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Abstract

This paper investigates the cutoff strategies and the effects of sequential and costly par-

ticipation in Vickrey auctions with independent private value settings. It demonstrates a

Stackelberg version of participation decision in auctions, while simultaneous participation

can be regarded as a Cournot version in auctions. Buyers adopt cut-off participation strate-

gies. In two-buyer case, the cutoff strategy equilibrium is unique. The follower’s critical

values are always monotonic in participation cost in both symmetric and asymmetric set-

tings. This is also true for the leader with mild conditions on c.d.fs. We also characterize

equilibria in three-buyer and more general n-buyer environments. We then study buyer’s

preference to be a leader or a follower. Comparison with simultaneous model shows that the

driven-out effect is much stronger in our sequential participation model, which implies the

simultaneous specification might not be desirable.
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1 Introduction

1.1 Motivation

Auction is a trade mechanism widely used in economic activities, which can enhance the com-

petition among buyers when a seller has incomplete information about buyers’ willingness to

pay for an underlying object, project or service(s). In auctions, bidders may necessarily bear

some cost before they can submit their bids. Such kind of cost in auctions, without accurate

informative classification or definition, could be referred to as participation cost in general. For

example, a buyer may acquire relevant information to estimate its value, which leads to cost

in both money and time. In procurement auctions a bidder should carefully prepare a detailed

plan that specifies each provision listed in the project announcement, possibly including the cer-

tifications that make the bidder qualified as a legal candidate to submit its document, which is

costly for bidders. In many auctions, buyers need to register for being a legal bidder by incurring

a cost. This registration cost, or entry fee may be paid directly to the seller for arranging the

auction itself.

In economic circumstances, the cost incurred always appears to be a primary consideration

for agents. This is also the case in auctions where participation cost plays a significant role

in functioning the allocation efficiency and revenue of auctions as well as other performance

indicators. It is well-known that bidders have weakly dominant strategy to bid their true values

in standard second price sealed bid auction (abbreviated as SPA) stated in Vickrey (1961), but

this would be true only if bidders find it optimal to participate in the auction when there exists

participation cost. Participation cost can influence both allocation efficiency and all agents’

payoffs, including the revenue of the seller and net payoff of bidders. Actually in order to stay at

the stage of submitting bids, almost every bidder has to bear some cost. This means every bidder

first needs to make a decision whether they should participate. Usually this participation decision

is not made simultaneously, for example, the buyer who registers to be a bidder can observe

those buyers who have already registered at registration office. This additional information may

help the buyer to identify the types of their opponents, hence influences the buyer’s participation

decision.

Sequential entrance is best illustrated in the acquisition of Unocal Corporation by China

National Offshore Oil Corporation (CNOOC) and Chevron Corporation in 2005. In March,

CNOOC tried to acquire Unocal Corporation with a bid of $18 billion. After careful preparation,

Chevron submitted its bid to acquire Unocal in June. In the end, Chevron won the competition.1

1Failing to pass the vote in the United States House of Representatives, CNOOC’s bid was referred to President
George W. Bush for evaluations on national security. In this situation, CNOOC withdrew its bid on August 2.
Soon after, Unocal merged with Chevron on August 10, 2005.
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In daily life, sequential participation can be observed in many activities. The house sale

serves as a typical example. Naturally one house on sale may attract several purchasers’ atten-

tion. The salesman would accompany each client to look around the house at different time, to

know about her/his demand requirement. When a salesman introduces the house to a potential

purchaser, he usually tells the client there are other clients having shown interests in this house

and advertises the advantageous characteristics of the house, such as natural environment, trans-

portation convenience, schooling, etc. Since each buyer negotiates with the salesman separately

and reports his/her desirable price directly to the property developer, such a sale procedure could

be modeled as a sealed-bid price auction. Other examples include special certification examina-

tions, entrance examinations for government functionary, or other career-relevant examinations.

These testing services usually announce some of their registration information publicly, namely,

the number of registered testees, so test takers can get sketchy information before registering

for the exam. In some economic environments, potential buyers can also obtain information

concerning the participants from official channels, i.e., government procurements, corporation-

merger activities as well as some types of online auctions.

Our observation then is that if one buyer can observe the participation of those who enter into

the auction before her, the information she has observed would discourage her from participating

in the auction, where participation cost could be very small if the number of participants is large.2

We call this driven-out effect. Such kind of information structure has not been investigated yet

in auctions with endogenous entry.

1.2 The Objective of the Paper

In this paper, we establish an IPV (independent private value) single-object Vickrey auction

model in which participation is costly and potential buyers participate sequentially. We assume

that a buyer observes the entry decisions of those participants who take actions before her, and

then makes her own participation decision. Our specification differs from those simultaneous

participation models in both information structure and equilibrium strategies. First, in our

model the buyer except for the first one can update her belief on opponents’ valuations by ob-

serving those who participate before her. Due to the sequential entrance, buyers’ information

are asymmetric, namely, the ith buyer has a (i− 1)-dimension signal concerning her opponents’

entrance. But in simultaneous model, buyers have no information on their opponents’ participa-

tion, and buyers are symmetric if ignoring their distributions of values. Secondly, each potential

buyer has to specify her participation decision for every possible sequence of participation de-

2For simplicity, we only consider the environment in which the information concerning opponents’ participation
does not influence buyer’s own evaluations, for example, buyers’ values are independently distributed.
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cision she observes in our model, while in simultaneous model the buyer’s participation choice

only depends on her valuation of the object.3 When focusing on cutoff strategies, each buyer

needs to determine a set of cutoff points in our mode while she only has to set one cutoff point

in simultaneous setting. This is due to the sequential structure of the game, i.e., each buyer’s

entrance choice partially reveals her valuation to opponents entering after her.

We then investigate the cutoff strategies and the effects of sequential and costly participation.

In two-buyer case, the cutoff strategy equilibrium is unique. The follower’s critical values are

always monotonic in participation cost in both symmetric and asymmetric settings. This is also

true for the leader with mild conditions on c.d.fs. We also characterize equilibria in three-buyer

and more general n-buyer environments. We then study buyer’s preference to be a leader or a

follower.

We also find a low participation cost can discourage buyers from participating in the auctions

if there are many potential buyers, and in our terminology the driven-out effect is very strong

in sequential participation settings. A natural implication would be that the simultaneous

participation model might not be appropriate to describe the competition in auctions when

buyers have access to receiving information on others’ entrance.

1.3 Related Literature

The existing literature on equilibrium characterization on auctions with participation cost mainly

focuses on simultaneous participation. When there exists participation cost, the participation

itself would be part of equilibrium strategies, hence it is called endogenous entry. In the initial

work in this field, Samuelson (1985) derived the symmetric entry equilibria that maximize the

social welfare and the sellers expected revenue in procurement with symmetric buyers. Green and

Laffont (1984) established a model to incorporate the buyers’ willingness to pay and reservation

utility into the auctions, which is equivalent to setting participation cost for buyers.

Later many researchers examine the settings of auctions with private values and entry cost.

Levin and Smith (1994) showed that the revenue equivalence can also be held in this environment

with endogenous entry, and the seller should not set reservation price or charge entry fee, since

discouraging entry is not optimal for the seller. Menezes and Monteiro (2000) established the

revenue equivalence between first and second price sealed bid auctions, and showed that seller’s

expected revenue could decrease as the number of potential buyers increases. In contrast, Stege-

man (1996) focused on the theme of allocative efficiency between different auction formats, and

found that second-price auction has ex ante efficient equilibrium while first price auction has not

3Actually, the cutoff point also relies on the prior belief on opponents’ value distributions, which is assumed
to be fixed when making this comparison.
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such an equilibrium even with symmetric buyers. Chakraborty and Kosmopoulou (2001) con-

sidered the revenue equivalence problem if there exist both preparation cost and entry fee, and

the revenue equivalence does not hold in their model. Besides, Matthews (1987), McAfee and

McMillan (1987) and Harstad et al. (1990) directly investigated models in which the number of

bidders are random, according to a known distribution.

Tan and Yilankaya (2006) explored the equilibrium strategies for bidders in second price

auction in IPV setting, where all bidders are ex ante symmetric, namely, participation cost is

the same for all bidders. Lu (2006) gave a more detailed description of participation strategies

and the patterns of equilibria along this strand of research. Cao and Tian (2008b) investigated

the equilibrium strategies for bidders by relaxing the participation cost to be asymmetric, i.e.

each bidder bears its own specific cost. They have confirmed that concavity of bidder’s valuation

distribution functions can promise the uniqueness of cut-off strategy equilibrium.4 The asym-

metric environment was also explored by Kaplan and Sela (2003, 2006), Moreno and Wooders

(2006), etc. Celik and Yilankaya (2008) studied a costly entry model with IPV setting aiming to

find the optimal auction format, and they specified the conditions under which the seller obtains

maximal profit in second price auction.

Different from all the simultaneous entry models—a Cournot version of participation in

auctions, this paper investigates how sequential and costly participation—a Stackelberg version

of participation in auctions affects the properties of the Vickrey auction, or the second price

auction mechanism where potential buyers make participation decision sequentially and can

observe the participation decision of the former buyers at the time of making this choice.

The remainder of this paper is organized as follows. Section 2 describes the basic setting

of the model. Section 3 characterizes buyers’ behavior in equilibrium. Section 4 discusses the

buyers’ incentives to be a leader or a follower. Section 5 compares the auction game with

sequential participation and the auction game with simultaneous participation specifications.

Section 6 concludes. All proofs are relegated to the Appendix.

2 The Setup

There is a single object to be sold by employing a standard second price sealed bid auction. n

potential risk neutral buyers indexed by i ∈ {1, 2, · · · , n} compete for the object. The values

of the buyers are independently distributed on the support [v, v̄], where −∞ < v < v̄ < +∞.5

4Cao and Tian (2008a) also considered the entrance strategies and bidding rules for bidders in first price sealed
bid auctions still within the IPV settings.

5Here we do not need v or v̄ to be positive. For example, this environment could include the government
procurement of some public project, in which the negative value of the seller means the cost that the seller would
like to incur to complete the project and the negative price for the winning buyer refers to the compensation for
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Buyer i’s value follows the cumulative distribution function (c.d.f) Fi(·), where its density func-

tion fi(·) is continuous and has full support on [v, v̄]. The owner of the object values it less than

v, and the reservation price is set at v.

The buyer needs necessarily to incur a participation cost c, which is the same for all potential

buyers, to be a legal bidder for participating in the auction and submitting its bid. The cost c

takes value from the support (0,∆v], where ∆v = v̄ − v. Buyers sequentially decide whether to

participate in the auction. Without loss of generality, buyers make their participation decisions

sequentially in the order of < 1, 2, · · · , n >. When a buyer makes her participation choice, she

can observe all participation decisions of those buyers in the entrance order before her. For

example, buyer 1 will decide first whether she should enter into the auction without any further

information coming through, then buyer 2 makes her participation choice after observing buyer

1’s action, then it’s the turn of buyer 3, and so on.

Define the feasible action set for buyers by {N} ∪ [v, v̄]. Here a report “N”means the buyer

does not participate in the auction. A buyer participates in the auction if and only if she reports

some value no less than v, which is denoted as bi. Let the reported value bi ∈ [v, v̄] be the buyer

i’s bidding strategy.6 Since buyers other than the first one can observe formers’ participation

decisions, which is a signal that conveys information on former opponents’ types, the buyer’s

participation choice and her bidding rule both depend on her own value of the object and the

signal she has observed. Let the support of buyer i’s signal be {N, P}i−1, where a N represents

that a buyer does not participate and a P says she does. Let si ∈ {N,P}i−1 denote buyer

i’s signal before her participation, where the jth element of si refers to buyer j’s participation

choice. For simplicity, we let s1 ∈ ∅ = {N,P}0 denote buyer 1’s signal which tells nothing.

It is obvious that if a buyer prefers participating in the auction, he should report his true

value since truth-telling remains the weakly dominant strategy for the buyer conditional on her

participation under the rules of the second price auction. Thus, we can confine ourselves to the

so-called cutoff-strategy Bayesian Nash equilibria in which the buyer participates in the auction

if and only if her value exceeds some critical point.7 Note that the critical point of a buyer

depends on her received signal. Let x
(n)
i,si

be the cutoff point of buyer i who receives a signal si.

Here we use the superscript (n) to refer to potential n buyers, distinguished from normal power

building the project. In this sense, the only thing that matters is the boundedness of the support, for example,
−∞ < v < v̄ < +∞.

6In principle, bi could be any real number that exceeds the reservation price, but putting an upper bound
for the report does not give any active restriction on buyers’ behavior since in second price auction buyers have
weakly dominant strategy to report truthfully conditional on participation.

7It is evident that in Vickrey auctions buyer bids her valuation conditional on participation, therefore, buyer’s
payoff is strictly increasing in her valuation. This in turn implies that buyer gets zero payoff for at most one type
at which she will be indifferent between participating and not participating. This is also true in simultaneous
participation models.
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index, the subscript i to index buyer i, and si to buyer i’s signal. Sometimes for convenience,

the comma between i and si in the subscript of the critical point x
(n)
i,si

is also omitted.8 Then the

equilibria of our models share the same characteristics with the ones in Cao and Tian (2008b),

i.e., a buyer i who has value vi and receives a signal si would report

bi(vi, si) =







N if vi < x
(n)
i,si

;

vi if vi > x
(n)
i,si

.
(1)

3 Sequential Participation

3.1 Two Symmetric Buyers

In this subsection we analyze the simplest two-buyer case with the leader’s and the follower’s

valuations following the same distribution F (·). We omit the superscript in buyers’ cutoff points

for convenience. One can expect that when participation cost is large, i.e., close to v̄, the follower

may never participate after observing the leader’s participation. To characterize different types

of equilibrium cutoff points, we define a critical value of the participation cost c0, which is

implicitly given by the equation

1

1 − F (c0 + v)

∫ v̄

c0+v

(F (v) − F (c0 + v))dv = c0. (2)

In addition, set K as any real number larger than v̄. We then have the following proposition.

Proposition 1 The auction game has a unique cutoff strategy equilibrium in which:

(1). If the participation cost c ∈ (0, c0], then x2N = c + v, and x1 and x2P (x2P > x1) are

implicitly given by the equation system

(x1 − v)F (x2P ) = c, (3a)

1

1 − F (x1)

∫ x2P

x1

(F (v) − F (x1))dv = c; (3b)

where x1 refers to the critical value of the leader, x2N represents the critical value of the

follower who observes the leader’s non-participation, and x2P represents the critical value

of the follower who observes the leader’s participation.

(2). If the participation cost c ∈ (c0, ∆v], then x1 = x2N = c + v, and x2P = K.

8For example, the notation x
(3)
3NP refers to the critical point of buyer 3 who observes buyer 1 does not participate

but buyer 2 participates.
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Remark 1 When c = c0, we have x1 = x2N = c + v, x2P = v̄.

We can see that for a large cost c ∈ (c0, ∆v], the follower would not participate on observing

the leader’s participation. So she is driven out of the auction game. The Figure 1 illustrates the

equilibrium strategies in Proposition 1 for c ∈ (0, c0]. The smallest black area represents the case

in which neither buyer participates in the auction. The left middle-sized grey area means only

the follower participates and the bottom middle-sized grey area says only the leader participates.

The largest white area demonstrates both buyers’ participation. The leader’s critical point x1

is the knife cutting the figure into two parts, and the follower’s critical values x2N and x2P

continue to give another two cuts, one in each part.

(0, 0)
(v, 0)

(0, v)
(v1, v2)

v v̄ v1

v̄

v2

x2N

x1

x2P

Figure 1: Equilibrium Strategies with 2 Buyers

One may naturally expect that if the participation cost increases, the buyer would be less

likely to participate in the auction. In other words, the critical values are increasing functions

in participation cost. The results are summarized in the following proposition.

Proposition 2 The follower’s critical values x2N and x2P are strictly increasing as participation

cost goes up. The leader’s critical point x1 is also increasing in participation cost if the c.d.f

F (·) is concave.9

It may be remarked that, while it is relatively easy to show that the follower’s critical values

are always monotonic within the setting, it is hard to show the monotonicity of the leader’s

critical value. As such, we need to impose an additional assumption—the concavity of F (·). To

9The concavity of c.d.f is a requirement that can promise the uniqueness of symmetric cutoff strategy equi-
librium and exclude asymmetric cutoff strategy equilibrium in symmetric setting, i.e., see Tan and Yilankaya
(2006) and Celik and Yilankaya (2008), or uniqueness of equilibrium in asymmetric setting, i.e., see Cao and Tian
(2008a, 2008b), and references therein. However, the main result in this paper does not rely on the uniqueness of
the equilibrium.
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explain this, we need to identify two effects caused by an increment in participation cost. The

first one is called direct effect. That is, the net payoff of a buyer who participates would be

decreasing when keeping her opponent’s cutoff point(s) unchanged, which causes her own cutoff

point(s) to go up. The other one is called indirect effect. That is, an increase in opponent’s

critical value (caused by an increase in c) means an increment in the probability of the opponent’s

non-participation, in other words, an increment in the probability that the buyer wins against

her opponent at reservation price, which leads a buyer’s critical value to decrease. In general,

the indirect effect is very small. Also the indirect effect can dominate the direct one at most for

one buyer, since at least one of the buyer’s critical value(s) should increase when cost goes up.

Since the leader has first-mover advantage,10 she can keep her critical value x1 unchanged

temporarily and wait for the follower’s cutoff point x2P to rise up when participation cost

increases. In equilibrium, the follower should expect the leader’s action correctly and set a

higher critical value x2P accordingly. Therefore, the direct effect always dominates the indirect

one for the follower, and it is possible theoretically that the dominance relationship is reversed

for the leader without additional assumptions. The concavity of F (·) can promise that the direct

effect plays the main role for the leader. The intuition is as follows. A concave c.d.f means a

weakly decreasing density of buyers’ values, so the indirect effect is most significant at critical

values close to v when cost c is sufficiently small. However, x1 is increasing in c at neighborhood

of zero, thus the concavity can promise the monotonicity of the leader’s critical value.
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Figure 2: Monotonicity of Cutoff Points. Numerical specifications for

simulation: v = 0, v̄ = 1; for power distribution F (x) = xq and q =

2, for truncated normal F (x) = ψ(x|µ, σ)/(Ψ(1|µ, σ) − Ψ(0|µ, σ)) and

µ = 0.5, σ = 0.25, where ψ(·|µ, σ) and Ψ(·|µ, σ) are normal density and

cumulative function respectively with mean µ and standard deviation

σ.

10The meaning of the term “first-mover advantage” is widely used, and is formally illustrated by Gal-Or (1985)
with continuous choice variable. The term here does not necessarily have the same notion as Gal-Or’s model, since
in our model buyers only choose participation or not and their bidding rules are given conditional on participation.
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Numerical simulation shows that the monotonicity is generally true, since we have not found

a counterexample amongst the usual distributions, including those that are not concave. Figure

2 shows the simulated cutoff points as participation cost varies from zero to c0 with power

distribution and truncated normal distribution, which are not concave at parameter values we

have specified. The monotonicity is pretty robust to the parameters of those distributions,

namely q for power distribution and µ and σ for truncated normal.

3.2 Two Asymmetric Buyers

When the potential two buyers are asymmetric, i.e., with heterogeneous c.d.f Fi(·), the sequential

participation game has a very similar type of equilibrium except for redefining the threshold of

the participation cost and adding an individual index to conditions in equation system (2). This

can be verified by looking through the argument in the proof of Proposition 1. Again we should

specify a critical value of the participation cost, ĉ0, which is implicitly given by

1

1 − F1(ĉ0 + v)

∫ v̄

ĉ0+v

(F1(v) − F1(ĉ0 + v))dv = ĉ0, (4)

only by replacing F (·) in the definition of c0 with F1(·).

Parallel to the symmetric setting, immediately we have the following proposition character-

izing the equilibrium with asymmetric buyers.

Proposition 3 The auction game has a unique cutoff strategy equilibrium in which:

(1). Suppose participation cost c ∈ (0, ĉ0]. Then x2N = c + v, and x1 and x2P (x2P > x1) are

implicitly given by the equation system

(x1 − v)F2(x2P ) = c; (5a)

1

1 − F1(x1)

∫ x2P

x1

(F1(v) − F1(x1))dv = c. (5b)

(2). Suppose participation cost c ∈ (ĉ0, ∆v]. Then x1 = x2N = c + v, and x2P = K.

Remark 2 When x2P = v̄, equation (5a) implies x1 = c + v̄ and (5b) reduces to (4), which is

the definition of ĉ0. Therefore, it is the condition x2P = v̄ that determines ĉ0.

We have known that it is generally true that monotonicity of cutoff points holds for all usual

distributions in the case of two symmetric buyers. It might be interesting to check what happens

in asymmetric settings. This leads to the following result:
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Proposition 4 The follower’s critical values x2N and x2P are strictly increasing as participation

cost goes up. The leader’s critical point x1 is also increasing in participation cost if buyer 1’s

c.d.f F1(·) is concave and it dominates F2(·) in terms of the reverse hazard rate,11 i.e., for all

v ∈ (v, v̄),
f1(v)

F1(v)
>

f2(v)

F2(v)
.
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Figure 3: Non-Monotonicity of Cutoff Values under Asymmetry. Nu-

merical specifications for simulation: v = 0, v̄ = 1; for power distri-

bution F1(x) = xq1 , F2(x) = xq2 and q1 = 0.5, q2 = 5, for truncated

normal Fi(x) = ψ(x|µi, σi)/(Ψ(1|µi, σi) − Ψ(0|µi, σi)) for i = 1, 2, and

µ1 = 0.5, σ1 = 0.25, µ2 = 0.3, σ2 = 0.08, where ψ(·|µi, σi) and Ψ(·|µ, σ)

are normal density and cumulative function with mean µi and standard

deviation σi, respectively.

The same as symmetric case, the monotonicity for the leader is ambiguous without additional

assumptions. However, the concavity of F1(·) and dominance in terms of reverse hazard rate

again are sufficient conditions.

But different from the symmetric case, we do find non-monotonic property of cutoff value

11The reverse hazard rate is usually used to compare the strongness of bidder in auction theory, i.e. the weaker
bidder will bid more aggressively than a stronger bidder in first price sealed bid auctions if the weaker bidder is
dominated in terms of reverse hazard rate, see Vijay Krina “Auction Theory”(2002), pp.47-49 for details.
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x1 when the conditions in Proposition 4 are not satisfied and the asymmetry between buyers

is sufficiently strong. See Figure 3, which shows critical values x1 and x2P as functions of the

participation cost for c ∈ (0, ĉ0). For power distribution, it is evident that x1 is decreasing

as c passes some threshold. In the Truncated Normal figure, we can also see x1 is downward-

sloping for a region of c. The sub-figure named Truncated Normal(amplified) gives a close look

of variations of x1(c) when c is close to zero, which amplifies the first one percent part of the

graph Truncated Normal.

This decreasing property of x1 at a certain range of permissible participation cost support

(0, c0] is very interesting. It says for some cost c′ in this particular region, the leader with some

critical value x1(c
′) would become better-off as cost increases a little bit. This is because, the

leader with value x1(c
′) gets exactly zero expected payoff, but she can receive a positive surplus

when participation cost increases a little to c′′ = c′ + ǫ by monotonicity of payoff in its own

value and the decreasing property of x1, i.e. x1(c
′′) < x1(c

′). Therefore, it is possible that for

the two effects analyzed in asymmetric settings, the indirect effect dominates the direct one for

the leader when asymmetry is strong enough.

3.3 More Buyers

Actually, the above analysis can be extended to general n-buyer case in a partially recursive

way. It is convenient to investigate a three-buyer case with symmetric values for hint on general

environment with more buyers. To begin with, we specify a threshold of participation cost c1

and two critical cutoff values x
∗(3)
1 and x

∗(3)
2P , which are implicitly given by the following equation

system:

(x
∗(3)
1 − v)[F (x

∗(3)
2P )]2 = c1, (6a)

1

1 − F (x
∗(3)
1 )

∫ x
∗(3)
2P

x
∗(3)
1

(F (v) − F (x
∗(3)
1 ))dv = c1, (6b)

1

[1 − F (x
∗(3)
1 )][1 − F (x

∗(3)
2P )]

∫ v̄

x
∗(3)
2P

[F (v) − F (x
∗(3)
2P )][F (v) − F (x

∗(3)
1 )]dv = c1. (6c)

Without further assumption on F (·), the so-defined c1 may not be unique. However, the con-

cavity of F (·) can promise the uniqueness, which is summarized in the following lemma.

Lemma 1 If F (·) is concave, then c1 is uniquely determined by equation system (6a)–(6c), and

c1 < c0.

12



For sequential participation in auction with three potential buyers, the equilibrium is stated

in the proposition below.

Proposition 5 Suppose F (·) is concave. The three-buyer auction game has cutoff-strategy equi-

librium in which:

(1). For c ∈ (0, ∆v], the critical points x
(3)
2N = x1, x

(3)
3NN = x2N , x

(3)
3NP = x2P , where x1, x2N

and x2P are critical values defined in Proposition 1 part (1).

(2). The other 4 critical points x
(3)
1 , x

(3)
2P , x

(3)
3PN and x

(3)
3PP are specified in three different regions

of participation cost.

(2.a). If the participation cost c ∈ (0, c1], then these four critical points are implicitly given

by the equation system

(x
(3)
1 − v)F (x

(3)
2P )F (x

(3)
3PN ) = c, (7a)

F (x
(3)
3PP )

[

1

1 − F (x
(3)
1 )

∫ x
(3)
2P

x
(3)
1

(F (v) − F (x
(3)
1 ))dv

]

= c, (7b)

1

1 − F (x
(3)
1 )

∫ x
(3)
3PN

x
(3)
1

(F (v) − F (x
(3)
1 ))dv = c, (7c)

1

[1 − F (x
(3)
1 )][1 − F (x

(3)
2P )]

∫ x
(3)
3PP

x
(3)
2P

[F (v) − F (x
(3)
2P )][F (v) − F (x

(3)
1 )]dv = c, (7d)

with constraints x
(3)
3PP > x

(3)
2P > x

(3)
3PN > x

(3)
1 .

(2.b). If the participation cost c ∈ (c1, c0], then x
(3)
3PN = x

(3)
2P , x

(3)
3PP = K, and x

(3)
1 and

x
(3)
2P (x

(3)
2P > x

(3)
1 ) are implicitly and uniquely given by

(x
(3)
1 − v)[F (x

(3)
2P )]2 = c; (8a)

1

1 − F (x
(3)
1 )

∫ x
(3)
2P

x
(3)
1

(F (v) − F (x
(3)
1 ))dv = c. (8b)

(2.c). If the participation cost c ∈ (c0, ∆v], then x
(3)
1 = c+ v and x

(3)
3PN = x

(3)
2P = x

(3)
3PP = K.

Remark 3 When c = c1, the critical points given by the equation system (7a)–(7d) reduce to

x
(3)
1 = x

∗(3)
1 , x

(3)
2P = x

(3)
3PN = x

∗(3)
2P , and x

(3)
3PP = v̄.

Remark 4 Without the concavity of F (·), the equilibrium cutoff strategies characterized by

Proposition 5 remain true. However, there might be very complicated switch in cutoff points
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between different patterns in part (2.a) and part (2.b), since the so-defined cost c1 might not be

unique. Under concavity of F (·), the only open question is the existence of multiple solutions

to equation system (7a)–(7d) for c ∈ (0, c1).

v1

v2

v3

x
(3)
1

x
(3)
2N

x
(3)
2P

x
(3)
3NN

x
(3)
3NP

x
(3)
3PN

x
(3)
3PP

v̄

v̄

v̄

Figure 4: Equilibrium Strategies with 3 Buyers

If Buyer 1 does not participate in the auction, the participation decisions of Buyer 2 and

Buyer 3 reduce to the two-buyer case, which yields part (1) of Proposition 5. If Buyer 1

participates in the auction, this is the case corresponding to the other 4 critical points for three

bidders: x
(3)
1 , x

(3)
2P , x

(3)
3PN and x

(3)
3PP . A complete description of these four critical values depends

on the scale of the participation cost. When c is small, i.e., c ∈ (0, c1], no buyer would never

participate regardless of her values, which is characterized by part (2.a) of the proposition.

When cost c becomes moderate, i.e., c ∈ (c1, c0], the third buyer who observes both buyer 1

and buyer 2’s participation would never enter into the auction. This is what part (2.b) of the

proposition says. If the participation cost is large, i.e., c ∈ (c0, ∆v], the first buyer’s entrance

would be enough to drive the second and the third buyers out of the auction game, which is the

meaning of part (2.c) in Proposition 5.
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Figure 4 illustrates the equilibrium strategies when cost c is small, i.e. c ∈ (0, c1). It is easy

to understand it if we just ignore the third dimension v3, then it reduces to what we have seen

in Figure 1, which is actually a cross section plane to a cubic. The problem is that now these

four areas of Figure 1 are equivalent to four cuboids in three-buyer environment. Since the third

buyer has four possible signals, she has to decide four counterpart critical points. Each possible

signal of buyer 3 represents one of the four cuboids. In Figure 4, the thick blue lines (or blue

plane) represent the cutoff point of buyer 1. The unevenly dashed green lines (or green planes)

refer to the second buyer’s two cutoff values. And the four evenly dashed red planes demonstrate

the four critical points for the third buyer.

Note that in general we cannot rule out the possibility of multiple solutions for the equation

system in part (2.a) in Proposition 5 when the participation cost is small, i.e. c ∈ (0, c1). The

system of equations is highly nonlinear, which does not mathematically promise a unique solution

for the underlying auction game. Because there is no special requirement for the off-equilibrium

path belief for buyers, especially those followers in the sequential decision process. As in the

usual situations, a stronger equilibrium concept, the perfect Bayesian Nash equilibrium (PBE)

may be not sufficient to select one equilibrium and eliminate the others. Since here followers only

observe the formers’ participation other than valuation types, it does not restrict the buyers’

beliefs on the opponents’ valuation types seriously on the off-equilibrium path. Under a stronger

selection rule, namely, the intuitive criterion by Cho and Kreps (1987), the uniqueness would

be met.

Suppose there are multiple solutions, i.e., (x
(3)
1 , x

(3)
2P , x

(3)
3PN , x

(3)
3PP ) and (x

′(3)
1 , x

′(3)
2P , x

′(3)
3PN , x

′(3)
3PP )

are two groups of solutions for the given cost c ∈ (0, c1). If x
(3)
1 = x

′(3)
1 , then the system of

equations implies that the other six cutoff points must be equal pairwise, then the two solutions

are exactly the same. Without loss of generality, let x
(3)
1 < x

′(3)
1 , then definitely the type-x

′(3)
1

buyer 1 can get positive surplus by playing the equilibrium strategies with the first profile of

cutoff points, but she gets zero if playing the equilibrium strategies with prime critical value

profile. Since buyer 1 is the first mover, she can switch to the first equilibrium strategies by

deviation, and other rational players would expect this correctly. Because the intuitive criterion

requires that players should not expect other players to find some deviation to be equilibrium-

dominated, and all players are sure of it. The argument shows that only the equilibrium which

has the lowest cutoff point x
(3)
1 survives.

The equilibrium can be easily obtained with asymmetric buyers, just like Proposition 3

parallel to Proposition 1. Therefore, for our main focus it is omitted here. We now turn to the

general n-buyer case.
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The conditions that cutoff values should satisfy in three-buyer case can shed light on the

equilibrium characterization for general n-buyer case. We first give some additional definitions

for expressing the equilibrium results with n buyers in a suitable way. Given that buyer 1

participates in the auction, buyer i (i > 1) should observe one signal si ∈ {P} × {P, N}i−2,

and this signal can recover all signals received by those buyers who attend the auction before

i. Let Φi(si) be the set of buyers who have entered into the auction when buyer i’s signal is

si ∈ {P} × {P, N}i−2, and denote the counterpart signal received by buyer j ∈ Φi(si) as s∗j (si)

which is recovered from si. Among those buyers j ∈ Φi(si), the buyer who attends the auction

last before i is denoted by j0(si). The critical value of this buyer j0(si) plays a key role in

specifying the condition for the cutoff strategy for buyer i receiving a signal si, since buyer

j0(si) is on average the strongest opponent for buyer i regardless of the later buyers for the time

being. Set Υi as the set of buyers who have made entrance decisions after i. Conditional on si

and the event that any buyer k ∈ Υi does not participate in the auction, the counterpart signal

received by those buyers k ∈ Υi is denoted by s∗k(si).

If there is no participation cost, namely, c = 0, all buyers will participate in the auction

regardless of their values. So the corresponding critical values are x
(n)
i,si

= v for all i and all

si ∈ {P, N}i−1. Then all buyers’ critical values are in the range of (v, v̄) for sufficiently small

cost c, since all critical values are continuous functions of the cost c.

Now we are ready to state the proposition summarizing an equilibrium with n potential

buyers.

Proposition 6 Suppose the participation cost is sufficiently small. In equilibrium, the total

2n − 1 cutoff points can be classified into two categories:

(1). if the first buyer does not participate, this reduces to the (n− 1)-buyer case. The 2n−1 − 1

cutoff points, x
(n)
i,{N,ŝi}

for i = 2, · · · , n and ŝi ∈ {P,N}i−2, are given by

x
(n)
i,{N,ŝi}

= x
(n−1)
i−1,ŝi

. (9)

(2). if the first buyer participates, which is the case that corresponds to the other 2n−1 cutoff

points, x
(n)
1 and x

(n)
i,si

for i = 2, · · · , n and si ∈ {P} × {P,N}i−2, the zero expected payoff
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conditions that define those critical values would be

(x
(n)
i,si

− v)
∏

k∈Υi

F (x
(n)
k,s∗

k
(si)

) = c, for Φi(si) = ∅; (10a)

1
∏

j∈Φi(si)

[

1 − F (x
(n)
j,s∗j (si)

)
]

∫ x
(n)
isi

x
(n)
j0,sj0

∏

j∈Φi(si)

(F (v) − F (x
(n)
j,s∗j (si)

))dv = c, for Υi = ∅; (10b)

∏

k∈Υi

F (x
(n)
k,s∗

k
(si)

)

∏

j∈Φi(si)

[

1 − F (x
(n)
j,s∗j (si)

)
]

∫ x
(n)
isi

x
(n)
j0,sj0

∏

j∈Φi(si)

(F (v) − F (x
(n)
j,s∗j (si)

))dv = c, otherwise; (10c)

with monotonic constraints x
(n)
i,si

> x
(n)
j1,s∗j1

(si)
> x

(n)
j2,s∗j2

(si)
if j1 > j2, all j1, j2 ∈ Φi(si).

Remark 5 By assumption, this proposition does not describe equilibrium strategies for all

possible values of participation cost c. Actually, a complete investigation needs to classify the

region of participation cost into several parts, which is implicitly given by some other groups

of equations that are reduced from conditions in part (2) of the Proposition 6. Hence this

proposition provides a basic description instead of a perfect characterization.

In our sequential participation environment, each buyer can participate or not participate in

the auction, therefore there are two subgames rooted from each buyer’s given signal or informa-

tion set in standard game theory terminology where she should move. Since the first buyer does

not have any information other than prior belief, we can regard she has one information set ∅.

Therefore, every buyer i has 2i−1 possible information sets, or every buyer has to specify 2i−1

parameters in total, one for each information set. Thus, there are overall 2n − 1 cutoff points to

be determined in equilibrium. It seems to be a demanding task to work out. However, it is not

so difficult to derive all the conditions.

If the first buyer does not participate, the second buyer would behave as if she were the

first buyer and there were only n − 1 possible buyers. Hence in this subcase, the total 2n−1 − 1

cutoff values are exactly the same as the (n − 1)-buyer case, which is just what part (1) of the

Proposition 6 says.

On the other hand if the first buyer participates, she would send a P signal to all the followers.

Together with the first buyer’s critical value x
(n)
1 , there are 2n−1 parameters to be determined in

this subcase. Since all conditions are concerning those buyers who have exactly critical values in

hand, we only consider those buyers. Conditional on the buyer i’s signal si ∈ {P}×{P, N}i−2,12

if buyer i participates, her value x
(n)
i,si

should be larger than all the critical values of those buyers

12Note that s1 ∈ ∅ and s2 ∈ {P} × ∅ in this subcase.
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who have entered into the auctions before her and she should also expect she can only win

against those followers who do not participate. The term in the numerator of the left hand side

of equation (10c) other than the integration represents the probability of the event that those

buyers after i do not participate conditional on si. The other parts of the left hand side of

equation (10c) refer to the expected profit by winning against those buyers participating before

i conditional on the received signal si. The overall profit should just cover the participation cost

c, which yields condition (10c). Now it is easy to understand equation (10a) and (10b) since

they are just special cases, where there are no buyers participating before i for (10a) and there

are no potential buyers participating after i for (10b).

4 Who wishes to go first?

In the previous sequential participation model, the sequence of entrance is predeterminate in-

stead of being part of the equilibrium strategy, therefore a natural question one would ask would

be who wishes to go first. That is, would the leader get higher payoff if she were the follower,

or would the follower be likely to earn more surplus if she switched to being the leader? The

answer might rely on when you ask buyer this question, i.e., in ex ante stage or interim stage.

Here ex ante stage refers to the time when buyer does not know her own valuation and interim

stage refers to the time when buyer knows her own valuation but has not observed any actions

of her opponent(s). We will discuss this problem in this section, but not trying to endogenize

the order of participation in our sequential participation auction game.

We consider the setting with two buyers. If the two buyers are symmetric, the expected

payoff in the unique equilibrium would be sufficient for evaluating the buyers’ incentives to

switch between the roles of leader and follower.13 Let si(vi) be the interim expected equilibrium

payoff of buyer i, which can be obtained in the following way.

• The payoff s1(v1) is zero if v 6 v1 < x1 since the leader with value in this range will

not participate. When x16v16x2P , the leader incurs a cost c to participate, and wins

only if the follower does not participate after observing leader’s entrance, and this event

occurs with probability F (x2P ). Conditional on winning, the leader just needs to pay the

reservation price to get the object. Therefore, it yields the payoff F (x2P )(v1 − v) − c for

v1 ∈ [x1, x2P ]. Given x2P < v1 6 v̄, the leader gets the object at reservation price if

the follower does not participate, which occurs with probability F (x2P ). Otherwise she

wins only if the follower has value in the range (x2P , v1), which occurs with probability

13With asymmetric buyers, since the equilibrium depends on which buyer is the leader, it is necessary to evaluate
the payoff for two buyers in both equilibria.
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F (v1)−F (x2P ), and her expected payment for the object would be Ev2 [v2|x2P < v2 < v1].

Together the payoff would be F (x2P )(v1 − v) + (F (v1) − F (x2P ))(v1 − Ev2 [v2|x2P < v2 <

v1]) − c for v1 ∈ (x2P , v̄]. Hence after rearranging terms, the function s1(v1) is given by

s1(v1) =



























0, if v 6 v1 < x1;

F (x2P )(v1 − v) − c, if x1 6 v1 6 x2P ;

F (x2P )(v1 − v) +

∫ v1

x2P

(F (y) − F (x2P ))dy − c, if x2P < v1 6 v̄.

(11)

• The follower’s payoff is also zero if v 6 v2 < x2N , since she would never attend the

auction regardless of the signal received due to the fact that x2N < x1 < x2P . If the

follower’s value is drawn from [x2N , x2P ], she participates on observing a signal N and

does not participate on observing a signal P . In the event that the leader does not

participate which occurs with probability F (x1), the follower wins the object by paying

the reservation price. This yields the payoff F (x1)(v2 − v − c) for v2 ∈ [x2N , x2P ]. If the

follower’s value is higher than x2P , she participates for sure and can win in two events.

One case is when the leader is absent, which occurs with probability F (x1), and she wins

the object by paying reservation price. The other case is when the leader’s value locates in

the range (x1, v2), which occurs with probability F (v2)−F (x1), and the follower’s payment

is Ev1 [v1|x1 < v1 < v2] conditional on winning. Therefore, the follower’s payoff is given by

F (x1)(v2 − v) + (F (v2)−F (x1))(v2 −Ev1 [v1|x1 < v1 < v2])− c for v2 ∈ (x2P , v̄]. Thus, we

have

s2(v2) =



























0, if v 6 v2 < x2N ;

F (x1)(v2 − v − c), if x2N 6 v2 6 x2P ;

F (x1)(v1 − v) +

∫ v2

x1

(F (y) − F (x1))dy − c, if x2P < v2 6 v̄.

(12)

The payoffs are demonstrated in Figure 5.

Note that si(vi), i = 1, 2, is piecewise linear for vi ∈ [v, x2P ], and s′1(v) = s′2(v) = F (v) for

v ∈ (x2P , v̄). It is sufficient to investigate which one is larger for the values s1(x2P ) and s2(x2P ),

in order to know buyers’ incentives to switch. Simple algebra shows that s1(x2P ) > s2(x2P ).14

Now let v∗ ∈ (x1, x2P ) be such that s1(v
∗) = s2(v

∗). Then immediately we have the following

proposition

14This is because s1(x2P ) = F (x2P )(x2P − v) − c and s2(x2P ) = F (x1)(x2P − v − c), the sign of the difference
s1(x2P )− s2(x2P ) can be easily determined by identity substitution for the term c(1−F (x1)) from equation (3b).
And the sign is positive.
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v x2N x1 x2P v̄ vv
∗

payoff

0

s1(v1)

s2(v2)

Figure 5: The Payoffs for Two Symmetric Buyers

Proposition 7 Suppose c ∈ (0, c0) and there are two symmetric buyers. Then both buyers would

prefer to be the follower if their values v ∈ (x2N , v∗), and prefer to be the leader if their values

v ∈ [v∗, v̄], and they are indifferent between being the leader and the follower if v ∈ [v, x2N ].

Buyer always prefers being in the role that leads to higher payoff for her. When the value is

too low, it is optimal to be outside, this is true for both the leader and the follower and there

is no indifference between the two roles. If the value is moderate, i.e., v ∈ (x2N , x1), the leader

would not participate but the follower would participate conditional on receiving a signal N ,

which occurs with positive probability. Since entrance can promise positive expected payoff,

buyer surely prefers to be the follower in this case. Also note that expected payoff is continuous

in one’s own value, so this dominance relationship should hold for some interval containing any

v ∈ (x2N , x1), and precisely the interval is (x2N , v∗). For high value close to v̄, the leader meets

with an absent follower with high probability, i.e., F (x2P ), and wins the auction at reservation

price, while the follower meets with an absent leader only with probability F (x1). The event

of meeting with an absent follower benefits the leader a lot. Therefore, the leader’s payoff

dominates the follower’s for high values.

But on average, the buyer’s ex ante expected payoff does not have a substantiated dominance

relationship yet, since the answer to this question relies on both the c.d.f and size of the cost c,

which cannot be classified in a simple way.
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5 Comparison with Simultaneous Participation

Our sequential participation auction game may be regarded as a Stackelberg version for auction

competition while the simultaneous participation appears to be a Cournot version for auction

competition. Therefore, it is natural to compare the model analyzed here with those simultane-

ous ones.

We make a comparison by focusing on the symmetric buyers. Suppose there are n potential

symmetric buyers who compete for an object in our basic settings. Then in Bayesian equilibrium,

each buyer would use a cutoff strategy, and the buyer participates if and only if her value exceeds

some critical point y(n), which requires every buyer have the same cutoff point.15 Then the

equilibrium is determined by the following equation,

(y(n) − v)[F (y(n))]n−1 = c. (13)

Note that the buyer with critical value y(n) participates in the auction and wins against her

opponents only if all other buyers do not enter, which occurs with probability [F (y(n))]n−1.

We first determine the upper bound of the participation cost which can drive some buyers

out of the auction. In other words, if participation cost reaches this bound, there exists a

potential buyer who would never participate in the auction regardless of what her valuation is.

Let y(n) = v̄, equation (13) tells that c = ∆v. Note that no matter how many potential buyers,

the upper bound of the cost in simultaneous participation models does not change. While in

our sequential model, this bound turns to be smaller as the number of buyers increases. For

instance, it is c0 for two-buyer environment from Proposition 1, and it becomes c1 (c1 < c0)

when there are three buyers from Proposition 5. If there exists some buyer who would never

participate in the auction based on her received information regardless of her values, we call this

buyer is driven-out, and we say the cost at this level has driven-out effect. If there exist more

such buyers in one environment than in another, the driven-out effect is said to be stronger in

the former circumstance. Hence, we get

Proposition 8 Suppose the buyers are symmetric. The driven-out effect caused by the partic-

ipation cost is the same as the number of buyers increases in second price auction game with

simultaneous participation. However, the driven-out effect becomes stronger as the number of

buyers increases in second price auction game with sequential participation. For a given par-

ticipation cost, the driven-out effect is more likely to happen in second price auction game with

sequential participation than in second price auction with simultaneous participation.

15Tan and Yilankaya (2006) show that if F (·) is concave, this equilibrium is unique.
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The following example illustrates the result of the proposition in the case of uniform distri-

bution.

Example 1 Let v = 0, v̄ = 1, F (v) = v. Then in sequential participation model, the critical

cost at which the driven out effect occurs is c0 = 0.3333 in two-buyer setting, c1 = 0.1295 in

three-buyer setting and c2 = 0.0568 in four-buyer setting, while the corresponding critical cost is

always ∆v = 1 in simultaneous participation model.16

This relates to our primary concern about the buyers’ information on participation. Now it is

clear that this information can prevent potential buyers from participating in the auction when

there exists participation cost. Actually, a small participation cost can deter the last buyer’s

entrance when the number of buyers is large. Example 1 says a cost c = 0.0568 (approximately

11% of the mean valuation) is enough to drive out a buyer when there are only four buyers in a

setting with uniform distribution. From this view, the simultaneous participation model might

not be desirable to describe the realistic situation, since it ignores the driven-out effect in the

participation decision which influences the competition itself in auctions.

6 Conclusion

In this paper, we explore the insights of sequential participation in second price auction when

there exists participation cost. We first analyze the existence and uniqueness of cutoff-strategy

equilibrium with two buyers in both symmetric and asymmetric settings. Then we extend

the equilibrium analysis to the environment with three buyers, and provide the equilibrium

characterization results for general n-buyer case. We also show the monotonicity of the critical

values with respect to participation cost in two-buyer settings. If two buyers are symmetric, the

follower’s cutoff value is increasing as participation cost increases, this is also true for the leader

if c.d.f. F (·) is concave. When two buyers are asymmetric, the monotonicity of cutoff point for

the follower remains true, and the monotonicity would hold true for the leader under concavity

of F1(·) and a dominance condition in reverse hazard rate.

We also discuss the incentives of two symmetric buyers over the order of participation,

without endogenizing the sequence of participation. It is shown that the valuation support can

be divided into three connected regions. In the lower region buyers are indifferent between

being a leader and a follower, but they prefer to be the follower if their values are drawn from

the middle region, and prefer to be the leader when their values locate in the high region. By

16
c0 is obtained from equation (2), c1 is solved from equation system (6), and c2 in four-buyer setting is achieved

from equation system in Proposition 6 part (2) with x
(4)
4PPP = 1 and c = c2.
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defining the driven-out effect, we find that sequential participation drives out buyers more easily

than simultaneous participation environment, which means the simultaneous participation model

might not be desirable to describe the real situations if buyers can observe others’ participation

and participation is costly.

An interesting open question is how the equilibrium looks like if the order of participation

is not predeterminate, but is part of the equilibrium. This requires an additional stage at

which the sequence of entrance is negotiated. Such specification can lead to another problem:

the negotiation itself and participation decision both are signals that convey valuation types.

Therefore, the new model needs to identify the effects of different signal types, which remains

to be investigated in future research.
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Appendix: Proofs

Proof of Proposition 1: Note that the buyer with critical value should be indifferent between

participating in auction and not participating, namely getting zero expected payoff; otherwise

the buyer with value slightly less than the critical level would find it optimal to attend the

auction, which violates the definition of cutoff points.

Obviously, the follower is able to get the object by paying a reservation price v and bearing

a participation cost when she observes the leader does not participate. Therefore, the critical

value x2N satisfies x2N = c + v.

It is also evident to show that the follower with signal P has higher critical threshold than the

leader’s. This is because the leader regards her opponent—the follower’s value drawn from [v, v̄],

and the follower with signal P regards her opponent—the leader’s value drawn from truncated

support [x1, v̄]. That is, the follower with signal P confronts a stronger opponent than the leader

does. Hence, it yields x2P > x1. Consider the type-x1 leader, she can win against her opponent

with value less than x2P at reservation price, with corresponding winning probability F (x2P ),

by incurring a participation cost if she participates. Then the leader’s indifference condition

reads

(x1 − v)F (x2P ) − c = 0,

which gives equation (3a).

We then consider the type-x2P follower’s indifference condition. Conditional on the signal

P received by the follower, the leader’s value is distributed over [x1, v̄]. Therefore if the fol-

lower with value x2P participates, she can win against her opponent who has value drawn from

[x1, x2P ], with corresponding winning probability F (x2P )−F (x1)
1−F (x1) . The expected price would be

∫ x2P

x1
v f(v)

F (x2P )−F (x1)dv conditional on her winning. In turn this yields type-x2P follower’s indif-

ference condition which reads

F (x2P ) − F (x1)

1 − F (x1)

[

x2P −

∫ x2P

x1

v
f(v)

F (x2P ) − F (x1)
dv

]

− c = 0.

Integration by parts and rearranging terms gives equation (3b).

It remains to show the two-equation system has solution and the solution is unique. To begin

with, we define a function φ(·) in x1 as:

φ(x1) =
1

1 − F (x1)

∫ x2P (x1)

x1

(F (v) − F (x1))dv − c,

where the upper bound of integration x2P (x1) is a function of x1 implicitly defined by (3a),
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note that x2P (·) is differentiable and strictly decreasing since F (·) is differentiable and strictly

increasing. Differentiating φ(x1) with respect to x1 yields

φ′(x1) =
1

(1 − F (x1))2

{[

(

F (x2P ) − F (x1)
)∂x2P

∂x1
− f(x1)(x2P − x1)

]

(

1 − F (x1)
)

+ f(x1)

∫ x2P

x1

(F (v) − F (x1))dv

}

<
1

(1 − F (x1))2
(

1 − F (x1)
)(

F (x2P ) − F (x1)
)∂x2P

∂x1

< 0,

which says φ(·) is monotonicly decreasing. Given the possible maximum value of x1 = x2P ,

φ(x2P ) = −c < 0. The possible minimum value x1 is c + v, for the meaningful x2P would not

exceed the upper bound of support v̄. Therefore, we just need to show φ(c + v)>0, and the

existence and uniqueness of solutions both would follow. Note that

φ(c + v) =
1

1 − F (c + v)

∫ v̄

c+v

(F (v) − F (c + v))dv − c,

where x2P (c + v) = v̄. Simple algebra shows ∂
∂c

φ(c + v) < −1, φ(c + v)|c=0 =
∫ v̄

v
F (v)dv > 0

and lim
c→(∆v)−

φ(c + v) = −∆v. It tells that the equation φ(c + v) = 0 with unknown parameter

c has a unique solution c0 ∈ (0,∆v), which is just the definition of c0. By the monotonicity of

φ(c + v) in c, it follows that φ(c + v)>0 for c ∈ (0, c0). This completes the proof. �

Proof of Proposition 2: Since x2N = c + v, the monotonicity for x2N is immediate. Let x1

and x2P be two functions of c implicitly defined by equations (3a) and (3b) in Proposition 2.

Differentiating these two equations with respect to c, we then get

F (x2p)
∂x1

∂c
+ f(x2P )(x1 − v) ·

∂x2P

∂c
= 1;

−
f(x1)

∫ x2P

x1
[1 − F (v)]dv

[1 − F (x1)]2
·
∂x1

∂c
+

F (x2P ) − F (x1)

1 − F (x1)
·
∂x2P

∂c
= 1.

Solving for ∂x1
∂c

and ∂x2P

∂c
yields

∂x1

∂c
=

1

Ω

∣

∣

∣

∣

∣

∣

1 f(x2P )(x1 − v)

1 F (x2P )−F (x1)
1−F (x1)

∣

∣

∣

∣

∣

∣

,
∂x2P

∂c
=

1

Ω

∣

∣

∣

∣

∣

∣

F (x2p) 1

−
f(x1)

R x2P
x1

[1−F (v)]dv

[1−F (x1)]2
1

∣

∣

∣

∣

∣

∣

> 0,
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where

Ω =

∣

∣

∣

∣

∣

∣

F (x2p) f(x2P )(x1 − v)

−
f(x1)

R x2P
x1

[1−F (v)]dv

[1−F (x1)]2
F (x2P )−F (x1)

1−F (x1)

∣

∣

∣

∣

∣

∣

> 0.

Therefore, the monotonicity for x1 holds if the numerator N1 = F (x2P )−F (x1)
1−F (x1) − f(x2P )(x1 − v)

is positive.

Now assume F (·) is concave. By substituting equations (3a) and (3b) into this term, we

have

N1 = c ·
F (x2P ) − F (x1)

∫ x2P

x1
[F (v) − F (x1)]dv

− c ·
f(x2P )

F (x2P )

= c

[

f(v̂)(x2P − x1)

[F (ṽ) − F (x1)](x2P − x1)
−

f(x2P )

F (x2P )

]

> c

[

f(v̂)

F (x2P )
−

f(x2P )

F (x2P )

]

> 0,

where the second line follows by applying the mean value theorem to the numerator and applying

mean value theorem for integration to the denominator with v̂, ṽ ∈ (x1, x2P ), and the positiveness

of the third line follows if we promise the concavity of F (·) which means f(·) is a non-increasing

function. This completes the proof. �

Proof of Proposition 4: The argument is exactly the same as the proof of Proposition 2.

After differentiating both sides of equations (5a) and (5b) with respect to c by regarding x1 and

x2P as implicit functions of c, we get

∂x1

∂c
=

1

Ωa

∣

∣

∣

∣

∣

∣

1 f2(x2P )(x1 − v)

1 F1(x2P )−F1(x1)
1−F1(x1)

∣

∣

∣

∣

∣

∣

,
∂x2P

∂c
=

1

Ωa

∣

∣

∣

∣

∣

∣

F2(x2p) 1

−
f1(x1)

R x2P
x1

[1−F1(v)]dv

[1−F1(x1)]2
1

∣

∣

∣

∣

∣

∣

> 0,

where

Ωa =

∣

∣

∣

∣

∣

∣

F2(x2P ) f2(x2P )(x1 − v)

−
f1(x1)

R x2P
x1

[1−F1(v)]dv

[1−F1(x1)]2
F1(x2P )−F1(x1)

1−F1(x1)

∣

∣

∣

∣

∣

∣

> 0.
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By substituting, we get

∂x1

∂c
=

1

Ωa

[

F1(x2P ) − F1(x1)

1 − F1(x1)
− f2(x2P )(x1 − v)

]

=
1

Ωa

[

c ·
F1(x2P ) − F1(x1)

∫ x2P

x1
[F1(v) − F1(x1)]dv

− c ·
f2(x2P )

F2(x2P )

]

=
c

Ωa

[

f1(v
′)(x2P − x1)

[F1(v′′) − F1(x1)](x2P − x1)
−

f2(x2P )

F2(x2P )

]

>
c

Ωa

[

f1(x2P )

F1(x2P )
−

f2(x2P )

F2(x2P )

]

> 0;

where the third line follows by mean value theorem and mean value theorem for integration with

v′, v′′ ∈ (x1, x2P ), the fourth line follows by concavity of F1(·), and the last inequality follows by

the dominance in terms of reverse hazard rate. The proof is complete. �

Proof of Lemma 1: For convenience, we restate the equations that define c1 and two critical

values x
∗(3)
2P and x

∗(3)
1 as follows.

(x
∗(3)
1 − v)[F (x

∗(3)
2P )]2 = c1; (14a)

1

1 − F (x
∗(3)
1 )

∫ x
∗(3)
2P

x
∗(3)
1

(F (v) − F (x
∗(3)
1 ))dv = c1; (14b)

1

[1 − F (x
∗(3)
1 )][1 − F (x

∗(3)
2P )]

∫ v̄

x
∗(3)
2P

[F (v) − F (x
∗(3)
2P )][F (v) − F (x

∗(3)
1 )]dv = c1. (14c)

We now prove c1 is well-defined through the above equations. To see this, given c1 ∈ (0, c0), the

first two equations define two continous functions x
∗(3)
1 (c1) and x

∗(3)
2P (c1). Let

λ(c1) =
1

[1 − F (x
∗(3)
1 )][1 − F (x

∗(3)
2P )]

∫ v̄

x
∗(3)
2P

[F (v) − F (x
∗(3)
2P )][F (v) − F (x

∗(3)
1 )]dv − c1,

which can be regarded as a continuous function in c1. Since x
∗(3)
1 (0) = x

∗(3)
2P (0) = v for c1 = 0 and

x
∗(3)
1 (c0) = c0+v, x

∗(3)
2P (c0) = v̄ for c1 = c0, we have λ(0) =

∫ v̄

v
F 2(v)dv > 0 and λ(c0) = −c0 < 0.

By continuity of λ(·), there exists c1 ∈ (0, c0) such that λ(c1) = 0.

It remains to show that c1 is uniquely determined by these equations, which would be true
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if λ(·) is monotonicly decreasing. We now show the monotonicity of λ(·). By chain rule

dλ

dc1
=

∂λ

∂x
∗(3)
1

·
∂x

∗(3)
1

∂c1
+

∂λ

∂x
∗(3)
2P

·
∂x

∗(3)
2P

∂c1
+

∂λ

∂c1

= −
f(x

∗(3)
1 )

∫ v̄

x
∗(3)
2P

[1 − F (v)][F (v) − F (x
∗(3)
2P )]dv

[

1 − F (x
∗(3)
1 )

]2[
1 − F (x

∗(3)
2P )

]

·
∂x

∗(3)
1

∂c1

−
f(x

∗(3)
2P )

∫ v̄

x
∗(3)
2P

[1 − F (v)][F (v) − F (x
∗(3)
1 )]dv

[

1 − F (x
∗(3)
1 )

][

1 − F (x
∗(3)
2P )

]2
·
∂x

∗(3)
2P

∂c1
− 1.

Note that here ∂λ

∂x
∗(3)
1

and ∂λ

∂x
∗(3)
2P

both are negative. Using the same method as in the proof of

Proposition 2, differentiating equations (14a) and (14b) with respect to c1 yields

F 2(x
∗(3)
2P )

∂x
∗(3)
1

∂c1
+ 2F (x

∗(3)
2P )f(x

∗(3)
2P )(x

∗(3)
1 − v) ·

∂x
∗(3)
2P

∂c1
= 1;

−
f(x

∗(3)
1 )

∫ x
∗(3)
2P

x
∗(3)
1

[1 − F (v)]dv

[1 − F (x
∗(3)
1 )]2

·
∂x

∗(3)
1

∂c1
+

F (x
∗(3)
2P ) − F (x

∗(3)
1 )

1 − F (x
∗(3)
1 )

·
∂x

∗(3)
2P

∂c1
= 1.

Therefore, we have

∂x
∗(3)
1

∂c1
=

1

Ω2

∣

∣

∣

∣

∣

∣

∣

1 2F (x
∗(3)
2P )f(x

∗(3)
2P )(x

∗(3)
1 − v)

1
F (x

∗(3)
2P

)−F (x
∗(3)
1 )

1−F (x
∗(3)
1 )

∣

∣

∣

∣

∣

∣

∣

,

∂x
∗(3)
2P

∂c1
=

1

Ω2

∣

∣

∣

∣

∣

∣

∣

∣

F 2(x
∗(3)
2P ) 1

−
f(x

∗(3)
1 )

R x
∗(3)
2P

x
∗(3)
1

[1−F (v)]dv

[1−F (x
∗(3)
1 )]2

1

∣

∣

∣

∣

∣

∣

∣

∣

=
F 2(x

∗(3)
2P )

Ω2
+

f(x
∗(3)
1 )

∫ x
∗(3)
2P

x
∗(3)
1

[1 − F (v)]dv

Ω2[1 − F (x
∗(3)
1 )]2

> 0,

where

Ω2 =

∣

∣

∣

∣

∣

∣

∣

∣

F 2(x
∗(3)
2P ) 2F (x

∗(3)
2P )f(x

∗(3)
2P )(x

∗(3)
1 − v)

−
f(x

∗(3)
1 )

R x
∗(3)
2P

x
∗(3)
1

[1−F (v)]dv

[1−F (x
∗(3)
1 )]2

F (x
∗(3)
2P

)−F (x
∗(3)
1 )

1−F (x
∗(3)
1 )

∣

∣

∣

∣

∣

∣

∣

∣

> 0.

Note that substituting equations (14a) and (14b) into the numerator of
∂x

∗(3)
1

∂c1
which here is
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denoted as N2, it yields

N2 =
F (x

∗(3)
2P ) − F (x

∗(3)
1 )

1 − F (x
∗(3)
1 )

− 2F (x
∗(3)
2P )f(x

∗(3)
2P )(x

∗(3)
1 − v)

= c1

[

F (x
∗(3)
2P ) − F (x

∗(3)
1 )

∫ x
∗(3)
2P

x
∗(3)
1

[F (v) − F (x
∗(3)
1 )]dv

− 2
f(x

∗(3)
2P )

F (x
∗(3)
2P )

]

= c1

[

F (x
∗(3)
2P ) − F (x

∗(3)
1 )

∫ x
∗(3)
2P

x
∗(3)
1

[F (v) − F (x
∗(3)
1 )]dv

−
f(x

∗(3)
2P )

F (x
∗(3)
2P )

]

− c1
f(x

∗(3)
2P )

F (x
∗(3)
2P )

.

The same reasoning as in the argument of Proposition 2 shows that the term in the brackets

in the last line is positive when F (·) is concave. It implies that the only positive term in the

expression of dλ
dc1

is − 1
Ω2

·
c1f(x

∗(3)
2P

)

F (x
∗(3)
2P

)
· ∂λ

∂x
∗(3)
1

. If this positive term is balanced by other terms, the

fact that dλ
dc1

< 0 is promised. We only use the second part of
∂x

∗(3)
2P

∂c1
to pin down this term. That

is,

−
1

Ω2
·
c1f(x

∗(3)
2P )

F (x
∗(3)
2P )

·
∂λ

∂x
∗(3)
1

+
f(x

∗(3)
1 )

∫ x
∗(3)
2P

x
∗(3)
1

[1 − F (v)]dv

Ω2[1 − F (x
∗(3)
1 )]2

·
∂λ

∂x
∗(3)
2P

=
f(x

8(3)
1 )f(x

∗(3)
2P )

Ω2[1 − F (x
∗(3)
1 )]2[1 − F (x

∗(3)
2P )]2

[

(x
∗(3)
1 − v)F (x

∗(3)
2P )[1 − F (x

∗(3)
2P )]·

∫ v̄

x
∗(3)
2P

(1 − F (v))(F (v) − F (x
∗(3)
2P ))dv −

∫ x
∗(3)
2P

x
∗(3)
1

(1 − F (v))dv

1 − F (x
∗(3)
1 )

∫ v̄

x
∗(3)
2P

(1 − F (v))(F (v) − F (x
∗(3)
1 ))dv

]

<
f(x

∗(3)
1 )f(x

∗(3)
2P )

∫ v̄

x
∗(3)
2P

(1 − F (v))(F (v) − F (x
∗(3)
1 ))dv

Ω2[1 − F (x
∗(3)
1 )]2[1 − F (x

∗(3)
2P )]2

· χ0,

where

χ0 =

[

(x
∗(3)
1 − v)F (x

∗(3)
2P )[1 − F (x

∗(3)
2P )] −

∫ x
∗(3)
2P

x
∗(3)
1

(1 − F (v))dv

1 − F (x
∗(3)
1 )

]

=
c1

F (x
∗(3)
2P )

· [1 − F (x
∗(3)
2P )] −

c1 ·
∫ x

∗(3)
2P

x
∗(3)
1

(1 − F (v))dv

∫ x
∗(3)
2P

x
∗(3)
1

(F (v) − F (x
∗(3)
1 ))dv

= c1

[

1 − F (x
∗(3)
2P )

F (x
∗(3)
2P )

−
(1 − F (z1))(x

∗(3)
2P − x

∗(3)
1 )

(F (z2) − F (x
∗(3)
1 ))(x

∗(3)
2P − x

∗(3)
1 )

]

< 0;
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here the second line follows by identity substitution from equations (14a) and (14b), the third line

follows by applying mean value theorem for integration, with z1, z2 ∈ (x
∗(3)
1 , x

∗(3)
2P ). Therefore,

λ(·) is monotonic and c1 is uniquely determined, and c1 < c0 is self-evident. This completes the

proof. �

Proof of Proposition 5: If buyer 1 does not participate, it is evident that the situation

for the second and the third buyers is the same as the two-buyer auction game, hence the

critical points x
(3)
2N , x

(3)
3NP , x

(3)
3NN in this subcase are completely characterized by Proposition 1,

corresponding to x1, x2P , x2N respectively. This yields part (1).

Now consider the case in which the first buyer participates in the auction, which relates to

four critical points, x
(3)
1 for buyer 1, x

(3)
2P for buyer 2, and x

(3)
3PN and x

(3)
3PP for buyer 3. Obviously,

x
(3)
1 < x

(3)
2P < x

(3)
3PP and x

(3)
1 < x

(3)
3PN < x

(3)
3PP , since on observing former buyers’ entrance the

later buyer has to win with positive probability and hence should own a higher critical point, to

cover its participation cost.

Next we will specify the conditions that these critical points should satisfy by assuming no

buyer would never participate in the auction regardless of her valuation.

We begin with the type-x
(3)
1 buyer 1. Again she must be indifferent between participating

and not participating, i.e. participation yields her zero expected payoff. It is clear that if this

type of buyer 1 participates, she can win only if the other two buyers are absent. Because on

observing buyer 1’s participation, either buyer 2 or buyer 3 participates or both participate, their

values would be larger than x
(3)
1 . Given buyer 1 participates, the absence of buyer 2, i.e., a buyer

2 with value less than x
(3)
2P , occurs with probability F (x

(3)
2P ). Given that buyer 1’s participation

and buyer 2’s absence, buyer 3 would not enter if her value is less than x
(3)
3PN , which occurs with

probability F (x
(3)
3PN ). Since values are independent, the zero-payoff condition reads

(x
(3)
1 − v)F (x

(3)
2P )F (x

(3)
3PN ) = c,

which gives condition (7a).

Continue to consider buyer 2’s decision on observing buyer 1’s entrance. We are concerned

about the buyer with critical value x
(3)
2P . Note that buyer 2 knows buyer 1 has value in the range

[x
(3)
1 , v̄]. Again the type-x

(3)
2P buyer 2 must get zero expected payoff by participation in auction.

After attendance, she wins only if the third buyer does not enter, which occurs with probability

F (x
(3)
3PP ) since buyer 3 with value less than x

(3)
3PP would not attend the auction conditional on

observing buyer 1 and 2’s participation. Provided the absence of buyer 3, the type-x
(3)
2P buyer 2
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can win only against buyer 1 with value in the range [x
(3)
1 , x

(3)
2P ], with probability

F (x
(3)
2P

)−F (x
(3)
1 )

1−F (x
(3)
1 )

.

Hence the total winning probability is F (x
(3)
3PP ) ·

F (x
(3)
2P

)−F (x
(3)
1 )

1−F (x
(3)
1 )

. Conditional on winning, this

buyer 2’s expected payment for the object is
∫ x

(3)
2P

x
(3)
1

v f(v)

F (x
(3)
2P

)−F (x
(3)
1 )

dv. Then the indifference

condition for type-x
(3)
2P buyer 2 can be written as

F (x
(3)
3PP ) ·

F (x
(3)
2P ) − F (x

(3)
1 )

1 − F (x
(3)
1 )

[

x
(3)
2P −

∫ x
(3)
2P

x
(3)
1

v
f(v)

F (x
(3)
2P ) − F (x

(3)
1 )

dv

]

= c,

which yields the condition (7b) after integration by parts and rearranging terms.

We now turn to investigate the third buyer’s problem and specify two conditions for two

critical thresholds x
(3)
3PN and x

(3)
3PP . First consider the case in which buyer 1 participates in the

auction but buyer 2 does not, so buyer 3 observes a signal s3 = {P,N}. It suffices to focus on

buyer 3 with critical value x
(3)
3PN . This type-x

(3)
3PN buyer 3 only has one opponent—a buyer 1 with

value in the range [x
(3)
1 , v̄], hence her winning probability is

F (x
(3)
3PN

)−F (x
(3)
1 )

1−F (x
(3)
1 )

and her expected

payment for the object turns to be
∫ x

(3)
3PN

x
(3)
1

v f(v)

F (x
(3)
3PN

)−F (x
(3)
1 )

dv conditional on winning. Therefore,

the zero-payoff condition becomes

F (x
(3)
3PN ) − F (x

(3)
1 )

1 − F (x
(3)
1 )

[

x
(3)
3PN −

∫ x
(3)
3PN

x
(3)
1

v
f(v)

F (x
(3)
3PN ) − F (x

(3)
1 )

dv

]

− c = 0,

which gives equation (7c), a reduced form of the above indifference condition.

It remains to define the indifference condition for buyer 3 with critical value x
(3)
3PP . Note

that x
(3)
3PP > x

(3)
2P > x

(3)
1 . Conditional on observing the participation of the former two buyers,

if the type-x
(3)
3PP buyer 3 attends the auction, she wins against those who have value less than

her value x
(3)
3PP , i.e., buyer 1 with value in the range [x

(3)
1 , x

(3)
3PP ] and buyer 2 with value in the

range [x
(3)
2P ), x

(3)
3PP ]. Therefore, the winning probability for her is

F (x
(3)
3PP

)−F (x
(3)
1 )

1−F (x
(3)
1 )

·
F (x

(3)
3PP

)−F (x
(3)
2P

)

1−F (x
(3)
2P

)
,

the expected trading price would be the expected maximum value of buyer 1 and buyer 2, i.e.,

E[max{v1, v2}|x
(3)
1 < v1 < x

(3)
3PP , x

(3)
2P < v2 < x

(3)
3PP ]. Then, substituting all these terms into the

expected payoff yields the indifference condition

F (x
(3)
3PP ) − F (x

(3)
1 )

1 − F (x
(3)
1 )

·
F (x

(3)
3PP ) − F (x

(3)
2P )

1 − F (x
(3)
2P )

{

x
(3)
3PP −

F (x
(3)
2P ) − F (x

(3)
1 )

F (x
(3)
3PP ) − F (x

(3)
1 )

∫ x
(3)
3PP

x
(3)
2P

v
f(v)

F (x
(3)
3PP ) − F (x

(3)
2P )

dv

−
F (x

(3)
3PP ) − F (x

(3)
2P )

F (x
(3)
3PP ) − F (x

(3)
1 )

∫ x
(3)
3PP

x
(3)
2P

vd

[

F (v) − F (x
(3)
2P )

F (x
(3)
3PP ) − F (x

(3)
2P )

]2}

− c = 0,

which is equivalent to equation (7d) after integration by parts and rearranging terms.
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We then show part (2.b) and part (2.c) of the proposition, and delay the existence of the

solution to the equation system in part (2.a).

The next step is to specify the critical participation cost c at which buyer 3 with signal

(P, P ) has cutoff point x
(3)
3PP (c) = v̄. Provided x

(3)
3PP = v̄, the equation system (7a)–(7d) reduces

to the same form as system (6) together with x
(3)
3PN = x

(3)
2P , which means this critical cost is c1.

Note that λ(·) represents the expected payoff of buyer 3 with value v̄ and signal (P, P ), and λ(·)

is monotonic with λ(c1) = 0 from the proof of Lemma 1, then buyer 3 with signal (P, P ) would

never participate regardless of her value.

Let x
(3)
3PP = K and ignore the equation (7d). Then equations (7b) and (7c) imply x

(3)
2P = x

(3)
3PN

due to F (x
(3)
3PP ) = 1. Therefore, the expression (7a) reduces to (8a) and (7b) reduces to (8b).

These are the conditions stated in part (2.b).

We then show that the two-equation system of (8a) and (8b) has a unique solution for

c ∈ (c1, c0]. The system of part (2.b) is very similar to the one in Proposition 1 except for F (·)

in the first equation (3a) being replaced by F 2(·). Moreover, the conclusions and the proof are

exactly the same in both cases including the definition for the upper bound of the cost c which

only depends on the second equation in the system. So this two-equation system in part (2.b)

has a unique solution for c ∈ (c1, c0].

Immediately for c ∈ (c0, ∆v], we see that there is at most one buyer—buyer 1 who participates

in the auction, since buyer 2 finds her expected profit cannot cover her cost at any valuation

level even if buyer 3 does not participate. This is because the equations (14a) and (14b) do not

have a solution with critical values belonging to [v, v̄] for c ∈ (c0,∆v], which yields the result in

part (2.c).

As for the existence of solution in part (2.a), it is now self-evident. For c ∈ (0, c1), buyer

3 with signal (P, P ) must have a cutoff point less than v̄ by the monotonicity λ(·). Since all

other types of buyers, i.e. buyer 3 with signal (P, N), buyer 2 with signal P and buyer 1 all

confront with weaker opponents on average than buyer 3 with signal (P, P ) does, it implies that

the cutoff points x
(3)
3PN , x

(3)
2P and x

(3)
1 exist, and are less than x

(3)
3PP . This completes the proof. �

Proof of Proposition 6: The argument of this proposition follows the same procedure as the

proof of Proposition 5 but is easier since we do not need to specify the regions for different types

of equilibria. When calculating the expected profit conditional on winning, the mathematical

induction can be used to simplify the procedures to avoid too involving details. Since this is a

pure mathematical computation, we omit it. �

32



References

[1] Cao, Xiaoyong and Tian, Guoqiang (2008), “Second Price Auctions with Two-Dimensional

Private Information on Values and Participation Costs,” working paper.

[2] Cao, Xiaoyong and Tian, Guoqiang (2008a), “First Price Auctions with Participation

Costs,” Texas A&M University, working paper.

[3] Cao, Xiaoyong and Tian, Guoqiang (2008b), “Second Price Auctions with Differentiated

Participation Costs,” Texas A&M University, working paper.

[4] Campbell, Colin M. (1998),“Coordination Auctions with Entry,” Journal of Economic The-

ory, Vol.82, pp.425-450.

[5] Chakraborty, Indranil and Kosmopoulou, Georgia (2001), “Auctions with endogenous en-

try,” Economics Letters, Vol.72, pp.195-200.

[6] Cho, In-Koo and Kreps, David M. (1987), “Signaling games and stable equilibria,” Quar-

terly Journal of Economics, Vol.52, pp.179-221.

[7] Gal-Or, Esther (1985),“First Mover and Second Mover Advantages,” International Eco-

nomic Review, Vol. 26, No.3, pp.649-653.

[8] Green, Jerry and Laffont, Jean-Jacques (1984), “Participation Constraints in the Vickrey

Auction,” Economics Letters, Vol.16, pp.31-36.

[9] Harstad, Ronald M., Kagel, John H. and Levin, Dan (1990), “Equilibrium Bid Functions

for Auctions with an Uncertain Number of Bidders,” Economics Letters, Vol. 33, pp.35-40.

[10] Kaplan, Todd and Sela, Aner (2003), “Auctions with Private Entry Costs,” CEPR Discus-

sion Papers 4080.

[11] Kaplan, Todd R. and Sela, Aner (2006), “Second-Price Auctions with Private Entry Costs.”

Available at SSRN: http://ssrn.com/abstract=442521

[12] Krishna, V., “Auction Theory,”Academic Press, San Diego, California. 2002.

[13] Levin, D. and Smith, J.L. (1994), “Equilibrium in Auctions with Entry,” American Eco-

nomic Review, Vol.84, pp.585-599.

[14] Lu, Jingfeng (2006), “Endogenous entry and auctions design with private participation

costs,” MPRA Paper 934, University Library of Munich, Germany.

33



[15] McAfee, R.P. and McMillan, J. (1987), “Auctions with entry,” Economics Letters Vol.23,

pp.343-347.

[16] Menezes, F.M. and Monterio, P.K. (2000), “Auctions with Endogeneous Participation,”

Review of Economic Design, Vol.5, pp.71-89.

[17] Moreno, Diegon and Wooders, John (2006), “Auctions with heterogeneous entry costs,”

Economics Working Papers in Universidad Carlos III, Departamento de Economia.

[18] Samuelson, William F.(1985),“Competitive bidding with entry costs” Economics Letters,

Vol.17, No.1-2, pp.53-57.

[19] Stageman, Mark (1996),“Participation Costs and Efficient Auctions,” Journal of Economic

Theory, Vol.71, pp.228-259.

[20] Tan, Guofu and Yilankaya, Okan (2006), “Equilibria in Second Price Auctions with Par-

ticipation Costs,”Journal of Economic Theory, Vol.130, pp.205-219.

[21] Vickrey, William (1961), “Counterspeculation, Auctions, and Competitive Sealed-Tenders,”

Journal of Finance, Vol.16, No.1, pp.8-37.

34


