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Abstract

This paper studies a model in which an agent considers proposing a project of unknown

quality to an evaluator, who decides whether or not to accept it. First, we show that there exist

instances where an agent with a better track record of producing high-quality projects should

be subjected to more stringent standards. Second, we show that an increase in the submission

fee may lead to a decrease in the quality of projects that are implemented because of its effects

on the evaluator’s acceptance policy.
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1 Introduction

We study a game of two-sided incomplete information in which an agent considers proposing a

project to an evaluator, who has the choice of whether or not to accept it. Each player learns a

private informative signal about the quality of the project, while the available public information

translates into a common prior. The agent’s payoff upon submission is determined by the evaluator’s

decision. The evaluator’s payoff is determined by the quality of the projects that he accepts. Making

the proposal incurs a monetary or non-monetary submission fee on the agent.

The situations that are captured by the above setting are abundant and diverse. A possible

example is that of a firm interested in undertaking a project, such as the development of an

economic activity in an environmentally sensitive area, that requires filing a costly application with

a regulatory agency. In this case, the firm is concerned with the agency’s decision of whether

to approve the proposal, while the regulatory agency is usually concerned with the social welfare

implications of that activity.1

A first finding in this setup relates a change in the common prior with the equilibrium strategy

of the evaluator. We identify the condition under which the evaluator becomes less stringent in his

acceptance policy when the prior about the agent is higher. This condition is not always satisfied

and therefore, an agent with a higher prior, such as one with a better reputation of producing

high-quality projects, may need to face more stringent requirements.

We then investigate the efficiency effects of a change in the submission fee. Leslie (2005) con-

siders a model of one-sided incomplete information, in which the evaluator can perfectly assess the

quality of a submitted project, and shows that submission fees and time delays at academic journals

increase the quality of papers submitted for review by discouraging long-shot submissions. In our

model, a higher submission fee also increases the quality of projects that the agent submits, but this

induces the evaluator to lower his standards of acceptance and therefore to accept projects with less

favorable private signals. We identify the condition under which, on net, a higher submission fee

increases the expected quality of projects that are implemented. Since this condition is not always

satisfied, it is possible for a higher submission fee to lower the expected quality of these projects.

Thus, in a model with two-sided incomplete information in which the evaluator’s assessment of

the project is imperfect, we show that by accounting for the evaluator’s response to an increase in

the quality of projects submitted by the agent, higher submission fees can decrease the quality of

projects that are implemented.2

The closest paper to ours is Taylor and Yildirim (2011), which studies a model in which an agent

chooses the amount of effort to exert in generating a project, and investigates the moral hazard

1Other examples are the introduction of a new product with potential undesirable effects, a merger, a patent
application, or the submission of an article to an academic journal.

2Cotton (2012) shows that moderate submission fees and delays are optimal when authors are heterogenous with
respect to willingness to pay submission fees and deal with delays.
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effects of the potentially available public information. Ottaviani and Wickelgren (2009) analyze the

trade-off between ex-ante and ex-post approval of an activity when the evaluator may reconsider

his approval at the time when the quality of the project is revealed. Boleslavsky and Cotton (2011)

study a model in which an evaluator has to select one of several competing proposals, and investigate

the effect of the limited capacity on the incentives of the proposers to produce information.

2 The Model

There are two players, an agent (A) and an evaluator (E). A owns a project and considers proposing

it to E . The project is of either high (h) or low (l) quality. The common prior probability of h is π0.

An accepted project yields A a payoff 1, irrespective of its ex-post observed quality. Submitting the

project incurs a fee on A whose monetary equivalent is c ∈ (0, 1). A’s payoff from not submitting

the project is 0. Upon receiving a project from A, E has the choice of whether to accept it or not.

E ’s payoff from accepting a high-quality project is 1, while his loss from accepting a low-quality

project is L ∈ (0, 1). E ’s payoff from rejecting a project is normalized to 0.3

Prior to taking their decisions, A and E perform assessments of the project that result in a

subjective evaluation of its quality.4 A’s assessment yields a private signal µ ∈ [0, 1]; E ’s assessment

yields a private signal σ ∈ [0, 1]. For quality q ∈ {h, l}, Gq(µ) and F q(σ) denote the cumulative

distribution functions of A’s and E ’s signals, respectively, and gq(µ) > 0 and f q(σ) > 0 are the

corresponding density functions. We make the following assumption.

Assumption 1 (i) gq and f q are bounded and twice continuously differentiable for q ∈ {h, l}; (ii)
d
dσ

[
fh(σ)
f l(σ)

]
> 0, d

dµ

[
gh(µ)
gl(µ)

]
> 0; (iii) lim

σ→0

gh(µ)
gl(µ)

= 0 and lim
σ→1

gh(µ)
gl(µ)

=∞

Part (ii) of the assumption is the usual monotone likelihood ratio. Part (iii) imposes that for

extreme signals of E , information becomes almost perfect.

3 The Equilibrium

Consider some arbitrary strategies of A and E , respectively, Λag : [0, 1]→ {s, n} and Λev : [0, 1]→

{a, r}, with the obvious interpretation of the action labels. A submits a project of quality signal µ

if and only if

Pr({a}|µ) · 1− c ≥ 0⇐⇒ Pr({a}|µ) ≥ c (1)

3The analysis does not change in a meaningful way if the agent’s payoff also depends on the quality of the project
or if the evaluator is also concerned with the quality of projects that he rejects. Since the submission fee may often
take a non-monetary form, we do not include it in the evaluator’s payoff.

4 In the case of an application for economic development in a environmentally sensitive area, both the firm and
the regulatory agency can acquire private information through expert analysis about the likelihood that the activity
is welfare improving, while, for instance, the firm’s environmental record is public information.
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where the event {a} ≡ {σ ∈ [0, 1] : Λev (σ) = a}. E accepts a submitted project if and only if

Pr(h|{s}, σ) · 1 + [1− Pr(h|{s}, σ)] (−L) ≥ 0⇐⇒ Pr(h|{s}, σ) ≥
L

1 + L
(2)

where {s} ≡ {µ ∈ [0, 1] : Λag (µ) = s}.

The next lemma, whose proof is in the online appendix A1, states that in any Bayesian Nash

equilibrium, the two players adopt cutoff strategies with respect to their informative signals.

Lemma 3.1 Any equilibrium of the game is characterized by two values (µ∗, σ∗) ∈ [0, 1] × [0, 1],

such that A submits a project if and only if µ ≥ µ∗ and E accepts it if and only if σ ≥ σ∗.

Therefore, a player’s equilibrium strategy can be defined in terms of the corresponding cutoff.

For the rest of the paper, σs and µs will denote generic cutoff strategies of the two players, σ (µs)

and µ (σs) will denote best responses, while σ
∗ and µ∗ will refer to equilibrium strategies.

The next lemma describes the two players’ best responses. Its proof is in appendix A2.

Lemma 3.2 (i)There exist two thresholds σ1, σ2 ∈ (0, 1), with σ1 < σ2, such that A submits a

project if and only if µ ≥ µ (σs) ∈ [0, 1], where: (1) µ (σs) = 0, for σs ∈ [0, σ1]; (2) µ (σs) is defined

implicitly by
π0

1− π0

gh(µ)

gl(µ)
=
c−

[
1− F l (σs)

]

[1− F h (σs)]− c
(3)

when σs ∈ (σ1, σ2); and (3) µ (σs) = 1, for σs ∈ [σ2, 1].

(ii) E accepts a project if and only if σ ≥ σ (µs), where σ (µs) is defined implicitly by

π0
1− π0

fh(σ)

f l(σ)

1−Gh(µs)

1−Gl(µs)
= L (4)

In (4), 1−G
h(µs)

1−Gl(µs)
is the likelihood of h as inferred by E from the fact that A submitted the

proposal. Therefore, E accepts a proposal if and only if the likelihood of h, as inferred by E from

the prior
(

π0
1−π0

)
, his informative signal

(
fh(σ)
f l(σ)

)
, and the fact that A submitted the proposal

(
1−Gh(µs)
1−Gl(µs)

)
, exceeds L. On the other hand, (3) states that A submits a proposal if and only if

the likelihood of h, as inferred by A from the prior and from his informative signal, exceeds the

corresponding ratio between the expected loss when the project is of low-quality,
(
c−

[
1− F l (σs)

])
,

and the expected benefit when it is of high quality,
([
1− F h (σs)

]
− c
)
.5

The two best-response functions and the equilibrium are depicted in panel (a) of Figure 1.

5c−
[
1− F l (σs)

]
is the expected loss from submitting a project of low quality as it is the difference between the

submission cost c and the expected benefit
[
1− F l (σs)

]
· 1.
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The next proposition states the existence and uniqueness of the Bayesian Nash equilibrium; its

proof is in appendix A3.

Proposition 1 A’s best response µ (σs) is increasing. E’s best response σ (µs) is decreasing. There

exists a unique equilibrium of the game, (µ∗, σ∗), with µ∗ ∈ [0, 1) and σ∗ ∈ (0, 1).

4 Results

The first comparative statics of interest are with respect to the two players’ relative costs of their

respective actions, L and c.

Proposition 2 (i) dµ∗

dL
> 0, dσ

∗

dL
> 0; (ii) dµ∗

dc
> 0, dσ

∗

dc
< 0.

When L increases, the right hand side of (4) increases, and thus the curve σ (µs) shifts to the

right. Since µ (σs) remains unchanged, this leads to an increase in both µ
∗ and σ∗. Intuitively,

if L increases, the incentive for E to accept a project decreases, and this induces an increase in

σ∗. Anticipating a more stringent acceptance policy by E , A exerts more project screening and

increases µ∗. Second, when c increases, the curve σ (µs) stays fixed. Taking the derivative of the

right hand side of (3) with respect to c, and using the fact that F l (σs) > F
h (σs),

6 it follows that

the curve µ (σs) moves up. This leads to a decrease in σ
∗ and an increase in µ∗. Thus, when c

increases, A exerts more project screening and increases µ∗. Knowing this, E increases his belief

about the quality of projects that he receives, and lowers σ∗.

Next, we examine the effect of a change in π0 on the equilibrium strategies. Note that when π0

increases, the values of µ and σ that satisfy equations (3) and (4), respectively, decrease. Thus, as

depicted in panel (b) of Figure 1, both best-response curves shift down. µ∗ therefore unequivocally

6The monotone likelihood property in assumption 1(ii) implies stochastic dominance.
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decreases: an agent who is ex-ante more likely to produce a high-quality project is more confident

in submitting marginal projects. The change in σ∗ is ambiguous, as the direct effect on beliefs of

the higher π0 can be offset by the decrease in posterior beliefs generated by A’s strategy. σ
∗ will

decrease if E ’s strategy is more elastic with respect π0 than with respect to A’s strategy.

Proposition 3 We have: (i) dµ∗

dπ0
< 0; (ii) dσ∗

dπ0
< 0 if and only if d

dµ
ln g

h(µ∗)
gl(µ∗)

> d
dµ
ln 1−G

h(µ∗)
1−Gl(µ∗)

.

Proof. Part (i) follows from the preceding argument. For (ii), writing (3) and (4) in equilibrium,

dividing them, and taking logarithms, we obtain

ln

(
gh(µ∗)

gl(µ∗)

)
− ln

(
1−Gh(µ∗)

1−Gl(µ∗)

)
= ln

(
1

L

fh(σ∗)

f l(σ∗)

)
+ ln

(
c−

[
1− F l (σ∗)

]

[1− F h (σ∗)]− c

)

(5)

The term in the right hand side of (5) is increasing in σ∗.7 Since dµ∗

dπ0
< 0, it follows that dσ

∗

dπ0
< 0

if and only if the term in the left hand side of (5) is increasing in µ∗. �

Thus, E becomes more lenient if the elasticity of the likelihood of h as inferred fromA’s threshold

signal µ∗ is higher than the elasticity of the likelihood of h as inferred by E from the fact that A

submitted the project. It can be shown by counterexample that the condition in proposition 3(ii)

is not always satisfied. This suggests that there exist instances where an agent with a better track

record of producing high-quality projects should be subjected to more stringent standards.

Next, we investigate the effect of an increase in c on the expected quality of projects that are

implemented, which as is isomorphic with Pr (h|µ ≥ µ∗, σ ≥ σ∗).8

Proposition 4 d
dc
Pr (h|µ ≥ µ∗, σ ≥ σ∗) > 0 if and only if d

dσ
ln f

h(σ∗)
f l(σ∗)

> d
dσ
ln 1−F

h(σ∗)
1−F l(σ∗)

.

Proof. By Bayes’ Rule, we have

Pr (h|µ ≥ µ∗, σ ≥ σ∗) =
Pr (µ ≥ µ∗, σ ≥ σ∗|h) Pr(h)

Pr (µ ≥ µ∗, σ ≥ σ∗|h) Pr(h) + Pr (µ ≥ µ∗, σ ≥ σ∗|l) Pr(l)

=
π0

π0 + (1− π0)
Pr(µ≥µ∗,σ≥σ∗|l)
Pr(µ≥µ∗,σ≥σ∗|h)

=
π0

π0 +
1−π0

1−Gh(µ∗)

1−Gl(µ∗)

1−Fh(σ∗)

1−Fl(σ∗)

where we used the conditional independence of the two players’ signals. Therefore, Pr (h|µ ≥ µ∗, σ ≥ σ∗)

increases if and only if ln 1−G
h(µ∗)

1−Gl(µ∗)
+ ln 1−F

h(σ∗)
1−F l(σ∗)

increases. From (4), we have ln 1−G
h(µ∗)

1−Gl(µ∗)
=

7The formal proof of the fact that
c−[1−F l(σ∗)]
[1−Fh(σ∗)]−c

is increasing in σ∗, for σ∗ ∈ (σ1, σ2), is presented in appendix A2.
8The expected quality of the projects that are implemented is l + (h− l) Pr (h|µ ≥ µ∗, σ ≥ σ∗).
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lnL − ln π0
1−π0

− ln f
h(σ∗)
f l(σ∗)

, so Pr (h|µ ≥ µ∗, σ ≥ σ∗) increases if and only if ln 1−F
h(σ∗)

1−F l(σ∗)
− ln f

h(σ∗)
f l(σ∗)

increases. Since σ∗ is decreasing in c, the proof of the proposition is complete. �

The condition in proposition 4 is not always satisfied, and thus, while a higher submission fee

always increases the expected quality of projects that are received for review (as elicited by the

increase in µ∗), it may lead to an inferior equilibrium outcome by lowering the evaluator’s standards

of acceptance to an extent that more than offsets the increase in the quality of projects that are

submitted.9 On the other hand, when the condition in proposition 4 is satisfied, the efficiency of

the outcome can be improved by increasing c and shifting the project-screening onto the agent.
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Appendix (NOT FOR PUBLICATION)

Appendix A1. Proof of Lemma 3.1

Consider some arbitrary strategy Λag of A. Then, for E ’s beliefs, by Bayes’ Rule we have

Pr(h|{s}, σ) =
j({s}, σ|h) Pr(h)

j({s}, σ|h) Pr(h) + j({s}, σ|l) Pr(l)
(6)

where j(·|·) denotes the conditional probability density function of the relevant continuous random

variable. Since A’s action and the signal σ are conditionally independent, it follows that

Pr(h|{s}, σ) =
Pr({s}|h)fh(σ)π0

Pr({s}|h)fh(σ)π0 + Pr({s}|l)f l(σ) (1− π0)
(7)

=
Pr({s}|h) π0

1−π0

fh(σ)
f l(σ)

Pr({s}|h) π0
1−π0

fh(σ)
f l(σ)

+ Pr({s}|l)

Since, the last term in (7) is increasing in fh(σ)
f l(σ)

, the fact that d
dσ

[
fh(σ)
f l(σ)

]
> 0, as imposed by

assumption 1, implies d
dσ
Pr(h|{s}, σ) > 0. Thus, given (2), for any Λag, E responds with a cutoff

strategy by accepting a submitted project if and only if σ ≥ σ(Λag), with σ(Λag) ∈ [0, 1].

On the other hand, given some arbitrary strategy Λev of E , for A’s belief we have

Pr({a}|µ) = Pr({a}|µ, h) Pr(h|µ) + Pr({a}|µ, l) Pr(l|µ)

= [Pr({a}|h)− Pr({a}|l)] Pr(h|µ) + Pr({a}|l) (8)

where the second equality follows from the fact that µ is redundant forA’s inference about E ’s action

when conditioning on the quality of the project. Since in any equilibrium, E uses a cutoff strategy,

we have Pr({a}|h) − Pr({a}|l) = Pr(σ ≥ σ|h) − Pr(σ ≥ σ|l) = F l(σ) − F h(σ). The monotone

likelihood ratio property implies first order stochastic dominance, and thus F l(σ)−F h(σ) > 0. On

the other hand, by Bayes’ Rule we have

Pr(h|µ) =
gh(µ)π0

gh(µ)π0 + gl(µ) (1− π0)
=

gh(µ)
gl(µ)

π0
1−π0

gh(µ)
gl(µ)

π0
1−π0

+ 1
(9)

which is increasing in gh(µ)
gl(µ)

, and thus increasing in µ since d
dµ

[
gh(µ)
gl(µ)

]
> 0 by assumption 1. There-

fore, when E employes a cutoff strategy, d
dµ
Pr({a}|µ) > 0, and thus A’s best response is a cutoff

strategy. �
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Appendix A2. Proof of Lemma 3.2

(i) Given an arbitrary cutoff strategy σs of E , we have Pr({a}|q) = Pr(σ ≥ σs|q) = 1−F
q (σs), for

q ∈ {h, l}. Employing lemma 3.1 and (9) in Pr({a}|µ) = Pr({a}|h) Pr(h|µ) + Pr({a}|l) Pr(l|µ), it

follows that

Pr({a}|µ) =

π0
1−π0

gh(µ)
gl(µ)

π0
1−π0

gh(µ)
gl(µ)

+ 1

[
1− F h (σs)

]
+

1
π0
1−π0

gh(µ)
gl(µ)

+ 1

[
1− F l (σs)

]
(10)

From (1), we have then that given σs, A submits a project if and only if

π0
1−π0

gh(µ)
gl(µ)

π0
1−π0

gh(µ)
gl(µ)

+ 1

[
1− F h (σs)

]
+

1
π0
1−π0

gh(µ)
gl(µ)

+ 1

[
1− F l (σs)

]
≥ c⇐⇒

π0
1− π0

gh(µ)

gl(µ)

{[
1− F h (σs)

]
− c
}

≥ c−
[
1− F l (σs)

]
⇐⇒

π0
1− π0

gh(µ)

gl(µ)
≥

c−
[
1− F l (σs)

]

[1− F h (σs)]− c
(11)

Note now that if σs < σ′1 ≡
(
F l
)−1

(1− c) ∈ (0, 1), then (11) is satisfied for any µ. To see

this, note that σs < σ′1 implies that 1 − c − F
l (σs) > 0, which together with F h (σs) < F l (σs)

implies 1 − c − F h (σs) > 0, and thus
[
1− F h (σs)

]
− c > 0 > c −

[
1− F l (σs)

]
. Second, if

σs > σ′2 ≡
(
F h
)−1

(1− c) ∈ (0, 1), then (11) is satisfied for no µ. To see this, note that σs > σ′2
implies F h (σs)− 1 + c > 0, which then implies F

l (σs)− 1 + c > 0, and thus,
[
1− F h (σs)

]
− c <

0 < c −
[
1− F l (σs)

]
. Finally, note that σ′1 < σ′2. By taking the derivative of

c−[1−F l(σs)]
[1−Fh(σs)]−c

with

respect to σs, since
[
1− F h (σs)

]
− c > 0 and c −

[
1− F l (σs)

]
> 0 when σs ∈ [σ

′
1, σ

′
2], it follows

immediately that this term is increasing in σs on [σ
′
1, σ

′
2].

Let S ≡ lim
µ→1

gh(µ)
gl(µ)

and S ≡ lim
µ→0

gh(µ)
gl(µ)

, where {S, S} ⊂ R+ ∪ {0,+∞}. If S = ∞ and S =

0, then let σ1 ≡ σ′1 and σ2 ≡ σ′2, and note that as σs increases from σ1 to σ2,
c−[1−F l(σs)]
[1−Fh(σs)]−c

increases continuously from 0 to ∞. Therefore, for any σs there exists µ ∈ [0, 1] such that
gh(µ)
gl(µ)

=
(
c−[1−F l(σs)]
[1−Fh(σs)]−c

)
/
(

π0
1−π0

)
. Assume now that S < ∞ and S > 0. Let σ1 be defined implicitly by

S =

(
c−[1−F l(σ1)]
[1−Fh(σ1)]−c

)
/
(

π0
1−π0

)
, and σ2 be defined implicitly by S =

(
c−[1−F l(σ2)]
[1−Fh(σ2)]−c

)
/
(

π0
1−π0

)
. Note

that since lim
σs→σ

′+
1

c−[1−F l(σs)]
[1−Fh(σs)]−c

= 0 and lim
σs→σ

′−

2

c−[1−F l(σs)]
[1−Fh(σs)]−c

= ∞, we have σ1 > σ′1 and σ2 < σ′2.

Since [σ′1, σ
′
2] ⊂ (0, 1) and σ1 < σ2, it follows that [σ1, σ2] ⊂ (0, 1). Then, when σs increases from

σ1 to σ2,

(
c−[1−F l(σs)]
[1−Fh(σs)]−c

)
/
(

π0
1−π0

)
increases continuously from S to S. Therefore, for any σs there

exists µ ∈ [0, 1] such that g
h(µ)
gl(µ)

=

(
c−[1−F l(σs)]
[1−Fh(σs)]−c

)
/
(

π0
1−π0

)
. Finally, if S <∞ and S = 0, then let

9



σ1 ≡ σ
′
1 and σ2 be defined implicitly by S =

(
c−[1−F l(σ2)]
[1−Fh(σ2)]−c

)
/
(

π0
1−π0

)
, while if S =∞ and S > 0,

then let σ1 be defined implicitly by S =

(
c−[1−F l(σ1)]
[1−Fh(σ1)]−c

)
/
(

π0
1−π0

)
and σ2 ≡ σ

′
2.

(ii) For the evaluator, from (2) and (7) it follows that, given an arbitrary cutoff strategy µs,

Pr(h|{s}, σ) ≥
L

1 + L
⇐⇒

Pr({s}|h) π0
1−π0

fh(σ)
f l(σ)

Pr({s}|h) π0
1−π0

fh(σ)
f l(σ)

+ Pr({s}|l)
≥

L

1 + L
⇐⇒

[
1−Gh(µs)

]
π0
1−π0

fh(σ)
f l(σ)

[1−Gh(µs)]
π0
1−π0

fh(σ)
f l(σ)

+ [1−Gl(µs)]
≥

L

1 + L
⇐⇒

π0
1− π0

fh(σ)

f l(σ)

1−Gh(µs)

1−Gl(µs)
≥ L. �

Appendix A3. Proof of Proposition 1

First, A’s best-response function µ (σs), as elicited from (3), is increasing because d
dµ

[
gh(µ)
gl(µ)

]
> 0

and
c−[1−F l(σs)]
[1−Fh(σs)]−c

is increasing in σs. To show that σ (µs) is decreasing, since
d
dσ

[
fh(σ)
f l(σ)

]
> 0, it is

enough to show that 1−G
h(µs)

1−Gl(µs)
is increasing in µs. Taking the derivative, we have

∂

∂µs

[
1−Gh(µs)

1−Gl(µs)

]
=
−gh(µs)

[
1−Gl(µs)

]
+ gl(µs)

[
1−Gh(µs)

]

[1−Gl(µs)]
2 > 0

To show this inequality, note that d
dµ

[
gh(µ)
gl(µ)

]
> 0 implies gh(µs)

gl(µs)
≤ gh(x)

gl(x)
for x ∈ [µs, 1], and thus

that gh (µs) g
l (x) ≤ gl (µs) g

h (x). Integrating this inequality with respect to x between µs and 1,

we obtain gh (µs)
[
1−Gl (µs)

]
≤ gl (µs)

[
1−Gh (µs)

]
which immediately proves the result.

Thus σ (µs), as defined implicitly by (4), is strictly decreasing. Let σ3 ≡ σ (0) satisfying
π0
1−π0

fh(σ3)
f l(σ3)

= L. Then, σ (·) decreases on [0, 1] from σ3 to 0. Define the inverse σ
−1 : [0, σ3]→ [0, 1],

and note that it is decreasing and bijective on its domain. Assume first that σ3 > σ1. Then

σ−1 (σs) and µ (σs) must be equal at some value σ
∗ ∈ (σ1, σ3). Let µ

∗ ≡ µ (σ∗), and note that

σ∗ = σ
(
σ−1 (µ∗)

)
= σ (µ (σ∗)) = σ (µ∗). Thus, we conclude that (µ∗, σ∗) as defined is the unique

equilibrium of the game. Moreover, since σ−1 (·) is strictly decreasing on [0, 1], we must have

µ∗ ∈ [0, 1) and σ∗ ∈ (0, 1). Finally, if σ1 ≥ σ3 then µ
∗ = 0. �
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