IID we have that (25)

reduces to

σe(xt+h,xt+h−l) = σ2
v

h−l

∑
j=0

δ jδl+ j. (26)

Notice that for l > h the conditional covariance is null given that e(xt+h−l) = 0 for this case.

Finally, notice that (23) results as a special case of (26) when l = 0. It may be useful for computation to

consider a matricial form for these expressions, resulting in a matrix of variances/covariances of the forecast

errors. Letting the column vector with h+ 1 forecast errors on the differenced series be denoted by e(xh)
′ =

[

e(xt) e(xt+1) ... e(xt+h)

]

, the forecast errors (co-)variance matrix is defined by Σx = Et−1

[

e(xh)e(xh)
′]

and from (26) is given by

Σx = ∆δ ∆′
δ σ2

v , (27)

where ∆δ is a lower triangular matrix formed with the δ j coefficients from (19). Specifically,

∆δ =



























δ0 0 · · · · · · 0

δ1 δ0 0 · · · 0

δ2 δ1 δ0 · · · 0

...
...

...
. . .

...

δh δh−1 δh−2 · · · δ0



























. (28)
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3.2 For the integrated series

To obtain similar measures for the integrated series we are going to first establish the relationship between the

forecast error for the differenced series and that for the integrated series, so that we can then make use of the

expressions we have already obtained in the previous subsection. To start notice that from (4) and (11) we have

that

xt+h =
I

∑
j=0

(

I

j

)

(−1) j
yt+h− j, (29)

which substituted into the definition of the differenced series forecast error, (15), results in

e(xt+h) =
I

∑
j=0

(

I

j

)

(−1) j
yt+h− j −

I

∑
j=h+1

(

I

j

)

(−1) j
yt+h− j +

−
h

∑
j=0

(

I

j

)

(−1) j
Et−1

[

yt+h− j

]

, (30)

=
h

∑
j=0

(

I

j

)

(−1) j
(

yt+h− j −Et−1

[

yt+h− j

])

, (31)

where in (30) we are already incorporating a decomposition of the expected value of the summation in (29) into

the portion of terms already known at the time of the forecast and those not yet known, just as we did in (14), and

in (31) we are just simplifying the summations in (30) by removing the terms that cancel each other in the first

two summations and then aggregating the remainder with the last summation of expected values.

Now, if we apply the definition of the forecast error function to the integrated series forecasts we have that

e(yt+h) = yt+h −Et−1 [yt+h] , (32)

which for any j = 0, ...,h can be equivalently put as

e
(

yt+h− j

)

= yt+h− j −Et−1

[

yt+h− j

]

. (33)

Substituting (33) into (31) we arrive at a recursive formula for the integrated series forecast error, i.e.,

e(xt+h) =
h

∑
j=0

(

I

j

)

(−1) j
e
(

yt+h− j

)

, (34)

= e(yt+h)+
h

∑
j=1

(

I

j

)

(−1) j
e
(

yt+h− j

)

, (35)

e(yt+h) = e(xt+h)−
h

∑
j=1

(

I

j

)

(−1) j
e
(

yt+h− j

)

, (36)

where (35) is obtained by releasing the first term of the summation in (34), and the recursive formula in (36) is

obtained by rearranging the terms in (35). Although (36) already provides a way to obtain the forecast errors for

the integrated series from those calculated for the differenced series in (18), we can go further and simplify it to
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be determined solely from the forecast errors for the differenced series. Repeating the recursive substitutions in

(36) a few times, we find that this formula can be generalized into

e(yt+h) =
h

∑
j=0

β je
(

xt+h− j

)

, (37)

with

β j =
(I + j−1)!

j!(I −1)!
, (38)

which therefore establish a direct relationship between the forecast errors for the differenced series and the forecast

errors for the integrated series, where the (non-negative integer) order of integration is arbitrary.

To obtain an expression for the conditional variance of forecast errors for the integrated series we can use

(37)-(38) with the definition of this measure, as in (21),

σ2
e(yt+h)

= Et−1

[

e(yt+h)
2
]

, (39)

= Et−1





(

h

∑
j=0

β je
(

xt+h− j

)

)2


 , (40)

where the square of the summation can be expressed as a squared multinomial

σ2
e(yt+h)

=
h

∑
j=0

β 2
j Et−1

[

e
(

xt+h− j

)2
]

+

+2
h

∑
j=0

h

∑
l= j+1

β jβlEt−1

[

e
(

xt+h− j

)

e(xt+h−l)
]

, (41)

with the expectation operator already solved for the parameters. But notice that the two expectations left to be

solved in (41) correspond to the definitions of the conditional variance and covariance, given by (21) and (24)

respectivelly, though we need to adjust the period of the forecast. Doing that we find that

σ2

e(xt+h− j)
= σ2

v

h− j

∑
i=0

δ 2
i , (42)

σ
e(xt+h− j ,xt+h−l) = σ2

v

h−l

∑
i=0

δh− j−iδh−l−i. (43)

Substituting (42) and (43) into (41) we arrive at a formula for the conditional variance of the forecast error for the

integrated series

σ2
e(yt+h)

=
h

∑
j=0

β 2
j σ2

e(xt+h− j)
+2

h−1

∑
j=0

h

∑
l= j+1

β jβlσe(xt+h− j ,xt+h−l), (44)

which can be indirectly computed from the given (or estimated) variance σ2
v , and the autoregressive and moving

average parameters of the ARIMA(p, I,q) model in (1)-(2), using (42), (43), and the definitions of the δ and β

parameters given in (19) and (38), respectivelly.
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We can follow a similar approach to obtain an expression for the conditional covariance between forecast

errors on the integrated series. From the definition of the conditional covariance, (24), we have that

σe(yt+h,yt+h−l) = Et−1 [e(yt+h)e(yt+h−l)] , (45)

= Et−1

[(

h

∑
i=0

βie(xt+h−i)

)(

h−l

∑
i=0

βie(xt+h−l−i)

)]

, (46)

where in (46) we have substituted (37) adjusting the indexes. The product of the two summations obviously will

have (h+1)(h− l +1) terms, which can be decomposed into (h− l +1) squared terms and h(h− l +1) cross-

product terms. Such a decomposition is given by

σe(yt+h,yt+h−l) =
h−l

∑
i=0

βiβl+iEt−1

[

e(xt+h−l−i)
2
]

+

+
h−l

∑
i=0

l+i−1

∑
k=0

βiβkEt−1 [e(xt+h−l−i)e(xt+h−k)]+

+
h−l

∑
i=0

h

∑
k=l+i+1

βiβkEt−1 [e(xt+h−l−i)e(xt+h−k)] . (47)

Again, we can identify the expressions under expectations with the definitions of the conditional variance and

covariance for the forecast error on the differenced variable. Namely, we have that

σ2
e(xt+h−l−i)

= σ2
v

h−l−i

∑
m=0

δ 2
m, (48)

σe(xt+h−l−i,xt+h−k) = σ2
v

min{h−l−i,h−k}

∑
m=0

δh−l−i−mδh−k−m, (49)

where the minimization determining the last value for m into the summation in (49) will always pick the first

option (h− l− i) under the conditions implied by the first double summation in (47), and the second option (h−k)

under the second double summation in (47). Substituting (48) and (49) into (47) we obtain our final expression

for the conditional covariance of the forecast errors on the integrated variable, i.e.,

σe(yt+h,yt+h−l) =
h−l

∑
i=0

βiβl+iσ
2
e(xt+h−l−i)

+

+
h−l

∑
i=0

l+i−1

∑
k=0

βiβkσe(xt+h−l−i,xt+h−k)+

+
h−l

∑
i=0

h

∑
k=l+i+1

βiβkσe(xt+h−l−i,xt+h−k). (50)

As with the differenced series, notice that (44) results as a special case of (50) when l = 0. Again, we can turn

these expressions into an unique matricial form to obtain the matrix of variances/covariances of forecast errors

on the integrated series. Following previous notation, this matrix is defined as Σy = Et−1

[

e(yh)e(yh)
′]

and from
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(50) can be computed by

Σy = ∆β Σx∆′
β , (51)

where ∆β is a lower triangular matrix constructed with the β j coefficients from (38) in the same way as (28), i.e.,

∆β =



























β0 0 · · · · · · 0

β1 β0 0 · · · 0

β2 β1 β0 · · · 0

...
...

...
. . .

...

βh βh−1 βh−2 · · · β0



























. (52)
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