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Abstract

In this note, we explore the di¤erent implications of patent breadth and R&D
subsidies on economic growth and endogenous market structure in a Schumpeterian
growth model. We �nd that these two policy instruments have the same positive e¤ect
on economic growth when the model exhibits counterfactual scale e¤ects under an
exogenous number of �rms. However, when the model becomes scale-invariant under
an endogenous number of �rms, R&D subsidies increase economic growth but decrease
the number of �rms, whereas patent breadth expands the number of �rms but reduces
economic growth. Therefore, R&D subsidy is perhaps a more suitable policy instrument
than patent breadth for the purpose of stimulating economic growth.
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1 Introduction

What are the di¤erent implications of patent breadth and R&D subsidies on economic growth
and market structure? To explore this question, we consider a second-generation R&D-based
growth model, pioneered by Peretto (1998), Young (1998), Howitt (1999) and Segerstrom
(2000). To our knowledge, this is the �rst study that analyzes patent policy in a second-
generation R&D-based growth model that is free of scale e¤ects.1 The model features two
dimensions of technological progress. In the vertical dimension, �rms improve the quality
of existing products. In the horizontal dimension, �rms invent new products. In this scale-
invariant Schumpeterian growth model with endogenous market structure (EMS) measured
by the number of �rms in equilibrium, we �nd some interesting di¤erences between patent
breadth and R&D subsidies. At the �rst glance, these two policy instruments should have
similar e¤ects on innovation and economic growth. On the one hand, patent breadth im-
proves the incentives of innovation by increasing the private return to R&D investment. On
the other hand, R&D subsidies improve the incentives of innovation by reducing the pri-
vate cost of R&D investment. For example, an interesting study by Li (2001) shows that
both of these policy instruments contribute to increasing innovation and economic growth
in a quality-ladder growth model that features scale e¤ects. However, in a scale-invariant
Schumpeterian growth model with EMS, we �nd that patent breadth and R&D subsidies
have drastically di¤erent implications on economic growth and market structure. Speci�-
cally, when the number of �rms is exogenous, we �nd that the model exhibits counterfactual
scale e¤ects and that both patent breadth and R&D subsidies have positive e¤ects on eco-
nomic growth as in previous studies. Interestingly, when we endogenize the number of �rms
to make the Schumpeterian model scale-invariant, we �nd that patent breadth expands the
number of �rms but decreases economic growth, whereas R&D subsidies increase economic
growth but reduce the number of �rms.
Intuitively, R&D subsidies decrease the cost of R&D investment and improve the incen-

tives of R&D. As for patent breadth, although it increases the pro�t margin of monopolistic
�rms, which improves the incentives of R&D, it also leads to a decrease in the scale of
production, which has a negative e¤ect on the incentives of R&D. It turns out that the neg-
ative e¤ect dominates the positive e¤ect, so that a larger patent breadth decreases economic
growth. These contrasting e¤ects of patent breadth and R&D subsidies suggest that R&D
subsidy is perhaps a more suitable policy instrument than patent breadth for the purpose
of stimulating economic growth. The negative e¤ect of patent protection on R&D is consis-
tent with empirical evidence in Qian (2007) and Lerner (2009), who �nd that strengthening
patent protection may have a negative e¤ect on innovation.2 As for the positive e¤ect of
R&D subsidies on R&D, it is also consistent with empirical evidence; see Hall and Van
Reenen (2000) for a survey of empirical studies.
This study relates to the literature on R&D-driven economic growth; see Romer (1990),

Segerstrom et al. (1990), Grossman and Helpman (1991) and Aghion and Howitt (1992) for
seminal studies. Subsequent studies in this literature often apply variants of the R&D-based

1See for example Laincz and Peretto (2006) for a discussion on how scale e¤ects in R&D-based growth
models are inconsistent with empirical evidence.

2See also the case-study evidence in Ja¤e and Lerner (2004), Bessen and Meurer (2008) and Boldrin and
Levine (2008).
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growth model to analyze the e¤ects of policy instruments, such as patent breadth and R&D
subsidies, on economic growth and innovation; see for example, Segerstrom (2000), Li (2001),
Goh and Olivier (2002), Iwaisako and Futagami (2012), Chu (2011) and Chu and Furukawa
(2011). However, these studies do not analyze the e¤ects of patent policy on EMS;3 there-
fore, the present study contributes to the literature with a novel analysis of patent breadth
in a Schumpeterian growth model with EMS. Furthermore, we contrast the di¤erent e¤ects
of patent breadth and R&D subsidies and �nd that under a scale-invariant Schumpeterian
growth model with EMS, the e¤ects of patent breadth and R&D subsidies are drastically
di¤erent suggesting the importance of taking into consideration EMS when performing pol-
icy analysis in R&D-based growth models. O�Donoghue and Zweimuller (2004), Horii and
Iwaisako (2007), Furukawa (2007, 2010), Chu (2009), Chu et al. (2012) and Chu and Pan
(2012) also �nd that increasing the strength of other patent policy levers, such as block-
ing patents and patentability requirement, can have a negative e¤ect on economic growth;
therefore, the present study complements these studies by proposing a novel mechanism
(i.e., EMS) through which patent breadth also has a negative e¤ect on R&D and economic
growth.
The rest of this note is organized as follows. Section 2 presents the Schumpeterian growth

model with EMS. Section 3 analyzes the e¤ects of patent breadth and R&D subsidies.

2 A Schumpeterian growth model with EMS

In summary, the growth-theoretic framework is based on the Schumpeterian model with in-
house R&D and EMS in Peretto (1996, 1998, 1999). We incorporate into the model patent
breadth and R&D subsidies to analyze their di¤erent implications on economic growth and
market structure.

2.1 Households

There is a representative household, who has the following lifetime utility function

U =

1Z

0

e��t lnCtdt, (1)

where Ct denotes consumption of �nal goods (numeraire) at time t. The parameter � > 0
determines the rate of subjective discounting. The household maximizes (1) subject to the
following asset-accumulation equation

_At = rtAt + wtL� � t � Ct. (2)

At is the real value of assets owned by each household, and rt is the real interest rate. The
household has a labor endowment of L units and supplies them inelastically to earn a real

3See Peretto (1996, 1999) for seminal studies in R&D-based growth models with EMS and Etro (2012)
for an excellent textbook treatment of this topic.
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wage rate wt. The household also faces a lump-sum tax � t from the government. From
standard dynamic optimization, the familiar Euler equation is

_Ct
Ct
= rt � �. (3)

2.2 Final goods

Final goods Yt are produced by competitive �rms that aggregate intermediate goods Xt(i)
for i 2 [0; Nt] using a standard CES aggregator given by

Yt =

�Z Nt

0

[Xt(i)]
("�1)="di

�"=("�1)
, (4)

where " > 1 is the elasticity of substitution. From pro�t maximization, the conditional
demand function for Xt(i) is

Xt(i) = [pt(i)]
�"Yt, (5)

where pt(i) is the price of Xt(i) and the price of Yt is normalized to unity.

2.3 Intermediate goods and in-house R&D

There is a continuum of industries producing di¤erentiated intermediate goods. Each indus-
try is dominated by a monopolistic �rm with the following production function

Xt(i) = Z
�
t (i)Lx;t(i), (6)

where � 2 (0; 1) is the elasticity of output with respect to technology. Lx;t(i) is the number
of workers employed in industry i 2 [0; Nt] for production. The law of motion for technology
Zt(i) is

_Zt(i) = Z
�
t [Zt(i)]

1��Lz;t(i), (7)

where � 2 (0; 1) determines the degree of technology spillovers,4 and Zt �
1
Nt

R Nt
0
Zt(i)di is

the average level of technology in the economy. Lz;t(i) is the number of workers employed in
industry i for R&D.
The value of the monopolistic �rm in industry i is

Vt(i) =

Z
1

t

exp

�
�

Z u

t

rvdv

�
�u(i)du. (8)

The pro�t �ow �t(i) at time t is

�t(i) = pt(i)Xt(i)� wtLx;t(i)� (1� s)wtLz;t(i), (9)

4This speci�cation nests the speci�cation in Peretto (1998) as a special case with � = 1.
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where the parameter s 2 [0; 1) is the rate of R&D subsidies. The monopolistic �rmmaximizes
(8) subject to (5) and (7). The current-value Hamiltonian for this optimization problem is

Ht(i) = �t(i) + �t(i) _Zt(i). (10)

We solve this optimization problem in Appendix A and �nd that the unconstrained pro�t-
maximizing markup ratio is "=("� 1). To analyze the e¤ects of patent breadth, we impose
an upper bound � > 1 on the markup ratio.5 Therefore, the equilibrium price becomes

pt(i) = min

�
�;

"

"� 1

�
wt
Z�t (i)

. (11)

For the rest of this study, we assume that � � "=("�1). In this case, a larger patent breadth
� leads to a higher markup, and this implication is consistent with Gilbert and Shapiro�s
(1990) seminal insight on �breadth as the ability of the patentee to raise price�.

2.4 Entrants

A �rm that is active at time t must have been born at some earlier date. Following Peretto
(1996, 1998, 1999), we consider a symmetric equilibrium in which Zt(i) = Zt for i 2 [0; Nt],
by assuming that any new entry at time t has access to the level of aggregate technology
Zt.

6 A new �rm incurs F units of labor as a setup cost to set up its operation and introduce
a new variety of products to the market. We refer to this process as entry. Suppose entry is
positive (i.e., _Nt > 0). Then, the no-arbitrage condition is

7

Vt = wtF . (12)

The familiar Bellman equation implies that the return to entry is

rt =
�t
Vt
+
_Vt
Vt
. (13)

2.5 Government

The government chooses an exogenous rate s of R&D subsidies. To balance the �scal budget,
the government levies a lump-sum tax � t on households. The balanced budget condition is

� t = swt

Z Nt

0

Lz;t(i)di. (14)

5Intuitively, the presence of monopolistic pro�ts attracts potential imitators. However, stronger patent
protection increases the production cost of imitative products and allows monopolistic �rms to charge a
higher markup without losing market share to imitators; see also Li (2001), Goh and Olivier (2002), Chu
(2011), Chu and Furukawa (2011) and Iwaisako and Futagami (2012) for a similar formulation.

6Peretto (1996, 1999) justi�es this assumption by arguing that knowledge is embodied in workers. There-
fore, when a new �rm recruits workers from existing �rms, it also gains access to their knowledge.

7We follow the standard approach in this class of models to treat entry and exit symmetrically (i.e., the
scrap value of exiting an industry is also wtF ); therefore, Vt = wtF always holds. If Vt > wtF (Vt < wtF ),
then there would be an in�nite number of entries (exits).
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2.6 Decentralized equilibrium

The equilibrium is a time path of allocations fAt; Ct; Yt; Xt(i); Lx;t(i); Lz;t(i)g and prices
frt; wt; pt(i); Vt(i)g. Also, at each instant of time, the following holds:

� Households maximize utility taking frt; wtg as given;

� Competitive �nal goods �rms maximize pro�ts taking fpt(i)g as given;

� Incumbents in the intermediate goods sector choose fpt(i); Lx;t(i); Lz;t(i)g to maximize
fVt(i)g taking frtg as given;

� Entrants make entry decisions taking fVtg as given;

� The value of all existing monopolistic �rms adds up to the value of households� assets
such that At = NtVt;

� The market-clearing condition of labor holds such that L = Nt(Lx;t + Lz;t) + _NtF ;

� Finally, the market-clearing condition of �nal goods holds such that Ct = Yt.

2.7 Balanced growth path

In this subsection, we discuss the dynamic properties of the model. In Appendix B, we
provide the derivations of the dynamic system represented by two di¤erential equations
_Nt = f(Nt; Lx;t) and _Lx;t = h(Nt; Lx;t). Nt is a state variable, and Lx;t is a jump variable.
We �nd that given an initial value of Nt, the economy jumps to a saddle path and gradually
converges to a unique and stable steady state; see Appendix B for the phase diagram.

3 Patent breadth versus R&D subsidies

We �rst present the aggregate equations. Imposing symmetry across i 2 [0; Nt] yields the
labor-market clearing condition given by

L = Nt(Lx;t + Lz;t) + Ln;t, (15)

where Ln;t = _NtF and _Nt = 0 in the steady state. Substituting (6) into (4) yields the
aggregate production function of Yt given by

Yt = (Nt)
"=("�1)Z�t Lx;t. (16)

The resource constraint implies Ct = Yt. The rest of the analysis focuses on the balanced
growth path, and we drop the time subscript for convenience.
At the steady state, N and Lx are stationary. Therefore, the steady-state equilibrium

growth rate is

g �
_C

C
=
_Y

Y
= �

_Z

Z
= �Lz. (17)
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We will show that the equilibrium growth rate is free of scale e¤ects (i.e., g is independent
of L) when the number of �rms is endogenous. Solving the dynamic optimization in (10),8

we obtain the following equilibrium condition from the pro�t maximization of �rms

Lz =
1

�

�
��

1� s

�
"� 1

"

�
Lx � �

�
, (18)

which describes a positive relationship between Lx and Lz.

3.1 Scale e¤ects under an exogenous number of �rms

Combining (18) and the steady-state version of the resource constraint in (15) yields the
steady-state equilibrium allocation of R&D labor as a function of N .

Lz(�
+
; s
+
) =

(L=N)�("� 1)="� �(1� s)=�

�(1� s)=�+ �("� 1)="
, (19)

Suppose the number of �rms N is exogenous. Then, (19) shows that the model exhibits
scale e¤ects (i.e., g = �Lz is increasing in L). In this case, g = �Lz is increasing in patent
breadth � and R&D subsidies s; see also Li (2001) who �nds a similar symmetric e¤ect of
patent breadth and R&D subsidies on economic growth. In Figure 1, we plot the solution of
the pro�t-maximization (PM) condition in (18) and the resource constraint (RC) in (15) in
the (Lx; Lz) space to demonstrate the comparative statics with respect to � and s.

Proposition 1 Under an exogenous number of �rms, the equilibrium growth rate is increas-

ing in patent breadth and R&D subsidies.

8Derivations are relegated to Appendix A.
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3.2 Scale invariant under an endogenous number of �rms

In this subsection, we consider an endogenous number of �rms. In this case, market structure
measured by the number of �rms responds to the aggregate market size. Speci�cally, a
larger supply of labor L increases the aggregate market size and induces �rms to enter the
market raising the number of �rms in equilibrium. As a result, the market size of each �rm
measured by the number of workers per �rm (i.e., L=N) is independent of L in the steady
state. Because of this scale invariant property of the model, the equilibrium growth rate is
free of scale e¤ects.
When the number of �rms is endogenous, we solve the model using the entry condition

Vt = wtF , which implies, from (13), �t=� = wtF on the balanced growth path. Substituting
(6) and (11) into (9) yields

�t = �wtF , Lz =
(�� 1)Lx � �F

1� s
, (20)

which describes another positive relationship between Lx and Lz. We use (18), (20) and
then (15) to solve for the steady-state equilibrium values of fLz; Lx; Ng.

Lz(�
�

; s
+
) =

�
��

��

�� 1

�
"� 1

"

��
�1 �

��

�� 1

�
"� 1

"

�
F

1� s
� 1

�
�, (21)

Lx(�
�

; s
+
) =

(1� s)Lz(�; s) + �F

(�� 1)
, (22)

N(�
+
; s
�

) =
L

Lx(�; s) + Lz(�; s)
, (23)

where N is proportional to L in the steady state. To ensure Lz > 0, we impose the following
parameter condition

� >
��

�� 1

�
"� 1

"

�
>
1� s

F
. (P1)

In Appendix C, we show that this parameter condition coincides with the stability condition
in the capital market.
Recall the equilibrium growth rate is g = �Lz; therefore, (21) shows that g is independent

of L. In this model, g is increasing in the discount rate � due to endogenous entries. As for the
e¤ects of patent breadth, Lz is decreasing in �, and N is increasing in �. Intuitively, a larger
� increases the markup and the pro�t margin of each intermediate goods �rm; however, it
also decreases the scale of production Lx, which a¤ects the incentives of R&D. It turns out
that the negative e¤ect dominates the positive e¤ect such that R&D Lz decreases. Given
that both Lx and Lz decrease, the equilibrium number of �rms N must increase in order
to satisfy the resource constraint on labor. In Figure 2, we plot the PM condition in (18)
and the entry condition (EC) in (20) in the (Lx; Lz) space to demonstrate the comparative
statics with respect to �.
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As for the e¤ects of R&D subsidies, Lz is increasing in s, and N is decreasing in s.
Intuitively, an increase in s decreases the cost of R&D and leads to a larger Lx increasing
the scale of production. Both of these e¤ects contribute to increasing R&D. Given that both
Lx and Lz increase, the equilibrium number of �rms N must decrease in order to satisfy
the resource constraint on labor. In Figure 3, we demonstrate the comparative statics with
respect to s.
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Proposition 2 Under an endogenous number of �rms, a larger patent breadth increases the

number of �rms but decreases the equilibrium growth rate, whereas a higher rate of R&D

subsidies increases the equilibrium growth rate but decreases the number of �rms.

Previous studies, such as Li (2001), Goh and Olivier (2002), Chu (2011), Chu and Fu-
rukawa (2011) and Iwaisako and Futagami (2012), also analyze the e¤ects of patent breadth
on R&D and economic growth. These studies generally �nd that a larger patent breath
increases R&D because they consider an R&D-based growth model that features scale ef-
fects and exogenous market structure, which give rise to the di¤erent result from the present
study. Therefore, the present study complements them by providing a novel analysis of
patent breadth on economic growth under endogenous market structure and by showing the
contrasting e¤ects of patent breadth and R&D subsidies. Peretto (1998) and Segerstrom
(2000) also analyze the e¤ects of R&D subsidies in a scale-invariant Schumpeterian growth
model. Segerstrom (2000) �nds that R&D subsidies can have either positive or negative ef-
fects on economic growth, and this interesting result is driven by the tradeo¤ between quality
improvement and variety expansion on economic growth. In contrast, economic growth is
solely based on quality improvement in the present study and in Peretto (1998), who also
�nds a positive e¤ect of R&D subsidies on economic growth. See for example Peretto and
Connolly (2007) who show that quality improvement is the only plausible engine of economic
growth in the long run.

4 Conclusion

In this note, we have analyzed the di¤erent implications of two important policy instruments,
patent breadth and R&D subsidies, on economic growth and market structure in a scale-
invariant Schumpeterian growth model with EMS. When we �x the number of �rms in the
model, we �nd that patent breadth and R&D subsidies serve to increase economic growth
as in previous studies. However, when we consider a more realistic framework with an
endogenous number of �rms, we �nd that these two commonly discussed policy instruments
have surprisingly opposing e¤ects on economic growth and market structure. Speci�cally,
patent breadth decreases economic growth but expands the number of �rms, whereas R&D
subsidies reduce the number of �rms but increase economic growth. These contrasting e¤ects
of patent breadth and R&D subsidies suggest that R&D subsidy is perhaps a more suitable
policy instrument than patent breadth for the purpose of stimulating economic growth. This
�nding is consistent with evidence from empirical studies and case studies discussed in the
introduction.
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Appendix A

Derivations of Lx. Substituting (5), (6) and (9) into (10) yields

Ht(i) = (Yt)
1=" [Zt(i)]

�("�1)="[Lx;t(i)]
("�1)="�wtLx;t(i)�(1�s)wtLz;t(i)+�t(i)Z

�
t [Zt(i)]

1��Lz;t(i).
(A1)

The �rst-order conditions include

@Ht(i)

@Lx;t(i)
=
"� 1

"
(Yt)

1=" [Zt(i)]
�("�1)="[Lx;t(i)]

�1=" � wt = 0, (A2)

@Ht(i)

@Lz;t(i)
= �(1� s)wt + �t(i)Z

�
t [Zt(i)]

1�� = 0, (A3)

@Ht(i)

@Zt(i)
= �

�
"� 1

"

�
(Yt)

1=" [Zt(i)]
�("�1)="�1[Lx;t(i)]

("�1)="+(1��)�t(i)

�
Zt
Zt(i)

��
Lz;t(i) = rt�t(i)� _�t(i).

(A4)
Using (5) and (6), we can derive from (A2) the unconstrained pro�t-maximizing price in
(11). Substituting (A3), (5) and the constrained markup price in (11) into (A4), we obtain

��

1� s

�
"� 1

"

��
Zt
Zt(i)

��
Lx;t(i) + (1� �)

�
Zt
Zt(i)

��
Lz;t(i) = rt �

_�t(i)

�t(i)
. (A5)

Applying r = �+ g and imposing symmetry and balanced growth on (A5) yield (18).
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Appendix B

Dynamics of the model. In this appendix, we provide the derivations of the dynamic
system. First, we use the resource constraint on labor to derive a di¤erential equation in Nt.
Second, we use the �rm�s pro�t-maximization conditions to derive a di¤erential equation in
Lx;t. Third, we use the entry condition to derive a static equilibrium condition for Lx;t and
Lz;t. Finally, putting these conditions together, we have an autonomous dynamic system
in _Nt = f(Nt; Lx;t) and _Lx;t = h(Nt; Lx;t). We �nd that its dynamics is characterized by
saddle-path stability.
Substituting _Nt = Ln;t=F into (15) yields our �rst di¤erential equation given by

_Nt =
1

F
[L�Nt(Lx;t + Lz;t)] . (B1)

To derive our second di¤erential equation, noting Zt(i) = Zt, we use (A3) to derive

_�t
�t
=
_wt
wt
�
_Zt
Zt
. (B2)

Substituting (B2) and the Euler equation (3) into (A5) yields

_C

C
�
_wt
wt
=

��

1� s

�
"� 1

"

�
Lx;t � �Lz;t � �, (B3)

where we have also used _Zt=Zt = Lz;t. Using (5), (6), (11) and (16), we derive

wt =
1

�
(Nt)

1=("�1) Z�t . (B4)

Taking the log of (B4) and (16) and then di¤erentiating them with respect to t yield

_Ct
Ct
�
_wt
wt
=

_N

N
+
_Lx;t
Lx;t

, (B5)

where we have also used Ct = Yt. Substituting (B1) and (B3) into (B5) yields

_Lx;t
Lx;t

=
��

1� s

�
"� 1

"

�
Lx;t � �Lz;t � �+

1

F

�
Lx;t + Lz;t �

L

Nt

�
. (B6)

To derive a static equilibrium condition for Lz;t, we use the entry condition (12) to derive

_wt
wt
=
_Vt
Vt
= rt �

�t
Vt
, (B7)

where the second equality uses (13). Substituting (3) into (B7) yields

�t
Vt
= �+

_Ct
Ct
�
_wt
wt
=

��

1� s

�
"� 1

"

�
Lx;t � �Lz;t, (B8)
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where the second equality uses (B3). Using (6), (9), (11) and (12), we obtain

�t
Vt
=
(�� 1)Lx;t � (1� s)Lz;t

F
. (B9)

Combining (B8) and (B9) yields

Lz;t =

�
��

1� s

F

�
�1 �

��

1� s

�
"� 1

"

�
�
(�� 1)

F

�
Lx;t. (B10)

The parameter restriction (P1) ensures that the coe¢cient on Lx;t in (B10) is positive;
therefore, (B10) describes a positive relationship between Lx;t and Lz;t.
Equations (B1), (B6) and (B10) together form an autonomous dynamic system. We �rst

use (B1) to derive the _Nt = 0 locus given by

_Nt = 0, Nt =
L

Lx;t + Lz;t
, (B11)

where Lz;t is given by (B10). Then, we use (B6) to derive the _Lx;t = 0 locus given by

_Lx;t = 0, Nt =

�
Lx;t + Lz;t +

�
��

1� s

�
"� 1

"

�
Lx;t � �Lz;t � �

�
F

�
�1

L, (B12)

where Lz;t is also given by (B10). Both (B11) and (B12) describe a negative relationship
between Nt and Lx;t.

9 If we plot the two curves in the (Lx;t; Nt) space, then the _Nt = 0
locus is below (above) the _Lx;t = 0 locus when Lx;t is small (large). Their intersection point
is the steady-state equilibrium allocation of Lx in (22). Figure 4 plots the phase diagram of
this dynamic system and shows that given an initial value of Nt, Lx;t jumps to a saddle path
that gradually converges to a unique and stable steady state.

9Using (B10) and (P1), one can show that ��
1�s

�
"�1
"

�
Lx;t � �Lz;t is increasing in Lx;t.
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Appendix C

Stability of the capital market. To con�rm the stability of the equilibrium condition in
the capital market, we show that for a given N , the rate of return to R&D crosses the rate
of return to entry from above in the (Lz; r) space; see Peretto (1998) for a more detailed
discussion. From (A5), the rate of return to R&D is

rR&D =
��

1� s

�
"� 1

"

�
Lx + (1� �)Lz + _�t=�t, (C1)

where _�t=�t = (� � 1)Lz. Substituting L = N(Lx + Lz) into (C1) yields

rR&D =
��

1� s

�
"� 1

"

��
L

N
� Lz

�
+ (� � �)Lz. (C2)

Substituting (12) into (13) and imposing balanced growth yield

rentry =
�

wF
+ �Lz =

(�� 1)Lx � (1� s)Lz
F

+ �Lz. (C3)

Substituting L = N(Lx + Lz) into (C3) yields

rentry =
1

F

�
(�� 1)

L

N
� (�� s)Lz

�
+ �Lz. (C4)

The parameter condition in (P1) implies that rR&D crosses rentry from above in the (Lz; r)
space; see Figure 5 for an illustration. Therefore, whenever Lz is to the right (left) of the
intersection, rR&D < (>) rentry and labors are reallocated from R&D to entry (from entry
to R&D) con�rming the stability of rR&D = rentry.
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