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Abstract 

This paper identifies the best models for forecasting the volatility of daily exchange returns of 

developing countries. An emerging consensus in the recent literature focusing on industrialised 

counties has noted the superior performance of the FIGARCH model in the case of industrialised 

countries, a result that is reaffirmed here. However, we show that when dealing with developing 

countries’ data the IGARCH model results in substantial gains in terms of the in-sample results and 

out-of-sample forecasting performance.   
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1. Introduction 

Developing countries are increasingly being regarded as alternative destinations for foreign investment 

flows (WIPS, 2010). This change has been accompanied by a huge increase in international transfers, 

and in many cases by unexpected changes in exchange rate volatility. Such changes can be very costly 

for investors if they are unforeseen or inefficiently managed. A key question this paper seeks to 

address is whether the same volatility models that have been used widely and successfully in previous 

studies of industrialised countries’ exchange rate volatility perform equally well in terms of in-sample 

and out-of-sample performance when applied to data for developing countries.  

There may be good reasons to expect models to perform differently with developing vs 

industrialised country data. For example, management of risks associated with unexpected changes in 

exchange rate volatility can be facilitated through access to forward contracts and/or other hedging 

instruments, but these are less widely available for developing countries. The country groups also 

differ in terms of their historical experiences of financial crises. The existing empirical literature on 

forecasting daily exchange rate volatility in industrialised countries is extensive but that using data 

from developing countries is relatively sparse, although the gains to achieving a greater understanding 

of volatility in this setting are potentially large.
1
 This paper tries to address this gap. We consider 

various well established conditional heteroskedasticity models and assess both their within sample fit 

and out-of-sample forecasting performance.  

 Our motivation to focus on the forecasting performance of various exchange rate volatility 

models in developing versus industrialised countries for daily data in part derives from the fact that a 

number of studies document far greater exchange rate volatility in developing as opposed to 

industrialised countries. For example, Devereux and Lane (2003)  analysed an extensive sample of 158 

countries (23 industrialised and 135 developing country bilateral exchange rates with the US dollar 

over the period 1995-2000). They found that monthly exchange rate volatility in developing countries, 

as measured by the standard deviation of the first differences in logged bilateral exchange rate, was 

almost 2.5 times greater than that in industrialised countries. Using a similar framework, Hausmann et. 

                                                 
1
 An excellent review of volatility forecasting is given in Poon and Granger (2003). 
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al. (2006) found that exchange rate volatility in developing countries was approximately three times 

greater than that in industrialised countries (they looked at real effective exchange rates and they 

applied panel techniques to data for 74 industrialised and developing countries over the period 1980-

2000 at an annual frequency). They determined that this difference in volatility could not be explained 

by: i) the fact that developing countries are more likely to face larger macroeconomic shocks (e.g. to 

their terms of trade, GDP growth and inflation); ii) their greater likelihood of experiencing recurrent 

currency crises; or iii) by a higher elasticity of exchange rate volatility with respect to these shocks. In 

contrast, and through employing (G)ARCH models, they were able to provide evidence that the 

difference in exchange rate volatility experienced by developing and industrialised countries could in 

part be explained by differing persistence of the exchange rate volatility itself. This finding suggests 

that using models capable of capturing differential persistence of exchange rate volatility are likely to 

be of particular relevance to our endeavour. 

 A common feature of the two studies mentioned above, and many others, is the use of low 

frequency, i.e. monthly or annual data, rather than higher frequency daily or intra-daily data. Often the 

use of low frequency data reflects the fact that the authors were aiming to evaluate the extent to which 

exchange rate volatility can be explained by macroeconomic variables such as gross domestic product, 

inflation and exports. These macroeconomic variables are typically only available at a relatively low 

frequency, monthly at best, and more often quarterly or annual. In contrast it has been argued that 

many of the drivers of dynamics in exchange rate returns and volatility, including microstructure 

effects, can best be identified in high-frequency data (see, for instance, Andersen and Bollerslev, 

1998a, Andersen and Bollerslev, 1998b, Andersen et al., 1999, 2001 and 2003). In this paper we are 

interested in capturing daily exchange rate volatility dynamics, and do not focus on explaining longer 

horizon volatility in the developing countries, which we leave for further research.  

 The key findings of this study are as follows. The superior performance of the FIGARCH 

model, noted in the recent literature, is confirmed in the case of industrialised countries, but we find 

that the IGARCH model results in substantial gains in in-sample estimation and out-of-sample 

forecasting performance when dealing with developing countries. 
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The remainder of the paper is organized as follows. Section 2 describes the data and 

methodology employed. Section 3 presents the empirical results of the in-sample estimation and out-

of-sample performance and section 4 concludes. 

 

2. Data and Methodology 

The data used here consist of daily observations on four spot exchange rates against the US dollar 

obtained from Oanda database
2,3

. The exchange rates under consideration are: the Botswana pula 

(BWP), Chilean peso (CLP), Cyprus pound (CYP) and Mauritius rupee (MUR). The choice of these 

four specific countries was based on the fulfilment of the following criteria: i) that they were included 

among that developing countries in Devereux and Lane (2003);  ii) that have not fixed their currency 

with the US dollar
4
,
 
our base currency, during our sample period;and  iii) that daily spot exchange rate 

data is available. After careful inspection, the developing countries that fulfilled these conditions were 

the four mentioned above. Our in-sample estimation period runs from 8/11/1993 to 29/12/2000, 

totalling 1806 observations. The choice of the sample was chosen for the ease of comparison with 

earlier studies we refer to that forecast exchange rate volatility in industrialised countries. Weekends, 

Christmas, Easter and bank holidays are excluded from the sample, since during these periods 

transactions are nonexistent or so limited that their inclusion could distort the estimation results.  

Results are presented for six alternative conditional heteroskedasticity models. Specifically we 

considered ARCH, GARCH, EGARCH, IGARCH, FIGARCH and the HYGARCH models. Given 

that there is no guidance in the literature on exchange rate volatility forecasting in developing 

countries on selecting the "best" model, we began our analysis with a simple ARCH model and 

progressively extended the analysis to more sophisticated models.  

                                                 
2
 Ultimately would be preferable to use intra-daily data but since exchange rate data in developing countries 

were only available to us on a daily basis, we focus on daily data for this group of countries. 
3
 We have also collected daily data from the same database for our control group of industrialised countries 

consisting of the British pound (GBP), Swiss franc (CHF), Japanese yen (JPY) and the Norwegian Krone 

(NOK).  
4
 That is, countries with flexible or intermediate exchange rate arrangements based on the Levy-Yeyati and 

Sturzenegger (2005) de facto classification rather than the IMF’s de jure classification. 
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 The Autoregressive Conditional Heteroskedasticity (ARCH) model of Engle’s (1982) 

estimates the conditional variance of a time series 𝑦𝑡 ,𝑉𝑎𝑟(𝑦𝑡|𝑦𝑡−1) = 𝜎𝑡2 as an autoregressive (AR) 

process which can be written as: 

 𝜎𝑡2 = 𝛿 + 𝛼1𝜀𝑡−12 + 𝛼2𝜀𝑡−22 + ⋯+ 𝛼𝑞𝜀𝑡−𝑞2 + 𝜔𝑡 = 𝛿 + 𝛼(𝐿)𝜀𝑡−12 + 𝜔𝑡 (1) 

  

where 𝜔𝑡 is a white noise and 𝛼(𝐿) is a lag polynomial of order 𝑞 − 1. One restriction that must be 

fulfilled in order for the model to be readily interpretable is that the conditional variance is positive. 

To ensure that the conditional variance is positive, 𝛿 must be positive and the coefficients in 𝛼(𝐿) 

must be greater than, or equal to, zero. In addition, to ensure that the process is stationary,  𝛼(𝑞) must 

be strictly less than unity.  If the coefficients 𝛼𝑖 are positive, and if recent squared errors are large, the 

ARCH model predicts that the current squared errors will be large in magnitude, in the sense that its 

variance 𝜎𝑡2 is large.  

 Bollerslev (1986) extended the ARCH model to allow the error variance to depend on its own 

lags as well as lags of the squared error. In other words, his extension allows the conditional variance 

to follow an Auto Regressive Moving Average (ARMA) process, which can be specified as: 

 𝜎𝑡2 = 𝛿 + 𝛼1𝜀𝑡−12 + ⋯+ 𝛼𝑞𝜀𝑡−𝑞2 + 𝛽1𝜎𝑡−12 + ⋯+ 𝛽𝑝𝜎𝑡−𝑝2 + 𝜔𝑡 
=  𝛿 + �𝛼𝑖𝜀𝑡−𝑖2𝑞

𝑖=1 + �𝛽𝑗𝜎𝑡−𝑗2𝑝
𝑗=1 = 𝛿 + 𝛼(𝐿)𝜀𝑡−12 + 𝛽(𝐿)𝜎𝑡−12 + 𝜔𝑡 

 

(2) 

 

where 𝛼(𝐿) = 𝛼1𝐿 + 𝛼2𝐿2 + ⋯+ 𝛼𝑞𝐿𝑞 and 𝛽(𝐿) = 𝛽1𝐿 + 𝛽2𝐿2 + ⋯+ 𝛽𝑝𝐿𝑝 are lag polynomials. 

According to Engle and Bollerslev (1986) if we define the surprise in the squared innovations as 𝑢𝑡 ≡ 𝜀𝑡2 − 𝜎𝑡2 then the GARCH(1,1) process can be rewritten as: 

 𝜀𝑡2 = 𝛿 + (𝛼 + 𝛽)𝜀𝑡−12 + 𝑢𝑡 − 𝛽𝑢𝑡−1 (3) 
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i.e. the squared errors follow an ARMA(1,1) process, so while the error 𝑢𝑡 is uncorrelated over time, it 

does exhibit heteroskedasticity. Furthermore, the root of the autoregressive part is  𝛼 + 𝑏, so 

stationarity requires that 𝛼 + 𝑏 < 1. The GARCH(p,q) process can be defined by: 

 

𝜎𝑡2 = 𝛿 + �𝛼𝑖𝜀𝑡−𝑖2𝑞
𝑖=1 + �𝛽𝑗𝜎𝑡−𝑗2𝑝

𝑗=1  

 

(4) 

 

where the conditional variance is a linear function of a constant, 𝑞 lags of the past squared error terms 

and 𝑝 lags of the past squared conditional variances. The necessary conditions needed to ensure that 

the conditional variance 𝜎𝑡2 is strictly positive are the following: 𝛿 > 0,  𝛼𝑖 ≥ 0, 𝛽𝑗 ≥ 0, 𝑖 =

1,2, … , 𝑞, 𝑗 = 1,2, … , 𝑝. The weak stationarity of this model is assured by: 

 

�𝛼𝑖𝑞
𝑖=1 + �𝛽𝑗𝑝

𝑗=1 < 1. 

 

(5) 

 

 The GARCH(1,1) model, in general terms, performs well in terms of tracking short-run 

dependencies in volatility and explaining the characteristics of the financial times series such as 

exchange rate returns series (Hansen and Lunde, 2005). 

 Another extension of the GARCH model employed in this study is the Exponential GARCH 

(EGARCH) model introduced by Nelson (1991). The EGARCH model allows for an asymmetric 

response to a shock, meaning that good news has a different impact to bad news on volatility. The 

EGARCH can be defined by: 

 𝑙𝑜𝑔𝜎𝑡2 = 𝜔 + [1 − 𝛽(𝐿)]−1[1 + 𝛼(𝐿)]𝑔(𝑧𝑡−1) (6) 

 

Where 𝑔(𝑧𝑡) depends on various aspects. According to Nelson (1991, p. 351) “to accommodate the 

asymmetric relation between stock return and volatility changes … the value of 𝑔(𝑧𝑡) must be a 
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function of both the magnitude and the sign of 𝑧𝑡”. For that reason the author defines the function 𝑔(𝑧𝑡) by: 

 𝑔(𝑧𝑡) = 𝜃1𝑧𝑡�𝑠𝑖𝑔𝑛 𝑒𝑓𝑓𝑒𝑐𝑡 + 𝜃2[|𝑧𝑡| − 𝐸|𝑧𝑡|]�����������𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 𝑒𝑓𝑓𝑒𝑐𝑡, (7) 

 

Because the level 𝑧𝑡 is included, the EGARCH model is asymmetric as long as 𝜃1 ≠ 0. When 𝜃1 < 0, 

positive shocks (‘good news’) generate less volatility than negative shocks (‘bad news’). When 𝜃1 >

0, negative shocks (‘bad news’) generate less volatility than positive shocks (‘good news’).  

 As noted above, many studies that have examined daily exchange rate data for industrialised 

countries have reached the conclusion that volatility is highly persistent and tends to be well 

approximated by an IGARCH process (see e.g., Bollerslev 1987, McCurdy and Morgan 1988, Baillie 

and Bollerslev 1989, and Hsieh 1989).  Nevertheless, the extremes offered by the exponential decay 

assumed in the GARCH model and infinite persistence assumed in the IGARCH model might be 

overly restrictive. If the dispersion of shocks to the conditional variance decays at a slow hyperbolic 

rate, then, a more flexible class of processes can be adopted, and should be more capable of capturing 

the long run dependencies in observed exchange rate volatility. On this basis we consider the 

Fractionally Integrated Generalized Autoregressive Conditionally Heteroskedastic (FIGARCH) model 

introduced by Baillie, Bollerslev and Mikkelsen (1996). The FIGARCH model incorporates a lag 

polynomial term of the form (1− 𝐿)𝑑, for non-integer 𝑑, and thereby allows a long memory process 

in the conditional variance. If the actual autocorrelations in conditional variance decay at a hyperbolic 

rate, this model is  expected to perform relatively well at longer horizons. The FIGARCH extends the 

GARCH model by allowing a term of the form (1 − 𝐿)𝑑, defined by: 

 �1− 𝜑(𝐿)�(1− 𝐿)𝑑𝜀𝑡2 = 𝜔 + �1− 𝛽(𝐿)�(𝜀𝑡2 − 𝜎𝑡2) 

or 𝜎𝑡2 = 𝜔∗ + {1 − [1 − 𝛽(𝐿)]−1𝜑(𝐿)(1− 𝐿)𝑑}𝜀𝑡2 

(8.a) 

 

(8.b) 
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where the constant is now defined as 𝜔∗ = 𝜔[1 − 𝛽(𝐿)]−1 and 𝑑 ∈ (0,1). 

 Davidson (2004) proposed a generalized version of the FIGARCH model the Hyperbolic 

GARCH (HYGARCH) model. This model can generate long memory without ‘behaving oddly’ when 

d, the parameter of fractional integration, approaches 1. The HYGARCH model is given by the 

following equation: 

 

2 1 1 2[1 ( )] {1 [1 ( ) ( ){1 [(1 ) ]}}d

t t
L L L Lσ ω β β φ α ε− −= − + − − + −

 
(9) 

 

 Interestingly, the HYGARCH nests the FIGARCH when 𝛼 = 1, or equivantly when log(𝛼) =

0, and the process is stationary when 𝛼 < 1, or equivantly when log(𝛼) < 0, in which case the 

GARCH component observes the usual covariance stationarity restrictions (see Davidson, 2004).
5
 

 The criterion for model selection across each of the six GARCH-type models is based on in-

sample and out-of-sample diagnostic tests. The in-sample diagnostics include the Akaike Information 

Criterion (AIC), Schwarz Bayesian Criterion (SBC), Hannan-Quinn Criterion (HQC), Shibata 

Criterion (SC), log-likelihood values, Box-Pierce statistics on both raw (𝑄) and squared (𝑄2) 

standardized residuals and Engle’s LM ARCH test for the presence of further ARCH effects. Under 

the Student-t or Skewed-Student-t distribution, the model with the minimum AIC, SBC, HQC, SC, 

maximum log-likelihood values and which passes the Q-, Q-squared and the LM ARCH test 

simultaneously is adopted. In each case a choice has to be made on the appropriate number of lags of 

the squared errors to include in each of the equation. We referred to residual based tests and 

information criteria, specifically AIC (Akaike Information Criteria), SBC (Schwarz Bayesian Criteria) 

and HQC (Hannan-Quinn Criteria). In the case of out-of-sample selection, the model with the smallest 

forecast error of the various tests is adopted.  

The covariance matrix of the estimates is computed using a Quasi-Maximum Likelihood 

(QML) method. In addition, the optimization method of the QML procedure is done primarily under 

                                                 
5
 Other extensions of the GARCH models have been considered in this research such as the FIEGARCH of 

Bollerslev and Mikkelsen (1996) and the FIAPARCH of Tse (1998) but the results were inferior and are not 

reported in the paper, but are available upon request. 
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the standard QML approach that uses the quasi-Newton method of Broyden, Fletcher, Goldfarb and 

Shanno (BFGS). However, in cases where this conventional BFGS optimization algorithm fails to 

converge, we turn to an alternative, the Simulated Annealing (SA) algorithm proposed by Goffe, 

Ferrier and Rogers (1994). Some of the problems that the BFGS algorithm may encounter during 

estimation are summarised in Cramer (1986, p. 77) are: i) the algorithm may not converge in a 

reasonable number of steps, ii) it may head toward infinitely large parameter values, or even loop 

through the same point time and again and iii) it may have difficulty with ridges and plateaus. When 

faced with such difficulties, the researcher might be able to overcome them through use of different 

starting values. However, Goffe, Ferrier and Rogers (1994, p. 66) state that “even if the algorithm 

converges, there is no guarantee that it will have converged to a global, rather than a local, optimum 

since conventional algorithms cannot distinguish between the two”. The key advantages of the 

algorithm proposed by Goffe, Ferrier and Rogers (1994) are that it is less dependent on the specific 

starting values used
6
 and can focus in on global rather than local optima by exploring the relevant 

function’s entire surface and moving both uphill and downhill.  

 For the first five models we assess parameter significance by making use of the Student-t 

Distribution. In the case of the HYGARCH model our inference is based on the skewed-Student-t 

Distribution, as recommended in Davidson (2004).
7
 Both the Student-t and the skewed-Student-t 

distributions take into account the phenomenon of greater leptokurtosis and skewness in the 

probability density function as compared to the normal distribution.  

 In terms of forecasting performance, 253 observations ranging from 2/01/2001 to 31/12/2001 

are used for out-of-sample forecast evaluation. The 253 out-of-sample volatility forecasts are produced 

for the one-step ahead daily forecast horizon. In order to produce 253 daily volatility forecasts the 

equations are estimated 253 times and estimated recursively. The accuracy of exchange rate volatility 

forecasts is evaluated through reference to the most commonly used criteria. These include a Mincer 

                                                 
6
 The SA algorithm was applied only if there is no convergence under the conventional BFGS algorithm. In our 

research, since no convergence was obtained in the case of the developing countries, the SA algorithm was used 

throughout. 
7
 The HYGARCH model has been estimated also under a Student-t distribution but the skewed-Student-t was 

preferred as the log-likelihood value was greater for the later. The AIC, SBC and HQC also suggested the later. 

The estimation results under the Student-t are not presented but can be provided upon request.  



10 

 

and Zarnowitz’s (1969) regression based test, the Mean Square Forecast Error (MSFE) and the 

Superior Predictive Abilitity (SPA) test developed by Hansen (2005). In the case of the Mincer and 

Zarnowitz (1969) regression based test, the true (or realized) volatility
 
is regressed on a constant and 

forecast volatility for each model:  

 𝜎𝑠𝑞𝑢𝑎𝑟𝑒𝑑 𝑟𝑒𝑡𝑢𝑟𝑛𝑠,𝑡+1 = 𝛼 + 𝛽𝜎�𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡,𝑡+1 + 𝜀𝑡 (10) 

 

For a given model’s forecast to be unbiased, the parameters 𝛼 and 𝛽 from equation (10) should be take 

the values 0 and 1 respectively. We test whether these theoretical restrictions are data admissible. In 

addition, the 𝑅2 (goodness-of-fit) of this regression is used as a measurement of predictive power of 

the various models considered. The model that achieves the largest 𝑅2 is the one for which the forecast 

best approximates true volatility, so has the most powerful forecasting ability. True volatility is 

proxied by the daily squared ex-post returns. This approach has been widely used in exchange rate 

volatility forecasting evaluation (see, for instance, Anderson and Bollerslev 1998a; Balaban, 2004; 

Martens, Chang and Taylor, 2002 and Pong, Shackleton, Taylor and Xu, 2004). 

 The second and most widely used accuracy measures in volatility forecasting literature is the 

MSFE. The MSFE for a sample size 𝑇 is a quadratic loss function and defined by: 

 

𝑀𝑆𝐹𝐸 =
1𝑇�𝑒𝑡+1,𝑡2𝑇
𝑡=1  (11) 

 

where 𝑒𝑡+1 = 𝜎𝑡+1 − 𝜎�𝑡+1  is the loss function, 𝜎�𝑡+1 denotes a prediction of future volatility and 𝜎𝑡+1 

denotes actual volatility in period 𝑡, using the parameter estimates from the various competing models, 

discussed above, over [0,𝑇]. This loss function is used to measure forecast accuracy. The model with 
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the minimum MSFE is preferred. This criterion has been widely and successfully used in many studies 

of exchange rate volatility forecasting (see, for instance, Vilasuso, 2002 and Balaban, 2004).
8
 

 A key feature of out-of sample criteria, including the MSFE, is that the model with the 

smallest forecast error is preferred. However, it is useful to know whether the model with the smallest 

forecast error is significantly superior to the other models or not – it may be worth trading off a 

slightly larger forecast error for a simpler model, if the difference in forecasting performance is 

insignificant. In order to be able to evaluate whether one model forecasts significantly better than 

another we look at an equal accuracy test proposed by Diebold and Mariano (1995).  The DM tests 

need to be conducted on pairwise comparisons of models, while in practice the interest of the 

researcher is often to choose between models m models (where 𝑚 > 2). For this reason, our preferred 

test is the Superior Predictive Ability (SPA) test proposed by Hansen (2005) which permits evaluation 

of the performance of all alternative models simultaneously. The SPA test evaluates whether the same 

outcomes can be achieved by more than one model and uses a bootstrap procedure. Specifically, a 

target model is selected by one of the evaluation criteria and the question of interest is whether any of 

the alternative forecasts are better, according to a pre-determined loss function, than the target 

forecast. Following Hansen
9
, the chosen loss function is based on MSFE. 

 

3. Empirical Results  

3.1. Descriptive Statistics 

Table 1 provides the summary statistics of exchange rate returns for each of the four currencies against 

the US dollar in developing countries, respectively. Exchange returns are calculated as the first 

difference in the natural logarithm of the nominal exchange rate. 

 

[Insert Table 1 here] 

 

                                                 
8
 Patton (2011) derives necessary and sufficient conditions on the functional form of the loss for the ranking of 

volatility forecasts to be robust to the presence of noise in the volatility proxy. He also shows that the MSFE loss 

is robust. 
9
 We would like to thank P. R. Hansen for providing the Ox code of the SPA test. 
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As indicated in Table 1, the series all show evidence of significant excess kurtosis
10

. This indicates 

that daily exchange rate returns are heavy-tailed (leptokurtic) so tend to contain more extreme values 

than would be expected under the normal distribution. Another feature of the data that is picked up in 

Table 1 is significant positive skewness. Positive skewness is indicative greater prevalence of 

depreciations as opposed to appreciations in the developing countries in our sample. Consistent with 

the results on skewness and kurtosis, the Jarque-Bera normality test strongly rejects the null 

hypothesis that returns are normally distributed. Inference is therefore based on Student-t or Skewed-

Student-t distribution which is have been shown to perform better in these circumstances (see, for 

instance, Bollerslev, 1987; Hsieh, 1989; and Baillie and Bollerslev, 1989, among others). 

 Aside from the results for the CYP/USD, Table 1 offers strong evidence of ARCH effects in 

the exchange rate returns series. Formally, using the ARCH LM test we reject the null hypothesis of 

no ARCH effect in the residuals, similarly there is evidence of significant serial correlation in the 

standardised squared returns on the basis of the Ljung-Box Q statistics at every lag tested. In the case 

of CYP/USD, while we cannot reject the null hypothesis of ARCH effects, the Ljung-Box statistic 

offers evidence of serial correlation in the standardized squared returns at up to 20 lags, suggesting 

that there is evidence of higher order dependence.  

 

3.2. Estimation results 

In this section we present the in-sample estimation results for the ARCH, GARCH, EGARCH, 

IGARCH, FIGARCH and HYGARCH models.  

The conditional mean and variance specifications were initially estimated under the 

conventional BFGS algorithm but the algorithm failed to achieve convergence. This finding is 

consistent with Cramer (1986, p.77).  Once we switched to using the Simulated Annealing (SA) 

algorithm of Goffe, Ferrier and Rogers (1994) we were able to achieve convergence to a global 

                                                 
10

 The excess kurtosis is defined as: 𝐾 =
𝐸[(𝑦−𝜇)4]𝜎4 − 3. A distribution with positive excess kurtosis is said to 

have heavy tails, implying that the distribution puts more mass on the tails of its support than a normal 

distribution does. 
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maximum
11

. The in-sample estimation results and the residual diagnostics for the six conditional 

volatility models of the Chilean peso (CLP), Cyprus pound (CYP), Botswana pula (BWP) and the 

Mauritian rupee (MUR) exchange returns are presented in Tables 2, 3, 4 and 5, respectively. The 

conditional mean of each exchange rate return series was modelled as an autoregressive process of 

order 1 or AR(1). 

The results of the ARCH model are shown for comparison but can easily be improved upon in 

all cases. In all but the CYP/USD case the stationarity constraint is not met as α(q)>1, and in most 

cases (all but CLP/USD) evidence of higher order serial correlation in the squared standardized 

residuals cannot be rejected at the 5% level of significance. Furthermore comparing across models, the 

GARCH, IGARCH, FIGARCH and HYGARCH models all achieve lower values of the information 

criteria. A GARCH (1,1) model, shown in the second column of Tables 2 through 5, seems better able 

to capture the time varying volatility in all four exchange returns series. In each case the key 

parameters are significant at the 5% level of significance. In addition, the positivity and stationarity 

constraints are met as 𝛼�1 + �̂�1 ≥ 0 and 𝛼�1 + �̂�1 < 1, with the exception of the CLP/USD model where 𝛼�1 + �̂�1 > 1. In each case however, the sum of 𝛼�1 + �̂�1 is very close to one and a sum of unity could 

not be rejected on the basis of an LR test. This evidence of strong persistence suggests that the series 

may be better approximated in a specification that captures a wider range of long run dependencies.  

 Prior to analysing the processes that account for long run dependencies, we check for 

asymmetric responses to good and bad shocks using the EGARCH specification, the results are 

presented on column three of Tables 2 through 5. The key estimated parameter here is 𝜃�1 in Equation 

(7) and is positive but insignificant at the 5% level for the CLP/USD and MUR/USD return series, 

significantly positive at 5% for the BWP/USD and significantly negative at 5% for the CYP/USD 

return series. A significant and positive 𝜃�1 means that positive shocks (‘good news’) generate more 

volatility than negative shocks (‘bad news’) for the case of BWP/USD, and vice versa for a significant 

                                                 
11

  We have experimented with the SA and BFGS algorithm in the case of industrialised countries’ exchange 

returns series (a control group consisting of British pound (GBP), Swiss franc (CHF), Japanese yen (JPY) and 

the Norwegian Krone (NOK). The results achieved with the alternative algorithms were almost identical. This 

leads us to have more confidence in our estimates. The results are not presented here for the sake of brevity, but 

are available upon request. 
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negative 𝜃�1 in the case of the CYP/USD return series. However, problems with this specification are 

evident in the estimated 𝛼�1, and in the case of BWP/USD the positivity constraint is not ensured.  

 

[Insert Tables 2-5 here] 

 

In addition, the residual diagnostics for the CYP/USD and BWP/USD series provide evidence that 

significant higher order serial correlation remains in squared standardized residuals remains, so not all 

the conditional heteroscedasticity evident in the data is captured by the model. While asymmetries of 

this kind have been supported in research by Balaban (2004), Bollerslev, Chou and Kroner (1992) and 

Kisinbay (2010), our evidence suggests that the EGARCH formulation is not appropriate in capturing 

the time varying volatility for all four developing countries’ exchange rate return series
12

.  

 Our analysis continues with estimation of the IGARCH model for each of the four exchange 

return series, results are presented on the fourth column of Tables 2 through 5. In all four exchange 

returns series the estimated parameters are significant at 5%. In addition, the residual diagnostics 

indicate that there is no evidence of remaining ARCH effects and no serial correlation for the 

standardized and squared standardized residuals. The IGARCH model appears to fits well the 

CLP/USD, CYP/USD, BWP/USD and MUR/USD exchange return series. 

 The next model under investigation which accounts for long run dependencies in volatility is 

the FIGARCH model. The parameter estimates and the residuals tests of the FIGARCH models are 

presented on the fifth column of Tables 2 through 5. The long memory parameter d captures decay in 

the memory of a shock to the conditional variance. In each case �̂� is significant at the 1% level. 

Moreover, the rest of the parameters of the FIGARCH model are also significant. However, the 

residual diagnostics are not entirely satisfactory. In the case of the BWP/USD return series there is 

evidence of up to 20th order serial correlation in the standardized residuals. In the case of the 

MUR/USD return series there is evidence of 20th order serial correlation in the standardized residuals 

                                                 
12

 We considered other lag structures for the EGARCH estimates, but results remained similar. 
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and up to 20th order serial correlation in the squared standardized residuals. In these cases the 

diagnostics for the IGARCH specification are preferable. 

 The final model under investigation is the HYGARCH model. The estimated parameters and 

the residual diagnostics are presented in the last column of Tables 2 through 5. All the estimated 

parameters of the HYGARCH model are significant but the estimated parameter log(𝛼�) in all four 

cases is greater than zero. This means that the HYGARCH process does not satisfy the stationary 

condition: log(𝛼�) < 0. We therefore conclude that the HYGARCH model is not appropriate in these 

cases.  

In conclusion, among these six volatility models, the GARCH the IGARCH and the 

FIGARCH models seem to perform better than the ARCH, EGARCH and the HYGARCH models in 

terms of capturing the time varying volatility in developing countries’ exchange return series. Among 

the GARCH, IGARCH and the FIGARCH models, although the FIGARCH model has the highest log-

likelihood values, the information criteria (specifically the AIC, SBC, HQC and Shibata) are 

minimised for the IGARCH model in the case of the CYP/USD and MUR/USD return series. For the 

CLP/USD and BWP/USD series the information criteria are minimised for the GARCH and the 

FIGARCH model respectively. However, the GARCH model in the case of the CLP/USD return series 

and the FIGARCH model in the case of the BWP/USD return series, as previously mentioned, are not 

stationary as the sum of 𝛼�1 + �̂�1 is greater than one. Hence, the IGARCH model consistently ranks 

first in terms of capturing time varying volatility. These results are consistent with exchange rate 

shocks having infinite persistence in developing countries.  

 

3.3. Out-of-Sample Forecast Evaluation 

Nonetheless, the good in-sample model performance need not necessarily translates into superior out-

of-sample forecasts. In order to select a model with superior forecasting performance we need to 

consider the performance of out-of-sample forecast evaluation criteria. This section presents the 

empirical results for the out-of-sample forecast evaluation criteria in developing countries. 

 We evaluate the 1-step out-of-sample volatility forecasts for the period between 02.01.2001 to 

31.12.2001 (totalling 253 observations). The out-of sample volatility forecasts are calculated using the 
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parameter estimates of the six conditional heteroskedasticity models examined in previous section. 

These volatility forecasts are then compared to the daily squared exchange rate returns, and the 

accuracy is judged based on the regression based test, MSFE, and the SPA test.  

 

[Insert Tables 6-9 here] 

 

 Tables 6, 7, 8 and 9 present the results of the Mincer-Zarnowitz’s regression test for the 

CLP/USD, CYP/USD, BWP/USD and the MUR/USD returns series, respectively. In the case of the 

CLP/USD and CYP/USD series, we cannot reject the null hypothesis that the forecasts are biased 

forecasts at the 5% level of significance. For the BWP/USD series we cannot reject the null 

hypotheses that the forecasts from each of the six models are unbiased; for the MUR/USD series only 

the IGARCH, FIGARCH and the HYGARCH satisfy the unbiasedness criterion. The measure of 

predictability (𝑅2) is low and ranges between 0.021% (for the ARCH in BWP/USD series) to 5.49% 

(for the HYGARCH in the MUR/USD). The low 𝑅2 might be attributed to the fact that daily ex-post 

returns (rather than returns computed on intra-daily data) were used as a proxy of realised volatility. It 

would be very interesting to check how the 𝑅2 could be affected by using higher frequency (such as 

30-min intraday data) as a proxy of true volatility. However, we were unable to follow this route due 

to a lack of higher frequency data for the developing countries in our sample. 

 In Table 10 we present the out-of-sample forecasts judged by the MSFE criterion. The MSFE 

is minimized for the IGARCH model in all cases other than the MUR/USD return series, where a 

slight improvement in MSFE is achieved by the FIGARCH model. The GARCH model is ranked in 

second, third, third and fourth place for the BWP/USD, CYP/USD, MUR/USD and CLP/USD series, 

respectively. The ARCH model ranks third for the CLP/USD but does not perform well for the other 

returns series and the EGARCH ranks is ranked worst for each series apart from the MUR/USD where 

ranks 5
th

 out of the six possible models. In conclusion, under the MSFE evaluation the IGARCH 

models tend to outperform FIGARCH, or in the case of the MUR/USD series, is little different. On 

this basis we use the IGARCH model as the benchmark model in the Superior Predictive Ability 

(SPA) forecast evaluation test. 
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[Insert Table 10 here] 

 

 Table 11 presents the results obtained from the SPA test. The null hypothesis that the 

IGARCH model (the benchmark) is not inferior to each of the alternatives models cannot be rejected, 

according to the p-values of the last column of Table 11.
13

 In addition, two out of the three models (the 

IGARCH and the FIGARCH) that account for long memory dependencies in volatility persistence 

outperform the short memory models.  

 

[Insert Table 11 here] 

 

 In Table 12 we provide a summary of the model rankings inferred from the SPA test results. In 

addition to the results for the developing countries we include results for our control group of 

industrialised countries.
14

 In the case of industrialised countries, the FIGARCH is consistently ranked 

first and which is line with the existing literature (see, e.g. Vilasuso, 2002).  

 

[Insert Table 12 here] 

 

In the case of the developing countries, IGARCH models tend to perform well both within 

sample and in out-of-sample forecasting. Models that capture long memory dependencies and 

persistence in volatility clearly outperform short memory models. The HYGARCH model estimates 

failed to satisfy the stationarity requirement, and rank poorly relative to IGARCH and FIGARCH in 

forecasting. Of the ARCH, GARCH and EGARCH models it there is strong evidence that accounting 

for asymmetries does not improve forecasting performance, in either the developing countries or 

industrialised countries under consideration. Our results for the developing countries make a new 

                                                 
13

 We have also repeated the SPA test analysis with the FIGARCH as the benchmark model and tested whether 

forecasts from that specification are inferior to any of the other alternatives. These results strengthen the main 

thrust of our results and can be provided upon request.  
14

 Complete out-of-sample forecast results are available upon request. 
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contribution to an established literature, to the best of our knowledge this is the first paper focusing on 

the forecasting performance of developing countries’ exchange rate volatility with daily data. The fact 

that the IGARCH is found to be superior in out-of-sample forecast performance in developing 

countries (even though its difference in terms of performance with the FIGARCH is sometimes small) 

is important. The IGARCH model identifies infinite persistence of an exchange rate shock in 

developing countries. 

 

3.4. Forecast Encompassing Tests 

The results presented so far indicate that the FIGARCH and the IGARCH models are preferred in 

industrialised and developing countries, respectively, both on the basis of within-sample and out-of-

sample performance. However, the difference is performance of these models is of interest, and that 

appears to be small in some cases. As a further check we carry out a forecast encompassing test to 

check whether the IGARCH (FIGARCH) model carries additional information over the base 

FIGARCH (IGARCH) model in industrialised (developing) countries. This forecast encompassing test 

was originally proposed by Chong and Hendry (1996) and is defined as 

 𝜎𝑡 = 𝛼 + 𝛽1𝐹1,𝑡 + 𝛽2𝐹2,𝑡 + 𝜀𝑡, (12) 

 

where 𝐹1,𝑡 is the forecast attained from the first model and 𝐹2,𝑡 the forecast attained from the second 

model. If 𝛽2 = 0, there is no incremental predictive information of the second model and thus, it is 

said that 𝐹1,𝑡 encompasses 𝐹2,𝑡. However, if 𝛽2 > 0 then the competing forecast, 𝐹2,𝑡, contains 

information that 𝐹1,𝑡 does not and therefore, it is said that 𝐹1,𝑡 does not encompass 𝐹2,𝑡. The null 

hypothesis that 𝛽2 = 0, can be tested using a standard regression. The results of the forecast 

encompassing test are presented in Table 13. 

 

[Insert Table 13 here] 
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 In the case of the industrialised countries the (base) FIGARCH model encompasses the 

IGARCH model in all exchange return series apart from the CHF/USD series. This implies there is no 

additional information contained in the IGARCH model over the FIGARCH model, and adds supports 

to our previous results in Table 12. Turning to the results of the forecast encompassing test in 

developing countries the (base) IGARCH model encompasses the FIGARCH in all series except 

MUR/USD series. That is, apart from the MUR/USD series the FIGARCH does not contain any 

additional information over the IGARCH which again generally confirms our previous results in Table 

12. In conclusion, the results of the forecast encompassing tests in developing and industrialised 

countries strengthens our previous finding that the FIGARCH and the IGARCH models are preferred 

in industrialised and developing countries, respectively. 

 

4. Conclusion 

The main objective of this research was to explore modelling and forecasting of exchange rate 

volatility in developing countries. The key question was whether the traditional univariate volatility 

models used widely and successfully in previous studies of industrialised countries perform equally 

well when applied to data for developing countries. The exchange rate series investigated in this study 

were the CLP/USD, CYP/USD, BWP/USD and MUR/USD in the case of developing countries and 

the CHF/USD, JPY/USD and GBP/USD and the NOK/USD in the case of our control group of 

industrialised countries. We reported estimation results for six competing volatility models. 

 In the case of industrialised countries’ daily exchange rate returns series, our results add 

support previous empirical findings, in particular those of Vilasuso (2002) who found that the 

FIGARCH model performed best over all the forecast horizons tested. We confirm the superiority of 

the FIGARCH model in comparisons across a wider range of candidate models. We conclude that the 

FIGARCH model appears to capture the long memory dependencies and persistence in the volatility 

processes for the chosen industrialised countries very well. Further, simultaneous modelling of the 

long memory and volatility clustering properties results in substantial gains in the out-of-sample 

forecast performance.  
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In the case of developing countries’ exchange rate returns, the results of within-sample 

estimates, residual diagnostics and out-of-sample forecast evaluation indicate that the IGARCH model 

fits the data better than the FIGARCH, GARCH, HYGARCH, ARCH and EGARCH models and, in 

most cases, offers a superior performance in out-of-sample forecasting. The IGARCH model implies 

infinite persistence in the dispersion of exchange rate shocks. The FIGARCH model was found to rank 

second in order in terms of both in-sample estimation and out-of-sample forecasting performance.  

 In the case of developing countries these results address a gap in the existing literature on 

forecasting exchange rate volatility using daily data. To the best of our knowledge, there are no 

existing studies of developing countries’ data that focus on the forecasting performance of models that 

capture daily exchange rate volatility. Further work along these lines may be called for, to check that 

results are not specific to the particular data set and/or the specification in the volatility process. For 

instance, it would be of great interest to check whether our results for four developing countries can be 

generalised for a wider range of other developing countries, although at present our analysis focused 

on countries that have not been subject to a discrete change in their exchange rate regime during the 

sample. Extending the analysis to countries that have seen a regime change would be likely to require 

a multiple regime modelling approach that can potentially allow for structural changes in the volatility 

process over time. 

Even within the context of the single regime models, Diebold and Inoue (2001) argue that the 

apparent finding of long-memory in volatility persistence captured by the FIGARCH or the IGARCH 

model could be due to the existence of regime switching in the volatility process. Hence, our finding 

of the superiority of the IGARCH model in developing countries, and confirmation of the preference 

for the FIGARCH model found for industrialised countries’ return series, might be explained by the 

presence of structural breaks rather than long memory, equivalently slow mean reversion, in the 

conditional variance dynamics of exchange rate returns series.  On this basis, it would be of interest to 

investigate whether our key findings stand up to consideration of a regime switching model, but this is 

left for future research. 
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Table 1. Descriptive statistics 

 CYP/USD BWP/USD CLP/USD MUR/USD 

Minimum -0.027509 -0.038329 -0.046232 -0.024876 

Maximum 0.055115 0.073553 0.073225 0.029836 

Mean 0.00012034 0.00044093 0.00024122 0.00023843 

Standard Deviation 0.0053665 0.0052807 0.0045869 0.0036893 

Skewness 0.281 [0.00]** 1.663 [0.00]** 1.805 [0.00]** 0.595 [0.00]** 

Excess Kurtosis 7.46 [0.00]** 28.66 [0.00]** 44.27 [0.00]** 10.16 [0.00]** 

JB Normality Test 4796 [0.00]** 71396 [0.00]** 1.69e+5[0.00]** 8968 [0.00]** 

ARCH 1-2 2.109 [0.12] 39.03 [0.00]** 48.86 [0.00]** 118.0 [0.00]** 

ARCH 1-5 1.957 [0.08] 19.75 [0.00]** 19.84 [0.00]** 50.09 [0.00]** 

ARCH 1-10 1.452 [0.15] 10.06 [0.00]** 10.63 [0.00]** 27.73 [0.00]** 

Q(5) 6.231 [0.28] 29.78 [0.00]** 31.84 [0.00]** 135.0 [0.00]** 

Q(10) 8.887 [0.54] 19.75 [0.00]** 37.83 [0.00]** 151.3 [0.00]** 

Q(20) 21.68 [0.36] 10.06 [0.00]** 59.69 [0.00]** 212.0 [0.00]** 

Q
2
(5) 11.00 [0.05] 133.0 [0.00]** 111.2 [0.00]** 340.9 [0.00]** 

Q
2
(10) 17.89 [0.06] 147.5 [0.00]** 121.1 [0.00]** 433.7 [0.00]** 

Q
2
(20) 36.66 [0.01]* 155.5 [0.00]** 132.3 [0.00]** 876.0 [0.00]** 

Noteσ: The numbers in the parentheses and brackets are t-statistics and P-values respectively. All 

values are computed using OxMetrics and G@RCH. Q( ) and Q
2
( ) is the Ljung–Box Q-statistics of 

order 5, 10, 20 on the raw and squared returns respectively. * Significant at 5%; ** Significant at 1%. 
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Table 2. In-sample Estimation Results for CLP/USD - 08.11.1993-29.12.2000 

 ARCH GARCH EGARCH IGARCH FIGARCH HYGARCH 

C(M) 0.00003 

(0.59) 

0.00002 

(0.32) 

0.00002 

(0.27) 

0.00003 

(0.59) 

0.00004 

(0.64) 

0.00015 

(2.04)* 

C(V) 0.0904 

(59.1)** 

0.0061 

(10.9)** 

0.0997 

(6.13)** 

0.0097 

(22.6)** 

0.0342 

(22.3)** 

-0.0178 

(-14.7)** 

AR(1) 0.1085 

(4.27)** 

0.0979 

(5.52)** 

-68358.5 

(-4494)** 

0.1013 

(4.17)** 

0.1085 

(4.05)** 

0.1056 

(4.80)** 

α(1) 0.7376 

(11.8)** 

0.3611 

(132)** 

-0.0779 

(-43.9)** 

0.1160 

(37.6)** 

0.3665 

(4.12)** 

0.4735 

(397)** 

α(4) 0.1195 

(3.38)** 

     

β(1)  0.8986 

(600)** 

0.9235 

(797)** 

0.8840 0.5723 

(56.0)** 

0.4042 

(53.8)** 

θ(1)   0.0197 

(1.69) 

   

θ(2)   0.5508 

(239)** 

   

Log(α) 
HYGARCH 

     1.9363 

(79.6)** 

Student-DF 2.4900 

(47.3)** 

2.2166 

(166)** 

2.2620 

(977)** 

2.5559 

(56.2)** 

2.5980 

(49.3)** 

 

Asymmetry      0.0644 

(2.51)* 

Tail      2.2052 

(131)** 

D     0.5368 

(10.8)** 

0.1565 

(5.75)** 

Log-Lik 7962.41 7990.79 7954.66 7973.47 7974.51 7998.31 

AIC -8.8089 -8.8425 -8.8003 -8.8244 -8.8234 -8.8475 

SBC -8.7845 -8.8242 -8.7759 -8.8092 -8.8021 -8.8201 

HQC -8.7999 -8.8358 -8.7913 -8.8188 -8.8155 -8.8374 

Shibata -8.8089 -8.8425 -8.8003 -8.8245 -8.8234 -8.8476 

ARCH 1-5 

 

0.4005 

[0.85] 

0.1421 

[0.98] 

0.1557 

[0.98] 

0.4426 

[0.82] 

0.1520 

[1.00] 

0.1360 

[0.98] 

ARCH 1-10 

 

0.2379 

[0.99] 

0.1291 

[1.00] 

0.1156 

[1.00] 

0.2775 

[0.99] 

0.0918 

[1.00] 

0.0889 

[1.00] 

Q(10) 

 

11.998   

[0.21] 

7.2272 

[0.61] 

8.4481 

[0.49] 

6.0108 

[0.74] 

8.7100 

[0.46] 

9.3735 

[0.40] 

Q(20) 29.913   

[0.06] 

16.092 

[0.65] 

23.653 

[0.21] 

18.854 

[0.47] 

24.111 

[0.19] 

22.092 

[0.28] 

Q
2
(10) 2.3451   

[0.89] 

1.3107 

[1.00] 

1.0986 

[1.00] 

2.8882 

[0.94] 

0.8954 

[1.00] 

0.8550 

[1.00] 

Q
2
(20) 8.2565   

[0.94] 

2.2582 

[1.00] 

4.1066 

[1.00] 

4.0039 

[1.00] 

3.0799 

[1.00] 

1.5020 

[1.00] 

Notes: see Table 1. 
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Table 3. In-sample Estimation Results for CYP/USD - 08.11.1993-29.12.2000 

 ARCH GARCH EGARCH IGARCH FIGARCH HYGARCH 

C(M) 0.0002 

(2.01)* 

0.0002 

(1.87) 

0.0002 

(1.55) 

0.0002 

(1.88) 

0.0002 

(1.90) 

0.0001 

(1.00) 

C(V) 0.1329 

(7.77)** 

0.0007 

(2.7)** 

-84471.7 

(-58.7)** 

0.0009 

(3.73)** 

0.0011 

(1.38) 

-0.0022 

(-2.12)* 

AR(1) 0.0625 

(2.79)** 

0.0639 

(3.2)** 

0.0654 

(3.01)** 

0.0641 

(2.98 )** 

0.0658 

(3.02)** 

0.0662 

(4.08)** 

α(1) 0.0867 

(2.04)** 

0.0248 

(10.2)** 

0.4027 

(1.24) 

0.0346 

(21.1)** 

0.0812 

(3.49)** 

0.4593 

(94.9)** 

α(10) 0.0732 

(1.98)* 

     

β(1)  0.9665 

(363)** 

0.7077 

(9.90)** 

0.9654 

 

0.9526 

(47.7)** 

0.8225 

(94.3)** 

θ(1)   -0.0830 

(-2.05)* 

   

θ(2)   0.2121 

(3.69)** 

   

Log(α) 
HYGARCH 

     0.1208 

(11.6)** 

Student-DF 3.8612 

(10.6)** 

4.2163 

(11.3)** 

3.6272 

(11.3)** 

4.2755 

(11.7)** 

4.3565 

(10.6)** 

 

Asymmetry      -0.0346 

(-1.26) 

Tail      4.0460 

(10.2)** 

D     0.9231 

(26.1)** 

0.3968 

(61.4)** 

Log-Lik 7156.49 7177.28 7132.32 7177.24 7178.02 7175.94 

AIC -7.9097 -7.9416 -7.8896 -7.9427 -7.9413 -7.9368 

SBC -7.8671 -7.9234 -7.8653 -7.9275 7.9200 -7.9094 

HQC -7.8940 -7.9349 -7.8806 -7.9371 -7.9335 -7.9267 

Shibata -7.9099 -7.9416 -7.8897 -7.9427 -7.9414 -7.9369 

ARCH 1-5 0.54782 

[0.74] 

1.0138 

[0.41] 

0.6207 

[0.68] 

1.0045 

[0.41] 

0.4430 

[0.82] 

0.2330 

[0.95] 

ARCH 1-10 

 

0.7518 

[0.68] 

0.6833 

[0.74] 

1.7733 

[0.06] 

0.6865 

[0.74] 

0.4160 

[0.94] 

0.4049 

[0.95] 

Q(10) 

 

7.3725   

[0.60] 

7.8917 

[0.55] 

6.7672    

[0.66] 

7.8243 

[0.55] 

7.1080 

[0.63] 

7.0618 

[0.63] 

Q(20) 22.317   

[0.27] 

18.627 

[0.48] 

22.290 

[0.27] 

18.705 

[0.48] 

18.197 

[0.51] 

17.892 

[0.53] 

Q
2
(10) 7.4064   

[1.00] 

6.8040 

[0.56] 

17.9243 

[0.02]* 

6.8322 

[0.55] 

4.1529 

[0.84] 

4.0889 

[0.85] 

Q
2
(20) 20.008   

[0.03]* 

12.774 

[0.80] 

48.135 

[0.00]** 

12.774 

[0.80] 

10.853 

[0.90] 

11.886 

[0.85] 

Notes: see Table 1 
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Table 4. In-sample Estimation Results for BWP/USD - 08.11.1993-29.12.2000 

 

 ARCH GARCH EGARCH IGARCH FIGARCH HYGARCH 

C(M) 0.0002 

(3.46)** 

0.0002 

(3.73)** 

0.0002 

(4.68)** 

0.0002 

(3.85)** 

0.0002 

(3.78)** 

0.0003 

(3.94)** 

C(V) 0.0916 

(62.7)** 

0.0234 

(30.3)** 

-62956.87 

(-462)** 

0.0229 

(38.2)** 

0.0194 

(24.9)** 

0.0095 

(2.11)* 

AR(1) -0.0400 

(-1.68) 

-0.0353 

(-1.42) 

-0.0317 

(-11.6)** 

-0.0393 

(-1.94) 

-0.0414 

(-1.84) 

-0.0476 

(-2.35)* 

α(1) 0.8733 

(6.86)** 

0.2811 

(16.3)** 

-0.0214 

(-6.82)** 

0.3013 

(87.3)** 

0.4078 

(55.7)** 

0.5681 

(56.6)** 

α(4) 0.4262 

(4.08)** 

     

β(1)  0.7023 

(193)** 

0.8705 

(586)** 

0.3864 0.6972 

(460)** 

0.7060 

(30.6)** 

β(2)    0.3124 

(6.03)** 

  

θ(1)   0.1844 

(12.0)** 

   

θ(2)   0.7567 

(190)** 

   

Log(α) 
HYGARCH 

     0.6014 

(65.1)** 

Student-DF 2.4349 

(52.2)** 

2.7956 

(37.4)** 

2.4273 

(696)** 

2.7439 

(41.8)** 

2.7719 

(40.4)** 

 

Asymmetry      0.0380 

(1.62) 

Tail      2.4236 

(71.2)** 

D     0.6557 

(304)** 

0.5236 

(23.8)** 

Log-Lik 7659.89 7662.11 7648.69 7666.08 7671.73 7684.4 

AIC -8.4739 -8.4785 -8.4615 -8.4829 -8.4881 -8.4999 

SBC -8.4495 -8.4603 -8.4371 -8.4647 -8.4668 -8.4725 

HQC -8.4649 -8.4718 -8.4525 -8.4762 -8.4802 -8.4898 

Shibata -8.4739 -8.4785 -8.4615 -8.4829 -8.4881 -8.4999 

ARCH 1-5 0.7642 

[0.58] 

1.4715 

[0.20] 

0.5694 

[0.72] 

1.3982 

[0.22] 

1.6457 

[0.15] 

0.4973 

[0.78] 

ARCH 1-10 

 

0.8913 

[0.54] 

0.8934 

[0.54] 

0.5297 

[0.87] 

0.8321 

[0.60] 

0.9307 

[0.50] 

0.4153 

[0.94] 

Q(10) 

 

18.881   

[0.03]* 

18.413 

[0.03]* 

17.705   

[0.04]* 

10.6442 

[0.29] 

18.605   

[0.03]* 

17.949   

[0.04]* 

Q(20) 34.649   

[0.02]* 

30.595 

[0.04]* 

30.648   

[0.04]* 

22.326 

[0.07] 

30.392   

[0.05]* 

31.782   

[0.03]* 

Q
2
(10) 8.7647  

[0.19] 

9.2648 

[0.32] 

5.3619 

[0.72] 

8.6153 

[0.28] 

10.162 

[0.25] 

4.3338 

[0.83] 

Q
2
(20) 27.185   

[0.04]* 

34.999 

[0.01]** 

24.997 

[0.12] 

25.675 

[0.08] 

23.870 

[0.15] 

14.457 

[0.70] 

Notes: See Table 1.  
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Table 5. In-sample Estimation Results for MUR/USD - 08.11.1993-29.12.2000 

 

 ARCH GARCH EGARCH IGARCH FIGARCH HYGARCH 

C(M) 0.0001 

(4.57)** 

0.0001 

(4.70)** 

0.0001 

(2.98)** 

0.0001 

(4.64)** 

0.0001 

(4.67)** 

0.0001 

(2.84)** 

C(V) 0.0736 

(40.7)** 

0.0271 

(42.7)** 

-1585.257 

(-512)** 

0.0144 

(57.3)** 

0.0378 

(52.4)** 

-0.6202 

(-1542)** 

AR(1) -0.0881 

(-10.5)** 

-0.0865 

(-3.74)** 

-0.0664 

(-3.28)** 

-0.0742 

(-3.58)** 

-0.0843 

(-3.28)** 

-0.0980 

(-21.3)** 

α(1) 1.0000 

(11.9)** 

0.2534 

(9.26)** 

0.5492 

(1.47)** 

0.1525 

(112)** 

0.2556 

(2.58)** 

0.0195 

(14.4)** 

α(10) 1.0000 

(2.12)* 

     

β(1)  0.7245 

(134)** 

0.9800 

(227)** 

0.4099 

 

0.5943 

(77.4)** 

0.4017 

(299)** 

β(2)    0.4375 

(7.27)** 

  

θ(1)   0.1332 

(0.75) 

   

θ(2)   1.2006 

(4.54)** 

   

Log(α) 
HYGARCH 

     4.8484 

(4410)** 

Student-DF 2.0751 

(220)** 

2.2976 

(77.2)** 

2.0110 

(728 )** 

2.2776 

(93.9)** 

2.2856 

(91.1)** 

 

Asymmetry      0.0138 

(1.05) 

Tail      2.0037 

(8517)** 

D     0.5928 

(6.37)** 

0.3684 

(620)** 

Log-Lik 8316.77 8216.96 8338.1 8226.46 8226.49 8388.33 

AIC -9.1945 -9.0930 -9.2249 -9.1035 -9.1024 -9.2794 

SBC -9.1520 -9.0747 -9.2006 -9.0852 -9.0811 -9.2520 

HQC -9.1789 -9.0862 -9.2159 -9.0968 -9.0946 -9.2693 

Shibata -9.1948 -9.0930 -9.2249 -9.1035 -9.1025 -9.2795 

ARCH 1-5 0.2532 

[0.94] 

0.4698 

[0.80] 

0.0898 

[0.99] 

1.7481 

[0.12] 

0.8378 

[0.52] 

0.4683 

[0.80] 

ARCH 1-10 

 

0.4104 

[0.94] 

1.4780 

[0.14] 

0.0968 

[1.00] 

1.7712 

[0.06] 

1.7319 

[0.07] 

0.6913 

[0.73] 

Q(10) 

 

10.290   

[0.33] 

10.853 

[0.29] 

12.378 

[0.19] 

13.891 

[0.13] 

11.626 

[0.23] 

10.300 

[0.33] 

Q(20) 30.877   

[0.04] 

36.921 

[0.01]** 

32.948   

[0.02]* 

25.392 

[0.12] 

36.182   

[0.01]* 

27.024 

[0.10] 

Q
2
(10) 4.4342   

[1.00] 

15.020 

[0.06] 

0.9605 

[1.00] 

8.653 

[0.98] 

18.033   

[0.02]* 

6.8431 

[0.55] 

Q
2
(20) 56.968   

[0.00]** 

77.137 

[0.00]** 

26.885 

[0.08] 

16.430 

[0.29] 

71.756 

[0.00]** 

23.864 

[0.16] 

Notes: see Table 1 
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Table 6. Mincer-Zarnowitz regression of 
2

ty , for CLP/USD, on a constant and 1-step out-of-sample 

forecasts (k=253) 

 α β R
2 

Rank 

ARCH 0.0001 (3.495)** 

[1.5782e-005] 

0.1552 (1.141) 

[0.1360] 

0.0246 2 

GARCH 0.00005 (3.776)** 

[1.2580e-005] 

0.1003 (1.401) 

[0.0716] 

0.0115 6 

EGARCH -0.0002 (-1.427) 

[0.00010417] 

0.0645 (1.754) 

[0.0367] 

0.0273 1 

IGARCH 0.00005 (3.774)** 

[1.2580e-005] 

0.3474 (1.354) 

[0.257] 

0.0122 5 

FIGARCH 0.00005 (2.914)** 

[1.8274e-005] 

0.2820 (1.181) 

[0.2387] 

0.0148 4 

HYGARCH 0.00005 (2.697)** 

[1.8699e-005] 

0.0866 (1.194) 

[0.0725] 

0.0161 3 

Notes: Numbers in brackets and parenthesis are White (1980) Heteroskedastic Consistent S.E. and t-

values respectively. * Significant at 5%; ** significant at 1%. 

 

 

Table 7. Mincer-Zarnowitz regression of 
2

ty , for CYP/USD, on a constant and 1-step out-of-sample 

forecasts (k=253) 

 α β R
2 

Rank 

ARCH 0.0001 (3.005)** 

[2.1973e-005] 

-0.2027 (-0.7455) 

[0.2719] 

0.0016 5 

GARCH 0.0001 (1.124) 

[7.7770e-005] 

-0.4654 (-0.4327) 

[1.0754] 

0.0028 3 

EGARCH 0.00001 (0.1243) 

[5.9498e-005] 

0.0008 (1.043) 

[0.0008] 

0.0003 6 

IGARCH 0.0001 (1.142) 

[7.6183e-005] 

-0.4752 (-0.4370) 

[1.0875] 

0.0028 2 

FIGARCH 0.0001 (1.164) 

[7.3808e-005] 

-0.4605 (-0.4360) 

[1.0564] 

0.0027 4 

HYGARCH 0.0001 (1.350) 

[6.4472e-005] 

-0.3957 (-0.5338) 

[0.7414] 

0.0031 1 

Notes: see Table 6 
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Table 8. Mincer-Zarnowitz regression of 
2

ty , for BWP/USD, on a constant and 1-step out-of-sample 

forecasts (k=253) 

 α Β R
2 

Rank 

ARCH 0.00004 (1.888) 

[2.2252e-005] 

-0.0132 (-0.9897) 

[0.0133] 

0.00021 6 

GARCH 0.00004 (1.875) 

[2.2828e-005] 

-0.0465 (-1.095) 

[0.0425] 

0.00033 3 

EGARCH 0.0001 (1.179) 

[6.5229e-005] 

-0.0222 (-0.8012) 

[0.0277] 

0.0022 1 

IGARCH 0.00004 (1.869) 

[2.3142e-005] 

-0.0552 (-1.099) 

[0.0502] 

0.0004 2 

FIGARCH 0.00004 (1.873) 

[2.2795e-005] 

-0.0433 (-0.9833) 

[0.0441] 

0.00029 5 

HYGARCH 0.00004 (1.869) 

[2.2828e-005] 

-0.0197 (-0.9484) 

[0.0207] 

0.00031 4 

Notes: see Table 6.  

 

 

Table 9. Mincer-Zarnowitz regression of 2

ty , for MUR/USD, on a constant and 1-step 

out-of-sample forecasts (k=253) 

 α β R
2 

Rank 

ARCH 0.00001 (3.751)** 

[2.1998e-006] 

0.0456 (2.634)** 

[0.0173] 

0.0260 6 

GARCH 0.00001 (1.974)** 

[3.1460e-006] 

0.4853 (2.187)* 

[0.222] 

0.0349 5 

EGARCH 0.000005 (2.358)* 

[2.2784e-006] 

0.0113 (3.350)** 

[0.0034] 

0.0503 2 

IGARCH 0.000004 (1.538) 

[2.7572e-006] 

0.5431 (3.248)** 

[0.1672] 

0.0420 4 

FIGARCH 0.000005 (1.659) 

[2.8549e-006] 

0.5392 (2.849)** 

[0.1893] 

0.0470 3 

HYGARCH 0.000005 (1.873) 

[2.6985e-006] 

0.0028 (2.868)** 

[0.0010] 

0.0549 1 

Notes: See Table 6.  
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Table 10. 1-step Out-of-Sample Forecast Evaluation Developing Countries (k=253) 

  MSFE 

  CLP/USD Rank CYP/USD Rank BWP/USD Rank MUR/USD Rank 

ARCH  0.2500 3 0.0452 5 0.2553 5 0.0188 4 

GARCH  0.3100 4 0.0434 3 0.1317 2 0.0008 3 

EGARCH  12.2100 6 4031 6 3138 6 0.7656 5 

IGARCH  0.1500 1 0.0434 1 0.1307 1 0.0008 2 

FIGARCH  0.1600 2 0.0434 2 0.1323 3 0.0008 1 

HYGARCH  0.4300 5 0.0440 4 0.2082 4 14.0900 6 

Notes: Figures of MSFE criterion must be multiplied by 
610−
. 
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Table 11. SPA test results evaluated by MSFE – Developing Countries 

CLP/USD 

 Models Sample Loss t-statistics p-value 

Benchmark IGARCH 0.16204 - - 

Most Significant FIGARCH 0.17509 -1.0249 0.8340 

Best model FIGARCH 0.17509 -1.0249 0.8340 

Model 25% ARCH 0.29822 -1.5164 0.9110 

Median model 50% GARCH 0.34013 -2.8132 0.9960 

Model 75% HYGARCH 0.48903 -1.6343 0.9250 

Worst EGARCH 1.23030 -14.296 1.0000 

SPA Lower Consistent Upper 

p-values 0.5600 0.8750 0.9450 

CYP/USD 

 Models Sample Loss t-statistics p-value 

Benchmark IGARCH 0.04279 - - 

Most Significant FIGARCH 0.04280 -0.1998 0.5780 

Best model FIGARCH 0.04280 -0.1998 0.5780 

Model 25% GARCH 0.04283 -1.1704 0.9090 

Median model 50% HYGARCH 0.04352 -2.0523 0.9810 

Model 75% ARCH 0.04436 -2.0752 0.9770 

Worst EGARCH 4031.5 -208.1589 1.0000 

SPA Lower Consistent Upper 

p-values 0.6040 0.8350 0.9880 

BWP/USD 

 Models Sample Loss t-statistics p-value 

Benchmark IGARCH 0.13450 - - 

Most Significant FIGARCH 0.13620 -0.3481 0.6750 

Best model GARCH 0.13558 -0.4241 0.7080 

Model 25% FIGARCH 0.13620 -0.3481 0.6750 

Median model 50% HYGARCH 0.21265 -1.1271 0.9000 

Model 75% ARCH 0.26014 -1.3152 0.8930 

Worst EGARCH 3.147 -6.4579 1.0000 

SPA Lower Consistent Upper 

p-values 0.7650 0.9150 0.9170 

MUR/USD 

 Models Sample Loss t-statistics p-value 

Benchmark IGARCH 0.00072 - - 

Most Significant FIGARCH 0.00073 -0.3701 0.6480 

Best model FIGARCH 0.00073 -0.3701 0.6480 

Model 25% GARCH 0.00073 -0.5517 0.7120 

Median model 50% ARCH 0.01851 -5.9612 1.0000 

Model 75% EGARCH 0.76534 -6.3775 1.0000 

Worst HYGARCH 14.084 -6.1866 1.0000 

SPA Lower Consistent Upper 

p-values 0.5560 0.7400 0.8950 

Notes: Figures of Sample Loss must be multiplied by 
610−
. 
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Table 12. Models ranked by SPA test 

 Developing countries 

Rank CLP/USD CYP/USD BWP/USD MUR/USD Rank 

1 IGARCH IGARCH IGARCH FIGARCH 1 

2 FIGARCH FIGARCH FIGARCH IGARCH 2 

3 ARCH GARCH GARCH GARCH 3 

4 GARCH HYGARCH HYGARCH ARCH 4 

5 HYGARCH ARCH ARCH EGARCH 5 

6 EGARCH EGARCH EGARCH HYGARCH 6 

 Industrialised countries 

Rank CHF/USD JPY/USD GBP/USD NOK/USD Rank 

1 FIGARCH FIGARCH FIGARCH FIGARCH 1 

2 IGARCH HYGARCH HYGARCH GARCH 2 

3 HYGARCH IGARCH IGARCH IGARCH 3 

4 GARCH GARCH GARCH HYGARCH 4 

5 ARCH ARCH ARCH ARCH 5 

6 EGARCH EGARCH EGARCH EGARCH 6 

 

 

Table 13. Forecast encompassing test: FIGARCH and IGARCH 

 Industrialised countries  Developing countries 

 FIGARCH IGARCH  IGARCH FIGARCH 

CHF/USD -0.30 (-0.34) 1.29 (2.06)* CLP/USD 0.64 (2.01)* 0.31 (0.98) 

JPY/USD 1.12 (3.12)** 0.09 (0.54) CYP/USD 0.57 (1.99)* 0.41 (1.45) 

GBP/USD 0.88 (2.26)* 0.10 (0.65) BWP/USD 0.89 (3.34)** 0.08 (0.73) 

NOK/USD 0.67 (1.99)* 0.25 (1.43) MUR/USD 0.16 (0.32) 0.84 (2.49)* 

Notes: Numbers in parenthesis are t-values. * Significant at 5%; ** Significant at 1%. 
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