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Abstract 

 

In this study, we test the hypothesis that psychological barriers exist in 5 European 

Equity Market indices [ATX, CAC, DAX, FTSE, SMI]. We employ both a traditional 

methodology that assumes a uniform distribution of M-Values and a modified approach 

that accounts for the fact that the digits of stock prices may be distributed in accordance 

with Benford’s law. In addition, we test the validity of the various assumptions employed 

in these tests using a Monte Carlo Simulation and Kuiper’s Modified Kolmogorov-Smirnov 

Goodness of Fit Test. We find evidence for barriers in 1 index [SMI] at the 1000 level 

under the assumption of uniformity but no significant evidence of barriers at the 100 level 

or at the 1000 level in the remaining indices. We also find evidence that substantiates the 

criticism of the use of the uniformity assumption for tests at the 1000 level in favour of a 

distribution consistent with Benford’s Law. However, we do not reach a different 

conclusion on the presence of psychological barriers when tests are performed without the 

implicit use of that uniformity assumption. In addition, we find possible evidence of price 

clustering around round numbers at the 1000 level in 2 indices [CAC, DAX] even after 

adjusting for the expected concentration within the region due to Benford-specific effects. 

 

 

Keywords: Benford’s Law; psychological barriers in stock prices; significance of round 
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1.  Introduction 
Since the creation of the first stock exchange and the subsequent trading of stocks became widespread, 

the movement of stock prices has been of interest to a vast group of people. The region around round 

numbers, in particular, has long captivated the interest of market commentators with conventional 

wisdom asserting that round numbers act as regions of natural support and resistance, or function as 

“psychological barriers” as it has come to be known. 
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Such a bold assertion can hardly remain without academic interest and a raft of papers have 

emerged in attempts to assess the validity of such claims. As with most tests on controversial issues, 

the empirical evidence is mixed. One reason for this phenomenon is the lack of agreement on the 

appropriate methodology to use in testing for the presence of barriers. The early papers on the topic of 

psychological barriers employed tests based on the assumption that the digits of stock prices should be 

uniformly distributed. This assumption is fairly intuitive and can be explained by appealing to 

examples that illustrate the idea that a stock price is an arbitrarily scaled random figure that by itself 

should have no attributes that would determine its relative frequency of occurrence. For example, there 

should be no reason for a stock price with ending digits of 32 to occur more frequently than, for 

example, a stock price with ending digits of 53. Over a long period of time, what we should expect to 

see is, on average, a stock index closing with ending digits of 32 as frequently as it does with ending 

digits of 53. This same line of reasoning is then applied to regions around round numbers to assert that 

in the absence of barriers round numbers should occur with similar frequency to numbers in other 

regions and the digits of stock prices should hence be uniformly distributed. Tests were then conducted 

around this assumption of uniformity to test for evidence of non-uniformity that could be attributed to 

deviations in the region of round numbers and this was then use to support the hypothesis that 

psychological barriers exist at round numbers. Based on such a methodology, a number of papers in the 

1990s found evidence of barriers around round numbers in a number of major equity markets around 

the world. 

However, there exists another group of academics that criticises the uniformity assumption 

based on a much less intuitive mathematical concept known as Benford’s Law. Benford’s Law asserts 

that the distribution of digits in natural phenomenon tends to follow a specific distribution due to a 

number of reasons and the predictions from this concept imply that the distribution of digits in stock 

prices should not be uniformly distributed. Modified tests have been proposed to account for this effect 

and the conclusion from most studies that take this into account has been that barriers do not exist in 

round numbers. 

In this study, we attempt to contribute to the debate on the significance of round numbers by 

considering both approaches over a recent time period and a number of significant stock indices within 

the European equity markets. Through the series of tests that we employ, we critically examine the 

significance of round numbers as potential regions of resistance in 5 European equity indices based on 

different assumptions for the distribution of M-values. Beyond presenting the result and implications 

from tests based on different assumptions, we also examine the empirical validity of the underlying 

assumptions of these tests by modelling and testing their fit to the available data to provide a more 

holistic approach to the assessment of the results obtained. 

 

 

2.  Background 
2.1. The Significance of Round Numbers 

When we refer to “the significance of round numbers”, we are simply referring to the regions around 

the 00 region of a stock index, hence at the 100, 200, 300, 400,.., 1000, 2000, etc level and whether 

stock prices tend to move in a different manner when it enters the proximity of these regions. The 

importance of round numbers as a natural region of support and resistance has its roots in Technical 

Analysis. Technical Analysis of Stock Trends by Edwards, Maggee and Basetti presents the following 

analysis on the significance of round numbers: 

“There are certain other levels that may, at times, evidently produce considerable Resistance or 

Support without any reference to a previous “vested interest.” We have in mind the “round” Figures 

20, 30, 50, 75, 100, etc. In setting a goal for taking profits when we buy a stock, it is natural for us to 

think in terms of such round prices… In fact, any time an issue gets out into new all-time high ground, 

where there is nothing in its chart history to indicate otherwise, it is a fairly safe bet that Resistance 

will appear at the round figures.” 
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A region of support is a level or area on the chart under the market where buying interest is 

sufficiently strong to overcome selling pressure and a region of resistance is a level or area on the chart 

over the market where selling interest is sufficiently strong to overcome buying pressure [Murphy, 

1999]. If psychological barriers around round numbers exist, then what we would expect is evidence to 

show that price levels around round numbers tend to provide support in a downtrend and resistance in 

an uptrend. 

 

2.2. Proposed Explanations for the Significance of Round Numbers 

There are a range of plausible reasons that have been suggested for the potential existence of 

psychological barriers around round numbers. Explanations form technical analysts often rest on the 

assertion that people use round numbers as natural points to take profits or cut losses. This common 

anchor point is then used as a part of the investment decision making process of many individuals 

which then manifests itself as overhanging supply or demand around those regions that cause the 

phenomenon of support and resistance around these points to be observed. 

Beyond simple thought experiments, other explanations have also been offered that often 

appeal to research from behavioural finance or business theory. Some concepts often quoted as 

possible reasons include the importance of odd pricing [Schindler and Kirby, 1997] coordination 

within a limited price set [Harris, 1991] and bounded rationality [Sonnemans, 2006]. However, while 

all these reasons and thought experiments provide explanations of why psychological barriers may 

exists, none of them provide a reason for why psychological barriers must necessarily be present, and 

the presence or absence of psychological barriers in European equity markets remains fundamentally 

an empirical and not a theoretical question. 

 

2.3. Objectives and Significance of Study 

There are 3 main objectives of this research paper. Firstly, we aim to present empirical evidence from 

tests on the significance of round numbers in the stock indices of 5 major European markets using the 

traditional approach to the testing of barriers based on the methodology from Donaldson and Kim 

(1993). This study provides an updated investigation over a recent time period as well as results for 

some previously untested European markets. 

Next, we move to investigate the key criticism of the traditional approach of testing for barriers, 

that of the uniformity assumption. We evaluate the robustness of our earlier results by comparison with 

a Monte Carlo simulation with results drawn from cyclical permutations of returns as presented in De 

Ceuster et al (1997). By construction, this simulation would exhibit no psychological barriers and this 

approach is hence often regarded by critics of the uniformity assumption as a more appropriate 

approach to test for the presence of barriers that would not lead to the erroneous conclusion of the 

presence of barriers due only to an expected distribution of digits in a manner consistent with 

Benford’s Law. We present the empirical results from this test to help provide a more complete picture 

of the significance of round numbers in these European markets. 

Finally, we extend the approach adopted by present studies in this area through a direct 

investigation of the empirical validity of criticisms based on Benford’s Law. We test, by means of 

Kuiper’s modified Kolmogorov-Smirnov Goodness-of-Fit Test the fit of a distribution of M-values 

based on Benford’s law to the distribution of M-values found in the 5 European stock indices. This 

enables us to examine the appropriateness of criticisms of the uniformity assumption based on 

Benford’s law and thus provide a more comprehensive picture of the results obtained from the various 

tests. 

 

2.4. M-Values 

In empirical studies on psychological barriers, the analysis is often restricted to 2 digits to isolate 

effects at the 1000 or 100 level. These 2 digit values are known as M-Values, with M
1000

 denoting the 2 

digits for tests of barriers at the 1000 level and M
100

 denoting the 2 digits for tests of barriers at the 100 
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level. To illustrate the calculation of M-values with an example, if a stock closes at 2430.5, then 

M
1000

=43 and M
100

=30. If psychological barriers exist at the 100 level, what we would expect to see is 

the index closing less frequently at the 100, 200, 300, .., 1100, 2100, 3200, etc. level and hence the 

M
100

 value of 00 and the M
100

 values in that immediate region occurring less frequently. 

Mathematically, M-values can be expressed with the following equations: 
100 [ ] mod 100.t tM P=  

And 
10(log ) 11000 [100 10 ] mod 100.tP mod

tM = ×  

Where [Pt] is the integer part of Pt and mod 100 denotes reduction modulo 100. 

 

2.5. Benford’s Law 

The law of anomalous numbers (now more commonly known as Benford’s Law) states that for 

commonly observed empirical data, regularities should occur in the First Significant Digits (FSDs) of 

the data. Benford (1938) proposes that for the FSDs {1,…, 9}, the frequency observed of the each digit 

D1 ∈ {1, …, 9} should be approximately 10

1

1
log (1 )

D
+ . For example, the frequency at which we should 

observe a FSD of 1 = 
10

1
log (1 )

1
+  = 0.301. Stated in a probabilistic manner, Benford’s Law dictates 

that: 

1 10

1
( ) log [1 ] ;  k 1, , 9P D k

k

⎛ ⎞= = + =⎜ ⎟
⎝ ⎠

…  

This result has been established via combinatorial arguments [Cohen, 1976] as well as other 

statistical derivations [Hill, 1995]. Arguments for the use of Benford’s Law have been put forth in 

areas such as fraud detection [Nigrini, 1996] as well as in tests of auction prices [Giles, 2007] and other 

areas of statistical analysis [Judge and Schechter, 2009]. 

 

2.5.1. Implications for Tests on the Significance of Round Numbers 

The conventional approach to tests on the significance of round numbers in stock prices relies on the 

critical assumption of uniformity in the distribution of M-values. De Ceuster et al (1997) proposed the 

first criticism of this assumption based on Benford’s Law and showed using a test based on cyclical 

permutations of returns that there was no evidence for psychological barriers in the DJIA as had been 

previously suggested by Donaldson and Kim (1993). Intuitively, if Benford’s Law holds, M-values 

cannot be uniformly distributed as we would expect to see 1s occurring with a different frequency than 

5s, for example, and tests based on a uniform distribution of M-values are likely to recover significant 

differences due to the distribution of frequencies according to a manner consistent with Benford’s Law 

which would be wrongly attributed to the presence of psychological barriers. 

 

2.5.2. Application of Benford’s Law to M-Values 

The general form of Benford’s Law gives a realistic model for the distribution of the digits of stock 

indices. Although Benford’s Law is stated for FSDs, the joint distribution for second and higher 

significant digits is invariant to scale [Pinkham, 1961] and can be stated in the following manner: 
1

1 1 1 0 1
( , , ) lo g [1 ( 1 0 ) ],

k k i

k k ii
P D d D d d

−
−

=
= = = + ×∑…  

For di ∈ {1,2, …, 9} and dj ∈ {0,1,2, …, 9}, j>1. 

De Ceuster et al (1997) derived the limit distribution of M-values, which we state here and have 

applied in parts of this paper: 
29

1000

10 2
1

10 1
lim ( ) log ( )

10
t

t
i

i k
P M k

i k→∞
=

× + +
= =

× +∑  

And 
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1 2 1

1 19 9 9
100 1

10 1 1
1 0 0

1

10 1 1
lim ( ) lim log ( )

10010n

n n r

rr
t n n rt n

i i i rr

i k
P M k

i k−

− − +
=

− − +→∞ →∞
= = =

=

× + +
= = =

× +
∑∑ ∑ ∑
∑

…  

Hence, based on results derived from Benford’s Law, we see that the expected frequencies are 

non-uniform for M
1000

 but uniform for M
100

 values, consistent with the intuition that the n-th significant 

digit in an arbitrarily scaled random number is closer to being uniformly distributed when n tends to be 

large. 

 

 

3.  Methodology 
3.1. Tests on the Distribution of M-Values 

The first test evaluates evidence for the significance of certain regions of numbers by testing the 

distribution of M-Values using a Chi-Squared-Goodness-of-Fit test. In the absence of barriers, the 

traditional assumption is that we can expect M-Values to approximately follow a uniform distribution 

over a long time period. The X
2
 test is hence conducted to evaluate the fit of the M-values to a uniform 

distribution. 

The M-values are aggregated into 10 disjunct categories centred on the 00 round number 

region, i.e. 96-05, 06-15, … , 76-85, 86-95 and the frequency of occurrence of M-values for each 

category is recorded. The expected number of M-values in each category if it followed a uniform 

distribution is calculated as follows: 

10
i

N
E =  

Where Ei is the expected number of observations in category I where I = 1, 2, …, 10 and N 

represents the total number of observed M-Values. 

A X
2
 test with the following hypotheses is then conducted: 

H0: The M-Values follow a uniform distribution 

H1: The M-Values do not follow a uniform distribution 

The X
2
 statistic is calculated as follows: 

2
2

1

( )I
i i

i i

O E
X

E=

−
= ∑  

The number of degrees of freedom for each test is 9. The results of the tests are reported in 

Table 2. 

 

3.2. Tests on the Behaviour of Prices Around Round Numbers 

While the Chi-Squared-Goodness-of-Fit test reveals some information on the distribution of M-values 

and has the potential to provide evidence for the possible presence of barriers, proof of a non-uniform 

distribution of M-values is, at best, a necessary but not sufficient result for the proof of the presence of 

barriers around round numbers. One primary limitation of the uniformity test is its inability to isolate 

which regions differ as well as the lack of information on directionality which makes it impossible to 

conclude if the M-values exhibit evidence of price clustering or price barriers and whether that occurs 

around the round number region. In order to obtain information on directionality, we conduct tests 

using 2 regression models, the Barrier Proximity Test from Donaldson and Kim (1993) and the Barrier 

Hump Test based on a model of price movements as proposed by Bertola and Caballero (1992). 

 

3.2.1. Barrier Proximity Test 

The barrier proximity test evaluates the presence of barriers through the use of a simple ordinary least 

squares regression. A vector F(M) is created with a length of 100 which registers the relative frequency 

of M-Values occurring in each region. If the M-Values are uniformly distributed, then we would 

expect each M-value to have a relative frequency of 1. We adopt the specification used in Koedijk and 

Stork (1997) as it yields results that are more interpretable with non-overlapping categories than the 

specification employed in Donaldson and Kim (1993). 
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The regression is then run with the following specification: 

1 1 2 2 3 3( )F M C β D β D β D ε= + + + +  

Where C represents a constant term and ε the error term and Di represents dummy variables, 

where the dummy variables are defined as follows: 

D1 = 1 for M = {98, …, 02} and D1 = 0 for M = {03, ..., 97} 

D2= 1 for M = {92, …, 97}, {03, …, 08} and D2 = 0 for M = {98, …, 02}, {09, …, 91} 

D3 = 1 for M = {85, ..., 91}, {09, …, 15} and D3 = 0 for M = {92, ..., 08}, {16, …, 84} 

Where {a,..b} represents the set of values inclusive of and between a and b. For example, {98, 

…, 02} represents the set of values {98, 99, 00, 01, 02}. 

The results of the Barrier Proximity Test are presented in Tables 3 and 4. If there are no 

barriers, we would expect a significant constant value at 1 and all the β values to be close to zero and 

not statistically significant. A significant and negative β value would represent evidence for price 

barriers in that category (under the assumption that prices are uniformly distributed) while a positive β 

value would suggest evidence of price clustering within that region. 

 

3.2.2. Barrier Hump Test 

The barrier hump test is based on the work of Bertolla and Caballero (1992), who look at trading in the 

foreign exchange market and consider the case of a perforate barrier zone in which a support level or 

resistance can be crossed but only with some difficulty. Once such a barrier is crossed, a realignment 

occurs during which time prices move by an unusually large amount and a new barrier zone is 

established that contains that new price level. The authors prove that given the sudden change in prices 

associated with the crossing of the barrier, the absence of unexploited excess profit opportunities 

implies that the amount of time the price spends close to barriers must be less than the amount of time 

it spends away from the edges of the zone. Thus, the ergodic distribution of price realizations within a 

perforate barrier zone should be hump-shaped, with less frequent price realizations close to the edges 

of the zone and more frequent realizations in the centre of the zone. This is what the barrier hump test 

assumes in its model of price movements and the presence of barriers is tested by running a regression 

against a quadratic specification as defined by the following equation that has been adapted from 

Donaldson and Kim (1993): 
2( )F M α γM δM ε= + + +  

In the absence of barriers, we would expect δ to be zero and in the presence of barriers we 

would expect δ to be negative. The results of the barrier hump test are reported in Tables 5 and 6. 

 

3.3. Cyclical Permutation of Returns 

We use a Monte Carlo simulation to generate a price series that, by construction, would contain no 

price barriers. The Monte Carlo set-up consists of simulating returns tR
~

, t = 2, …, T, then computing 

the stock recursively from the following equations: 

1 1P P=�  

1 exp( ), 2,  , Tt t tP P R t−= =� …  

Let R = (R2, … , RT) be the vector of actual returns over the period. Returns are calculated using 

the following equation: 

-1

ln( ),  t 2, , Tt
t

t

P
R

P
= = …  

Returns are then simulated using cyclical permutations of R. A cyclical permutation of R is any 

(Rt, Rt+1, … , RT, R2, R3, …, Rt-1) and we conduct simulations for all possible cyclical permutations of 

R. The advantage of using a simulation based on cyclical permutations is that it allows us to simulate 

price paths with the same starting and ending value. Next, it allows us to consider calendar effects and 

preserves high volatility clusters and other anomalies in the observed stock index and hence provides 
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the ‘closest’ approximation to the actual data generating process [De Ceuster et al, 1997]. The 

simulated data series is employed in tests in section 3.4.1 and 3.5. 

 

3.4. Criticisms of the Uniformity Assumption 

In this section, we perform 2 types of tests, we use a Chi-Squared Goodness of Fit Test based on the 

results from the Monte Carlo Simulation to evaluate the validity of the uniformity assumption and we 

use Kuiper’s modified Kolmogorov-Smirnov test to test the fit of Benford’s Law as an alternative 

hypothesis for the distribution of M-values. 

 

3.4.1. Uniformity Tests 

For each price obtained from the simulation we calculate the corresponding M
1000

 and M
100

 value and 

each run thus gives an empirical frequency distribution of M-values. In this section we test the 

assumption of uniformity of the simulated runs using the Chi-Square-Goodness-of-Fit-Test as specified 

in section 3.1. This allows us to test the uniformity assumption on a simulated price series that by 

construction does not contain price barriers at round numbers. If the M-values from the simulated price 

series consistently show deviations from a uniform distribution as well, we can conclude that the 

uniformity assumption for the observed price series is not valid and conclusions of the presence of 

price barriers based on evidence of deviations from a uniform distribution are hence invalid as well. 

Tables 8 and 9 report the results of these uniformity tests. 

 

3.4.2. Kuiper’s modified Kolmogorov-Smirnov Goodness of Fit Test [KST] 

In this section, we test whether the observed data exhibits characteristics consistent with the 

predictions from Benford’s Law. Stated formally, we investigate whether the empirical data has 

characteristics consistent with the limit distributions for the M-values as stated in section 2.4.2. The 

Chi-Squared-Goodness-of-Fit test is not employed for this investigation as it has been shown to exhibit 

low statistical power in tests for Benford’s Law when used with small samples. The KST and other 

common non-parametric tests such as the Cramér-von Mises test have also been deemed to be 

unsuitable for this investigation due to the “circular” nature of M-values [Giles (2007)]. What we mean 

when we refer to the “circular” nature of M-values is the fact that 99, for example, is very close to and 

not very far from 00 as would be the case for a unidirectional linear data set. We employ the KST 

because it recognizes the ordinality and circularity of the data and does not depend on the choice of 

origin. One additional feature of this test that is particularly useful is the fact that the null distribution 

of the test statistic is invariant to the hypothesised distribution, for all N. 

The KST is conducted with the following hypotheses: 

H0: The M-values are distributed in a manner consistent with the limit values derived from 

Benford’s Law 

H1: The M-values are not distributed in a manner consistent with the limit values derived from 

Benford’s Law 

The statistic for this test, the VN statistic, is calculated using the following equation: 

VN=Maxx [Fe (x) – Fb(x)] + Maxx[Fb(x)–Fe(x)] 

Where Fe(x) is the empirical CDF and Fb(x) is the CDF based on a distribution that follows 

Benford’s Law. 

The critical values for the null distribution of the transformed statistic are then calculated as 

follows: 
0.5 0.5( 0.155 0.24 )*

N NV V N N −= + +  

Studies that employ the use of the KST normally use the critical values tabulated by Stephens 

(1970) in evaluating the results of the test. However, the results of Stephens (1970) have been shown to 

be too conservative once Benford-specific values are derived and hence we employ the values 

presented in Morrow (2010) instead. These critical values have been derived from an application of the 

central limit theorem to a multivariate Bernoulli variable that corresponds to a random variable that 
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exactly satisfies Benford’s Law and thus yields critical values that have been shown to be more 

appropriate for tests of Benford’s Law than those presented in Stephens (1970).The results of the KST 

are presented in Table 9. 

 

3.5. Testing the Presence of Psychological Barriers without the Uniformity Assumption 

We follow the methodology proposed by De Ceuster et al (1997) for the testing of barriers in a way 

that does not rely on an assumption of a uniform distribution of M-values. This is done by comparing 

the observed frequency of M-values around regions of potential psychological barriers with the 

corresponding frequency in the simulated stock indices from the Monte Carlo simulation. 

Let ω be a set of M-values representing the region around a round number. We consider the 

following regions for a set-up similar to that used in section 3.2.1: 

ω={00}, {98, …, 02}, {96, …, 05}, {90, … , 09} 

For a given choice of ω, the stock index Pt is considered to be in the region of a barrier if Mt ∈ 

ω, i.e. if Iω (Mt)=1, where Iω is the indicator function of ω. Let τ denote the relative amount of time 

spent by an index in the neighbourhood of a psychological barrier as indicated by its relative 

frequency, then: 

1

( )T
ω t

t

I Mτ
T=

=∑  

Tables 9 and 10 report the value of τ for each ω and each type of M-value. A small τ lends 

support to the psychological barrier hypothesis for each ω selected, and we formally test the hypothesis 

by comparing the percentage of τ calculated for the simulated stock indices that are smaller than or 

equal to the corresponding τ statistic calculated from the observed prices of each stock index. These 

percentages that are reported in Tables 10 and 11 are essentially left tail percentages and can be 

interpreted in an analogous way to p-values from normal statistical tests. This one-sided test is similar 

to the type of test employed in section 3.2.1 but does not use uniformity as a benchmark. 

 

 

4.  Results and Discussion 
4.1. Data 

In this study, we examine a 10 year period from January 2001 to December 2011 for 5 European Stock 

Indices [FTSE, CAC, DAX, ATX, SMI] and obtained data on the daily closing prices of each index. 

The presence of psychological barriers is more likely to manifest itself in indices that are closely 

watched by participants and that are actively traded on a daily basis, hence these indices were chosen 

based on their importance in the European markets. In addition, as we are investigating the presence of 

barriers at the 100 and 1000 level, only indices with a sufficiently large range were considered in our 

shortlist and a summary of the data for these 5 indices can be found in Table 1. 

 

4.1.1. Summary of Markets Investigated 

 
Table 1: Key Statistics of Markets Investigated 

 
Symbol Market Low High 

ATX Austria 1003.72 4981.87 

CAC France 2403.04 6168.15 

DAX Germany 2202.96 8105.69 

FTSE United Kingdom 3287.00 6732.40 

SMI Switzerland 3675.40 9531.50 
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4.1.2. Frequency Distribution of M-Values 

The following figures illustrate the differences observed between the actual and theoretical 

distributions (according to Benford’s Law) of M100 and M1000 values for the 5 markets: 
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4.2. Test on the Distribution of M-Values 

 
Table 2: X2-Statistics for M100 and M1000 values 

 

Symbol 2X -Statistic
1000M  

2X -Statistic 
1000M  

FTSE 8.774658 90.56731*** 

CAC 7.625222 80.98224*** 

DAX 4.807487 78.58289*** 

ATX 22.89358*** 106.3138*** 

SMI 6.668103 76.48132*** 

*** Represents results that are significant at the 99% confidence level 

 

Table 2 reports the results from the Chi-Squared-Goodness-of-Fit-Test. From this test, we see 

strong evidence to reject the hypothesis that M-values follow a uniform in the M
1000

 values of all the 

indices and in the M
100

 values of the ATX index. There is not sufficient evidence to reject the 

hypothesis that the M-values follow a uniform distribution in the M
100

 values of the FTSE, CAC, DAX 

and SMI index. 
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4.3. Tests on the Behaviour of Prices Around Round Numbers 

4.3.1. Barrier Proximity Test 

 
Table 3: Regression of M100 Frequencies on M100 Value Dummies 

 
1000M  ATX CAC DAX FTSE SMI 

Variables Freq100a Freq100 Freq100 Freq100 Freq100 

1

bD  0.1118 -0.0961 -0.0712 -0.0548 0.0036 

 (0.0989) (0.0791) (0.0824) (0.0889) (0.0763) 

2

cD  0.0488 -0.0138 0.0756 0.0742 -0.0173 

 (0.0668) (0.0534) (0.0556) (0.0601) (0.0515) 

3

dD  0.0484 0.0070 0.0251 0.0224 -0.0015 

 (0.0626) (0.0500) (0.0521) (0.0563) (0.0483) 

Constant 0.9818*** 1.0055*** 0.9910*** 0.9907*** 1.002*** 

 (0.0257) (0.0205) (0.0214) (0.0231) (0.0198) 

Robust standard errors in parentheses: *** p<0.01, ** p<0.05, * p<0.1 

a – Freq100 is the relative frequency of M100 values in the index. 

b – D1 is the dummy for M100 values between 98 and 2. 

c – D2 is the dummy for M100 values between 92-97 and 3-8. 

d – D3 is the dummy for M100 values between 85-91 and 9-15. 

 
Table 4: Regression of M1000 frequencies on M1000 Value Dummies 

 
1000M  ATX CAC DAX FTSE SMI 

Variables Freq1000a Freq1000 Freq1000 Freq1000 Freq1000 

       

1

bD  -0.0403 0.2665** 0.4387*** 0.1506 -0.2760** 

 (0.1454) (0.1081) (0.0931) (0.1229) (0.1090) 

2

cD  -0.1431 0.1664** 0.2663*** 0.0162 -0.3012*** 

 (0.0982) (0.0730) (0.0628) (0.0830) (0.0736) 

3

dD  0.2291** 0.0797 0.2146 0.0770 -0.1677** 

 (0.0921) (0.0684) (0.0589) (0.0778) (0.0690) 

Constant 0.9871*** 0.9555*** 0.9161*** 0.9797*** 1.0734*** 

 (0.0378) (0.0281) (0.0242) (0.0319) (0.02833) 

Robust standard errors in parentheses: *** p<0.01, ** p<0.05, * p<0.1 

a – Freq100 is the relative frequency of M100 values in the index. 

b – D1 is the dummy for M100 values between 98 and 2. 

c – D2 is the dummy for M100 values between 92-97 and 3-8. 

d – D3 is the dummy for M100 values between 85-91 and 9-15. 

 

From the Barrier Proximity Test, we see evidence for the presence of barriers at the 1000 level 

in the SMI and possible evidence of price clustering around round numbers at the 1000 level in the 

CAC and DAX indices. 

 

4.3.2. Barrier Hump Test 

 
Table 5: Regression of M100 Frequencies on M100 and squared M100 values 
 

100M  ATX CAC DAX FTSE SMI 

Variables Freq100a Freq100 Freq100 Freq100 Freq100 

bM  -0.00360 -0.00245 -0.00124 0.00311 0.00469** 

 (0.00331) (0.00226) (0.00216) (0.00280) (0.00188) 
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Table 5: Regression of M100 Frequencies on M100 and squared M100 values - continued 

 
2

cM  2.53e-05 2.63e-05 6.44e-06 -2.79e-05 -5.57e-05*** 

 (3.14e-05) (2.23e-05) (2.08e-05) (2.62e-05) (1.76e-05) 

Constant 1.105*** 1.037*** 1.043*** 0.940*** 0.949*** 

 (0.0758) (0.0462) (0.0498) (0.0594) (0.0407) 

Robust standard errors in parentheses: *** p<0.01, ** p<0.05, * p<0.1 

a – Freq100 is the relative frequency of M100 values in the index. 

b – M is the variable containing M100 values. 

c – M2 is the variable that contains the squared M100 values. 

 
Table 6: Regression of M1000 Frequencies on M1000 and squared M1000 values 

 
1000M  ATX CAC DAX FTSE SMI 

Variables Freq1000a Freq1000 Freq1000 Freq1000 Freq1000 

bM  0.00905 -0.00204 0.00133 0.00509 0.0177*** 

 (0.00649) (0.00504) (0.00362) (0.00513) (0.00467) 
2

cM  -7.74e-05 2.77e-05 -1.91e-05 -3.11e-05 -0.000161*** 

 (6.16e-05) (4.69e-05) (3.15e-05) (7.43e-05) (4.60e-05) 

Constant 0.839*** 1.002*** 1.006*** 0.868*** 0.574*** 

 (0.0822) (0.0636) (0.0901) (0.0796) (0.109) 

Robust standard errors in parentheses: *** p<0.01, ** p<0.05, * p<0.1 

a – Freq1000 is the relative frequency of M1000 values in the index. 

b – M is the variable containing M1000 values. 

c – M2 is the variable that contains the squared M1000 values. 

 

From the Barrier Hump Test, we find evidence that confirms the results from the Barrier 

Proximity Test of barriers around round numbers at the 1000 level for the SMI. There is also 

statistically significant evidence of barriers at the 100 level for the SMI. However, the δ value for that 

regression is fairly small and unlikely to be indicative of any operationally significant barriers around 

that region. There is no statistically significant evidence of possible barriers in the remaining indices at 

both the 100 and 1000 levels. 

 

4.4. Testing the Uniformity Assumption 

4.4.1. Monte Carlo Simulation [Uniformity Tests] 

 
Table 7: Rejection of uniformity test 

 
Rejections of Uniformity of M-Values in Simulations (%) 

M-Values 
Level of 

Significance 
ATX CAC DAX FTSE SMI 

100M  99% 36% 2% 1% 1% 1% 

1000M  99% 99% 88% 69% 73% 88% 

 

Table 8: Percentage of simulation statistics greater than observed statistic 

 
Simulation Statistic Greater than the Observed Statistic (%) 

M-Values 
Level of 

Significance 
ATX CAC DAX FTSE SMI 

100M  99% 32% 61% 83% 44% 72% 

1000M  99% 90% 63% 8% 7% 32% 
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For the M-values obtained from the Monte Carlo simulation, we see very few rejections of 

uniformity at the 100 level for 4 out of 5 of the indices (CAC, DAX, FTSE, SMI) consistent with the 

expected limit distribution of the M-values according to Benford’s Law [which approaches a uniform 

distribution at the lmit]. The ATX index shows a surprising result, with a significant proportion of the 

simulations returning M-Values with non-uniform distributions at the 100 level. This could be due to 

the smaller range of the ATX index and could explain the non-uniform distribution of M-values at the 

100 level in the observed prices as well. 

At the 1000 level, we see a significant proportion of M-values from the simulation exhibiting 

characteristics of a non-uniform distribution for all 5 indices. This is consistent with the expected 

results if the M-values are indeed distributed according to Benford’s Law, and the results from this 

simulation provide indirect evidence to support the criticism of the uniformity assumption that 

traditional tests have been predicated upon. 

 

4.4.2. Kuiper’s Modified Kolmogorov-Smirnov Test 

From Morrow (2010), the critical values for this test are 1.191 at the 90% confidence level, 1.321 at the 

95% confidence level and 1.579 at the 99% confidence level. 

 
Table 9: Kolmogorov-Smirnov Test results 

 
Symbol *

NV Statistic 
1000M  

*

NV Statistic
100M  

FTSE 0.50213 0.18416 

CAC 1.03219 0.19798 

DAX 0.95697 0.22499 

ATX 0.54861 0.42490 

SMI 0.91475 0.21206 

 

From this test, we see that there is not sufficient evidence at the 90% confidence level to reject 

the hypothesis that the distribution of M-values conforms to that derived from Benford’s Law in all of 

the indices at both the M
1000

 and M
100

 values and hence we conclude that the criticism of the uniformity 

assumption applied in earlier tests based on Benford’s law is valid. 

 

4.5. Testing the Presence of Psychological Barriers Without the Uniformity Assumption 

 

Table 10: τ statistic for each category (ω) for M100 values in each index 

 

 100M

 
{0} {98,…,02} {96,…,05} {90,…,09} 

(ATX) 0.99 5.47 10.72 21.03 

(ATX Simulation) [%] 46.24 79.52 77.54 74.53 

(CAC) 1.14 4.55 9.27 19.50 

(CAC Simulation) [%] 75.24 11.37 8.10 27.32 

(DAX) 0.86 4.60 9.84 20.07 

(DAX Simulation) [%] 39.18 13.55 34.80 51.62 

(FTSE) 0.90 4.68 10.51 20.84 

(FTSE Simulation) [%] 27.57 23.15 82.04 86.11 

(SMI) 0.97 5.03 10.49 19.90 

(SMI Simulation) [%] 41.77 49.64 79.06 45.51 
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Table 11: τ statistic for each category (ω) for M1000 values in each index 

 
 1000M

 
{0} {98,…,02} {96,…,05} {90,…,09} 

(ATX) 0.95 4.73 9.10 18.53 

(ATX Simulation) [%] 50.39 52.11 48.99 47.78 

(CAC) 1.49 6.11 12.15 22.49 

(CAC Simulation) [%] 
93.85 78.85 79.75 65.68 

(DAX) 1.46 6.77 12.76 24.60 

(DAX Simulation) [%] 90.05 99.32 98.72 98.04 

(FTSE) 1.44 5.65 10.37 20.52 

(FTSE Simulation) [%] 97.05 84.95 73.04 71.89 

(SMI) 0.86 3.99 7.87 16.13 

(SMI Simulation) [%] 23.99 7.47 3.77 2.80 

 

From the test, we see that all of the indices besides the SMI do not have evidence of 

psychological barriers when results are compared with the simulated return series at both the 100 and 

1000 levels. Only the SMI index shows significant evidence of barriers at the 1000 level. In addition, 

the results also suggest evidence of price clustering around round numbers in the CAC and DAX 

indices at the 1000 level even after the expected concentration within the region due to Benford-

specific effects are accounted for. 

 

 

5.  Conclusion 
In this study, we test for the significance of round numbers in 5 European equity markets under 

different assumptions for the distribution of digits. We find evidence for barriers in 1 index [SMI] at 

the 1000 level under the assumption of uniformity but no significant evidence of barriers at the 100 

level and at the 1000 level in the remaining indices. This result is consistent with the findings of 

Dorfleitner and Klein (2009) and in line with the notion that barriers have disappeared in many of these 

indices after knowledge of their location became widespread. Instead, there seems to be evidence of 

price clustering around the regions of round numbers in 2 of these indices [CAC, DAX] at the 1000 

level which could be due to prolonged periods of uncertainty when prices enter the region that manifest 

itself as a trading range within the region instead of a barrier around the region. 

Next, we tested for the appropriateness of the uniformity assumption by comparison with a 

simulated price series that had no price barriers (by construction). We find evidence that the uniformity 

assumption is appropriate in most indices [ATX, CAC, DAX, FTSE] at the 100 level, as predicted by 

the limit distribution for these digits derived from Benford's Law. For the 1000 level, we find results 

consistent with the predictions from Benford's Law as well that substantiates the argument that the 

application of the uniformity assumption for tests at the 1000 level is inappropriate in all 5 indices. 

Next, having established that the uniformity assumption is inappropriate for tests at the 1000 

level, we investigate whether Benford's Law provides a good alternative model to explain this 

phenomenon by explicitly testing the empirical fit using Kuiper's Modified Kolmogorov-Smirnov 

Goodness of Fit Test. For the 5 indices, we find not sufficient evidence to reject the hypothesis that the 

observed M-values are distributed according to Benford's Law. 

Finally, we re-examine the evidence of the significance of round numbers using a test that does 

not assume a uniform distribution of M values. We compare the observed frequency distribution of M 

values with that derived from a Monte Carlo simulation based on cyclical permutations of returns and 

find evidence of price barriers in 1 index [SMI] at the 1000 level and possible evidence of price 
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clustering in 2 indices [CAD, DAX] at the 1000 level. This is consistent with the findings from the 

tests based on the uniformity assumption and hence while there may be evidence against the use of the 

uniformity assumption in tests at the 1000 level, the conclusions drawn from a test that implicitly 

incorporates the predicted outcomes from Benford's Law has not materially changed. 
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