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Abstract

This paper investigates bidder’s covert behavior of endogenous information acquisition

on her opponents’ valuations in first price auction model with independent private values.

Such an information acquisition setting leads to bidimensional type space and bidimensional

strategy space. We consider two different specifications of the environments: the ex ante

information acquisition setting and the interim information acquisition setting. In equilibria

the expected payoffs of the bidder under these specifications could exceed the counterpart

payoffs of the corresponding standard sealed-bid auctions without information acquisition as

long as the cost is small, but the auctioneer has lower payoffs in these models than those

of the standard ones. Moreover, the incurred information cost becomes the deadweight loss,

resulting in inefficient outcomes.
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1 Introduction

The information acquisition problem in auctions occurs when a bidder does not have a clear

idea about her exact willingness to pay for the underlying auctioned object, which can happen

in both common value auctions and private value auctions. Much work has been done on this

problem. This paper considers another type of information acquisition problem in which the

bidder knows her valuation of the auctioned object and also tries to learn the other bidders’

valuations. Thus each bidder has a bidimensional type that consists of her own valuation (the

valuation type) and the signal about her opponent’s valuation (information type).

In realistic economic activities, like auctions or procurement, and other similar situations,

bidders can have information about their own estimations of the auctioned object or project, and

also information about their opponents’ evaluations of the underlying object besides their com-

mon prior. The latter information may come from bidders’ strategic actions or from some other

parties, which helps update bidders’ beliefs on opponents. In other words, this is an environment

where bidders have multidimensional information, or multidimensional types in game theory ter-

minology. For example, in China, many middle-size and small-size state-owned enterprises have

been privatized by way of procurement in the past several years. There are usually two or three

potential buyers. The interactions between these buyers are rather involved and they may know

part of their opponents’ inside information. Another example is the NBA draft. The recruiting

competition can be compared to an auction over the top-ranked candidates by assuming that

the preferences of candidates only rely on monetary benefit. It has been observed during the

period that clubs take measures to hide their own beliefs about candidates’ values, and employ

“detectives” to investigate the confidential information on other clubs’ prices for recruiting their

desired candidate(s). We can see that a club could have multidimensional information, its own

evaluation and possibly other clubs’ evaluations of candidates in this competitive environment.

This paper tries to capture such a multidimensional information structure by way of infor-

mation acquisition1 on opponents. For independent private values, the bidder’s own valuation

does not tell her any information about other bidders’ valuations. This means the bidder can-

not update her belief based on her own valuation signal. A natural question, then, is whether

the bidder has incentives to acquire information about her opponents’ valuations. Though it is

somewhat difficult to find an example in the context of independent private value such that it

is fully consistent with this kind of information acquisition behavior, our paper makes the first

1For simplicity, we always use “information acquisition” to refer to the bidder’s acquiring information about
her opponents’ private valuations. Sometimes information acquisition is abbreviated as IA. This is different from
the meaning elsewhere in the literature. Sometimes information acquisition, information acquiring, information
collection, and collecting information are used interchangeably.
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attempt to model bidders’ bidimensional types and bidimensional strategies in a simple setting.

The auction format we mainly focus on is the first price sealed-bid auction (abbreviated

as FPA), since this sealed-bid auction has been widely used in practice, such as in auctioning

mineral rights in government-owned land, the sales of artwork and real estate as well as procure-

ment. Examples include the U.S. offshore oil and gas lease auctions, the UK Treasury securities

auctions which are the multiunit equivalent of the first-price auction (every winner pays her own

bid).2 As Klemperer (2003, pp.2) has claimed, sealed-bid designs frequently (but not always)

both attract a larger number of serious bidders and are better at deterrence of collusion than as-

cending designs, see also Klemperer (1998, 2000, 2002). Maskin and Riley (1984) show that first

price sealed-bid auction is the most profitable one amongst the standard auctions when bidders

are risk-averse. When considering bidders have outside options, Kirchkamp et al. (2008) show

that bidders in first-price auctions have more overbidding with outside options than without,

and first-price auctions yield more revenue than second-price auctions do. As for second-price

sealed-bid auctions (SPA) or Vickrey Auctions, it might be trivial to consider such a type of

information acquisition on opponents’ valuations because opponents’ signals do not play any role

in the formulation of strategies in SPA. All these reasons lead us to consider first price auctions.

In our paper, the bidder can covertly incur a cost to achieve a noisy signal conveying infor-

mation about her opponents’ valuations. We assume neither the bidder’s information acquisition

choice nor the signal received by the bidder can be observed by other bidders. For simplicity,

the accuracy of the signal and the cost of the signal are exogenously determined. In our pri-

vate value auction model, we analyze only the two-bidder case, where each bidder’s valuation

of the auctioned object is independently drawn from an identical distribution that has only two

possible values.

We consider two different specifications of the environments: the ex ante information acquisi-

tion setting where bidders invest in opponents’ valuations before observing their own valuations

and the interim information acquisition setting where bidders invest in opponents’ valuations

after observing their own valuations. This is because both the interim and ex-ante information

acquisitions are equally interesting in daily economic activities. In some case one can obtain

information about one’s opponents prior to or when evaluating her own strength exactly in the

competition. For example, a firm needs to know about the incumbents of the market when it

considers entering that industry. In some case one may intentionally get to know his or her com-

petitors, namely, an incumbent would like to expect other firms’ reactions when it introduces

a new round of competition since the rivals’ strategies are of particular importance. In other

2See the survey paper by Porter (1995) and footnote 14 in Klemperer (2003, chapter 1). Besides, the U.S.
Treasury auctions used to be run with the multiunit version of first price auctions too.
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cases, one may know partial information on opponents as a byproduct with one’s own value and

then decide whether to invest in more.

Most studies of information acquisition in auctions focus on how to improve the estimate

of true valuation, since the bidder does not know her valuation when the auction begins, i.e.,

Matthews (1984) and Larson (2006) in the context of common values, Persico (2000) with affil-

iated values, Shi and Valimaki (2007) with interdependent values, Rezende (2005), Compte and

Jehiel (2007), Shi (2007) in private value settings. All these papers share the same characteristic

that bidders do not know their exact valuations at the beginning of the auction. Tan (1992)

and Arozamena and Cantillon (2004) investigate the incentives for investment before auctions,

and Hernando-Veciana (2006) considers the incentives of a bidder to acquire information in an

auction when her information acquisition decision is observed by the other bidders before they

bid.3

Our models have some similarities with that of Persico (2000), in which the bidder’s strategy

is bidimensional (consisting of the cost to induce more accurate signal and the bidding rule).

In our paper, the bidder’s strategy is also two-dimensional, namely, the bidder has freedom to

choose the probability to incur a fixed cost for receipt of a signal with certain accuracy and

specifies her bidding rules accordingly. However, the basic structures of the two papers are quite

different. Our paper also shares some common characteristics with Fang and Morris (2006).

First, both papers study the independent private value auction model where the bidder knows

exactly what her valuation is at the beginning of the auction. In addition, the costly information

acquisition behavior refers to collecting information about opponents’ valuations.

However, these two models have the following distinctions. First, in Fang and Morris’ model,

the behavior of acquiring information is exogenously given. Our paper aims to solve this problem

by endogenizing the choice of information acquisition, since in many realistic economic activities

the choice of acquiring information is part of bidders’ strategies. Secondly, there is no social

welfare loss in Fang and Morris’ binary-valuation model since no information cost is taken into

consideration. As such, the outcome is efficient from the view of social planner, which may be

regarded as “first best” outcome. However, contrary to Fang and Morris’ benchmark case, in

our model, costly information acquisition that can be regarded as an information rent leads to

deadweight loss in total social surplus, and consequently, it results in inefficient outcome, which

may be regarded as “second best” outcome4. In other words, generally information acquisition

3There is also a strand of papers studying information acquisition problem where the auctioneer has controlled
the information resources, such as Bergemann and Pesendorfer (2002) and Ganuza (2004), Eso and Szentes (2007).
Milgrom and Weber (1982) also investigate the seller’s information disclosure policy in affiliated setting.

4The equilibrium outcome in our model may be even worse than second best due to the dissipative information
cost, since it is not clear what exactly the second best outcome is.
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involves efficiency loss and the first best outcome cannot be achieved. Thirdly, our strategy

space is two-dimensional, while in Fang and Morris’ model it is of single dimension.

The contribution of this paper is as follows. First, our model takes an initial step in endo-

genizing information acquisition on opponent’s valuations in independent private value models.

Second, in our endogenous model, both the type space and strategy space of bidders are bidi-

mensional,5 which differs from the current literature. Third, we find that costly information

acquisition leads to deadweight loss in social surplus, and therefore, the equilibrium outcome

is inefficient. This tells that the efficient outcome is generally not achievable with costly in-

formation acquisition, and the corresponding policy implication would be that the information

acquisition behavior should be prevented to maximize social welfare.

The remainder of this paper is organized as follows. Section 2 describes the basic setting of

the model. Section 3 discusses bidders’ behavior when bidders can make ex ante information

acquisition choices. Section 4 considers a more relaxed environment in which bidders make

their information acquisition choices at an interim stage. Section 5 discusses the comparative

statics and implications: efficiency, surplus, and revenue across FPA and SPA formats. Section

6 discusses some variants of the model. Section 7 concludes. All the proofs are relegated to the

appendix.

2 Preliminaries

There are two risk neutral bidders indexed by i ∈ N = {1, 2} who compete for an underlying

object. The object is worth zero to the seller. Every bidder i ∈ N has a valuation vi ∈ V =

{Vl, Vh} for the object, where 0 < Vl < Vh. The valuations vi are private and independently

drawn from identical distribution. The prior distribution of bidder i’s valuation vi is given

by Pr{vi = Vl} = pl (0 < pl < 1), and Pr{vi = Vh} = ph = 1 − pl for i ∈ N . Then

v = (v1, v2) ∈ V × V is a profile of possible valuations. The auction format is the first price

sealed-bid auction. The reservation price of the seller is normalized to zero.

Each bidder i can incur an exogenous cost c(c ≧ 0) to get a noisy signal si which induces

information about her opponent’s private valuation. If the bidder does not want to collect

information about her opponent’s valuation, she does not incur any cost and cannot receive any

signal. Let ai ∈ {1, 0} denote bidder i’s choice of acquiring information, where ai = 1 means

5In our independent private value auction model, the type of the bidder is determined by the bidder’s valuation
type and the signal received, and the strategy of the bidder includes the information acquisition choice and
bidding rule. Therefore, our model relaxes the restrictive approach of encoding multidimensional types into a
single-dimensional variable. From the point of view in general mechanism design (cf. Hurwicz (1979), Mount and
Reiter (1974), and Tian (1994, 2004, 2006)), the information smuggling of changing multi-dimensional types (say,
by the inverse Peano curve) into a single-dimensional variable is essentially equivalent to one-dimensional type
problem.
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acquiring information and ai = 0 means not.

To clearly describe the information structure, we assume neither the bidder’s information

acquisition choice nor the signal received by the bidder can be observed by her opponent.

The signal si received by bidder i is drawn from the support S = {L,H} if she acquires

information. For convenience, we denote s0 as receiving no signal, and let S̄ = {L,H, s0}.
Given bidder j’s valuation and bidder i’s IA choice, the probability of the transmitted signal si

taking on each possible value is characterized by

Pr{si = L|vj = Vl, ai = 1} = Pr{si = H|vj = Vh, ai = 1} = q,

Pr{si = s0|vj = Vl, ai = 0} = Pr{si = s0|vj = Vh, ai = 0} = 1;
(1)

for i6=j, i, j ∈ N ; note that Pr{si = L|vj = Vl, ai = 1} + Pr{si = H|vj = Vl, ai = 1} = 1

and Pr{si = H|vj = Vh, ai = 1} + Pr{si = L|vj = Vh, ai = 1} = 1. Since all the signals are

characterized by one parameter q, we call q the accuracy of the signal. Without loss of generality,

we assume 0.5 < q ≦ 1. Bidder j updates her belief about i’s information type si according to

the signal distribution specified by equation (1).

The auction game we will analyze is a Bayesian game of incomplete information. The

type space of each bidder is T ≡{Vl, Vh}×{L,H, s0}. One representative type of bidder i is

ti = (vi, si) ∈ T . We call vi the valuation type, and si the information type. Given bidder i’s

signal si, bidder i updates her belief on her opponent’s valuation type according to the Bayes’

rule as follows. For si ∈ {L,H}, i6=j, i, j ∈ N ,

Pr{vj = Vl|si = L} =
plq

plq + ph(1 − q)
,

Pr{vj = Vl|si = H} =
pl(1 − q)

pl(1 − q) + phq
,

Pr{vj = Vl|si = s0} = pl;

(2)

and the conditional probability is also a probability distribution, i.e., Pr{vj = Vh|si} = 1 −
Pr{vj = Vl|si} for si ∈ S̄.

The primitives of the model are a tuple of five independent parameters as follows,

E =

{

< Vl, Vh, pl, q, c >: Vh > Vl > 0, pl ∈ (0, 1), q ∈ (0.5, 1], c ≧ 0

}

.

An element e ∈ E is called an auction environment.
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3 Ex Ante Endogenous Information Acquisition

3.1 The Model

In this section we consider an auction economy in which bidders can acquire information on their

opponents’ valuations ex ante. That is, the bidder can decide whether to collect information

before knowing her own valuation.

The procedures of this auction game are as follows:

• Stage 1. Bidders simultaneously decide whether to incur a cost c to collect information on

her opponent’s valuation, and this decision is not observed by her opponent.

• Stage 2. Nature draws a valuation for each bidder and tells the bidder only what her own

valuation is. Every bidder receives a signal si revealing her opponent’s valuation if she

incurs a cost c in Stage 1. Otherwise, she receives no signal. Bidders’ signal is unobservable

for her opponent.

• Stage 3. Bidders submit their bids simultaneously based on their own valuations, and

possibly their updated belief from the signal according to (2).

• Stage 4. The bidder whose bid is the highest receives the object and pays what she bids.6

In this ex ante IA auction game, bidder has bidimensional type (valuation type and infor-

mation type) and bidimensional strategy (acquiring information choice and bidding rule). To

analyze this auction economy, we first define a set of notations.

For interested primitive values, bidders may randomize IA choice and bid submitted. Let

Fa({0, 1}) denote the collection of probability distributions defined on the set {0, 1}, and let

Fb([0, Vh]) denote the collection of probability distributions defined on the interval [0, Vh]. We

define the bidder’s (mixed) strategy as follows. The (mixed) information acquisition choice

of bidder i is one element of Fa({1, 0}), which can be simply characterized by one number

πiE = Pr{ai = 1} where 1 > πiE > 0 (note that 1 − πiE = Pr{ai = 0}). A bidding rule7 is

a mapping B ∋ b : T −→ Fb([0, Vh]). The strategy space of bidder i is then characterized by

6When there is a tie, we choose the fair tie-breaking rule for q ∈ (0.5, 1) and Vickrey tie-breaking rule for
q = 1. The fair tie-breaking rule says in the tie each bidder wins the object with equal probability and pays what
she bids conditional on winning. The Vickrey tie-breaking rule is as follows: in the tie both bidders are asked to
report a number, either 0 or ǫ∗ where ǫ∗ is a sufficiently small positive number. If only one bidder reports ǫ∗,
then this bidder gets the object and pays her bid; else the bidders get the object with equal probability and the
bidder having the object pays her bid plus her reported number. Actually it does not matter which tie-breaking
rule is used for q < 1, we just choose the fair tie-breaking rule to explicitly and conveniently specify the strategic
form of the auction economy. For q = 1, however, the fair tie-breaking rule does not promise an equilibrium in
our auction game and the Vickrey rule will reinstall the equilibrium.

7In principle, the bid support is a subset of the real line. Without loss of generality, we focus on the bounded
support [0, Vh].
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AE
i = Fa({1, 0}) × B, and a typical element of AE

i would be AE
i = [πiE , (bi(t))t∈T ]. Note that

bi(t) represents a random variable (or equivalently a distribution) with potential support [0, Vh],

not a single bid. Then AE = AE
1 ×AE

2 denotes the strategy space of the auction game.

Given a strategy profile (AE
1 , AE

2 ) ∈ AE , there would be an ex ante joint distribution of the

random vector (a1, v1, b1; a2, v2, b2), Γ(a1, v1, b1; a2, v2, b2|AE
1 , AE

2 ) induced by (AE
1 , AE

2 ), here bi

refers to the bid that bidder i submits. The ex post payoff gE ≡ (gE
1 , gE

2 ) : {1, 0}2 × V2 ×
[0, Vh]2 −→ R

2 simply takes the form as follows according to the first price auction rule

gE
i (a1, v1, b1; a2, v2, b2) = (vi − bi) ·

[

1{bi > bj} +
1

2
1{bi = bj}

]

− aic, i 6= j, i = 1, 2, (3)

where 1{·} is the indicator function. Hence, the ex ante expected payoff GE ≡ (GE
1 , GE

2 ) :

AE −→ R
2 is given by

GE
i (AE

1 , AE
2 ) = EΓ(·|AE

1
,AE

2
)

[

gE
i (a1, v1, b1; a2, v2, b2)

]

, i = 1, 2, (4)

where the expectation of gE
i is taken with respect to the joint distribution of random vector

(a1, v1, b1; a2, v2, b2) induced by (AE
1 , AE

2 ).

A tuple < AE , GE > with primitive e ∈ E is then called an ex ante IA auction game.

3.2 Equilibrium

We first have the following lemma that tells type-Vl bidder bids her valuation Vl for sure in any

equilibrium.

Lemma 1 In any equilibrium of the ex ante IA auction game < AE , GE >, type-(Vl, s) bidders

bid Vl in pure strategy for s ∈ {H, L, s0}.

With this lemma in hand, we establish that the equilibrium for this FPA auction game

< AE , GE > is unique and symmetric. The characterization of the equilibrium is summarized

in the following proposition.

Proposition 1 The ex ante IA auction game < AE , GE > with primitive e ∈ E has a unique

equilibrium. More specifically:

(i). When the informative cost is small, i.e. c < plp
2
h(Vh − Vl)(2q − 1), then the unique

equilibrium of the FPA is symmetric and can be described as follows. For i = 1, 2

1. With probability πE, the bidder collects information about her opponent’s private val-

uation; with probability (1 − πE) the bidder does not collect information.
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2. bi(Vl, s) = Vl for s ∈ {s0, L, H}.

3. When q = 1, type-(Vh, L) bidder submits bi(Vh, L) = Vl for sure; when q < 1, type-

(Vh, L) bidder mixes over (Vl, δ1] according to the cumulative distribution function

(c.d.f) J l(·) specified by

J l(b) =
plq

πEph(1 − q)2
· b − Vl

Vh − b
, b ∈ (Vl, δ1]. (5)

4. Type-(Vh, s0) bidder mixes over [δ1, δ2] according to the c.d.f. Js0(·) specified by

Js0(b) =
pl + πE(1 − q)ph

ph(1 − πE)
· b − δ1

Vh − b
, b ∈ [δ1, δ2]. (6)

5. Type-(Vh,H) bidder mixes over [δ2, δ3] according to the c.d.f. Jh(·) specified by

Jh(b) =
pl(1 − q) + phq(1 − πEq)

πEphq2
· b − δ2

Vh − b
, b ∈ [δ2, δ3]. (7)

Here

δ1 =
plqVl + πEph(1 − q)2Vh

plq + πEph(1 − q)2
, (8)

δ2 =
ph(1 − πE)Vh + [pl + πE(1 − q)ph]δ1

pl + ph(1 − πEq)
, (9)

δ3 =
πEphq2Vh + [pl(1 − q) + phq(1 − πEq)]δ2

pl(1 − q) + phq
, (10)

and πE is determined by the following condition:

ph

{

plq(Vh − Vl) + [pl(1 − q) + phq(1 − πEq)](Vh − δ2)
}

− c

=ph

[

pl + πE(1 − q)ph

]

(Vh − δ1).
(11)

(ii). When c ≧ plp
2
h(Vh −Vl)(2q−1), the unique equilibrium of the FPA is symmetric and can

be described as follows. For i = 1, 2

1. πiE = 0. No bidder acquires information.

2. bi(Vl, s0) = Vl.

3. Type-(Vh, s0) bidder mixes over (Vl, γ] according to the c.d.f. J̄(·) specified by

J̄(b) =
pl

ph

· b − Vl

Vh − b
, b ∈ (Vl, γ], (12)
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where

γ = plVl + phVh. (13)

Remark 1 Provided that the informative cost is negligible, i.e., c = 0, the information acquisi-

tion probability πE reduces to 1, which is the same equilibrium outcome as that of the exogenous

information acquisition (Proposition 1 in Fang and Morris, 2006).

Remark 2 When q = 1, the switch of tie-breaking rule does not change the variables of interest.

For instance, the bidder’s expected surplus and seller’s revenue are continuous at q = 1. The

reason is that the equilibria are exactly the same under fair tie-breaking rule and Vickrey tie-

breaking rule for q < 1.

Remark 3 For equilibrium strategies in part (i), if πE = 0, type-(Vh, L) and type-(Vh,H) bid-

ders disappear, and the formula Js0(·) remains valid; if πE = 1, type-(Vh, s0) bidder disappears,

and the formulas J l(·) and Jh(·) remain valid.

The type of equilibrium depends on the value of the informative cost. There is information

acquisition only if the cost is small, i.e., c < plp
2
h(Vh − Vl)(2q − 1). In equilibrium, the bidder

with valuation Vl always bids her valuation Vl. If bidders acquire information, the type-(Vh, L),

type-(Vh, s0) and type-(Vh,H) bidders play mixed strategy in equilibrium, and type-(Vh, L)’s

support is lower than type-(Vh, s0)’s support which is also lower than type-(Vh,H)’s. This is

because type-(Vh, L) bidder perceives her opponent more likely to be type-Vl bidder, type-(Vh,H)

bidder regards her opponent more likely as type-Vh bidder, and type-(Vh, s0) bidder still takes

her ex ante belief. Then their best responses would result in such a support ranking. When the

informative cost is large, namely, c ≧ plp
2
h(Vh −Vl)(2q− 1), no bidder acquires information and

it degenerates to the standard FPA equilibrium with primitive e ∈ E .

The proof of the proposition is a little bit involved, but the basic idea is simple. It is always

true that if the bidder plays mixed strategy in submitting her bid, she should get exactly the same

expected surplus from any bid drawn from the corresponding support. This fact (indifference

condition implied by mixed strategy) can help pin down the c.d.f of the bid as well as the upper

or lower bound of the support. The same idea applies that the bidder should be indifferent

between acquiring information and not acquiring information if she plays mixed strategy in IA.

3.3 Demand for Information

We call πE the demand for ex ante information, since for any informative cost c, the equilibrium

is symmetric and unique.

10



Substituting δ1, δ2 and δ3 into (11) and rearranging terms yields the formula of the reverse

demand for information:

c = plph(Vh − Vl) ·
plphq(2q − 1)

plq + ph(1 − q)2πE

· (1 − πE)

(1 − phqπE)
. (14)

Immediately, we have the following intuitive result as a corollary of Proposition 1.

Corollary 1 (Demand for Ex Ante Information) The probability of ex ante IA, πE, has the

following properties:

(i). For all given values q ∈ (0.5, 1], πE is continuous in c for c ≧ 0, and strictly decreasing

in c for c ∈ [0, plp
2
h(Vh − Vl)(2q − 1)].

(ii). For all values c ≧ 0, πE is (weakly) increasing in accuracy q.

When the cost of the signal is small, i.e., c ≦ plp
2
h(Vh − Vl)(2q − 1), the probability of

acquiring information, πE , satisfies the usual law of demand. This is intuitive because a more

costly signal provides less incentive for the bidder when the accuracy keeps fixed.

On the other hand, a more informative signal will help the bidder evaluate her opponent

more effectively, and hence is more attractive to the bidder, provided the cost does not change.

Quantitatively, Figure 1 presents the simulated results for the impacts of cost c and accuracy

q on IA probability πE , respectively. It verifies the comparative results for πE . The primitive

values are Vh = 2, Vl = 1 and pl = ph = 0.5, which are chosen for computing convenience.

When considering the impact of the informative cost c, we choose two fixed values of accuracy,

q = 0.8 which is a representative of generic accuracy and q = 1 which represents the perfect

accuracy. When considering the impact of the accuracy q, we fix the cost to be c = 0 (special

costless case) and c = 0.02 (a representative of generic cost). These numeric values will be used

continually in the following sections for consistency. The kink points in the figure correspond

to the critical values of c and q that satisfy the condition c = plp
2
h(Vh − Vl)(2q − 1). In the left

sub-figure, the kink points are at critical value c = 0.075 for q = 0.8 and c = 0.125 for q = 1. In

the right sub-figure, the kink point is at the critical value q = 0.58 for c = 0.02.

In equilibrium, we see the type-Vl bidder ignores the signal received. Thus, one can expect

that if we relax the endogenous information acquisition assumption, i.e., permitting collecting

information at interim stage, the type-Vh’s demand for information can even be intensified. This

is investigated in the next section. We will discuss the welfare analysis and comparative statics

of ex ante IA equilibrium in section 5.
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Figure 1: Cost and Accuracy’s Impacts on IA Probability πE

Primitive: Vh = 2, Vl = 1, pl = ph = 0.5.

4 Interim Information Acquisition

In the previous section we consider the auction economy in which the bidder can freely choose

to collect information about her opponent’s valuation ex ante, but it is still very restrictive in

the sense that the type-Vl bidder in the interim stage would definitely ignore the signal received.

In other words, if the realized valuation is Vl, the bidder cannot benefit from the signal she

receives because she cannot do better than bid her valuation Vl. In this section we consider

the sealed-bid auction economy in which information acquisition choice is made after bidders’

valuations are realized, which will give the bidders more freedom to formalize their strategy in

the auction game.

4.1 The Model

The procedures of this auction game are as follows:

• Stage 1. Nature draws a valuation for each bidder and tells the bidder only what her own

valuation is.

• Stage 2. Every bidder decides whether to incur a cost c to receive a signal si based on

her valuation, and this decision as well as the signal received cannot be observed by her

opponent.

• Stage 3. Bidders submit their bids simultaneously based on their own valuations, and

possibly the updated belief from the signal received according to (2).

• Stage 4. The bidder whose bid is the highest receives the object and pays what she bids.
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In this interim IA auction game, bidder i’s strategy is a bidimensional mapping (ci,bi),

such that C ∋ ci : {Vl, Vh} −→ Fa({0, 1}) represents the IA choice rule and B ∋ bi : T −→
Fb([0, Vh]) represents the bidding rule, where AI

i = C × B is bidder i’s strategy space. Denote

((c1,b1), (c2,b2)) = (AI
1, A

I
2) ∈ AI

1 ×AI
2 ≡ AI as one strategy profile.8

Similar as the ex ante IA setting, given a strategy profile (AI
1, A

I
2) ∈ AI , there would be an ex

ante joint distribution of the random vector (a1, v1, b1; a2, v2, b2), Γ(a1, v1, b1; a2, v2, b2|AI
1, A

I
2)

induced by (AI
1, A

I
2), here (ai, vi, bi) refers to the realization profile of bidder i’s information

acquisition choice, valuation and bid sumbitted. The ex post payoff gI ≡ (gI
1 , g

I
2) : {1, 0}2×V2×

[0, Vh]2 −→ R
2 takes the same form as gE in (3), i.e.,

gI
i (a1, v1, b1; a2, v2, b2) = (vi − bi) ·

[

1{bi > bj} +
1

2
1{bi = bj}

]

− aic, i 6= j, i = 1, 2. (15)

Hence, the ex ante expected payoff GI ≡ (GI
1, G

I
2) : AI −→ R

2 is given by

GI
i (A

I
1, A

I
2) = EΓ(·|AI

1
,AI

2
)

[

gI
i (a1, v1, b1; a2, v2, b2)

]

, i = 1, 2, (16)

A tuple < AI , GI > with primitive e ∈ E is then called an interim IA auction game.

4.2 Equilibrium

The argument of Lemma 1 in the appendix does not require the detailed structure of informa-

tion acquisition, and therefore, the result that type-Vl bidder bids Vl in pure strategy in any

equilibrium remains valid in our interim IA setting. Then only the type-Vh bidder has incentives

to receive costly informative signal. Similarly, the equilibrium of the interim IA auction game

< AI , GI > is unique, symmetric and can be summarized as follows.

Proposition 2 The interim IA auction game < AI , GI > with primitive e ∈ E has a unique

equilibrium. More specifically:

(i). When the informative cost is small, i.e. 0 ≦ c < plph(Vh − Vl)(2q − 1), then the unique

equilibrium of the FPA is symmetric and can be described as follows. For i = 1, 2

1. πl
iI = 0. The type-Vl bidder does not incur any cost to receive any signal.

2. πh
iI = πI . The type-Vh bidder, with probability πI , chooses to incur a cost c to collect

information on her opponent’s private valuation; with probability 1− πI she does not

incur any cost.

8ci is effectively referred to two distributions on binary support {1, 0}. Hence, ci can be represented as
((πl

iI , 1 − πl

iI), (π
h

iI , 1 − πh

iI)) where πl

iI = Pr{ai = 1|vi = Vl} denotes the IA probability of the type-Vl bidder i

and πh

iI = Pr{ai = 1|vi = Vh} denotes that of the type-Vh bidder i.
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3. bi(Vl, s0) = Vl.

4. When q = 1, type-(Vh, L) bidder submits bi(Vh, L) = Vl for sure; when q < 1, type-

(Vh, L) bidder mixes over (Vl, β1] according to the c.d.f. Ql(·) specified by

Ql(b) =
plq

πIph(1 − q)2
· b − Vl

Vh − b
, b ∈ (Vl, β1]. (17)

5. Type-(Vh, s0) bidder mixes over [β1, β2] according to the c.d.f. Qs0(·) specified by

Qs0(b) =
pl + πI(1 − q)ph

ph(1 − πI)
· b − β1

Vh − b
, b ∈ [β1, β2]. (18)

6. Type-(Vh,H) bidder mixes over [β2, β3] according to the c.d.f. Qh(·) specified by

Qh(b) =
pl(1 − q) + phq(1 − πIq)

πIphq2
· b − β2

Vh − b
, b ∈ [β2, β3]. (19)

Here

β1 =
plqVl + πIph(1 − q)2Vh

plq + πIph(1 − q)2
, (20)

β2 =
ph(1 − πI)Vh + [pl + πI(1 − q)ph]β1

pl + ph(1 − πIq)
, (21)

β3 =
πIphq2Vh + [pl(1 − q) + phq(1 − πIq)]β2

pl(1 − q) + phq
, (22)

and πI is determined by the following condition

plq(Vh − Vl) + [pl(1 − q) + phq(1 − πIq)](Vh − β2) − c

=[pl + πI(1 − q)ph](Vh − β1).
(23)

(ii). When c ≧ plph(Vh −Vl)(2q−1), the unique equilibrium of the FPA is symmetric and can

be described as follows. For i = 1, 2

1. πl
iI = πh

iI = 0. No bidder acquires information.

2. bi(Vl, s0) = Vl.

3. Type-(Vh, s0) bidder mixes over (Vl, γ] according to the c.d.f. J̄(·), where J̄(·) and γ

are given by (12) and (13), respectively.

Remark 4 As in the unique equilibrium of ex ante information acquisition, when the informa-

tive cost is negligible, i.e., c = 0, the information acquisition probability πI reduces to 1.
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Remark 5 For equilibrium strategies in part (i), if πE = 0, type-(Vh, L) and type-(Vh,H) bid-

ders disappear, and the formula Qs0(·) remains valid; if πE = 1, type-(Vh, s0) bidder disappears,

and the formulas Ql(·) and Qh(·) remain valid.

In the unique equilibrium of interim information acquisition specified by Proposition 2, type-

Vl bidder has no incentive to acquire information and bids her valuation Vl, type-Vh bidder plays

a mixed strategy in information acquisition choice. The type-(Vh, L), type-(Vh, s0) and type-

(Vh,H) bidders randomly draw their bids in equilibrium, and type-(Vh, L)’s support is lower

than type-(Vh, s0)’s, while the latter is also lower than type-(Vh,H)’s. This is similar to the

bidding rule of ex ante information acquisition, so is the reason behind.

4.3 Demand for Interim Information

We call πI the demand for interim information, since for any informative cost c, the equilibrium

is symmetric and unique.

The strategies in interim IA equilibrium share the same formulas as those in ex ante IA

equilibrium, except for the indifference condition that determines the probability πI . Obviously

in interim IA setting, the type Vl bidder always gets zero surplus and has no incentive to acquire

information, and the equation to pin down πI only concerns the type-Vh bidder. Therefore,

the multiplier ph on both sides of (11) is eliminated, which yields (23). Again rearranging this

equation yields the reverse demand for information in interim equilibrium, namely,

c = plph(Vh − Vl) ·
plq(2q − 1)

plq + ph(1 − q)2πI

· (1 − πI)

(1 − phqπI)
. (24)

Parallel to the expression for πE , we have the property that πI decreases as the cost goes up,

the same as that in ex ante setting. And moreover, the interim demand for information, πI , is

higher than the ex ante demand πE when facing the same cost in a proper range. These results

are summarized in the following corollary.

Corollary 2 (Demand for Interim Information) The probability of interim IA, πI , has the

following properties:

(i). For all given values q ∈ (0.5, 1], πI is continuous in informative cost c for c ≧ 0, and

strictly decreasing for c ∈ [0, plph(Vh − Vl)(2q − 1)].

(ii). For all values c ≧ 0, πI is (weakly) increasing in accuracy q.

(iii). πI > πE for c ∈ (0, plph(Vh − Vl)(2q − 1)), q ∈ (0.5, 1].
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We have known qualitatively how bidders submit their bids in equilibrium. Now we give a

numeric example to illustrate their bidding rules and expected payoffs in equilibrium.

Example 1 Let Vh = 2, Vl = 1, q = 0.8, pl = ph = 0.5, c = 0.02. Then Table 1 gives

the probabilities of acquiring information at ex ante and interim stage, the endpoints of bidding

supports and the corresponding expected payoffs (the formula of the expected payoff will be given

in the next section). Figure 2 shows the mixing bid supports for this numeric example. Note

that in standard first price auction without IA, the payoff of the bidder is 0.25, which is equal

to plph(Vh − Vl).

Ex Ante Interim

πE 0.7170 πI 0.8572
δ1 1.0346 β1 1.0411
δ2 1.2261 β2 1.1453
δ3 1.5812 β3 1.6142
SE 0.2760 SI 0.2804

No IA

γ 1.5
S0 0.25

Table 1: Example of IA and Bidding

γ

Interim IA

Ex Ante IA

Vl Vh

β1 β2 β3Vl Vh

δ1 δ2 δ3

Figure 2: Bid Support

5 Discussion: Welfare Analysis and Comparative Statics

5.1 Ex Ante Information Acquisition

One central question that motivates our project is whether bidders benefit from acquiring in-

formation concerning opponent’s valuations. The answer is affirmative. Information acquisition

indeed improves the bidder’s surplus, albeit it cannot improve the allocative efficiency (the ef-

ficient allocations have been obtained in standard FPA with the same primitive e). However,
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since the information is costly and the expected social value of the object is fixed, the seller nec-

essarily raises less revenue. We will discuss how cost c and accuracy q impact bidder’s surplus

and seller’s revenue as well as total social surplus in the following subsections.

5.1.1 Bidder’s Surplus

Bidder’s expected payoff in ex ante IA equilibrium has been given in the indifference condition

(11), either left or right hand side specifies the net surplus. By substituting δ1 into the right

hand side of (11), we have a simple formula for bidder’s expected payoff

SE =
plq + phπEq(1 − q)

plq + phπE(1 − q)2
· plph(Vh − Vl), (25)

which is strictly increasing in the probability of acquiring information, πE when the signal is

noisy but informative, i.e., q ∈ (0.5, 1). The standard FPA with the same primitive e will give

the bidder surplus S0 = plph(Vh − Vl), which can be obtained by setting πE = 0 in (25). Note

that the demand for information πE is decreasing in informative cost c by Corollary 1, then we

have the results summarized in the following proposition.

Proposition 3 Bidder’s net payoff in the ex ante IA auction game < AE , GE > with primitive

e, SE, has the following properties:

(i). SE exceeds the payoff in the standard FPA with primitive e, i.e., SE≧S0 and the inequality

is strict for q ∈ (0.5, 1) and c < plp
2
h(Vh − Vl)(2q − 1).

(ii). In the presence of noisy but informative signal, namely, q ∈ (0.5, 1), SE is strictly decreas-

ing in informative cost c for c≦plp
2
h(Vh − Vl)(2q − 1).

The proposition says the competition between bidders is not so fierce as that of the standard

FPA auctions. This is because by knowing more about the opponents’ valuations, type-(Vh, L)

and type-(Vh, s0) bidders bid more conservatively, see the numerical Example 1. For instance,

the type-(Vh, L) bidder submits her bid very closely to Vl. The type-(Vh,H) bidder seems to

bid more aggressively, i.e. in Example 1, the upper bound of her bid support δ3 = 1.5812 is

higher than γ = 1.5, the upper bound of type-Vh bidder’s support in standard FPA. However,

on average, bidders with valuation Vh bid less than they do in the standard FPA.

The informative cost c plays an important role in determining the bidder’s expected surplus.

To consider the interested comparative statics, suppose q ∈ (0.5, 1). As the cost increases,

bidder’s incentive to acquire information reduces and πE decreases. Therefore, on average the

type-Vh bidder submits bid in a less pointed manner, which leads to less expected payoff.
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The accuracy q has a disparate impact on bidder’s payoff. An increment in accuracy has

two effects. On one hand, a more accurate signal improves the bidder’s updated belief and the

bidder will bid more effectively if receiving the signal, which can increase the expected payoff.

On the other hand, a more informative signal reduces the bidder’s private information, and thus,

increases the competitiveness and leads bidder’s potential surplus to decrease. Theoretically, it

is not clear which effect dominates the other at all possible values of q. However, for extreme

cases, we can see how q affects bidder’s surplus.

A very noisy signal provides bidders with no incentive to acquire information. It is easy to see

that the upper bound of the cost, beyond which no bidder will choose to acquire information,

plp
2
h(Vh − Vl)(2q − 1) will be smaller than any given positive c if q stays sufficiently close to

1
2 . Therefore, πE = 0 for q in some small neighborhood of 1

2 . As the informativeness of the

signal improves, πE will be positive, hence the expected surplus of bidder goes above S0 in this

corresponding range of q. On the other hand when the signal is completely accurate, i.e., q = 1,

bidder’s expected surplus falls back to S0 by (25), which seems to be a little bit counterintuitive.

Note that when q = 1, a type-(Vh, s) bidder cannot confront with a type-(Vh, L) opponent due

to complete informativeness of the signal for all s ∈ {H, L, s0}. This reduces the probability

of winning against a relatively “weak” opponent, and therefore, leads to less expected surplus.

When q is somewhat informative but noisy, we do not know theoretically how bidder’s surplus

changes as q increases. However, it seems that quantitatively the payoff is likely to increase first

and then decrease as q goes up.
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Figure 3: Cost and Accuracy’s Impacts on Bidder’s Payoff

Primitive: Vh = 2, Vl = 1, pl = ph = 1
2 .

Numerically, the comparative results can be seen in Figure 3, which confirms the comparative

results for SE . Note that SE = S0 for q = 1 regardless of the value of πE , and πE = 1 for c = 0
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regardless of the value of q.

5.1.2 Total Surplus

In the unique equilibrium of ex ante information acquisition, the object is always optimally

allocated, so the total ex ante expected social welfare is equal to the expected value of max{v1, v2}
minus total expected informative cost. Since E[max{v1, v2}] = p2

l Vl +(1−p2
l )Vh and each bidder

incurs expected informative cost πEc, the total expected surplus then would be

TSE = p2
l Vl + (1 − p2

l )Vh − 2πEc. (26)

Note that if there is no information acquisition, the expected total social surplus would be

TS0 = p2
l Vl + (1 − p2

l )Vh by setting πE = 0 in (26). We can see the expected information

cost 2πEc, which can be regarded as an information rent, becomes the deadweight loss. Hence,

the ex ante IA equilibrium outcome is inefficient9 if bidders incur cost to acquire information,

which differs from the result in Fang and Morris’ binary value model that the exogenous IA

equilibrium outcome is always efficient due to zero-cost setting, which can be regarded as “first

best” outcome. Then the equilibrium outcome in our ex ante IA model may be regarded as

“second best” outcome, compared to the ideal case in Fang and Morris’ model.

The impacts of cost and accuracy on total surplus is then summarized in the following

proposition:

Proposition 4 The expected total social surplus in the ex ante IA auction game < AE , GE >

with primitive e, TSE, has the following properties:

(i). TSE is less than the social surplus in the standard FPA with the primitive e, i.e., TSE≦TS0

and the inequality is strict for q ∈ (0.5, 1) and 0 < c < plp
2
h(Vh − Vl)(2q − 1).

(ii). Suppose the accuracy q ∈ (0.5, 1] is given, then TSE is decreasing in cost c for c ∈
[0, cE

TS(q)) and increasing in cost c for c ∈ [cE
TS(q), plp

2
h(Vh − Vl)(2q − 1)], where cE

TS(q) ∈
(0, plp

2
h(Vh − Vl)(2q − 1)) is a constant dependent on q.

(iii). Suppose the cost c ∈ (0, plp
2
h(Vh −Vl)) is given, then TSE is weakly decreasing in accuracy

q ∈ (0.5, 1].

We know that πE is decreasing when cost c goes up. It turns out that their product, the

expected cost πEc first increases when cost is moderate and then decreases as cost becomes

9The efficiency here refers to whether the social surplus is at its maximum level, i.e., E[max{v1, v2}], not to
allocative efficiency.
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large. Therefore, the total social surplus has a “U” shape response to cost. Provided the cost of

information acquisition is fixed, a more informative signal will increase the IA probability πE ,

hence the resulted social surplus decreases due to more expected cost. In other words, more

accurate signal actually hurts social benefit since the incurred information cost is deadweight

loss.

Figure 4 shows how social surplus reacts to the variation in cost c and to the variation in

accuracy q, respectively, using the same primitive values as in previous numeric simulations.

We can see no IA is the best outcome for the whole auction economy, and more accurate signal

makes the total welfare worse-off.

The above analysis implies that in realistic auction environment with information acquisition,

the efficient outcome is not generally achievable due to dissipative information cost. One policy

implication would be that information acquisition should be prevented to maximize the social

surplus. This can be done by means of raising the information cost or reducing the accuracy of

the signal or both. Or if possible, the central planner can directly control the IA choices to ease

social welfare loss.

However, when the cost is not a loss and is actually transferred to some party who provides

information, then information acquisition has no impact on social surplus. We will discuss it in

more detail in section 6.1.
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Figure 4: Cost and Accuracy’s Impacts on Total Surplus

Primitive: Vh = 2, Vl = 1, pl = ph = 1
2 .

5.1.3 Seller’s Revenue

The total social surplus contains two parts, the revenue of the seller and the surplus of the

bidder. Therefore, seller’s expected revenue χE equates to the expected total surplus minus two
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bidders’ expected payoffs, namely,

χE = [p2
l Vl + (1 − p2

l )Vh] − 2πEc − 2SE . (27)

Immediately by setting πE = 0 in (27), we know the revenue would be χ0 = [p2
l Vl + (1 −

p2
l )Vh]−2S0 = (1−p2

h)Vl +p2
hVh in standard FPA. The equation (27) also tells us that the seller

effectively bears the informative cost that is incurred by bidders. Note that SE(q, πE) ≧ S0,

therefore, seller always gets revenue less than χ0 in ex ante IA auction. Approximately, bidder’s

surplus and seller’s revenue change in opposite directions. To summarize, we have the following

comparative statics for seller’s revenue.

Proposition 5 Seller’s revenue in the ex ante IA auction game < AE , GE > with primitive e,

χE, has the following properties:

(i). χE is less than χ0, seller’s revenue in standard FPA with primitive e, and the inequality

is strict for c < plp
2
h(Vh − Vl)(2q − 1) and q ∈ (0.5, 1).

(ii). Suppose the signal is noisy but informative, namely, q ∈ (0.5, 1). Then there exists some

constant cE(q) ∈ (0, plp
2
h(Vh − Vl)(2q − 1)) dependent on q, such that χE is decreasing

in informative cost c for c ∈ [0, cE(q)) and increasing in cost c for c ∈ [cE(q), plp
2
h(Vh −

Vl)(2q − 1)].
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Figure 5: Cost and Accuracy’s Impacts on Seller’s Revenue

Primitive: Vh = 2, Vl = 1, pl = ph = 1
2 .

Figure 5 shows the behaviors of revenue in response to the cost c and the accuracy q, both

of which demonstrate a “U” shape response, which verifies the properties of χE stated in the

Proposition 5.
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Obviously, seller’s revenue achieves its maximum χ0 only when bidders do not acquire infor-

mation (πE = 0, or c≧plp
2
h(Vh −Vl)(2q− 1)) or the signal is costless and completely informative

(q = 1 and c = 0), according to the formula (27). Due to efficient allocation, bidders’ benefits

would necessarily conflict with seller’s interest, which implies the seller would definitely prefer

no information acquisition. Then one policy implication would be that to raise more revenue,

the seller should prevent bidders from acquiring information, or induce either very noisy signal

or completely accurate signal whenever possible.

5.2 Surplus and Revenue in Interim IA Equilibrium

5.2.1 Bidder’s Surplus

Similar to ex ante IA equilibrium, bidder’s expected payoff in interim IA equilibrium has been

given in either side of the indifference condition (23). By substituting β1 into the right hand

side of (23), we have a simple formula for bidder’s expected payoff

SI =
plq + phπIq(1 − q)

plq + phπI(1 − q)2
· plph(Vh − Vl). (28)

Hence we have the comparative results summarized in the following proposition.

Proposition 6 In the presence of noisy signal, i.e. q ∈ (0.5, 1), and for c ≦ plph(Vh−Vl)(2q−1),

we have

(i). Bidder’s net payoff SI is decreasing in informative cost c, and hence exceeds its counterpart

payoff, S0 from standard FPA without IA;

(ii). SI ≧ SE, and the inequality is strict for c ∈ (0, plph(Vh − Vl)(2q − 1)) and q ∈ (0.5, 1),

provided the auctions < AE , GE > and < AI , GI > have the same primitive e ∈ E .

This proposition is parallel to Proposition 3, and it says the impact of cost on bidder’s payoff

is similar to that of the ex ante IA case. When the signal is more costly, the type-Vh bidder

would be less likely to acquire information, and bidder’s expected payoff goes down. Also the

accuracy of the signal has similar influence on bidder’s payoff as in ex ante case.

The information acquisition choice in interim stage becomes valuation-type-specific and turns

to be more efficient in terms of the utilization of the information. Hence bidders get higher ex

ante expected payoffs in auction game < AI , GI > than in < AE , GE >.
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5.2.2 Total Surplus

In equilibrium of interim information acquisition, the object is optimally allocated, hence the

total expected social welfare equates to the total expected surplus minus total expected infor-

mative cost

TSI = p2
l Vl + (1 − p2

l )Vh − 2phπIc. (29)

Again similar to the ex ante IA case, the information cost 2phπIc turns to the deadweight

loss, and the interim IA equilibrium outcome is not efficient, either.

Immediately, we have the following comparative results:

Proposition 7 The expected total social surplus in the interim IA auction game < AI , GI >

with primitive e, TSI , has the following properties:

(i). TSI is less than the social surplus in the standard FPA with the primitive e, i.e., TSI≦TS0

and the inequality is strict for q ∈ (0.5, 1) and 0 < c < plp
2
h(Vh − Vl)(2q − 1).

(ii). Suppose the accuracy q ∈ (0.5, 1] is given, then TSI is decreasing in cost c for c ∈ [0, cI
TS(q))

and increasing in cost c for c ∈ [cI
TS(q), plp

2
h(Vh−Vl)(2q−1)], where cI

TS(q) ∈ (0, plp
2
h(Vh−

Vl)(2q − 1)) is a constant dependent on q.

(iii). Suppose the cost c ∈ (0, plp
2
h(Vh − Vl)) is given, then TSI is weakly decreasing in accuracy

q ∈ (0.5, 1].

This proposition is parallel to Proposition 4, and the comparative results are similar in two

different IA settings. Unlike the bidder’s surplus, we cannot unambiguously rank the total

surpluses TSE and TSI . This is because the expected cost 2πEc in ex ante IA setting can be

larger or smaller than the expected cost 2phπIc in interim IA setting.

5.2.3 Seller’s Revenue

Since total surplus includes seller’s revenue and bidders’ surpluses, then the revenue has the

following expression,

χI = p2
l Vl + (1 − p2

l )Vh − 2phπIc − 2SI . (30)

Then we have the following results.

Proposition 8 Seller’s revenue in interim IA auction game < AI , GI > with primitive e, χI ,

has the following properties:

(i). χI is less than χ0, seller’s revenue in standard FPA with primitive e, and the inequality is

strict for c < plph(Vh − Vl)(2q − 1) and q ∈ (0.5, 1).
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(ii). Suppose the signal is noisy but informative, namely, q ∈ (0.5, 1). Then there exists some

constant cI(q) ∈ (0, plph(Vh − Vl)(2q − 1)) dependent on q, such that χI is decreasing in

informative cost c for c ∈ [0, cI(q)) and increasing in cost c for c ∈ [cI(q), plph(Vh−Vl)(2q−
1)].

Quantitatively, bidder’s expected surplus and seller’s revenue have similar responses to the

cost and the accuracy of the signal as those in ex ante equilibrium, and the only difference

between ex ante and interim environments is the magnitude. We cannot generally tell whether

seller gets more revenue in the ex ante IA auction < AE , GE > or in the interim IA auction

< AI , GI > despite the unambiguous ranking for bidders’ surpluses in two different IA settings

because it is not clear in which setting the expected cost is higher.

5.3 Comparison Across Auction Formats

It is obvious that the object is always efficiently allocated in our first price IA auction model since

bidders have binary values. As we have discussed at the very beginning, information acquisition

plays no role in formulating bidders’ strategies in second price auction (SPA) since each bidder

has weakly dominant strategy to bid truthfully, but it remains worth making comparisons across

FPA and SPA formats because the revenue equivalence still holds between these auctions without

any type of information acquisition.10

Consider SPA in our basic setting with primitive e ∈ E . The seller gets Vh if and only if

both bidders have values Vh, which occurs with probability p2
h, otherwise the seller receives Vl.

Therefore in SPA, seller’s expected surplus, denoted by χSPA, would be

χSPA = (1 − p2
h)Vl + p2

hVh. (31)

On the other hand, each bidder obtains positive surplus, i.e. (Vh − Vl) if and only if her own

value is Vh and her opponent has value Vl, which occurs with probability plph. Then bidders’

expected surplus from SPA, denoted by SSPA, is

SSPA = plph(Vh − Vl). (32)

This yields the following results:

Proposition 9 Suppose 0 < c < plp
2
h(Vh − Vl)(2q − 1), q ∈ (0.5, 1). Provided (FPA) IA games

< AE , GE >, < AI , GI >, and SPA are permitted in the basic setting e ∈ E , then we have

10This can be seen in the Appendix of Fang and Morris (2006).
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1. Bidder’s expected surplus from FPA is strictly higher than that from SPA, regardless of

the stage at which the IA choice is made, i.e., SE > SSPA and SI > SSPA.

2. Seller gets strictly less expected revenue from FPA than that from SPA, no matter at which

stage bidder can acquire information, i.e., χE < χSPA and χI < χSPA.

The first item could follow from Proposition 3 and Proposition 6, since the revenue equiva-

lence still holds with discrete values across standard FPA and SPA without information acqui-

sition, i.e., SSPA = S0, and IA plays no role in formulating strategies in SPA.

The revenue ranking is unambiguously clear across FPA and SPA for our binary value

model.11 However, this ranking does not hold generally for endogenous IA. For example, when

valuation has continuous support, then it is possible that seller gets more revenue in FPA than

in SPA.

It is obvious that bidders have strong incentives to acquire information about their opponents’

valuations intentionally in FPA if it is permitted, but not in SPA. The other fact is that the

auctioneer is worse-off in FPA, if such an information acquisition occurs, which differs from the

result that revenue increases associated with traditional information acquisition. The natural

policy implication would be that the seller may need to deter bidders’ potential information

acquisition to maximize her revenue if bidders’ private values are independent.

6 Some Variants

6.1 Third Party Charges the Informative Cost

In our basic setting, we do not model where the informative signal comes from, i.e., who provides

the information. Therefore, in our welfare analysis, the informative cost becomes the deadweight

loss of total social surplus. Also, we leave it open for pricing the signal. It seems that the two

issues can be resolved by introducing the third party who actually collects information and sells

it to bidders.

Suppose there exists such a third party at ex ante stage(the case is similar at interim stage).

The party has the access to collect noisy information concerning bidders’ valuations without in-

curring any cost, and aims to maximize its total revenue from providing information. Therefore,

11Note that here the revenue equivalence fails. It’s true that allocations do not pin down the revenue in discrete
type settings, which might contribute to the failure of revenue equivalence in standard auctions. However, Fang
and Morris (2006) already show that in standard auctions without information acquisition, the revenue equivalence
holds in discrete setting. It follows that the realized asymmetric information structure from IA contributes to the
failure of the RET; besides, the informative cost c also plays a role here.
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the third party has objective function

τE(c) = 2πEc. (33)

By Proposition 1, the possible informative cost charged by this party is the interval [0, plp
2
h(Vh−

Vl)(2q − 1)]. If the accuracy of the transmitted signal q cannot be controlled by this party, then

the optimal cost for this party would be cE
TS(q), which is the constant given in Proposition 4

item (ii). The interesting thing is that if the accuracy can be chosen by this party, then definitely

the party will choose optimal accuracy q∗ = 1 to maximize the expected cost 2πEc because πE

is increasing in q by Corollary 1. However, bidders cannot benefit from this completely accurate

signal since they can just get expected surplus SE = S0. This optimal choice may favor the

seller to some extent, for bidders’ having less surplus means that seller may get more revenue

(increment in expected cost will reduce revenue at the same time).

One key point is that the expected total surplus now is always a constant TS = TS0 since the

expected cost – the deadweight loss – now turns to be the benefit of the third party. Therefore,

the IA auction game < AE , GE > becomes one mechanism that redistributes the total surplus

amongst bidders, seller and the information provider. Moreover, part of seller’s revenue is

redistributed to bidders and the information provider compared to the standard FPA with the

same primitive, which can be easily seen from the formula (27).

6.2 Observable Information Acquisition

This paper considers covert information acquisition on opponent’s valuation, and it is crucial

to maintain the assumption that the choice of acquiring information is unobservable to the

opponent. It will result in two problems without this assumption. We consider the interim IA

setting. First, the signal structure is not inherently consistent. This is a model with binary

valuations, hence only the type-Vh bidder has incentive to acquire information. If this action

is public information, then it is a perfect signal that tells bidder j vi = Vh when i acquires

information. Also bidder j could be a type-Vh bidder who already acquires information and

receives a signal sj , then sj is meaningless for the bidder, thus why should the bidder incur a

cost to acquire information? Second, there could be no equilibrium in some subcases. Suppose

bidder i has valuation Vh and acquires information and bidder j does not, and this is common

knowledge. In this case, no equilibrium bidding strategy exists with fair tie breaking rule.12

Hence observable information acquisition is undesirable for our modeling.

12This case is the same as the Example 4.4 on pp.53 of Krishna’s book, which is another version of the example
in Maskin and Riley (2000). The equilibrium could be restored but we need Vickrey tie breaking rule.

26



6.3 More Realizations

Besides the binary values, more points of valuation support could be added in. As Fang and

Morris (2006) have observed: it does not admit any equilibrium for exogenous information

acquisition with generic parameters even in binary valuation support model. Thus for more

points, the equilibrium analysis would also be problematic. As for continuous valuation support,

the formation of bidding rule with multiple arguments turns to be a rather involved problem,

which is the essential question with multidimension. This is an open question for future research.

6.4 Beyond Private Values

Admittedly, we specify an independent private value setting, which seems to be restrictive in

some sense. This endogenous IA specification can be extended to other non-private value envi-

ronment. For example, it turns out that in endogenous IA first-price auction with interdependent

discrete valuations, bidder can also get higher payoff than that of standard FPA without IA,

which is the environment we haven’t considered here but are working on.

7 Conclusion

This paper mainly investigates bidders’ covert information acquisition on opponents’ valuations

in first price sealed-bid auctions with independent private values, which leads to bidimensional

strategy space and bidimensional type space. We present two different specifications: ex ante

information acquisition and interim information acquisition. We find that: (i) bidder’s expected

payoff exceeds that of the counterpart standard FPA when informative cost is small and the

signal is informative and noisy; (ii) the auctioned object is always efficiently allocated due

to the settings of binary values; (iii) in all cases in which bidder acquires information with

positive probability, the auctioneer’s expected revenue is lower than that of the standard auction,

which contradicts the results in the current information acquisition literature; (iv) the incurred

informative cost becomes the deadweight loss in total social surplus and the equilibrium outcome

is inefficient. The natural implication of our analysis would be that seller needs to prevent bidders

from acquiring information to raise more revenue. Also from the social planner’s point of view,

information acquisition should be prevented to maximize social welfare. We also analyze how

the accuracy and the informative cost impact on bidders’ expected surplus, seller’s revenue and

total surplus. Some possible variations of the model are discussed at last.

Our paper takes the first step to explore the properties of endogenous information acquisition

on opponents’ valuations in the context of independent private value auctions. We do find bidders
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have incentives to take this IA action. To see the robustness of the results, continuous support

necessitates exploration. It seems that the difficulty rests with the multidimensional bidding

rules. Moreover, the probability of acquiring information is probably a function of bidder’s

valuation. These are open questions for future exploration.

8 Appdendix

Proof of Lemma 1: For ti ∈ {Vl}× {L,H, s0}, let type-ti bidder i’s bidding support be either

[bti
1 , bti

2 ] with bti
1 ≦ bti

2 ≦ Vl or (bti
1 , bti

2 ] with bti
1 < bti

2 ≦ Vl(the upper bound of the support interval

may be open, but this is not important for the argument). Let t ∈ arg mint1∈{Vl}×{L,H,s0} bt1
1

and t′ ∈ arg mint2∈{Vl}×{L,H,s0} bt2
1 .

We first show that type-t bidder 1 and type-t′ bidder 2 should bid in pure strategies. It is

obvious that bt
1 = bt′

1 = b1 since bt
1 and bt′

1 are the possible smallest bids for bidders 1 and 2,

respectively. There are four possible cases that can be ruled out in equilibrium.

Case 1: type-t bidder 1 has support (b1, b
t
2] and type-t′ bidder 2 has support (b1, b

t′

2 ] where

b1 < bt
2 and b1 < bt′

2 . We can see that the bid b =
b1+min{bt

2
, bt

′

2
}

2 will yield both type-t bidder 1

and type-t′ bidder 2 positive surplus. However, bids close to b1 will win with probability almost

zero, hence both bidder 1 and type-t′ bidder 2’s surpluses will approach zero by submitting a

bid close to b1. This is a contradiction with the indifference condition given by mixed strategy,

so this pattern of the supports cannot be the case.

Case 2: type-t bidder 1 has support (b1, b
t
2] and type-t′ bidder 2 has support [b1, b

t′

2 ] where

b1 < bt
2 and b1 < bt′

2 , or type-t bidder 1 has support [b1, b
t
2] and type-t′ bidder 2 has support

(b1, b
t′

2 ] where b1 < bt
2 and b1 < bt′

2 . Since the two subcases are symmetric, consider the former

one. It is easy to see a bid b1 yields bidder 2 exactly zero surplus due to zero winning prob-

ability. However, a bid b =
b1+min{bt

2
, bt

′

2
}

2 yields bidder 2 strictly positive expected surplus, a

contradiction with the indifference condition. This pattern cannot be true either.

Case 3: type-t bidder 1 has support [b1, b
t
2] and type-t′ bidder 2 has support [b1, b

t′

2 ] where

either b1 < bt
2 and b1 < bt′

2 , or b1 = bt
2 and b1 < bt′

2 , or b1 = bt′

2 and b1 < bt
2. Consider the subcase

where b1 < bt
2. A bid

b1+bt

2

2 will yield type-t bidder 1 positive surplus. Hence by indifference

condition, a bid b1 will give type-t bidder 1 positive surplus, which requires her opponent—

bidder 2 to submit a bid b1 with positive probability so that type-t bidder 1 can win against

bidder 2 with positive probability by submitting b1. However, then, if type-t bidder 1 submits

a bid slightly higher than b1, this bid will yield a jump in winning probability against bidder 2,

hence a jump in expected surplus of type-t bidder 1. Again a contradiction with the requirement

of mixed strategy. The subcase where b1 < bt′

2 follows the same argument.
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Case 4: type-t bidder 1 has support (b1, b
t
2] with b1 < bt

2, type-t′ bidder 2 bids b1 with

probability 1; or type-t′ bidder 2 has support (b1, b
t′

2 ] with b1 < bt′

2 , type-t bidder 1 bids b1 with

probability 1. By symmetry, it suffices to consider the former subcase. It is obvious that type-t′

bidder 2’s strategy is not optimal. The bid b1 wins against none of bidder 1’s bids, hence yields

bidder 2 zero surplus. By submitting a bid
b1+bt

2

2 , type-t′ bidder 2 gets strictly positive expected

surplus, which is a profitable deviation.

Since all those cases are excluded from equilibrium, we conclude that it must be true in

equilibrium that b1 = bt
2 = bt′

2 . In other words, type-t bidder 1 and type-t′ bidder 2 bid in pure

strategies.

We then show that b1 = Vl. Suppose b1 < Vl, then either type-t bidder 1 or type-t′ bidder

2 can deviate by submitting a slightly higher bid b1 + ǫ with probability 1, which will be a

profitable deviation by choosing ǫ arbitrarily close to zero. A contradiction.

Note that b1 is the possible lowest bid for all types ti ∈ {Vl} × {L,H, s0}, i = 1, 2 and those

bidders will never bid more than their valuation Vl. The proof is complete.�

Proof of Proposition 1: We take several steps to complete this argument. First we verify that

the provided strategies in the proposition actually constitute an equilibrium. Then we show that

there is no other symmetric equilibrium. Last we argue that there is no asymmetric equilibrium

either.

One point we would like to clarify before the formal proof is that in part (i) for q ∈ (0, 1),

when q approaches 1 from below, the limit of type-(Vh, L)’s bid support (Vl, δ1] would be an

empty set due to limp→1 δ1 = Vl. Hence type-(Vh, L) bidder’s best bidding strategy doesn’t

exist given all other types’ bidding strategies. That’s why the tie-breaking rule needs to switch

at q = 1. Under Vickrey tie-breaking rule, type-(Vh, L)’s bid support could be closed interval

[Vl, δ1](the limit of this interval is singleton {Vl} as p → 1), and any other type bidder’s strategy

does not change. The following argument considers the setting for q ∈ (0, 1), and the same

argument can go through for q = 1 (possibly with some slight modification) by replacing type-

(Vh, L)’s bid support (Vl, δ1] with closed interval [Vl, δ1].

The argument follows several intermediate claims:

Claim 1. Given that the bidder’s opponent follows the provided strategy in the proposition,

the bidder’s best response is the same strategy given in the proposition.

Note that by Lemma 1, it suffices to check the strategies of the bidders with valuation Vh.

We just need to verify that the bidder gets exactly the same expected payoff if she submits any

bid drawn from the support of provided mixed strategy, and that the bidder cannot obtain more

expected payoff by deviation. In other words, the provided strategy is an equilibrium. Since it
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is straightforward, the verification procedure is omitted.

Claim 2. For c < plp
2
h(Vh − Vl)(2q − 1), there exists no type of symmetric equilibrium other

than the one in part (i) of the proposition.

The argument takes 4 steps.

Step 1: We show that in any symmetric equilibrium, both bidders would choose to acquire

information with positive probability. In other words, we only need to show the case where no

bidder chooses to acquire information is not an equilibrium. Suppose instead, this case can be

an equilibrium. Then it reduces to the standard FPA equilibrium strategy given in part (ii) of

the proposition; that is,

• None of the bidders incurs any cost to receive any signal.

• bi(Vl) = Vl.

• Type-Vh bidder mixes over (Vl, γ] according to cumulative distribution function J̄(·) spec-

ified in (12).

If two bidders follow this strategy, then their surplus under this strategy profile is plph(Vh −
Vl). Now suppose bidder 1 follows the above strategy. Bidder 2 acquires information and adopts

the strategy as follows:

• She acquires information in the first stage.

• bi(Vl) = Vl, b(Vh, L) = Vl + ǫ and b(Vh, L) = γ.

Her payoff will be given by

ph{[plq + ph(1 − q)J̄(Vl + ǫ)](Vh − Vl − ǫ) + [pl(1 − q) + phq](Vh − γ)} − c

>ph{plq(Vh − Vl − ǫ) + [pl(1 − q) + phq]·(Vh − γ)} − c

=plph(Vh − Vl) + plp
2
h(2q − 1)(Vh − Vl) − c − plphqǫ.

(34)

Since c < plp
2
h(Vh − Vl)(2q − 1), this deviation is profitable by choosing ǫ arbitrarily close to

zero. Hence, it cannot be an equilibrium.

Step 2: We show that in any symmetric equilibria type-(Vh, s0), type-(Vh, L), and type-

(Vh,H) bidders should bid in mixed strategies. We show it by way of contradiction.

Suppose the statement is not true, i.e., a type-(Vh, s) s∈{s0, L, H} bidder i bids a fixed

amount b∗ < Vh with probability 1. Then the same type-(Vh, s) bidder j(j 6=i) can deviate to

make more surplus by bidding b∗ + ǫ, where ǫ is arbitrarily close to zero. This deviation will

lead to a positive jump in type-(Vh, s) bidder j’s winning probability, and hence is profitable.
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Step 3: We prove that in any symmetric mixed strategy equilibria, the supports of J l(·)
and Js0(·) and the supports of Js0(·) and Jh(·) are contiguous and non-overlapping. Note that

the contiguity of supports follows from the same ǫ-deviation argument.

Now suppose that the supports of J l(·) and Js0(·) overlap over an interval [b1, b2] where

b1 < b2. Mixed strategy requires that the expected surplus be constant for both type-(Vh, L)

and type-(Vh, s0) bidders from any bid b ∈ [b1, b2]. Hence we have that the following equations

hold for some constants C(Vh, s0) and C(Vh, l) :

(Vh − b)
[

pl + phπE(1 − q)J l(b) + ph(1 − πE)Js0(b)
]

= C(Vh, s0), (35)

(Vh − b)
[ plq

plq + ph(1 − q)
+

ph(1 − q) · πE(1 − q)J l(b)

plq + ph(1 − q)
+

ph(1 − q)(1 − πE)Js0(b)

plq + ph(1 − q)

]

= C(Vh, l).

(36)

Multiplying equation (35) by (1− q) and equation (36) by −[plq + ph(1− q)], and summing

up, we have

(Vh − b)pl(1 − 2q) = (1 − q)C(Vh, s0) − [plq + ph(1 − q)]C(Vh, l). (37)

Since the right hand side of equation (37) is a constant, this equation cannot hold for any

value of bid b ∈ [b1, b2] for q > 1
2 . Therefore, the supports for Js0(·) and J l(·) are non-overlapping

in the symmetric equilibrium.

By the same method, if the supports of Js0(·) and Jh(·) overlap over an interval [b′1, b
′
2] where

b′1 < b′2, then for some constants Ĉ(Vh, s0) and Ĉ(Vh,H), we have

(Vh − b)
[

pl + phπE(1 − q) + ph(1 − πE)Js0(b) + phπEqJh(b)
]

= Ĉ(Vh, s0), (38)

(Vh − b)
[ pl(1 − q)

pl(1 − q) + phq
+

phq · πE(1 − q)

pl(1 − q) + phq

+
phq(1 − πE)Js0(b)

pl(1 − q) + phq
+

phqπEJh(b)

pl(1 − q) + phq

]

= Ĉ(Vh, h).

(39)

Multiplying equation (38) by q and equation (39) by −[pl(1 − q) + phq], and summing up,

we have

(Vh − b)pl(2q − 1) = qĈ(Vh, s0) − [pl(1 − q) + phq]Ĉ(Vh, h). (40)

Again the left hand side of equation (40) is a constant. This equation cannot hold for any

value of bid b ∈ [b′1, b
′
2] for q > 1

2 . Therefore, the supports for Js0(·) and Jh(·) are non-overlapping

in the symmetric equilibrium.
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Step 4: Now we show that the support of the type-(Vh, L) bidder should be lower than that

of the type-(Vh, s0) bidder, and the support of the type-(Vh, s0) bidder should be lower than that

of the type-(Vh,H) bidder. Since we have three possible type bidders who use mixed strategies,

there exist six possible rank permutations for the three corresponding supports. We should

rule out all the other five cases13. Now let [Vl, b̃1] be the support of the type-(Vh, s0) bidder’s

mixed strategy with cumulative distribution function (cdf) J̃s0(·). Let [b̃1, b̃2] be the support

of the type-(Vh, L) bidder’s mixed strategy with cdf J̃ l(·), and let [b̃2, b̃3] be the support of the

type-(Vh,H) bidder’s mixed strategy with cdf J̃h(·). Since type-(Vh, L) bidders randomize on

the interval [b̃1, b̃2], their expected surpluses should be constants for any bids drawn from the

interval; that is

(Vh − b)

[

plq

plq + ph(1 − q)
+

ph(1 − q)(1 − π̃E)

plq + ph(1 − q)
+

ph(1 − q)π̃E(1 − q)

plq + ph(1 − q)
J̃ l(b)

]

=
plq + ph(1 − q)(1 − π̃E)

plq + ph(1 − q)
(Vh − b̃1).

From this equation we can solve for J̃ l(b):

J̃ l(b) =
plq + ph(1 − q)(1 − π̃E)

ph(1 − q)2π̃E

b − b̃1

Vh − b
. (41)

Assume bidder 1 follows the provided strategy. That is, the type-(Vh, L) bidder 1 randomizes

over [b̃1, b̃2] according to cdf J̃ l(·), the type-(Vh, s0) bidder 1 randomizes over [Vl, b̃1] according

to cdf J̃s0(·), and the type-(Vh,H) bidder 1 randomizes over [b̃2, b̃3] according to cdf J̃h(·). By

submitting bid b ∈ [b̃1, b̃2], the expected surplus for type-(Vh, s0) bidder 2 is given by

(Vh − b)

[

pl + ph(1 − π̃E) + phπ̃E(1 − q)J̃ l(b)

]

=
(2q − 1)pl

1 − q
·b +

[

(pl + ph(1 − π̃E))Vh − plq + ph(1 − q)(1 − π̃E)b̃1

1 − q

]

,

which is strictly increasing in b for b ∈ [b̃1, b̃2]. Hence the type-(Vh, s0) bidder has incentive to

deviate while her opponent follows the prescribed strategy. This is a contradiction that means

the supposed case cannot be an equilibrium.

The other four cases can be ruled out using the same method.

Claim 3: There exists no asymmetric equilibrium in which bidder 1 and bidder 2 acquire

information with disparate probabilities.

13Denote S(Vh, s) as the mixed strategy support of type-(Vh, s) bidder where s ∈ {H, L, s0} and ≪ is
interpreted as “lower than.” The five cases are S(Vh, s0)≪S(Vh, l)≪S(Vh, h), S(Vh, s0)≪S(Vh, h)≪S(Vh, l),
S(Vh, l)≪S(Vh, h)≪S(Vh, s0), S(Vh, h)≪S(Vh, l)≪S(Vh, s0), S(Vh, h)≪S(Vh, s0)≪S(Vh, l).
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Suppose there exists such an equilibrium. Denote π̂1E and π̂2E as bidder 1 and bidder 2’s

information acquisition probability respectively. Without loss of generality, let π̂1E > π̂2E > 0.

The following several steps show that the distribution functions and the parameters satisfy some

necessary conditions imposed by the mixed strategy. Remember that similar arguments can be

used to show that: in an asymmetric equilibrium, the support of type-(Vh, L) bidder i must be

lower than, non-overlapping, and contiguous with that of type-(Vh, s0) bidder i; the support of

type-(Vh, s0) bidder i must be lower than, non-overlapping, and contiguous with that of type-

(Vh,H) bidder i, for i = 1, 2 (refer to Steps 3 and 4 in Claim 2). Then bidder 1 and bidder 2’s

strategies should be as follows:

• Bidder 1 acquires information with probability π̂1E . The type-(Vh, L) bidder 1 randomizes

over the interval (Vl, b̂11] according to some cdf Ĵ l
1(·), the type-(Vh, s0) bidder 1 randomizes

over the interval [b̂11, b̂12] according to some cdf Ĵs0

1 (·), and the type-(Vh,H) bidder 1

randomizes over the interval [b̂12, b̂13] according to some cdf Ĵh
1 (·), where Vl < b̂11 < b̂12 <

b̂13 < Vh.

• Bidder 2 acquires information with probability π̂2E . The type-(Vh, L) bidder 2 randomizes

over the interval (Vl, b̂21] according to some cdf Ĵ l
2(·), the type-(Vh, s0) bidder 2 randomizes

over the interval [b̂21, b̂22] according to some cdf Ĵs0

2 (·), and the type-(Vh,H) bidder 2

randomizes over the interval [b̂22, b̂23] according to some cdf Ĵh
2 (·), where Vl < b̂21 < b̂22 <

b̂23 < Vh.

Note that the upper bound of the support for type-(Vh,H) bidder 1 and type-(Vh,H) bidder

2 should be the same; that is, b̂13 = b̂23 = b̂3. Then we derive the necessary conditions that pin

down the cumulative distribution functions and the critical parameters.

Step 1: We first show that b̂11 > b̂21 and b̂12 < b̂22. Suppose instead b̂11 ≦ b̂12. Then both

type-(Vh, L) bidder 1 and type-(Vh, L) bidder 2 should be indifferent between those bids that

belong to the interval (Vl, b̂11]. By drawing a bid from (Vl, b̂11], type-(Vh, L) bidder 1’s expected

surplus is given by

(Vh − b)

[

plq

plq + ph(1 − q)
+

ph(1 − q)π̂2E(1 − q)

plq + ph(1 − q)
Ĵ l

2(b)

]

=(Vh − Vl)
plq

plq + ph(1 − q)
b = V +

l

=(Vh − b̂11)

[

plq

plq + ph(1 − q)
+

ph(1 − q)π̂2E(1 − q)

plq + ph(1 − q)
Ĵ l

2(b̂11)

]

b = b̂11,

where b = V +
l means the bid b approaches Vl from above and the surplus is given at b = V +

l

by taking the limit as b → Vl, and the meaning of this notation is preserved in the following
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argument. The type-(Vh, L) bidder 2’s expected surplus is given by

(Vh − b)

[

plq

plq + ph(1 − q)
+

ph(1 − q)π̂1E(1 − q)

plq + ph(1 − q)
Ĵ l

1(b)

]

=(Vh − Vl)
plq

plq + ph(1 − q)
b = V +

l

=(Vh − b̂11)

[

plq

plq + ph(1 − q)
+

ph(1 − q)π̂1E(1 − q)

plq + ph(1 − q)

]

b = b̂11.

From these two equations we get π̂1E = π̂2E Ĵ l
2(b̂11), contradicting to the assumption π̂1E > π̂2E .

Now suppose b̂12≧b̂22. Mixed bidding strategy requires that both type-(Vh,H) bidder 1

and type-(Vh,H) bidder 2 should be indifferent between those bids that belong to the interval

[b̂12, b̂3]. By drawing a bid from [b̂12, b̂3], type-(Vh,H) bidder 1’s expected surplus is given by

(Vh − b)

[

pl(1 − q)

pl(1 − q) + phq
+

phqπ̂2E(1 − q)

pl(1 − q) + phq
+

phq(1 − π̂2E)

pl(1 − q) + phq
+

phqπ̂2EqĴh
2 (b)

pl(1 − q) + phq

]

=(Vh − b̂12)

[

pl(1 − q) + phq(1 − qπ̂2E)

pl(1 − q) + phq
+

phqπ̂2EqĴh
2 (b̂12)

pl(1 − q) + phq

]

b = b̂12

=Vh − b̂3 b = b̂3,

and the type-(Vh,H) bidder 2’s expected surplus is given by

(Vh − b)

[

pl(1 − q)

pl(1 − q) + phq
+

phqπ̂1E(1 − q)

pl(1 − q) + phq
+

phq(1 − π̂1E)

pl(1 − q) + phq
+

phqπ̂1EqĴh
1 (b)

pl(1 − q) + phq

]

=(Vh − b̂12)

[

pl(1 − q) + phq(1 − qπ̂1E)

pl(1 − q) + phq

]

b = b̂12

=Vh − b̂3 b = b̂3.

From these two equations we obtain π̂2E − π̂1E = π̂1E Ĵh
2 (b̂12) > 0, which contradicts the fact

that π̂2E < π̂1E .

Now we have the rank for the extreme points of the supports as Vl < b̂21 < b̂11 < b̂12 < b̂22 <

b̂3 < Vh, demonstrated in Figure 6.

Vl Vhb̂21 b̂22 b̂3

Vl Vhb̂11 b̂12 b̂3

Figure 6: Possible Bid Support
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Step 2: Now we consider type-(Vh, L) bidder 1’s surplus. Since she randomizes over the

interval (Vl, b̂11], her expected surplus is given by

(Vh − b)

[

plq

plq + ph(1 − q)
+

ph(1 − q)π̂2E(1 − q)

plq + ph(1 − q)
Ĵ l

2(b) +
ph(1 − q)(1 − π̂2E)

plq + ph(1 − q)
Ĵs0

2 (b)

]

=(Vh − Vl)
plq

plq + ph(1 − q)
b = V +

l

=(Vh − b̂21)

[

plq + ph(1 − q)π̂2E(1 − q)

plq + ph(1 − q)

]

b = b̂21

=(Vh − b̂11)

[

plq + ph(1 − q)π̂2E(1 − q) + ph(1 − q)(1 − π̂2E)Ĵs0

2 (b̂11)

plq + ph(1 − q)

]

b = b̂11,

which should be a constant for all bids in this interval. By this indifference condition we get

b̂21 =
plqVl + ph(1 − q)2π̂2EVh

plq + ph(1 − q)2π̂2E

; (42)

Ĵ l
2(b) =

plq

ph(1 − q)2π̂2E

· b − Vl

Vh − b
, b ∈ (Vl, b̂21]; (43)

Ĵs0

2 (b) =
plq + ph(1 − q)2π̂2E

ph(1 − q)(1 − π̂2E)
· b − b̂21

Vh − b
, b ∈ [b̂21, b̂11]. (44)

We turn to the type-(Vh, L) bidder 2. Since she randomizes over the interval (Vl, b̂12], her

expected surplus is given by

(Vh − b)

[

plq

plq + ph(1 − q)
+

ph(1 − q)π̂1E(1 − q)

plq + ph(1 − q)
Ĵ l

1(b)

]

=(Vh − Vl)
plq

plq + ph(1 − q)
b = V +

l

=(Vh − b̂21)

[

plq + ph(1 − q)π̂1E(1 − q)Ĵ l
1(b̂21)

plq + ph(1 − q)

]

b = b̂21,

which should be a constant for all bids in this interval [Vl, b̂12]. Since type-(Vh, L) bidder 1 and

type-(Vh, L) bidder 2 have the same payoff according to the above indifference conditions, we

have relation

π̂2E = π̂1E Ĵ l
1(b̂21). (45)

Now we turn to the type-(Vh, s0) bidder 2. Since this type bidder 2 randomizes over the

interval [b̂21, b̂22], her expected surplus is given by

(Vh − b)
[

pl + phπ̂1E(1 − q)Ĵ l
1(b) + ph(1 − π̂1E)Ĵs0

1 (b) + phπ̂1EqĴh
1 (b)

]

=(Vh − b̂21)
[

pl + phπ̂1E(1 − q)Ĵ l
1(b̂21)

]

b = b̂21

=(Vh − b̂11)
[

pl + phπ̂1E(1 − q)
]

b = b̂11,
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which should be a constant for all bids in [̂b21, b̂22]. Then we have

b̂11 =
[pl + ph(1 − q)π̂2E ]b̂21 + ph(1 − q)(π̂1E − π̂2E)Vh

pl + ph(1 − q)π̂1E

. (46)

Step 3: Now we give the conditions that determine the key parameters π̂1E and π̂2E . Note

that when bidder 1 or bidder 2 uses a mixed strategy to acquire information, the surplus should

be the same between acquiring information and not acquiring information. Suppose bidder 1

acquires information. With probability ph[plq + ph(1 − q)], bidder 1’s type is (Vh, L) and the

corresponding surplus is plq(Vh−Vl)
plq+ph(1−q) . With probability ph[pl(1 − q) + phq] bidder 1’s type is

(Vh,H) and the corresponding surplus is (Vh − b̂3). The type-Vl bidder has zero surplus. Then

the total surplus is ph

[

(Vh − Vl)plq + (pl(1− q) + phq)(Vh − b̂3)
]

− c. Now suppose bidder 1 does

not acquire information. With probability ph her type is (Vh, s0) and the corresponding surplus

is (Vh − b̂11)
[

pl + phπ̂2E(1 − q) + ph(1 − π̂2E)Ĵs0

2 (b̂11)
]

. With probability pl her valuation is Vl

and the corresponding surplus is zero. Then bidder 1’s total non-IA surplus is ph(Vh − b̂11)
[

pl +

phπ̂2E(1 − q) + ph(1 − π̂2E)Ĵs0

2 (b̂11)
]

. In equilibrium, it should be true that

ph

[

(Vh − Vl)plq + (pl(1 − q) + phq)(Vh − b̂3)
]

− c

= ph(Vh − b̂11)
[

pl + phπ̂2E(1 − q) + ph(1 − π̂2E)Ĵs0

2 (b̂11)
]

.
(47)

By the same analysis, we have a similar condition for bidder 2:

ph

[

(Vh − Vl)plq + (pl(1 − q) + phq)(Vh − b̂3)
]

− c

= ph(Vh − b̂21)
[

pl + phπ̂1E(1 − q)Ĵ l
1(b̂21)

]

.
(48)

Note that the left hand sides of the two bidders’ indifference conditions are the same and

π̂2E = π̂1E Ĵ l
1(b̂21). Then we obtain one necessary condition for π̂1E and π̂2E :

π̂1E(1 − q) = π̂2E(1 − q) + (1 − π̂2E)Ĵs0

2 (b̂11). (49)

Substituting b̂11 and Ĵs0

2 (·) (defined in Step 2) into the equation yields

(π̂1E − π̂2E)(1 − q) =
(π̂1E − π̂2E)[plq + ph(1 − q)2π̂2E ]

pl + ph(1 − q)π̂2E

, (50)

which holds only when q = 1
2 . This contradicts the fact q > 1

2 . Then there exists no such

equilibrium that bidder 1 and bidder 2 acquire information with different probabilities.

Claim 4: It cannot be an equilibrium that one bidder acquires information and the other
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bidder does not acquire information.

By way of contradiction, suppose we can construct such an equilibrium. Without loss of

generality, let bidder 1 choose not to acquire information. Then she will bid Vl if her valuation

is Vl, and mix over the interval (Vl, γ̃] for some constant γ̃ according to some cdf H̃(·). Assume

bidder 2 acquires information with probability π̃. Then in equilibrium the type-Vl bidder 2 will

bid Vl, the type-(Vh, s0) bidder 2 will mix over the same interval (Vl, γ̃] according to some cdf

H̃s0

2 , the type-(Vh, L) bidder 2 will mix over the same interval (Vl, γ̃] according to some cdf

H̃ l
2, and the type-(Vh,H) bidder 2 will mix over the same interval (Vl, γ̃] according to some cdf

H̃h
2 . Note that by Lemma 1, the bidder with valuation Vl bids Vl in any equilibrium, and by

ǫ-deviation argument, the type-Vh bidder should randomize to submit bids over some interval.

Since bidder 2 knows that the type-Vh bidder 1 never bids more than γ̃, the type-Vh bidder 2

also randomizes over the same interval.

By the requirement of mixed strategy, the expected surplus for the type-(Vh, L) bidder 2 and

the type-(Vh,H) bidder 2 must be constant. Hence for some constants C̃l and C̃h, the following

equations should hold, which is impossible unless q = 1
2 :

[

plq

plq + ph(1 − q)
+

ph(1 − q)

plq + ph(1 − q)
·H̃1(b)

]

(Vh − b) = C̃l,

[

pl(1 − q)

pl(1 − q) + phq
+

phq

pl(1 − q) + phq
·H̃1(b)

]

(Vh − b) = C̃h,

for all b ∈ (Vl, γ̃]. Thus we have a contradiction.

Claim 5: There is no asymmetric equilibrium in which two bidders acquire information with

the same probability and submit bids according to different strategies.

Proof. First, similar arguments can be used to show that in an asymmetric equilibrium,

the support of a type-(Vh, L) bidder must be lower than that of a type-(Vh, s0) bidder, and the

support of a type-(Vh, s0) bidder must be lower than that of a type-(Vh,H) bidder (see Step 4

in Claim 2).

Let π̃ be the probability that bidders 1 and 2 acquire information about their opponents’

valuations. Now suppose that the type-(Vh, L) bidder 1 plays a mixed strategy over the support

of (Vl, b̃
l
1] with c.d.f T̃ l

1(·), and the type-(Vh, L) bidder 2 plays a mixed strategy over the support

of (Vl, b̃
l
2] with c.d.f T̃ l

2(·). Without loss of generality, assume that b̃l
1 > b̃l

2. Note that the

type-(Vh, L) bidder 1 is indifferent among all bids in (Vl, b̃
l
2]. Then T̃ l

2(·) should satisfy

(Vh − b)

[

plq

plq + ph(1 − q)
+

ph(1 − q)π̃(1 − q)T̃ l
2(b)

plq + ph(1 − q)

]

=(Vh − Vl)
plq

plq + ph(1 − q)
,

(51)
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from which we obtain

T̃ l
2(b) =

plq

ph(1 − q)2π̃
· b − Vl

Vh − b
, (52)

and T̃ l
2(b̃

l
2) = 1. Since bidder 2 is also indifferent among all bids in (Vl, b̃

l
2], T̃ l

1(·) should also

satisfy

(Vh − b)

[

plq

plq + ph(1 − q)
+

ph(1 − q)π̃(1 − q)T̃ l
1(b)

plq + ph(1 − q)

]

=(Vh − Vl)
plq

plq + ph(1 − q)
.

(53)

Then we have

T̃ l
1(b) =

plq

ph(1 − q)2π̃
· b − Vl

Vh − b
, (54)

which is exactly the same as T̃ l
2(b). Then T̃ l

2(b̃
l
2) = 1, which contradicts the fact that T̃ l

2(b̃
l
2) < 1

for bidder 1 mixes over the interval (Vl, b̃
l
1]. Hence it should be the case that type-(Vh, L) bidders

1 and 2 both mix in the same interval (Vl, b̃
l].

Now suppose that the type-(Vh, s0) bidder 1 mixes over the interval [b̃l, b̃s0

1 ] according to some

c.d.f. T̃ s0

1 (·), and the type-(Vh, s0) bidder 2 mixes over the interval [b̃l, b̃s0

2 ] according to some

c.d.f. T̃ s0

2 (·). Without loss of generality, assume b̃s0

1 > b̃s0

2 . Then by applying the same analysis

above, we will obtain b̃s0

1 = b̃s0

2 and T̃ s0

1 (·) = T̃ s0

2 (·), which in turn implies that the type-(Vh,H)

bidders 1 and 2 will use exactly the same mixed strategies. This completes the claim.

Claim 6: πE is uniquely determined by (11) when 0 ≦ c < plp
2
h(Vh − Vl)(2q − 1).

Proof. The probability of IA, or the demand for information, πE , is pinned down by bidder’s

indifference condition between IA and no IA. Consider the bidder who acquires information

by incurring cost c. This bidder obtains positive surplus only when her valuation type is Vh

which occurs with probability ph. Conditional on her action of IA, a = 1, the type-Vh bidder

receives a signal L that comes with probability plq + ph(1 − q), or a signal H with probability

pl(1 − q) + phq. In equilibrium, the type-(Vh, L) bidder submits a bid randomly drawn from

(Vl, δ1]. Since any bid in this interval yields type-(Vh, L) bidder the same expected payoff,

suppose she submits a bid with value Vl. This bid wins only against an opponent whose value

is Vl, which occurs with probability pl(1−q)
pl(1−q)+phq

conditional on signal L. Therefore, the type-

(Vh, L) bidder’s expected payoff is S(Vh,L) = pl(1−q)
pl(1−q)+phq

(Vh − Vl). Now turn to the type-(Vh,H)

bidder. Suppose her bid is δ2 (again this bidder submits bid randomly and which bid she submits

wouldn’t matter). The bid δ2 can win against a type-Vl opponent, a type-(Vh, L) opponent and

a type-(Vh, s0) opponent, which occur with probabilities pl(1−q)
pl(1−q)+phq

, phqπE(1−q)
pl(1−q)+phq

and phq(1−πE)
pl(1−q)+phq

,

respectively, conditional on her own type (Vh,H). Therefore, type-(Vh,H) bidder has expected
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payoff S(Vh,H) = (Vh − δ2)[
pl(1−q)

pl(1−q)+phq
+ phqπE(1−q)

pl(1−q)+phq
+ phq(1−πE)

pl(1−q)+phq
]. The total ex ante expected

payoff then would be ph[(plq + ph(1 − q))S(Vh,L) + (pl(1 − q) + phq)S(Vh,H)] − c, which yields

the left hand side of (11) by simplifying terms. Using the same analysis, the bidder’s expected

payoff without IA can be obtained, which is demonstrated on the right hand side of (11). Since

bidder plays mixed strategy in information acquisition choice, different IA actions must give her

exactly the same expected payoff, hence (11) holds.

Substituting δ1, δ2 and δ3 into (11) and rearranging terms yields the reverse demand for

information

c = plph(Vh − Vl) ·
plphq(2q − 1)

plq + ph(1 − q)2πE

· (1 − πE)

(1 − phqπE)
. (55)

The right hand side (RHS) is strictly decreasing in πE , and RHS= plp
2
h(Vh − Vl)(2q − 1)

when πE = 0 and RHS= 0 when πE = 1. Hence, πE is uniquely determined for 0≦c <

plp
2
h(Vh − Vl)(2q − 1) as claimed.

Claim 7: For c ≧ plp
2
h(Vh − Vl)(2q − 1), no bidder acquires information in equilibrium.

Proof. If both bidders acquire information, then both bidders choose the same IA probability

that is implicitly given by (11) according to Claims 3 and 5 and the same reasoning in the

argument of Claim 2, Steps 2 to 4. However, the resulting probability πE given by (11) or

equivalently by (14) is either zero or does not exist for c ≧ plp
2
h(Vh − Vl)(2q − 1). Since Claim

3 implies either both bidders acquire information with positive probability or neither acquires

information in equilibrium, the result follows.

Claim 8: For c ≧ plp
2
h(Vh − Vl)(2q − 1), the equilibrium is symmetric, unique and given

in part (ii) of the proposition.

Proof. When c ≧ plp
2
h(Vh − Vl)(2q − 1), the ex ante IA auction game < AE , GE > is

equivalent to a standard FPA game by Claim 7. By Lemma 1, type-(Vl, s0) bidder bids Vl in

pure strategy. The same reasoning as in the argument of Step 2, Claim 2 shows that type-(Vh, s0)

bidder plays mixed strategy. Obviously, the supports of the type-(Vh, s0) bidders 1 and 2 are the

same, namely, (Vl, γ] for some Vl < γ < Vh, since they just consider winning against each other

(they win against type-(Vl, s0) opponent for sure). The indifference condition that requires any

bid drawn on the support yield the same expected surplus will pin down the parameter γ and

c.d.f.J̄(·), as given in (13) and (12), respectively. This implies the equilibrium is unique and

symmetric.

The series of Claims 1 to 8 together with Lemma 1 imply that the equilibrium of the game

< AE , GE > is unique and symmetric, and fully characterized in the proposition. The proof of

the proposition now is complete. �
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Proof of Corollary 1: Part (i). For c ∈ [0, plp
2
h(Vh − Vl)(2q − 1)), we know πE is continuous

and decreasing in c, and πE goes to zero as c approaches plp
2
h(Vh − Vl)(2q − 1) from equation

(14). Also from part (ii) of Proposition 1, πE = 0 for c ∈ [plp
2
h(Vh−Vl)(2q−1),+∞). The result

then follows.

Part (ii). For c = 0, πE = 1 for all q ∈ (0.5, 1] since πE is determined by (14). For

0 < c < plp
2
h(Vh − Vl), there are two cases to consider. If 0.5 < q ≦ 1

2 [1 + c
plp

2

h
(Vh−Vl)

], then

πE = 0 by part (ii) of Proposition 1. If 1
2 [1+ c

plp
2

h
(Vh−Vl)

] < q ≦ 1, then πE > 0 and is determined

by (14). Let B1 = q(2q−1)
plq+phπE(1−q)2

, and B2 = 1−πE

1−phqπE
. It is easy to see that both B1 and B2 are

increasing in q and decreasing in πE . Therefore, the right hand side of (14) is increasing in q

and decreasing in πE . Since the left hand side of (14) does not depend on q, we can conclude

that πE is increasing in accuracy q for 1
2 [1 + c

plp
2

h
(Vh−Vl)

] < q ≦ 1. For c ≧ plp
2
h(Vh − Vl), we

simply have πE = 0 by part (ii) of Proposition 1. Hence the conclusion follows. �

Proof of Proposition 2. All procedures of the proof are exactly parallel to those of Proposition

1. The only difference is that the bidder with valuation Vl will always choose not to acquire

information since she cannot benefit from it. Note that type-Vl bidder completely ignores the

signal if she acquires information in ex ante IA equilibrium. This indifference also implies the

equation that determines πI now turns to be the indifference condition for type-Vh bidder. We

do not intend to replicate the argument, hence omit the proof. �

Proof of Corollary 2: Part (i). For c < plph(Vh − Vl)(2q − 1), πI is given by equation (24);

therefore, it is obvious that πI is strictly decreasing in c and limcրplph(Vh−Vl)(2q−1) πI = 0. For

c ≧ plph(Vh − Vl)(2q − 1), πI = 0 by part (ii) of Proposition 2. Hence, πI is continuous in c.

Part (ii). It’s self-evident that πI = 1 when c = 0 from (24). When plph(Vh − Vl) > c > 0,

there are two different ranges of q to consider. If 0.5 < q ≦ 1
2 [1 + c

plph(Vh−Vl)
], πI = 0 by part

(ii) of Proposition 2. If 1
2 [1 + c

plph(Vh−Vl)
] < q ≦ 1, πI > 0 and πI is characterized by (24).

Let B̂1 = plq(2q−1)
plq+ph(1−q)2πI

and B̂2 = (1−πI)
(1−phqπI) . It is easy to figure out that both B̂1 and B̂2 are

strictly increasing in q and strictly decreasing in πI . Therefore, the right hand side of (24) is

strictly increasing in q and strictly decreasing in πI , which implies πI increases as q goes up for

1
2 [1+ c

plph(Vh−Vl)
] < q ≦ 1. When c ≧ plph(Vh−Vl), obviously πI = 0 by part (ii) of Proposition

2.

Part (iii). We define a function of π as

φ(π) = p2
l p

2
h(Vh − Vl)q(2q − 1) · 1 − π

[plq + ph(1 − q)2π](1 − phqπ)
, (56)
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which is decreasing in π. Actually this function is the right hand side of (14). Then we have

φ(πE) =
c

ph

> c = φ(πI); (57)

hence 0 < πE < πI for 0 < c < plp
2
h(Vh − Vl)(2q − 1). When plp

2
h(Vh − Vl)(2q − 1) ≦ c <

plph(Vh − Vl)(2q − 1), it is easy to see πI > 0 = πE . This completes the proof. �

Proof of Proposition 3. Part (i) follows directly from (25), noting that πE ≧ 0 and

q ∈ (0.5, 1]. Part (ii) follows from the result that πE is decreasing in c by Corollary 1 and the

fact that SE is increasing in πE for q ∈ (0.5, 1).

Proof of Proposition 4. Part (i) is self evident, since πE > 0 for the given ranges of c and q

by Proposition 1.

Part (ii). First for c < plp
2
h(Vh − Vl)(2q − 1), πE is characterized by equation (14), and

differentiating both sides with respect to c and rearranging terms yields

∂πE

∂c
= − [plq + ph(1 − q)2πE ]2[1 − phqπE ]2

p2
l p

2
h(Vh − Vl)q(2q − 1)

[

ph(1 − q)2(1 − πE)(1 − phqπE) + (1 − phq)(plq + ph(1 − q)2πE)
] .

(58)

Therefore, simple algebra shows that

∂TSE

∂c
= −2(πE + c · ∂πE

∂c
)

= −2 · ph[ph(1 − q)3 − pl(2q − 1)]π2
E + 2plqπE − plq

[

ph(1 − q)2(1 − πE)(1 − phqπE) + (1 − phq)(plq + ph(1 − q)2πE)
]

(59)

where the second line follows by substituting c and ∂πE

∂c
using (14) and (58), respectively.

Let the numerator be N(πE) = ph[ph(1 − q)3 − pl(2q − 1)]π2
E + 2plqπE − plq. N(·) has the

properties that N(0) = −plq < 0, N(1) = p2
h(1− q)3 + pl[q− ph(2q− 1)] > 0, and N(·) is strictly

increasing in πE for πE ∈ [0, 1] regardless of the sign of [ph(1− q)3 − pl(2q − 1)]. The increasing

property can be seen as follows. If ph(1− q)3 − pl(2q − 1) = 0, then N(·) is obviously increasing

in πE . If ph(1 − q)3 − pl(2q − 1) < 0, then N(·) is a quadratic function of πE and is increasing

in πE for πE < − 2plq
2ph[ph(1−q)3−pl(2q−1)]

; note that − 2plq
2ph[ph(1−q)3−pl(2q−1)]

> 2plq
2plph(2q−1) > 1, hence

N(·) is increasing for πE ∈ [0, 1]. If ph(1− q)3−pl(2q−1) > 0, then the increasing range of N(·)
would be πE > − 2plq

2ph[ph(1−q)3−pl(2q−1)]
, which includes the interval [0, 1]. Then, N(·) is strictly

increasing for πE ∈ [0, 1].

Therefore, there exists a unique critical value π̂E ∈ (0, 1) such that ∂TSE

∂c
< 0 for πE ∈ [0, π̂E)

and ∂TSE

∂c
> 0 for πE ∈ [π̂E , 1]. By Corollary 1, πE is strictly decreasing in c and is uniquely
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determined by equation (14), then the result follows by setting cE
TS(q) = φ(π̂E), where φ(·) is

defined in (56).

Part (iii). By Corollary 1 item (ii), πE is weakly increasing in q, then it follows that TSE is

weakly decreasing in accuracy. �

Proof of Proposition 5. Part (i). Since πEc ≧ 0, and SE ≧ S0 by Proposition 3 part (i),

the result follows.

Part (ii). Simple algebra shows that

dχE

dc
= −2

[

πE +

(

c +
∂SE

∂πE

)

· ∂πE

∂c

]

= −2

{

πE +

[

c + p2
l p

2
h(Vh − Vl)

q(1 − q)(2q − 1)

[plq + ph(1 − q)2πE ]2

]

· ∂πE

∂c

}

.

Using (14) and (58) to substitute c and ∂πE

∂c
yields

dχE

dc
= 2

(1 − phq)
[

ph(2q − 1)π2
E − 2qπE + 1

]

ph(1 − q)2(1 − πE)(1 − phqπE) + (1 − phq)(plq + ph(1 − q)2πE)
. (60)

Therefore, the sign of dχE

dc
is the same as the term ξ(πE) = [ph(2q− 1)π2

E − 2qπE + 1]. It is easy

to see ξ(πE) > 0 for πE ∈ [0, π∗
E) and ξ(πE) < 0 for πE ∈ (π∗

E , 1] where π∗
E =

q−
√

q2−2phq+ph

ph(2q−1) ∈
(0, 1). Define the critical value cE(q) = φ(π∗

E), where φ(·) is given by (56). Then cE(q) ∈
(0, plp

2
h(Vh − Vl)(2q − 1)) as πE ∈ (0, 1).

Since πE is a strictly decreasing function of c when c ∈ [0, plp
2
h(Vh − Vl)(2q − 1)], we have

ξ(πE) > 0 for c ∈ (cE(q), plp
2
h(Vh −Vl)(2q− 1)] and ξ(πE) < 0 for c ∈ [0, cE(q)). Then the result

of Part (ii) follows. �

Proof of Proposition 6. Part (i) follows from the fact that πI is increasing in πI and πI is

decreasing in c by Corollary 2.

Part (ii). Note that πI ≧ πE implies SI ≧ SE , and πI > πE and q ∈ (0, 5, 1) imply

SI > SE . For q ∈ (0.5, 1) and 0 < c < plph(Vh − Vl)(2q − 1), πI > πE by Corollary 2. Then

the strict inequality follows. We also know that πI = πE = 1 for c = 0 and πI = πE = 0 for

c = plph(Vh − Vl)(2q − 1) according to Propositions 1 and 2, then πI ≧ πE holds. Part (ii)

follows. �

Proof of Proposition 7. The argument is parallel to that of Proposition 4, hence is omitted.

�
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Proof of Proposition 8. The argument is parallel to that of Proposition 5, hence is omitted.

�
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