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Abstract

We study a Bayesian game of two-sided incomplete information in which an agent, who

owns a project of unknown quality, considers proposing it to an evaluator, who has the choice of

whether or not to accept it. There exist two distinct tiers of evaluation that differ in the benefits

they deliver to the agent upon acceptance of a project. The agent has to select the tier to which

the project is submitted for review. Making a proposal incurs a cost on the agent in the form

of a submission fee. We examine the effect of a change in the submission fees at the two tiers of

evaluation on the expected quality of projects that are implemented by the evaluator.
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1 Introduction

We study a Bayesian game in which an agent, who owns a project of unknown quality, considers

proposing it to an evaluator, who upon receiving a project for review, has the choice of whether or

not to accept it. Prior to taking their actions, each player performs an assessment of the project

that yields a private signal of quality. Making the proposal incurs a cost on the agent in the form of

a submission fee.1 There exist two distinct tiers of evaluation in which a project can be accepted,

an upper tier and a lower tier. If the agent submits a project, he has to select the tier to which

to submit it. The upper tier entails higher submission costs, delivers higher benefits to the agent

upon acceptance, and higher losses to the evaluator upon acceptance of a low-quality project.

A real world application of this framework is that of a prosecutor deciding on the charges to

file, if any, against a defendant in a trial. Filing more severe charges incurs higher costs on the

prosecution in the form of resources spent on collecting evidence, and induces a more stringent

burden of proof, but the rewards following a favorable ruling by the jury are also higher.2

The main objective of this paper is to study the effects of submission fees, in their role of

instruments of control of the level of self-screening exerted by the agent, on the expected quality

of projects implemented by the evaluator.

Several recent papers, starting with Leslie (2005), investigate the optimal submission fee problem

and show that these optimal fees are strictly positive3 because they reduce the burden on the

evaluators by discouraging long-shot submissions.4 Departing from earlier papers, in a framework

1This fee may be a payment toward the evaluator or a third entity, or it may take a non-monetary form, such as
a cost incurred by the agent in terms of time or resources spent on preparing the application or in terms of time by
which the evaluator’s decision is delayed.

2Another example would be that of a firm interested in developing an economic activity in an environmentally
sensitive area. Different extents of intrusion in this area may entail different assessments of the trade-offs between
its social benefits and costs. Finally, another example would be that of a manufacturer of a new regulated product,
who has to decide on the strength of claims to make regarding its benefits and risks.

3The optimal fees are not unboudedly high because in these models, the evaluators need to accept a minimum
number of articles. In our paper, we discard this requirement on the evaluator so as to capture situations of project
screening beyond that of the academic articles evaluation examined in those papers.

4Heintzelman and Nocetti (2009) confirm the insight from Leslie (2005) in a search theoretical model where an
author facing multiple journals has to decide on the optimal submission path. See also Azar (2007) and the references
therein. Cotton (2012) distinguishes between monetary costs and time delays and shows that when authors of
academic articles are heterogenous, the optimal fee structure implies a combination of these monetary and non-
monetary fees. Boleslavsky and Cotton (2011) study a model in which an evaluator has to select one of several
competing proposals of unknown quality, and investigate the effect of the limited capacity of the evaluator to accept
proposals on the incentives of the proposers to produce information.
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with one tier of evaluation, Barbos (2012) considers the case of two-sided incomplete information

where not only the agent’s, but also the evaluator’s assessment of the project is imperfect. Under

this specification, while a higher submission fee does increase the quality of projects that the agent

submits, it may not always be beneficial, as it also induces the evaluator to weaken his standards

of acceptance. In particular, if the elasticity of the likelihood of a high-quality project as inferred

from the evaluator’s minimum quality standard is lower than the elasticity of the likelihood of

a high-quality project as inferred from the fact that the evaluator accepted a project, a higher

submission fee will decrease the expected quality of projects that are implemented.

The model with multiple tiers examined in this paper unveils four main insights.

1. We first investigate the assortative matching between the agent’s signal of quality and the

rank of the tier to which he submits the project. We show that if the submission fee at the upper tier

is low enough so as to induce the agent to exert insufficient self-screening at that tier, then negative

assortative matching may emerge in equilibrium, where projects with high signals of quality are

submitted to the lower tier while projects of lower quality are submitted to the upper tier.

2. Focusing on equilibria with positive assortative matching, we argue that in contrast to the

earlier literature, with a tiered system of evaluation, higher fees are not unequivocally beneficial

for the quality of projects submitted for review. In particular, a higher submission fee at the upper

tier decreases the quality of projects submitted between the two tiers. A higher fee at the lower tier

does discourage marginal submissions to that tier, and therefore increases the quality of projects

submitted between the two tiers, but may lower the quality of projects submitted to the upper tier.

3. For the same class of information structures identified in the case of a system of evaluation

with a single tier, a higher submission fee at the upper tier increases the expected quality of projects

that are implemented by each of the two tiers. On the other hand, since a higher submission fee

at the lower tier may decrease the quality of projects submitted at either of the two tiers, its

effect on the expected quality of projects that are implemented depends not only on the underlying

information structure, but also on its impact on the evaluator’s equilibrium strategy.

4. The last main result of the paper compares the equilibria of the games with one and two tiers,

and provides support for a tiered system of evaluation as an efficient project-screening mechanism.

As with the case of the main finding from Barbos (2012), the insights from this paper hinge on
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the assumption of imprecise evaluation, which renders the evaluator a strategic player who adjusts

his acceptance policy in response to the increase in the quality of projects submitted for review

that is induced by a higher submission fee. From a policy perspective, this suggests that in those

situations where there is reason to believe that the evaluator may infer information from the agent’s

decision, such as if a prosecutor’s choice of the charges to file in a trial were likely to influence the

jury’s beliefs, then when studying the optimal submission fee problem, one has to account for that

fact that an increase in the perceived quality of projects submitted for review may come at the

expense of the evaluator’s own judgment of the project.

At a formal level, the paper from the literature that is closer to ours is Taylor and Yildirim

(2011), which studies a model of project proposals in which an agent chooses the amount of effort

to exert in generating a project that is then submitted for review. A blind review system, in which

payoff relevant information about the proposer is hidden from the reviewer, is compared with an

informed regime in which the proposer’s type is public information. While their results are driven

by the moral hazard effects of the potentially available public information, we consider the effort

level as sunk, and the agent’s decision to be whether and where to submit a project, as a function

of the available public and private information.

The rest of the paper is organized as follows. Section 2 defines the model, while in section 3 we

characterize the equilibrium of the game. In section 4 we investigate the effect of submission fees

on equilibrium strategies and on the efficiency of the outcome. Section 5 concludes.

2 The model

There are two players, an agent (A) and an evaluator (E). A owns a project and considers proposing

it to E . The project is of either high (h) or low (l) quality. The common prior probability of state

h is π. There are two tiers of evaluation, A and B, and when A submits a project, he has to select

the tier to which to submit it. Upon receiving a project for review into a certain tier, E has the

choice of whether to accept it or not. Submitting the project to tier t ∈ {A,B} incurs a fee ct on

A. Irrespective of its ex-post observed quality, a project accepted in tier t, yields A a payoff bt. A

also has the option to not submit the project; the corresponding payoff is normalized to zero. E ’s

payoff from accepting a high-quality project in either tier is 1, while the loss incurred by E from
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accepting a low-quality project in tier t is Lt. E ’s payoff from rejecting a project is normalized to

zero.5 A project that is rejected once cannot be resubmitted for review to either tier.6 We make

the following assumption on the payoff parameters of the model.

Assumption 1 (i) bA > bB; (ii)
bA
cA
> bB

cB
; (iii) LA > LB.

By (i) and (ii), tier A delivers a better absolute and relative reward to A from an accepted

project than tier B. We will refer to A and B as the upper and lower tier, respectively. Part (iii)

implies that E is aversely affected more by the acceptance of a low-quality project in the upper tier.

Prior to making their decisions, A and E perform assessments of the project that result in

subjective evaluations of its quality. A’s assessment yields a private signal µ ∈ [0, 1]; E ’s assessment

yields a private signal σ ∈ [0, 1]. For quality q ∈ {h, l}, let Gq(µ) and F q(σ) denote the cumulative

distribution functions of the agent and the evaluators’ signals, respectively. Also, let gq(µ) > 0 and

f q(σ) > 0 be the corresponding probability density functions.

Assumption 2 (i) f q and gq are bounded and twice continuously differentiable for q ∈ {h, l}; (ii)

d
dσ

[
fh(σ)
f l(σ)

]
> 0, d

dµ

[
gh(µ)
gl(µ)

]
> 0.

Part (ii) of the assumption is the usual monotone likelihood ratio, essentially implying that a

higher signal is more informative of a high-quality project.

3 The equilibrium

Consider some arbitrary strategies of A and E , respectively, Sag : [0, 1] → {sA, sB, n} and S
ev :

{A,B} × [0, 1] → {a, r}, with the obvious interpretation of the action labels. Upon observing a

5The analysis does not change in a meaningful way if we allow the agent’s payoff to also depend on the quality of
the project by having him prefer that an accepted project is of high quality. See section 3 for the discussion. Also,
the analysis also does not change if we allow that the evaluator be also concerned with the quality of projects that he
rejects. Finally, since the submission fee may often take a non-monetary form, we do not include it in the evaluator’s
payoff. This is without too much loss of generality for the ensuing results. These simplifying modelling specifications
are also adopted elsewhere in the literature (see for instance, Cotton (2012)).

6 In line with the motivating example from the introduction, we thus restrict attention to the analysis of those
situations when resubmission of a rejected project to a different tier is not possible (according to the principle of no
double jeopardy, a defendant acquitted in a criminal trial cannot be prosecuted again for the same offense). The
analysis of the case when resubmission is possible requires a different approach to be undertaken in a separate paper.
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project submitted to tier t, and after acquiring the signal σ, E accepts the project if and only if

Pr(h|{st}, σ) · 1 + [1− Pr(h|{st}, σ)] (−Lt) ≥ 0⇐⇒ Pr(h|{st}, σ) ≥
Lt

1 + Lt
(1)

where the event {st} ≡ {µ ∈ [0, 1] : Sag (µ) = st}. Denoting the event {at} ≡ {σ ∈ [0, 1] :

Sev (t, σ) = a}, it follows that A submits a project with quality signal µ to tier A if

bA Pr ({aA}|µ)− cA ≥ max {0, bB Pr ({aB}|µ)− cB} (2)

to tier B if

bB Pr ({aB}|µ)− cB ≥ max {0, bA Pr ({aA}|µ)− cA} (3)

and does not submit the project in the remaining case.

In appendix A1 we show that in any Bayesian Nash Equilibrium, E adopts a cutoff strategy with

respect to his informative signal, according to which he accepts a project if and only if his signal is

higher than a threshold specific to each tier. Since E ’s equilibrium strategy can be defined in terms

of the corresponding thresholds, for the rest of the paper, we will use (σAs, σBs) to denote a generic

cutoff strategy, with thresholds of acceptance for the two tiers σAs and σBs, respectively. We also

show in appendix A1 that the set of values of µ for which A submits projects to a particular tier is

an interval (possibly empty), and that the set of values of µ for which A does not submit a project

consists of either one (possibly empty) or two disjoint intervals.

The next lemma states that, under assumption 1, if E adopts a cutoff strategy (σAs, σBs), with

σBs ≥ σAs, then A’s best response is to never submit to tier B. Its proof from appendix A2 shows

that whenever A has a higher expected payoff from submitting to tier B than to A, then that payoff

is in fact negative. In the following we thus examine the interesting equilibria where σBs < σAs.

Lemma 3.1 If σBs ≥ σAs, then A either submits the project to tier A or does not submit it at all.

In appendix A3, we examine the agent’s best response function and provide the necessary and

sufficient condition for positive assortative matching between the agent’s signal of quality and the

rank of the tier to whom he submits a project. More precisely, we identify the condition on σAs,

σBs, and the payoff parameters of the model under which for a given prior π, the set of µ for
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which A submits to the upper tier A is above the set of signals for which he submits to B.7 This

condition is not always satisfied, and thus negative assortative matching may emerge, where A

submits projects with low signals to the upper tier, and projects with high signals to the lower tier.

As shown in the appendix, negative assortative matching emerges when the following conditions

are satisfied: (i) cA is low, (ii) σAs is high, (iii) σBs belongs to a subset of moderate values of [0, 1]

that allows a high level of identification of the quality of the project when submitting it to B.8

When these conditions are satisfied, if A has a project with a high signal, he prefers submitting it

to tier B, to have it identified as of high quality and thus accepted, rather than submitting it to A,

where the probability of acceptance is very low because of the very high standards of acceptance.

When A’s signal is lower (but not too low), he will submit to A because the low submission cost will

allow for a non-negative payoff in spite of the low probability of acceptance. For the lowest signals,

A will refrain from submitting the project. On the other hand, given this strategy adopted by A,

E ’s best response is precisely to employ very high standards of acceptance to the upper tier and

moderate ones to the lower tier. Thus, negative assortative matching may occur in equilibrium.

This is an interesting and surprising insight, as it suggests that when the project evaluation

relies insufficiently on the agent’s self-screening mechanism at the upper tier (i.e., when cA is low),

thus requiring the evaluator to rely heavily on his own assessment of the project at that tier, by

imposing very high acceptance standards, then negative assortative matching may emerge.

We focus the analysis on the interesting case of interior equilibria with positive assortative

matching in which both tiers receive submissions and in which the set of values of µ for which

the agent does not submit the project is an interval.9 More precisely, we investigate properties

of equilibria in which A adopts a cutoff strategy characterized by two thresholds (µAs, µBs), with

µAs ∈ (0, 1), µBs ∈ (0, 1), and µAs > µBs, such that A submits to tier A for µ ∈ [µAs, 1], to tier B

for µ ∈ [µBs, µAs), and does not submit the project for µ ∈ [0, µBs). We will assume thus implicitly

throughout the rest of the paper that the parameters of the model are such that the corresponding

7This condition is reminiscent of the supermodularity condition, which since Becker (1973) is known to be necessary
and sufficient for positive assortative matching in the equilibrium allocation of many applications.

8More precisely, when the difference F l(σBs)−F
h(σBs) is high, which implies that E will observe a signal σ ≥ σBs

with high probability, conditional on h, and with a low probability, conditional on l.
9A’s best response function may involve a corner solution. In particular, if σts and

ct
bt
are high enough for some

t ∈ {A,B}, A never submits to tier t. Moreover, when bA
cA
is much higher than bB

cB
, tier B receives no submissions. To

focus our analysis on developing intuition rather than solving for corner solutions, we restrict attention to the case
of interior equilibria.
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equilibria satisfy this regularity property, without explicitly mentioning this assumption each time.

The next two lemmas present the equations that define implicitly the two players’ best response

functions in these Bayesian Nash equilibria. Their proofs are in appendices A4 and A5.10

Lemma 3.2 Given E’s cutoff strategy, (σAs, σBs), with σAs > σBs, A’s best response is char-

acterized by two thresholds µA (σAs, σBs) and µB (σAs, σBs), with µA (σAs, σBs) > µB (σAs, σBs),

implicitly defined by the equations

π

1− π

gh(µA)

gl(µA)
=
bB
[
1− F l (σBs)

]
− bA

[
1− F l (σAs)

]
+ cA − cB

bA [1− F h (σAs)]− bB [1− F h (σBs)] + cB − cA
(4)

π

1− π

gh(µB)

gl(µB)
=
cB − bB

[
1− F l (σBs)

]

bB [1− F h (σBs)]− cB
(5)

such that A submits to tier A if µ ≥ µA (·, ·), to tier B if µ ∈ [µB (·, ·) , µA (·, ·)), and forgoes

submitting the project if µ < µB (·, ·).

Lemma 3.3 Given A’s cutoff strategy (µAs, µBs), E accepts a project submitted to tier A if and

only if σ ≥ σA (µAs, µBs), with σA (µAs, µBs) given implicitly by

π

1− π

fh(σA)

f l(σA)

1−Gh(µAs)

1−Gl(µAs)
= LA (6)

and accepts a project submitted to tier B if and only if σ ≥ σB (µAs, µBs), with σB (µAs, µBs) given

implicitly by
π

1− π

fh(σB)

f l(σB)

Gh(µAs)−G
h(µBs)

Gl(µAs)−G
l(µBs)

= LB (7)

The best-response functions, as elicited by equations (4), (5), (6) and (7), determine the equi-

librium strategies of the two players denoted by (σ∗A, σ
∗
B) and (µ

∗
A, µ

∗
B). The next lemma, whose

proof is in appendix A6, presents the monotonicities of these best-response functions.

10We can model a situation in which A also prefers that an accepted project is of high quality, by having A receive an
additional benefit δt under this contingency. In this case, equation (4) becomes [bA + δA Pr(h|{aA}, µ)] Pr({aA}|µ)−

cA ≥ max{[bB + δB Pr(h|{aB}, µ)] Pr({aB}|µ)−cB, 0}, which after some calculations can be rewritten as
π

1−π

gh(µA)

gl(µA)
=

bB[1−F l(σBs)]−bA[1−F l(σAs)]+cA−cB
(bA+δA)[1−Fh(σAs)]−(bB+δB)[1−Fh(σBs)]+cB−cA

. Equations (3) and (5) are altered in a similar way. The ensuing analysis

and results are qualitatively similar to the case when δA = δB = 0 .
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Lemma 3.4 (i) µA (σAs, σBs) is decreasing in σBs and increasing in σAs; (ii) µB (σAs, σBs) is

constant in σAs and increasing in σBs; (iii) σA (µAs, µBs) is decreasing in µAs and constant in µBs;

(iv) σB (µAs, µBs) is decreasing in µAs and µBs, when µAs > µBs.

For generic payoff parameters and information structures, the Bayesian Nash equilibrium of the

game is not necessarily unique. As in other frameworks, when sunspot equilibria emerge, they do

so because there exist different sets of self-fulfilling expectations for the same set of fundamentals

of the model. The next proposition identifies a consistency requirement across different equilibria.

Its corollary provides a sufficient condition for equilibrium uniqueness.

Proposition 1 If ξ ≡ (σ∗A, σ
∗
B, µ

∗
A, µ

∗
B) and ξ

′ ≡ (σ∗′A, σ
∗′
B , µ

∗′
A, µ

∗′
B) are two Bayesian Nash equilibria

with σ∗′B > σ
∗
B, then it must be that σ

∗′
A > σ

∗
A, µ

∗′
B > µ

∗
B and µ

∗′
A < µ

∗
A.

Corollary 3.1 Consider a Bayesian Nash equilibrium ξ ≡ (σ∗A, σ
∗
B, µ

∗
A, µ

∗
B) and assume that for

fixed values of σ∗A and µ
∗
B, the two best-response functions µA(σ

∗
A, σBs) and σB (µAs, µ

∗
B) as defined

by (4) and (7) have the unique fixed point (µ∗A, σ
∗
B). Then, if

∂µA
∂σBs

(σ∗A, σ
∗
B) ·

∂σB

∂µAs
(µ∗A, µ

∗
B) < 1 (8)

the equilibrium ξ is unique.

Before presenting the proof of these two results, we introduce the three panels in Figure 1 on

which we rely heavily in the rest of the analysis. In each panel, we depict the pairwise best-response

functions defined by (4)-(7), when the two variables not considered in the respective panel are kept

fixed. A solid curve represents a best-response function when the remaining variables are fixed

at the values in ξ. A dashed curve depicts a best-response function when the remaining variables

are fixed at the values in ξ′. For instance, in panel (a), the solid curve µoA (σAs) represents the

best-response function µA (σAs, σ
∗
B), while the dashed curve µ

z

A (σAs) represents the best-response

function µA (σAs, σ
∗′
B). When there is no dashed curve, the function is the same in the two equi-

libria. For instance, in panel (a), σoA (µAs) represents the best-response functions σA (µAs, µ
∗
B) and

σA (µAs, µ
∗′
B), which by lemma 3.4(iii) are the same.

11 All curves are generic and are depicted only

11Similarly, for instance, in panel (b), µoB (σBs) represents the best response functions µB (σ
∗

A, σBs) and µB (σ
∗′

A , σBs),
while σoB (µBs) and σ

z

B (µBs) represent the best response functions σB (µ
∗

A, µBs) and σB (µ
∗′

A , µBs), respectively.
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so as to exhibit the salient monotonicity property. In panel (c), since both curves are decreasing,

they are presented as crossing each other twice, so as to allow for either of them crossing from

below. To save on notation, we define a partial order � on these curves by saying that for instance

µzA (σBs) � µ
o

A (σBs) or σ
o

B (µAs) � σzB (µAs) if, as is the case in panel (c), the first curve is above

the second one in a panel with σ on the horizontal axis and µ on the vertical axis.

Proof of Proposition 1 and Corollary 3.1. To prove proposition 1, first note in panel (a), that

σ∗′B > σ
∗
B implies by lemma 3.4(i) that µ

o

A (σAs) � µ
z

A (σAs). Since σ
z

A (µAs) is the same as σ
o

A (µAs),

it must be that σ∗′A > σ
∗
A and µ

∗′
A < µ

∗
A. Second, in panel (b), µ

∗′
A < µ

∗
A implies by lemma 3.4(iv)

that σzB (µBs) � σoB (µBs). Since µ
z

B (σBs) is the same as µ
o

B (σBs), it must be that µ
∗′
B > µ∗B and

σ∗′B > σ
∗
B. The second implication is consistent with the initial assumption. Finally, in panel (c),

µ∗′B > µ∗B implies by lemma 3.4(iv) that σ
o

B (µAs) � σzB (µAs), while σ
∗′
A > σ∗A implies by lemma

3.4(i) that µzA (σBs) � µ
o

A (σBs).

To show corollary 3.1, consider an equilibrium ξ = (σ∗A, σ
∗
B, µ

∗
A, µ

∗
B) such that for fixed values

of σ∗A and µ
∗
B, the curves σ

o

B (µAs) and µ
o

A (σBs) satisfy a single-crossing property, with σ
o

B (µAs)

having a steeper downward slope at the intersection of the two curves. In panel (c), this is the case

of the point of intersection that is in the upper left corner. Assume by contradiction that there

exists another equilibrium of the game, ξ′ = (σ∗′A, σ
∗′
B , µ

∗′
A, µ

∗′
B). Without loss of generality, we can

assume that σ∗′B > σ
∗
B. In this case, by proposition 1, σ

∗′
B > σ

∗
B implies µ

∗′
B > µ

∗
B and σ

∗′
A > σ

∗
A. In

turn, these imply σoB (µAs) � σ
z

B (µAs) and µ
z

A (σBs) � µ
o

A (σBs). By inspecting panel (c) of Figure

1 (more precisely, the intersection of the two curves in the upper left corner) it follows that it must
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be that σ∗′B < σ∗B and µ
∗′
A > µ∗A. This is inconsistent with the initial assumption that σ

∗′
B > σ∗B.

Thus the initial equilibrium is unique. Now, note that the slope of σoB (µAs) at the equilibrium

values equals
[
∂σB
∂µAs

(µ∗A, µ
∗
B)
]−1

. Thus σoB (µAs) is steeper than µ
o

A (σBs) if and only if

∂µA
∂σBs

(σ∗A, σ
∗
B) >

[
∂σB

∂µAs
(µ∗A, µ

∗
B)

]−1

which, since both sides are negative, can be rewritten as in (8). �

Proposition 1 shows that if E is more stringent in his acceptance policy for tier B in equilibrium

ξ′, (i.e., σ∗′B > σ
∗
B), then first, A is more reluctant to submit marginal projects to tier B, (µ

∗′
B > µ

∗
B),

and second, A is more inclined to submit marginal projects to tier A, (µ∗′A < µ∗A), since the

alternative is less appealing. Given these, E is also more stringent in his acceptance policy at

tier A, (σ∗′A > σ
∗
A), to make up for the lower expected quality of projects submitted. While these

feed-forward effects make the result intuitive, proposition 1 ensures that the feed-back effects, such

as the effect of the increase in σ∗A on µ
∗
A, or of the decrease in µ

∗
A on σ

∗
B, do not offset them.

To understand corollary 3.1, consider two equilibria, ξ and ξ′, with corresponding strategies as

in the text of proposition 1. Note then that for a fixed value of σ∗B, a higher value of σ
∗
A, (σ

∗′
A > σ

∗
A),

would induce µ∗A to increase. A higher µ
∗
A, together with a higher µ

∗
B, (µ

∗′
B > µ

∗
B), would increase

the quality of projects received by tier B, and thus induce a decrease in σ∗B. To instead have σ
∗
B

increasing and µ∗A decreasing (since σ
∗′
B > σ∗B and µ

∗′
A < µ∗A in ξ and ξ

′), σ∗B and µ
∗
A should feed

off each other. This means that σ∗B should be higher because µ
∗
A is lower, and µ

∗
A should be lower

because σ∗B is higher. Thus, to have multiple equilibria, σ
∗
B has to be very responsive to a decrease

in µ∗A, while µ
∗
A has to be very responsive to an increase in σ

∗
B; these would offset the effects of

the increases in µ∗B and σ
∗
A. In panel (c), this is the case precisely when σ

o

B (µAs) and µ
o

A (σBs)

intersect in the lower right corner where both have a steeper slope. Equation (8) is the mathematical

representation of the same condition.

4 Results

We examine the effect of increases in the submission fees at the two tiers of evaluation on the

equilibrium strategies, and then employ these comparative statics results to investigate their effect

11



on the efficiency of the equilibrium outcome. Note that unlike some of the other papers from the

literature, we do not calculate the optimal submission fees, but only elicit the effect of a change in

these fees on the quality of projects that are implemented by the evaluator in the two tiers.12 We

present first the main result from Barbos (2012) for the model with one tier of evaluation.

4.1 The model with one tier of evaluation

Consider a model as in section 2, only that with one tier of evaluation. In this case the agent only

has to decide on whether or not to submit the project for review. The next lemma states that in

the resulting game, an equilibrium exists, is unique, and must be in cutoff strategies.

Lemma 4.1 (Barbos (2012)) There exists a unique equilibrium of the game with one tier of

evaluation. This equilibrium is completely characterized by two values (µ∗, σ∗) ∈ [0, 1)× (0, 1) such

that A submits a project if and only if µ ≥ µ∗, and E accepts a project if and only if σ ≥ σ∗.

The expected quality of projects that are implemented in this equilibrium, hPr (h|µ ≥ µ∗, σ ≥ σ∗)+

lPr (l|µ ≥ µ∗, σ ≥ σ∗), is isomorphic to the probability Pr (h|µ ≥ µ∗, σ ≥ σ∗). The next proposition

elicits the effect of an increase in the submission fee, c, on this measure.

Proposition 2 (Barbos (2012)) d
dc
Pr (h|µ ≥ µ∗, σ ≥ σ∗) > 0 if and only if

d

dσ
ln
fh(σ∗)

f l(σ∗)
>
d

dσ
ln
1− F h(σ∗)

1− F l(σ∗)
(9)

Note that the term fh(σ∗)
f l(σ∗)

is the likelihood of the state h as inferred from E ’s equilibrium

minimum acceptance quality standard σ∗. On the other hand, given E ’s cutoff strategy, 1−F
h(σ∗)

1−F l(σ∗)

is the likelihood of state h as inferred from the fact that E accepted a project. Thus, in a model

with one tier of evaluation, an increase in the submission fee leads to an increase in the expected

quality of projects that are implemented if and only if the elasticity of the likelihood of a high

quality project that is inferred from the E ’s minimum quality standard is higher than the elasticity

of the likelihood of a high quality project that is inferred from the fact that E accepted a project.

12 In fact, in a variety of situations, these fees can be adjusted only at the margin. For instance, while laws could be
passed to make a prosecutor’s job of collecting evidence less costly, this may be possible only up to a limited extent.
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Since the intuition of this result resembles those of the corresponding results from the model with

multiple tiers, we defer presenting it to section 4.3.

4.2 The effects of submission fees on equilibrium strategies

In the model with multiple tiers of evaluation, with generic signal distributions, it is not tractable

to obtain a closed-form solution for the equilibrium strategies amenable for direct comparative

statics analysis. Instead, we perform this analysis in three steps. First, we identify all correlations

between the signs of the changes in the equilibrium strategies that are imposed by (4)-(7) under

the assumed change in the underlying parameter. Second, we identify the paths of the equilibrium

strategies that are consistent with these correlations. Finally, for each equilibrium path, we verify

that the shifts in the pairwise best-response functions that are imposed by the changes in the

underlying parameter and in the equilibrium strategies are consistent with the assumed changes in

the equilibrium strategies. At this step, we identify the equilibrium paths that are artifacts of the

multiplicity of equilibria.

The case of a change in cA We start with the case of an increase in cA.
13 Assuming that

cA increases by dcA > 0, by inspecting (4)-(7), one can infer the following necessary correlations

among the possible changes in the equilibrium strategies.

(a) From (4), if dσ∗A > 0 and dσ
∗
B < 0, then dµ

∗
A > 0.

(b) From (5), if dσ∗B > (<)0, then dµ
∗
B > (<)0.

(c) From (6), if dµ∗A > (<)0, then dσ
∗
A < (>)0.

(d) From (7), if dµ∗A > (<)0 and dµ
∗
B > (<) 0, then dσ

∗
B < (>)0.

Using these, we have the following possible equilibrium paths following an increase in cA.

1. Assume dµ∗A > 0. By (c), it follows that dσ
∗
A < 0. If dσ

∗
B > 0, then by (b) dµ

∗
B > 0. But by

(d), if dµ∗A > 0 and dµ∗B > 0, then it must be that dσ∗B < 0. This contradicts the previous

assumption. Therefore, it must be that dσ∗B < 0, and thus by (b) that dµ
∗
B < 0.

13 It is straightforward to see that this is qualitatively similar to a decrease in bA.
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2. Assume dµ∗A < 0. By (c), this implies that dσ
∗
A > 0. By (a), this implies that dσ

∗
B > 0. By

(b), this implies that dµ∗B > 0.

The first of the two equilibrium paths is intuitive. Upon facing a higher cA, A is less inclined to

submit marginal products to tier A, and thus µ∗A increases. The increase in µ
∗
A leads to an increase

in the expected quality of projects received by tier A, which allows E to lower the corresponding

standards, and thus σ∗A decreases. The increase in µ
∗
A also leads to an increase in the expected

quality of projects submitted to tier B, which allows E to also lower σ∗B. This makes A more willing

to submit marginal projects to tier B, and thus µ∗B decreases. We depict these in Figure 2 below.

The solid curves represent the pairwise best-response functions when the remaining variables are

fixed at the values from the initial equilibrium ξ ≡ (σ∗A, σ
∗
B, µ

∗
A, µ

∗
B), and the submission fee is cA.

The partially dashed curves µxA (σAs) and µ
x

A (σBs) represent the best-response functions when the

fee is c′A ≡ cA + dcA, but the values of the remaining variables are still fixed at (σ
∗
A, σ

∗
B, µ

∗
A, µ

∗
B).

14

For instance, from (4), it follows that for fixed values of σ∗B and µ
∗
B, to the same cutoff strategy

σAs, A responds with a higher µA when cA increases to c
′
A. Thus, µ

x

A (σAs) � µ
o

A (σAs) in panel (a).

Similarly, µxA (σBs) � µoA (σBs) in panel (c). The dashed curves µ
z

A (σAs), σ
z

B (µBs), µ
z

A (σBs) and

14Thus, for instance, µoA (σAs) represents the best response function µA (σAs, σ
∗

B), as defined by (4), when the
submission fee to tier A is cA, while µ

x

A (σAs) represents µA (σAs, σ
∗

B) when the submission fee in (4) is c
′

A. On the
other hand, µzA (σAs), which is defined below, represents µA (σAs, σ

∗′

B ) when the submission fee to tier A is c
′

A. Finally,
σoA (µAs) represents σA (µAs, µ

∗

B) when the submission fee to tier A is cA or c
′

A, but also σA (µAs, µ
∗′

B ) when to tier A
when the fee is c′A. Note also that, for instance in panel (c) the values µ

∗

A and σ
∗

B from the initial equilibrium ξ are
at the intersection of the curves µoA (σBs) and σ

o

B (µAs), while the corresponding values from the equilibrium ξ′ are
at the intersection of the curves µzA (σBs) and σ

z

B (µAs).
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σzB (µAs) represent the best-response functions that correspond to c
′
A, and to values of strategies

from the new equilibrium ξ′ ≡ (σ∗′A, σ
∗′
B , µ

∗′
A, µ

∗′
B). For instance, since dσ

∗
B < 0, from lemma 3.4(i),

it follows that at c′A, A’s best-response µA is higher when E ’s cutoff for tier B is fixed at σ
∗′
B than

at σ∗B. This implies that µ
z

A (σAs) � µxA (σAs) in panel (a). Similarly, in panel (b), from lemma

3.4(iv) it follows that σoB (µBs) � σ
z

B (µBs) because dµ
∗
A > 0. Finally, in panel (c), dµ

∗
B < 0 implies

σzB (µAs) � σoB (µAs), while dσ
∗
A < 0 implies µxA (σBs) � µzA (σBs). As seen in the figure, the

equilibrium path is consistent with either type of initial equilibrium.

As we show next, the second equilibrium path can arise only when the initial equilibrium is not

unique. Essentially, the second scenario emerges as a consequence of a coordination of expectations

on a different sunspot equilibrium in response to the change in the parameters of the model, rather

than being driven by an adjustment of the players’ strategies within the same equilibrium. Thus,

note that in panel (c) of Figure 3, dcA > 0 and dσ∗B < 0 imply µzA (σBs) � µxA (σBs) � µoA (σBs),

while dµ∗B > 0 implies σ
o

B (µAs) � σ
z

B (µAs). Therefore, the only ways to have dσ
∗
B > 0 and dµ

∗
A < 0

are either if the initial equilibrium is in the upper left corner and the two curves do not satisfy the

single crossing condition, or if the initial equilibrium is in the lower right corner where µoA (σBs)

crosses σoB (µAs) from above. These are precisely the conditions under which the equilibrium is not

necessarily unique.

We collect these results in the following proposition.

Proposition 3 Consider an equilibrium ξ ≡ (σ∗A, σ
∗
B, µ

∗
A, µ

∗
B) and assume dcA > 0. If ξ is unique,
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then dµ∗A > 0, dµ
∗
B < 0, dσ

∗
A < 0 and dσ

∗
B < 0. If ξ is not unique, then it may also happen that

dµ∗A < 0, dµ
∗
B > 0, dσ

∗
A > 0 and dσ

∗
B > 0.

Focusing on the case when the equilibrium is unique, note that while the increase in cA does

increase the quality of projects submitted to tier A (as dµ∗A > 0), it also leads to a decrease in

the expected quality of projects submitted between the two tiers (as dµ∗B < 0). Therefore, unlike

the case of a system of evaluation with one tier, when there are multiple tiers, a submission fee

increase is not unequivocally beneficial with respect to the quality of projects submitted for review

because increases in submission fees to upper tiers exert negative externalities on the quality of

projects submitted to the lower tiers. Note that this insight hinges on the underlying assumption

that evaluation is imprecise; if evaluation was precise, an increase in cA would have no effect on the

agent’s decision at the margin on whether to submit a project to tier B or to forgo submitting it.

The case of a change in cB Similarly to the previous analysis, assuming dcB > 0 (or dbB < 0),

one can infer the following necessary correlations among equilibrium strategies.

(a) From (4), if dσ∗B > 0 and dσ
∗
A < 0, then dµ

∗
A < 0.

(b) From (5), if dσ∗B > 0, then dµ
∗
B > 0.

(c) From (6), if dµ∗A > (<)0, then dσ
∗
A < (>)0.

(d) From (7), if dµ∗A > (<)0 and dµ
∗
B > (<)0, then dσ

∗
B < (>)0.

Therefore, the equilibrium paths that can emerge when cB increases are the following.

1. Assume dµ∗B > 0 and dσ
∗
B > 0. By (d), it follows that dµ

∗
A < 0, and then by (c) that dσ

∗
A > 0.

2. Assume dµ∗B > 0 and dσ
∗
B < 0. If dµ

∗
A < 0, then by (c) dσ

∗
A > 0.

3. Assume dµ∗B > 0 and dσ
∗
B < 0. If dµ

∗
A > 0, then by (c) dσ

∗
A < 0.

4. Assume dµ∗B < 0. Then by (b), dσ
∗
B < 0. By (d) it follows that dµ

∗
A > 0, which then by (c)

implies that dσ∗A < 0.
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The third step of the analysis is along the lines of the case of an increase in cA and is thus

omitted. On the first three equilibrium paths, when dcB > 0, A is more reluctant to submit low-

signal marginal projects to tier B, and thus dµ∗B > 0. On the first two paths, A also abstains

from submitting high-signal marginal projects to tier B, and thus dµ∗A < 0. If the net effect on

the quality of projects submitted to tier B is negative, E becomes more stringent in his acceptance

policy at tier B, and so dσ∗B > 0, as on the first equilibrium path. If the net effect is positive, E is

less stringent, and so dσ∗B < 0, as on the second equilibrium path. On both paths E becomes more

stringent at tier A since the expected quality of projects that are received at that tier is lower. The

third equilibrium path occurs when the quality of projects submitted to tier B increases significantly

following the increase in µ∗B. In this case, σ
∗
B decreases sufficiently so as to induce an increase in µ

∗
A,

and a consequent decrease in σ∗A. The last equilibrium path emerges again only when the initial

equilibrium is not necessarily unique.15 We collect these results in the next proposition.

Proposition 4 Consider an equilibrium ξ ≡ (σ∗A, σ
∗
B, µ

∗
A, µ

∗
B) and assume dcB > 0. If ξ is unique,

then dµ∗B > 0, and one of the following three equilibrium paths occurs: (i) dσ∗B > 0, dµ
∗
A < 0 and

dσ∗A > 0; (ii) dσ
∗
B < 0, dµ

∗
A < 0 and dσ

∗
A > 0; (iii) dσ

∗
B < 0, dµ

∗
A > 0 and dσ

∗
A < 0. If ξ is not

unique, then it may also happen that dµ∗B < 0, dµ
∗
A > 0, dσ

∗
A < 0, and dσ

∗
B < 0.

The equilibrium path selection is a local property, in that for given values of the payoff parame-

ters, it is determined exclusively from the local properties of the signal structures in a neighborhood

of the initial equilibrium. In particular, depending on the change in the amount of information

extracted with a infinitesimal change in the strategy of each player, the equilibrium may follow at

each starting point any of these paths. Therefore, additional regularities on the equilibrium paths

can only be obtained only by making additional assumptions on the payoff parameters of the model

and the information structure beyond that imposed by assumptions 1 and 2.

15To see this, note the following in a (µAs, σBs) panel. First, from (4), dcB > 0 implies µoA (σBs) � µxA (σBs).
Second, also from lemma 3.4(i), dσ∗A < 0 implies µ

x

A (σBs) � µ
z

A (σBs). Third, from lemma 3.4(iv ), dµ∗B < 0 implies
σzB (µAs) � σoB (µAs). It is then straightforward to see that if σ

o

B (µAs) is steeper than µ
o

A (σBs) at the intersection
point, it must be that dµ∗A < 0.
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4.3 The effects of submission fees on the equilibrium expected quality of the

projects that are implemented

In this section, we examine the effect of a change in the two submission fees on the efficiency

of the equilibrium outcome. The measures of efficiency that we employ here are the expected

qualities of projects implemented by the evaluator in the two tiers, which are isomorphic with

Pr (h|µ ≥ µ∗A, σ ≥ σ
∗
A), for tier A, and Pr (h|µ

∗
A ≥ µ ≥ µ

∗
B, σ ≥ σ

∗
B), for tier B. The next proposition

elicits the effect of an increase in cA on these two values. We restrict attention to the more

interesting case where the initial equilibrium is unique, and thus the comparative statics are driven

by the fundamentals of the model rather than equilibrium selection.

Proposition 5 Assume that the equilibrium (σ∗A, σ
∗
B, µ

∗
A, µ

∗
B) is unique. Then

(i) d
dcA

Pr (h|µ ≥ µ∗A, σ ≥ σ
∗
A) > 0 if and only if

d
dσ
ln

fh(σ∗A)

f l(σ∗A)
> d

dσ
ln

1−Fh(σ∗A)

1−F l(σ∗A)
.

(ii) d
dcA

Pr (h|µ∗A ≥ µ ≥ µ
∗
B, σ ≥ σ

∗
B) > 0 if and only if

d
dσ
ln

fh(σ∗B)

f l(σ∗B)
> d

dσ
ln

1−Fh(σ∗B)

1−F l(σ∗B)
.

Proof. By Bayes’ Rule, we have

Pr (h|µ ≥ µ∗A, σ ≥ σ
∗
A) =

Pr (µ ≥ µ∗A, σ ≥ σ
∗
A|h) Pr(h)

Pr
(
µ ≥ µ∗A, σ ≥ σ

∗
A|h
)
Pr(h) + Pr

(
µ ≥ µ∗A, σ ≥ σ

∗
A|l
)
Pr(l)

=
π

π + (1− π)
Pr(µ≥µ∗A,σ≥σ

∗

A|l)
Pr(µ≥µ∗A,σ≥σ

∗

A|h)

=
π

π + 1−π
1−Gh(µ∗A)
1−Gl(µ∗A)

1−Fh(σ∗A)
1−Fl(σ∗A)

(10)

where for the third equality we used the conditional independence of the two players’ signals. There-

fore, Pr (h|µ ≥ µ∗, σ ≥ σ∗) increases following an increase in cA if and only if the sum ln
1−Gh(µ∗A)

1−Gl(µ∗A)
+

ln
1−Fh(σ∗A)

1−F l(σ∗A)
increases. From (6), written in equilibrium, we have ln

1−Gh(µ∗A)

1−Gl(µ∗A)
= lnLA − ln

π
1−π −

ln
fh(σ∗A)

f l(σ∗A)
, so Pr (h|µ ≥ µ∗A, σ ≥ σ

∗
A) increases if and only if ln

1−Fh(σ∗A)

1−F l(σ∗A)
− ln

fh(σ∗A)

f l(σ∗A)
increases. But

d

dcA

[
ln
1− F h(σ∗A)

1− F l(σ∗A)
− ln

fh(σ∗A)

f l(σ∗A)

]
=
d

dσ

[
ln
1− F h(σ∗A)

1− F l(σ∗A)
− ln

fh(σ∗A)

f l(σ∗A)

](
dσ∗A
dcA

)
(11)

Since by proposition 3, we have
dσ∗A
dcA

< 0 the proof of part (i) is complete. The proof of part (ii)

follows the same steps.16 �

16Note that Pr (µ∗A ≥ µ ≥ µ
∗

B|q) = G
q(µ∗A)−G

q(µ∗B), and that one can use (7) to compute
Gh(µ∗

A
)−Gh(µ∗

B
)

Gl(µ∗
A
)−Gl(µ∗

B
)
.
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To understand these results, consider the effect of an increase in cA on Pr (h|µ ≥ µ
∗
A, σ ≥ σ

∗
A).

Note that by proposition 3, the increase in cA has a positive effect on the expected quality of

projects that are implemented in tier A by increasing the quality of projects that are submitted (µ∗A

increases), and a negative effect by decreasing E ’s standards of acceptance (σ∗A decreases). On net,

the fee increase has a positive effect if Pr (h|µ ≥ µ∗A, σ ≥ σ
∗
A) is more responsive to the corresponding

increase in µ∗A than to the decrease in σ∗A. Now, as seen in (10), Pr (h|µ ≥ µ∗A, σ ≥ σ
∗
A) is a

monotone transformation of the product of the likelihoods of state h inferred from the fact that A

submitted the project,
1−Gh(µ∗A)
1−Gl(µ∗A)

, and from the fact that E accepted it,
1−Fh(σ∗A)
1−F l(σ∗A)

. Therefore, the

responsiveness of Pr (h|µ ≥ µ∗A, σ ≥ σ
∗
A) with respect to µ

∗
A can be elicited from the elasticity of

the likelihood
1−Gh(µ∗A)
1−Gl(µ∗A)

with respect to µ∗A, while the responsiveness of Pr (h|µ ≥ µ
∗
A, σ ≥ σ

∗
A) with

respect to σ∗A can be elicited from the elasticity of the likelihood
1−Fh(σ∗A)
1−F l(σ∗A)

with respect to σ∗A. In

turn, the former elasticity can be elicited from E ’s decision problem, described by (6), as a function

of the elasticity of
fh(σ∗A)

f l(σ∗A)
with respect to σ∗A. It follows that the sign of

d
dcA

Pr (h|µ ≥ µ∗A, σ ≥ σ
∗
A)

can be elicited by comparing the two elasticities as in the text of the proposition.

An inspection of the results of propositions 2 and 5 reveals that the effects of an increase in

the submission fee to the upper tier of a tiered system of evaluation on the expected qualities

of projects implemented by both tiers are qualitatively similar to the effect of an increase in the

submission fee in the case with one tier of evaluation. In particular, because the increase in cA

leads to unambiguous decreases in both σ∗A and σ
∗
B, the effect of an increase in cA on the quality of

projects implemented by the two tiers can be elicited solely by investigating the elasticities of the

two likelihoods at the equilibrium values of σ∗A and σ
∗
B.

Intuitively, the effect of the increase in the submission fee on the expected quality of projects

implemented in a certain tier depends on the corresponding effect on the likelihoods of h as inferred

from the facts that (i) the agent submitted a project, and (ii) the evaluator accepted it. A higher

submission fee to the upper tier (or to the single tier, in the case of a system of evaluation with

one tier) increases the former likelihood, but decreases the latter. The key fact is then that the

effect on the former likelihood can be elicited from the evaluator’s decision problem, as a function

of the elasticity of the likelihood of h as inferred from the evaluator’s minimum quality standard

(this is because this minimum standard is determined in the evaluator’s problem precisely by the

expected quality of projects that are submitted). Therefore, the desired effect can be elicited from
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the evaluator’s information structure in the neighborhood of a particular equilibrium.

The next proposition presents the effect of an increase in cB. Its proof shares the same steps as

the proof of proposition 5 up to equation (11) and is thus omitted.

Proposition 6 Assume that the equilibrium (σ∗A, σ
∗
B, µ

∗
A, µ

∗
B) is unique. Then

(i) d
dcB

Pr (h|µ ≥ µ∗A, σ ≥ σ
∗
A) > 0 if and only if

[
d
dσ
ln

1−Fh(σ∗A)

1−F l(σ∗A)
− d

dσ
ln

fh(σ∗A)

f l(σ∗A)

]
dσ∗A
dcB

> 0

(ii) d
dcB

Pr (h|µ∗A ≥ µ ≥ µ
∗
B, σ ≥ σ

∗
B) > 0 if and only if

[
d
dσ
ln

1−Fh(σ∗B)

1−F l(σ∗B)
− d

dσ
ln

fh(σ∗B)

f l(σ∗B)

]
dσ∗B
dcB

> 0.

Note that by proposition 4, the endogenous condition
dσ∗t
dcB

< 0 occurs when the increase in cB

leads to an increase in the quality of projects submitted to tier t ∈ {A,B} (due to A shifting some

high-signal marginal projects from tier B to tier A). Thus, to elicit the effect of an increase in cB

on the quality of projects implemented by the two tiers, one needs to investigate the elasticities of

the two likelihoods in the neighborhoods of σ∗A and σ
∗
B, respectively, and the sign of the change

in the evaluator’s strategy, as determined by the corresponding effect on the quality of projects

submitted for review at each tier. In different words, since unlike the case of an increase in cA, the

increase in cB does not have unambiguous effects on the likelihood of h as inferred from the fact

that the agent submitted the project to a certain tier, the effect of a higher cB on the expected

quality of projects implemented into a particular tier depends not only on the elasticities of these

likelihoods, but also on the sign of the effect of the increase in cB on these likelihoods.

4.4 Introducing a second tier of evaluation

We close by presenting a proposition that compares the equilibrium of a game with one tier of

evaluation, and the equilibrium from the game with both tiers. More precisely, we analyze the

impact of introducing an additional upper or lower tier in a system of evaluation in which only one

tier had existed.17 The proof of the proposition is in appendix A7.

Proposition 7 Let
(
σ1∗A , µ

1∗
A

)
and

(
σ1∗B , µ

1∗
B

)
be the equilibria of the games with only tier of eval-

uation A or B, respectively. Also, let
(
σ2∗A , σ

2∗
B , µ

2∗
A , µ

2∗
B

)
be the equilibrium of the game with both

17The payoff characteristics of each tier are assumed identical accross games. Thus, for instance, bA, cA and LA
are the same in the game in which only tier A exists and in the game with two tiers of evaluation, A and B.
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tiers. Then, µ2∗A > µ1∗A , σ
2∗
A < σ1∗A , µ

2∗
B > µ1∗B and σ2∗B > σ1∗B .

Thus, the introduction of a lower tier B in a system of evaluation in which only tier A had

existed induces A to be more selective in submitting to tier A, (µ2∗A > µ1∗A ), which allows E to be

less stringent in his standards of acceptance at that tier, (σ2∗A < σ1∗A ). On the other hand, the

introduction of an upper tier A in a system in which only tier B had existed lowers the expected

quality of projects received by tier B, inducing E to become more stringent, (σ2∗B > σ1∗B ). In turn,

this makes A more selective in submitting marginal projects to tier B, (µ2∗B > µ1∗B ).

These results have two policy implications. First, µ2∗A > µ1∗A suggests an additional intuitive

mechanism to induce more self-screening by the agent at tier A. Thus, by introducing a new lower

benefit tier of evaluation, tier A receives for review projects of higher quality (however, note that

since the quality of projects submitted between the two tiers decreases in this case, this would not

lower the burden on the evaluator). On the other hand, µ2∗B > µ1∗B suggests that by introducing

a new higher benefit tier, A will refrain from submitting low-quality projects to the lower tier B,

decreasing the burden on the evaluator. Moreover, since σ2∗B > σ1∗B it also follows that introducing

tier A increases the quality of projects implemented between the two tiers. These findings lend

additional support for a tiered system of evaluation as an efficient mechanism of project screening.

5 Conclusion

In this paper we investigate the effect of an increase in the submission fees on the efficiency of the

equilibrium outcome in a game in which the owner of a project of unknown quality faces a tiered

system of evaluation to which he can submit his project for review. By considering a setup in

which evaluation is imperfect, and thus the evaluator is a strategic player who adjusts his strategy

in response to changes in the fundamentals of the model, we argue that increases in these fees are

not always beneficial either for the expected quality of projects that are submitted for review or

for the expected quality of projects that are implemented. These findings suggest that in those

situations where it is likely the agent’s decision of whether or not to submit a project is informative

to the evaluator of the project’s quality, one may need to account for the evaluator’s response to

a change in the expected quality of projects submitted for review when examining the optimal

submission fee.
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Appendix

Appendix A1.

First, for E ’s beliefs, by Bayes’ Rule we have

Pr(h|{st}, σ) =
j({st}, σ|h) Pr(h)

j({st}, σ|h) Pr(h) + j({st}, σ|l) Pr(l)

where j(·|·) denotes the conditional probability density function of the relevant continuous ran-

dom variable. Since A’s action and the signal σ are conditionally independent, it follows that

j({st}, σ|q) = Pr({st}|q)f
q(σ), and thus that

Pr(h|{st}, σ) =
Pr({st}|h)f

h(σ)π

Pr({st}|h)fh(σ)π + Pr({st}|l)f l(σ) (1− π)

=
Pr({st}|h)

fh(σ)
f l(σ)

π
1−π

Pr({st}|h)
fh(σ)
f l(σ)

π
1−π + Pr({st}|l)

(12)

Since, the last term is increasing in fh(σ)
f l(σ)

, the fact that d
dσ

[
fh(σ)
f l(σ)

]
> 0 implies d

dσ
Pr(h|{st}, σ) > 0.

Thus, given (1), it follows that for any Sag, E responds with a cutoff strategy by accepting a project

submitted to tier t if and only if σ ≥ σt(S
ag), with σt(S

ag) ∈ [0, 1]. Thus, in any equilibrium, the

evaluator uses a cutoff strategy.

On the other hand, for A’s belief we have

Pr({at}|µ) = Pr({at}|µ, h) Pr(h|µ) + Pr({at}|µ, l) Pr(l|µ)

= Pr({at}|h) Pr(h|µ) + Pr({at}|l) Pr(l|µ)

= [Pr({at}|h)− Pr({at}|l)] Pr(h|µ) + Pr({at}|l) (13)

where for the second equality we used the fact that µ is redundant for A’s inference about E ’s

action when conditioning on the quality of the project. Since in any equilibrium, the evaluator

uses a cutoff strategy, we have {at} = {σ : σ ≥ σts}, and thus Pr({at}|h) − Pr({at}|l) = Pr(σ ≥

σts|h) − Pr(σ ≥ σIs|l) = F
l(σts) − F

h(σts). The monotone likelihood ratio property implies first

order stochastic dominance, and thus F l(σts) − F
h(σts) > 0. On the other hand, by Bayes’ Rule
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we have

Pr(h|µ) =
gh(µ)π

gh(µ)π + gl(µ) (1− π)
=

gh(µ)
gl(µ)

π
1−π

gh(µ)
gl(µ)

π
1−π + 1

(14)

which is increasing in gh(µ)
gl(µ)

, and thus increasing in µ since d
dµ

[
gh(µ)
gl(µ)

]
> 0. Thus, d

dµ
Pr({at}|µ) > 0.

Now, bA Pr ({aA}|µ) − cA ≥ max {0, bB Pr ({aB}|µ)− cB} if and only if Pr ({aA}|µ) ≥
cA
bA
and

bA Pr ({aA}|µ)−bB Pr ({aB}|µ) ≥ cA−cB. Since in any equilibrium, {at} = {σ : σ ≥ σts}, it follows

that

∂

∂µ
[bA Pr ({aA}|µ)− bB Pr ({aB}|µ)] =

=
∂

∂µ
[bA Pr (σ ≥ σAs|µ)− bB Pr (σ ≥ σBs|µ)]

=
∂

∂µ

{
bA [Pr (σ ≥ σAs|h, µ) Pr(h|µ) + Pr (σA ≥ σAs|l, µ) Pr(l|µ)]
−bB [Pr (σ ≥ σBs|h, µ) Pr(h|µ) + Pr (σ ≥ σBs|l, µ) Pr(l|µ)]

}

=
∂

∂µ

{
bA [Pr (σ ≥ σAs|h) Pr(h|µ) + Pr (σA ≥ σAs|l) Pr(l|µ)]
−bB [Pr (σ ≥ σBs|h) Pr(h|µ) + Pr (σ ≥ σBs|l) Pr(l|µ)]

}

=
∂

∂µ

{
bA [{Pr (σ ≥ σAs|h)− Pr (σA ≥ σAs|l)}Pr(h|µ)] + Pr (σA ≥ σAs|l)
−bB [{Pr (σ ≥ σBs|h)− Pr (σB ≥ σBs|l)}Pr(h|µ)] + Pr (σB ≥ σBs|l)

}

= {bA [Pr (σ ≥ σAs|h)− Pr (σA ≥ σAs|l)]− bB [Pr (σ ≥ σBs|h)− Pr (σ ≥ σBs|l)]}
∂

∂µ
[Pr(h|µ)]

=
{
bA

[
F l(σAs)− F

h(σAs)
]
− bB

[
F l(σBs)− F

h(σBs)
]} ∂

∂µ
[Pr(h|µ)] (15)

where for the third equality we used again Pr({at}|µ, q) = Pr({at}|q). Since
∂
∂µ
[Pr(h|µ)] > 0, it

follows that ∂
∂µ
[bA Pr ({aA}|µ)− bB Pr ({aB}|µ)] has the same sign for all values of µ, i.e., the sign

of bA
[
F l(σAs)− F

h(σAs)
]
− bB

[
F l(σBs)− F

h(σBs)
]
.

Let µ′ be the solution to bA Pr ({aA}|µ
′) − bB Pr ({aB}|µ

′) = cA − cB, µ
′′ be the solution to

Pr ({aA}|µ
′′) = cA

bA
and µ′′′ be the solution to Pr ({aB}|µ

′′′) = cB
bB
, and assume for the time be-

ing that all these solutions are interior in [0, 1]. We have two cases to consider. (i) Assume

bA
[
F l(σAs)− F

h(σAs)
]
− bB

[
F l(σBs)− F

h(σBs)
]
> 0. Then, A will submit the project to tier A

for µ ∈ [µ′, 1]∩ [µ′′, 1], to tier B for µ ∈ µ ∈ [0, µ′]∩ [µ′′′, 1], and will not submit the project for the

rest of the values of µ. (ii) Assume bA
[
F l(σAs)− F

h(σAs)
]
− bB

[
F l(σBs)− F

h(σBs)
]
< 0. Then,

A will submit the project to tier B for µ ∈ [µ′, 1]∩ [µ′′′, 1], to tier A for µ ∈ [0, µ′]∩ [µ′′, 1], and will

not submit the project for the rest of the values of µ. In either case, the set of values of µ for which

A submits the project to each evaluator is connected. The analysis for the cases when the solutions
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to the equations that define µ′, µ′′ and µ′′′ are not interior is similar and leads to the same salient

conclusions. For instance, if bA Pr ({aA}|µ
′)− bB Pr ({aB}|µ

′) > cA − cB for all µ ∈ [0, 1], but µ
′′ is

interior, then A will submit the project to tier A for µ ∈ [µ′′, 1] and will not submit the project for

the rest of the values of µ. �

Appendix A2. Proof of Lemma 3.1

We show that if σBs ≥ σAs, then condition (3) is never satisfied, i.e., that bB Pr (σ ≥ σBs|µ) −

cB < max {0, bA Pr (σ ≥ σAs|µ)− cA}. To this end, since σBs ≥ σAs implies Pr (σ ≥ σAs|µ) ≥

Pr (σ ≥ σBs|µ), it is enough to show that

bB Pr (σ ≥ σAs|µ)− cB < max {0, bA Pr (σ ≥ σAs|µ)− cA}

To this aim, we will argue that whenever bB Pr (σ ≥ σAs|µ)−cB ≥ bA Pr (σ ≥ σAs|µ)−cA, it must be

that bB Pr (σ ≥ σAs|µ)− cB < 0, which will complete the argument. Since bA > bB, by assumption

1(i), this is equivalent to showing that

Pr (σ ≥ σAs|µ) ≤
cA − cB
bA − bB

implies Pr (σ ≥ σAs|µ) <
cB

bB

To show this implication, it is enough to show that cA−cB
bA−bB

< cB
bB
. Rearranging this last condition,

we conclude that it is satisfied whenever assumption 1(ii) is satisfied, so the proof of the lemma is

complete. �

Appendix A3.

From (2), it is straightforward to see that this happens if and only if

∂

∂µ
[bA Pr (σ ≥ σAs|µ)− bB Pr (σ ≥ σBs|µ)] > 0

Lemma 5.1 provides conditions under which this is satisfied.

Lemma 5.1 Let σ̃1 be the solution to
f l(σ̃1)
fh(σ̃1)

= 1, and let σ̃2 be the solution to
bA
bB
= F l(σ̃1)−Fh(σ̃1)

F l(σ̃2)−Fh(σ̃2)

on [σ̃1, 1]. (i) If σAs ≤ σ̃2, then
∂
∂µ
[bA Pr (σ ≥ σAs|µ)− bB Pr (σ ≥ σBs|µ)] > 0 for any σBs < σAs.
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(ii) If σAs > σ̃2, then there exists a neighborhood NσAs of σ̃1, such that when σBs ∈ NσAs, we have

∂
∂µ
[bA Pr (σ ≥ σAs|µ)− bB Pr (σ ≥ σBs|µ)] < 0.

Proof. From (15), we have that when evaluators employ cutoff strategies σAs and σBs,

∂

∂µ
[bA Pr (σ ≥ σAs|µ)− bB Pr (σ ≥ σBs|µ)] =

=
{
bA

[
F l(σAs)− F

h(σAs)
]
− bB

[
F l(σBs)− F

h(σBs)
]} ∂

∂µ
[Pr(h|µ)]

with ∂
∂µ
[Pr(h|µ)] > 0.

Note that d
dσ

[
F l(σ)− F h(σ)

]
= 0⇐⇒ f l(σ)− fh(σ) = 0⇐⇒ σ = σ̃1. Moreover, we have

d

dσ

[
F l(σ)− F h(σ)

]
> 0⇐⇒

f l(σ)

fh(σ)
> 1

Therefore, since f l(σ̃1)
fh(σ̃1)

= 1 (by the definition of σ̃1) and
d
dσ

[
f l(σ)
fh(σ)

]
< 0 (from assumption 2(ii)),

we have that
d

dσ

[
F l(σ)− F h(σ)

]
> 0⇐⇒ σ < σ̃1 (16)

Now, if σAs < σ̃2, where, by its definition, σ̃2 is the solution to
bA
bB
= F l(σ̃1)−Fh(σ̃1)

F l(σ̃2)−Fh(σ̃2)
, then

bA
[
F l(σAs)− F

h(σAs)
]
− bB

[
F l(σBs)− F

h(σBs)
]
> 0 for any σBs < σAs. To see this, assume first

that σAs > σ̃1. Then, since σ̃2 > σAs > σ̃1, by (16) F
l(σAs) − F

h(σAs) ≥ F l(σ̃2) − F
h(σ̃2) =

bB
bA

[
F l(σ̃1)− F

h(σ̃1)
]
. Thus, bA

[
F l(σAs)− F

h(σAs)
]
− bB

[
F l(σ̃1)− F

h(σ̃1)
]
> 0. Since F l(σBs)−

F h(σBs) ≤ F
l(σ̃1)−F

h(σ̃1) by the definition of σ̃1, it follows that indeed bA
[
F l(σAs)− F

h(σAs)
]
−

bB
[
F l(σBs)− F

h(σBs)
]
> 0 for any σBs. On the other hand, if σAs < σ̃1 then F

l(σAs)−F
h(σAs) >

F l(σBs) − F
h(σBs) by (16) and the fact that σAs > σBs. Since bA > bB, it follows again that

bA
[
F l(σAs)− F

h(σAs)
]
− bB

[
F l(σBs)− F

h(σBs)
]
> 0 for any σBs < σAs.

On the other hand, if σAs > σ̃2 and σBs is sufficiently close to σ̃1, then bA
[
F l(σAs)− F

h(σAs)
]
−

bB
[
F l(σBs)− F

h(σBs)
]
< 0. �

To understand the lemma, note first that σ̃1 is the point at which the difference F
l(·) − F h(·)

is maximized, whereas when σAs is sufficiently high, the difference F
l(σAs) − F

h(σAs) is small.

Therefore, when σAs is high and σBs is close to σ̃1, the probability that a high-quality project is

identified as such from the evaluator’s signal is higher when submitting it to tier B. The likelihood
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of a high-quality project is increasing in the signal µ. Thus, given the low probability of acceptance

at tier A, when A has a higher signal, he is more likely to submit the project to tier B in order to

have it identified as being of high quality and accepted. On the other hand, if cA is small enough,

the expected payoff from submitting the project to tier A may be positive even when µ is small

and σAs is high. Therefore, when A has a low signal he prefers submitting the project to tier A

rather than not submitting it at all. On the other hand, A’s strategy of submitting to tier B for

high signals and to tier A for lower signals, E ’s best response is precisely to adopt a high σAs and

a moderate σBs. Therefore, negative assortative matching may occur in equilibrium.

Appendix A4. Proof of Lemma 3.2

Employing (14) in (13), it follows that

Pr({at}|µ) =

gh(µ)
gl(µ)

π
1−π

gh(µ)
gl(µ)

π
1−π + 1

[
1− F h (σts)

]
+

1
gh(µ)
gl(µ)

π
1−π + 1

[
1− F l (σts)

]
(17)

From (2), under the equilibrium regularity that we assume throughout, we have then that given

σAs and σBs, A submits a project to tier A if and only if

bA Pr ({aA}|µ)− cA ≥ bB Pr ({aB}|µ)− cB ⇐⇒

bA

{
gh(µ)

gl(µ)

π

1− π

[
1− F h (σAs)

]
+
[
1− F l (σAs)

]}
−bB

{
gh(µ)

gl(µ)

π

1− π

[
1− F h (σBs)

]
+
[
1− F l (σBs)

]}
≥

≥ (cA − cB)

[
gh(µ)

gl(µ)

π

1− π
+ 1

]
⇐⇒

gh(µ)

gl(µ)

π

1− π

{
bA

[
1− F h (σAs)

]
− bB

[
1− F h (σBs)

]
+ cB − cA

}
≥

≥ bB
[
1− F l (σBs)

]
− bA

[
1− F l (σAs)

]
+ cA − cB

The last inequality implies thatA employs a cutoff µAs defined by (4) provided that bA
[
1− F h (σAs)

]
−

bB
[
1− F h (σBs)

]
+ cB − cA > 0 and bB

[
1− F l (σBs)

]
− bA

[
1− F l (σAs)

]
+ cA − cB. These con-

ditions are not satisfied generically, but they are necessary conditions for the regular equilibrium

under consideration. To see this, note first that from the argument in appendix A1, a neces-

sary and sufficient condition for positive assortative matching is that bA
[
F l(σAs)− F

h(σAs)
]
−
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bB
[
F l(σBs)− F

h(σBs)
]
> 0, which implies by direct computation that

bA

[
1− F h (σAs)

]
− bB

[
1− F h (σBs)

]
> bA

[
1− F l (σAs)

]
− bB

[
1− F l (σBs)

]
(18)

Now, we have three cases to consider. (i) If cA − cB < bA
[
1− F l (σAs)

]
− bB

[
1− F l (σBs)

]
,

then it immediately follows that bB
[
1− F l (σBs)

]
− bA

[
1− F l (σAs)

]
+ cA − cB < 0, but also

that bA
[
1− F h (σAs)

]
− bB

[
1− F h (σBs)

]
+ cB − cA > 0 by using (18). So A will never submit

a project to tier B, which is something that we precluded by the regularity assumption. (ii) If

cA−cB > bA
[
1− F h (σAs)

]
−bB

[
1− F h (σBs)

]
, then it immediately follows that bA

[
1− F h (σAs)

]
−

bB
[
1− F h (σBs)

]
+cB−cA < 0, but also that bB

[
1− F l (σBs)

]
−bA

[
1− F l (σAs)

]
+cA−cB > 0 by

using (18). So A will never submit a project to tier A, which is again something that is precluded

by the regularity assumption. (iii) Finally, the case when bA
[
1− F h (σAs)

]
− bB

[
1− F h (σBs)

]
>

cA − cB > bA
[
1− F l (σAs)

]
− bB

[
1− F l (σBs)

]
corresponds to the case where A submits a project

to tier A if and only if (4) is satisfied.

When (4) is not satisfied, A submits a project to tier B if and only if bB Pr ({aB}|µ)− cB, which

by straightforward computations using (17), implies A employs a cutoff µBs defined by (5). �

Appendix A5. Proof of Lemma 3.3

For the evaluator, from (1) and (12) it follows that E will accept a project submitted to tier t if

and only if

Pr({st}|h)
fh(σ)
f l(σ)

π
1−π

Pr({st}|h)
fh(σ)
f l(σ)

π
1−π + Pr({st}|l)

≥
Lt

1 + Lt
⇐⇒

fh(σ)

f l(σ)

π

1− π

Pr({st}|h)

Pr({st}|l)
≥ Lt

Thus, given the cutoffs µAs and µBs employed by A, E will accept a project submitted to tier A

with quality signal σ if and only if

fh(σ)

f l(σ)

π

1− π

1−Gh(µAs)

1−Gl(µAs)
≥ LA

and E will accept a project submitted to tier B with quality signal σ if and only if

fh(σ)

f l(σ)

π

1− π

Gh(µAs)−G
h(µBs)

Gl(µAs)−G
l(µBs)

≥ LB
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Therefore, indeed, the two evaluators employ cutoff strategies with cutoffs defined by (6) and (7).

This completes the proof of the lemma. �

Appendix A6. Proof of Lemma 3.4

Parts (i) and (ii) are immediate. The proof of part (iii) is identical to the corresponding proof from

the case of a unique evaluator presented in Barbos (2012). For part (iv), since fh(σ)
f l(σ)

is increasing

in σ, from (7) it follows that σB (·) is decreasing in µAs if and only if

d

dµAs

[
Gl(µAs)−G

l(µBs)

Gh(µAs)−G
h(µBs)

]
< 0⇐⇒

gh(µAs)

gl(µAs)
>
Gh(µAs)−G

h(µBs)

Gl(µAs)−G
l(µBs)

(19)

where we used the fact that µAs > µBs. Similarly, σB (·) is decreasing in µBs if and only if

d

dµBs

[
Gl(µAs)−G

l(µBs)

Gh(µAs)−G
h(µBs)

]
< 0⇐⇒

Gh(µAs)−G
h(µBs)

Gl(µAs)−G
l(µBs)

>
gh(µBs)

gl(µBs)
(20)

We will show that (19) and (20) are satisfied under assumption 2(ii). Since gh(u)
gl(u)

is increas-

ing in u, it follows that for u ∈ [µBs, µAs), we have
gh(µAs)
gl(µAs)

>
gh(u)
gl(u)

, and thus gh (µAs) g
l (u) >

gl (µAs) g
h (u). Integrating this last inequality with respect to u between µBs and µAs, we obtain

gh (µAs)
[
Gl (µAs)−G

l (µBs)
]
> gl (µAs)

[
Gh (µAs)−G

h (µBs)
]

which immediately then implies (19). On the other hand, g
h(µBs)
gl(µBs)

<
gh(u)
gl(u)

for u ∈ (µBs, µAs], implies

gh (µBs) g
l (u) < gl (µBs) g

h (u), which integrated with respect to u between µBs and µAs, implies

gh(µBs)
[
Gl(µAs)−G

l(µBs)
]
< gl(µBs)

[
Gh(µAs)−G

h(µBs)
]

which implies (20). This completes the proof of the lemma. �
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Appendix A7. Proof of Proposition 7

From Barbos (2012), with only one tier of evaluation, the equilibrium is given by

π

1− π

gh(µ1∗t )

gl(µ1∗t )
=

ct − bt
[
1− F l

(
σ1∗t
)]

bt
[
1− F h

(
σ1∗t
)]
− ct

(21)

π

1− π

fh(σ1∗t )

f l(σ1∗t )

1−Gh(µ1∗t )

1−Gl(µ1∗t )
= Lt (22)

where
(
µ1∗t , σ

1∗
t

)
denotes the equilibrium strategies of the game in which E only offers tier t ∈ {A,B}.

Consider first the case when the initial tier is A, and then tier B is introduced. Assume by

contradiction that µ2∗A ≤ µ1∗A . Then

π

1− π

fh(σ1∗A )

f l(σ1∗A )
= LA

1−Gl(µ1∗A )

1−Gh(µ1∗A )
≤ LA

1−Gl(µ2∗A )

1−Gh(µ2∗A )
=

π

1− π

fh(σ2∗A )

f l(σ2∗A )

where the first equality follows from (22) with t = A, the second equality follows from (6), and

the inequality from µ2∗A ≤ µ1∗A and the fact that d
dµ

[
1−Gh(µ)
1−Gl(µ)

]
> 0.18 Thus,

fh(σ1∗A )

f l(σ1∗A )
≤

fh(σ2∗A )

f l(σ2∗A )
, so

by assumption 2(ii), we have that σ2∗A ≥ σ1∗A . Therefore, from (21),
π
1−π

gh(µ1∗A )

gl(µ1∗A )
=

cA−bA[1−F l(σ1∗A )]
bA[1−Fh(σ1∗A )]−cA

≤

cA−bA[1−F l(σ2∗A )]
bA[1−Fh(σ2∗A )]−cA

. On the other hand, from (4), we have π
1−π

gh(µ2∗A )

gl(µ2∗A )
=

bB[1−F l(σ2∗B )]−bA[1−F
l(σ2∗A )]+cA−cB

bA[1−Fh(σ2∗A )]−bB[1−Fh(σ
2∗
B )]+cB−cA

.

We show next that π
1−π

gh(µ2∗A )

gl(µ2∗A )
>

cA−bA[1−F l(σ2∗A )]
bA[1−Fh(σ2∗A )]−cA

, which would then imply that
gh(µ2∗A )

gl(µ2∗A )
>

gh(µ1∗A )

gl(µ1∗A )
,

and thus that µ2∗A > µ1∗A contradicting the initial assumption. Thus, note that

bB
[
1− F l

(
σ2∗B
)]
− bA

[
1− F l

(
σ2∗A
)]
+ cA − cB

bA
[
1− F h

(
σ2∗A
)]
− bB

[
1− F h

(
σ2∗B
)]
+ cB − cA

>
cA − bA

[
1− F l

(
σ2∗A
)]

bA
[
1− F h

(
σ2∗A
)]
− cA

⇐⇒

bB
[
1− F l

(
σ2∗B
)]
− cB

cB − bB
[
1− F h

(
σ2∗B
)] >

cA − bA
[
1− F l

(
σ2∗A
)]

bA
[
1− F h

(
σ2∗A
)]
− cA

But this last inequality follows from the fact that µ2∗A > µ2∗B implies from (4) and (5) that

bB
[
1− F l

(
σ2∗B
)]
− bA

[
1− F l

(
σ2∗A
)]
+ cA − cB

bA
[
1− F h

(
σ2∗A
)]
− bB

[
1− F h

(
σ2∗B
)]
+ cB − cA

>
cB − bB

[
1− F l

(
σ2∗B
)]

bB
[
1− F h

(
σ2∗B
)]
− cB

Therefore, indeed µ2∗A > µ1∗A , which then from (22) and (6) immediately also implies that σ
2∗
A < σ1∗A .

For the second part of the proof, consider the case when the initial tier is B and then tier

18To see this last fact, just let µAs = 1 in equation (20).
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A is introduced, and assume by contradiction that σ2∗B ≤ σ1∗B . From (21) and (5), this implies

that µ2∗B ≤ µ1∗B . Therefore, from (22) it follows that π
1−π

fh(σ1∗B )

f l(σ1∗B )
= LB

1−Gl(µ1∗B )

1−Gh(µ1∗B )
≤ LB

1−Gl(µ2∗B )

1−Gh(µ2∗B )
.

Therefore, to complete the contradiction argument, it would be enough to show that π
1−π

fh(σ2∗B )

f l(σ2∗B )
>

LB
1−Gl(µ2∗B )

1−Gh(µ2∗B )
, because this would immediately imply σ2∗B > σ1∗B . But from (7) we have π

1−π
fh(σ2∗B )

f l(σ2∗B )
=

LB
Gl(µ2∗A )−G

l(µ2∗B )

Gh(µ2∗A )−G
h(µ2∗B )

, so it suffices to show that
Gl(µ2∗A )−G

l(µ2∗B )

Gh(µ2∗A )−G
h(µ2∗B )

>
1−Gl(µ2∗B )

1−Gh(µ2∗B )
. This is true from (19).

Therefore, indeed σ2∗B > σ1∗B , which from (21) and (5) also implies that µ2∗B > µ1∗B . This completes

the proof of the proposition. �
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