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Abstract

This article describes a new approximation method for dynamic
stochastic general equilibrium (DSGE) models. The method allows
nonlinear models to be estimated efficiently and relatively quickly with
the fully-adapted particle filter. The article demonstrates the method
by estimating, on US data, a nonlinear New Keynesian model with a
zero lower bound on the nominal interest rate.
Keywords: DSGE, nonlinear, particle filter.

1 Introduction

Nonlinear models of the macroeconomy can include a variety of interesting
features that are off limits to linear models, such as time-varying volatility
or policy regime switching. These models have been explored in simula-
tion studies over recent years, but estimation remains rare. This is largely
because of the computational difficulties involved. Finding an accurate non-
linear solution to a dynamic stochastic general equilibrium (DSGE) model
can be time-consuming, and in order to estimate the model we must solve
it many times over.

This paper describes a method for taking nonlinear DSGE models to the
data. The method is based on local linearisation, that is, a linearisation
of the model’s policy function conditional on the current state. Conditional
linearity implies that the model’s prediction density has full support over the

∗The author wishes to acknowledge partial support from ARC grants LP0774950 and
DP0988579.
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space of possible observations, which is not true of (for instance) a second-
order approximation. While that issue causes no difficulty in simulation, it
can be a critical issue in estimating the model, as described below. Addition-
ally, a conditionally linear model with Gaussian shocks is fully adapted in
the sense of Pitt & Shephard (1999), which makes estimation very efficient.
(Note that while this paper assumes the structural shocks are Gaussian,
mixtures of Gaussians are also fully adapted.)

This is not the only possible answer: one could also use a higher-order
local approximation, or a global approximation. In Sections 1.1 and 1.2, I
outline these alternatives and argue that a local linearisation is also worth
considering. Section 2 describes the method in general terms, and Section 3
shows how it fits into a particle filtering framework. Since these general
discussions are fairly abstract, Section 4 provides a worked example based
on the neoclassical growth model. Finally, in Section 5, I report some esti-
mation results for a nonlinear New Keynesian model.

1.1 Why not use a second-order approximation?

Simulation studies of nonlinear DSGE models often use a second-order Tay-
lor approximation to the model solution (Schmitt-Grohé & Uribe 2004, Kim,
Kim, Schaumburg & Sims 2008). That is to say, the law of motion of the
model’s state variables is approximated by an autoregression with linear
terms, squares, and cross-products. Since this approximation has proven
satisfactory for simulation studies, why not use it for estimation?

One reason is illustrated in Figure 1. This graph shows the possible
values of the observed variable (growth in the price-dividend ratio) as a
function of the structural consumption shock νt, in an asset pricing model
with external habits (Campbell & Cochrane 1999). The precise details of
the model are not important for this illustration; see Appendix A for a full
explanation. The three lines in the graph correspond to three possible ap-
proximations: linear, quadratic, and quartic. The quartic approximation is
fairly close to the exact solution, while the linear approximation is quite in-
accurate. The important thing to notice is that the quadratic approximation
bends back on itself for νt < 0.007 (a little over one standard deviation away
from zero). In other words, conditional on the given value of the state xt−1,
it is impossible for the second-order approximation to generate an observa-
tion lower than −6%. This is not a problem of misspecification, since all
three approximations in the chart are calculated using the same parameters
and the same model. Suppose that the model and parameters used to make
this graph represented the true data generating process. Then the quartic
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approximation indicates that the exact solution would generate a value of
∆ log yt lower than −6% with a reasonable probability. Thus, even though
the second-order approximation uses the correct model and the correct pa-
rameters, it would estimate the probability of that observation to be zero
(in the absence of a noise term in the observation equation).
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Figure 1: log yt as a function of νt for a given xt−1 and θ: linear, quadratic,
and quartic approximations. See Appendix A for details.

In general, quadratic functions can approximate a curved function ac-
curately on a neighbourhood of the origin, but the location and size of this
neighbourhood depend on the model’s parameters, making estimation diffi-
cult. Additionally, as illustrated in Figure 1, the even nature of a quadratic
function can make it useless for estimation, because it is not absolutely con-
tinuous with respect to the process that generates the observations, even
when both the parameters and the model are correct.

It would be possible to continue using second-order approximations by
acting as if the data series were observed with a large amount of noise.
This would be worth pursuing if no alternatives were available. The next
section briefly discusses some possible alternatives, and the rest of the paper
presents another one.
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1.2 Why not use better global methods?

Recent work on DSGE models has employed more exotic approximation
methods, which promise far greater accuracy than the first- or second-
order Taylor approximations can deliver. This class of methods includes
Smolyak polynomials (Fernández-Villaverde, Gordon, Guerrón-Quintana &
Rubio-Ramı́rez 2012), as well as Chebyshev polynomials and other projec-
tion methods (Judd 1998, Heer & Maußner 2009).1

Although these methods promise greater sophistication and accuracy, it
is still worth considering locally linear approximations, for two reasons. The
first is speed. Those global methods can be somewhat time-consuming, even
using modern high-performance computing. This makes them unappealing
for use in estimation, where the solution to the model might be recalculated
many thousands of times. The second reason for maintaining an interest in
a locally linear approximation is that the latter is well-suited for use with
the auxiliary particle filter, whereas global methods may not be.2 The use of
the auxiliary particle filter is discussed further in Section 3, and illustrated
in Section 5.

Intuitively, the sequential Monte Carlo framework of particle filtering
relies on representing the model’s likelihood function with the product of a
series of conditional likelihoods:

p(y1:T |θ) =
T∏

t=1

p(yt|θ, y1:(t−1))

Therefore, the approximate solution of the model at time t does not need
to be unconditionally accurate for all time. It only needs to maintain its
validity into time (t + 1), at which point it can be recalculated. Thus the
locally linear approach can attain higher accuracy close to the current state,
at the cost of a larger discrepancy in other areas of the state space—but
those areas are unlikely to be reached in a single step.

1Specially tailored solutions for particular situations are also possible, such as that of
Amisano & Tristani (2011) for heteroscedastic models.

2This also applies to second-order local approximations. While it is possbile to use
a variation on the auxiliary particle filter specially tailored for this case (Hall, Pitt &
Kohn 2012), this cannot attain the efficiency of a fully adapted filter.
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2 General setup

In general, an economic model with optimising agents and rational expec-
tations can be written in the form

EtF (ct+1, ct, kt, kt−1, zt) = 0 (1)

where Et denotes an expectation conditional on date t information, ct is
a vector of choice variables (including forward-looking variables and jump
variables), kt is a vector of endogenous predetermined variables, and zt is a
vector of exogenous forcing variables. The vector-valued function F includes
the law of motion of zt, the equations determining kt, and the equations that
implicitly determine ct as a function of kt−1 and zt.

The goal is to find a corresponding expression for the model in state-
space form, which can then be estimated. That is, we need functions of the
form

ct = σ(kt−1, zt) (2)

kt = ρ(kt−1, zt) (3)

with the property that, when these values are used in F , equation (1) is
satisfied. In general, these functions are not available in closed form, and
need to be approximated.

2.1 Assumptions

To apply the method described in this paper, it is necessary to split the
function F into its separate components, and make some assumptions about
their structure. First, I assume that the law of motion of zt can be written
in log-linear form:

log zt = d+ Tt log zt−1 +Rtǫt (4)

Here Tt and Rt are coefficient matrices which are assumed to be fixed, con-
ditional on the vector of structrual parameters θ and the values of zt−1 and
kt−1. The time subscripts indicate that the matrices are not assumed to be
functions of θ alone. For example, time-varying volatility can be accommo-
dated by including functions of zt−1 and/or kt−1 in the components of Rt. I
assume that ǫt is a multivariate standard normal distribution: ǫt ∼ N(0, I).3

3The methods described below can be generalised to allow each component of ǫt to be
a finite mixture of distributions from the exponential family.

5



To describe the equations determining the endogenous variables, we need
the following notation: for each variable xt, define x̃ as the log-deviation of
xt from its nonstochastic steady state X, i.e.

xt = X exp(x̃t)

The second assumption I make is that each endogenous predetermined
variable can be written as an explicit function g of last period’s predeter-
mined variables, the current period’s exogenous processes, and the choice
variables:

kt = g(k̃t−1, z̃t, c̃t) (5)

The structure of a model will usually make the function g available in a
natural way. If not, it could be calculated implicitly or approximated.

The final assumption concerns the equations that characterise the choice
variables. In general, they can be written in the form

Et

{
f(k̃t−1, z̃t, c̃t, k̃t, z̃t+1, c̃t+1)

}
= 0 (6)

where f is some R
nc-valued function with the indicated arguments, and Et

denotes expectation conditional on date-t information. I assume that f can
be re-expressed, approximately if necessary, to give an exponential function
of the vector ct as a weighted sum of Nc exponential terms:

A0 ◦ exp (D0c̃t) = Et

Nc∑

j=1

Aj ◦ exp
(
Bj k̃t−1 + Cj z̃t +Dj c̃t

+Ej k̃t + Fj z̃t+1 +Gj c̃t+1

)
(7)

Here, ◦ denotes the Hadamard product (elementwise multiplication) and
the exponential is understood to operate elementwise. Thus the coefficient
matrix D0 is nc × nc dimensional, the vector Ai is nc × 1 dimensional, the
matrix Bi is nk × nk dimensional, and similarly for the others. While the
vector c̃t can appear on both the left and right hand sides of equation (7),
I assume that it is written so that the left-hand coefficient matrix D0 is full
rank. In the case of jump variables, which are determined by intratemporal
optimality conditions only, the coefficients on the (t+ 1)-dated variables in
(7) will be zero.

The approximation in equation (7) differs from the log-linearisation fre-
quently used in macroeconomics in two ways. First, the approximation is
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not calculated at the nonstochastic steady state, but rather conditional on
the values of kt−1 and zt. Second, while the form of the equation may appear
similar to the exponential of a loglinear structural model, the right-hand side
of the equation is a weighted sum of exponential terms, rather than a single
exponential of a sum. In other words, if the function f consists of several
terms, then each term is loglinearised separately, conditional on kt−1 and zt.

In many cases, the approximation in equation (7) will in fact be ex-
act. This is true of all the equations in the examples below. If this type
of exactness is not possible, the approximation can be calculated by log-
differentiating the function f .

2.2 The approximate solution

In general, the solution of the model (1) involves expressing the choice vari-
ables ct as determined by a policy function σ:

ct = σ(zt, kt−1) (8)

The function σ, which is intractable in general, is characterised by the fact
that it satisfies (1) when substituted for c:

EtF (σ(zt+1, kt), σ(zt, kt−1), kt, kt−1, zt) = 0

Now, suppose we approximate the unknown σ by expressing the vector of
choice variables ct as a log-affine function of z̃t and k̃t−1:

ct ≈ C exp
(
ξt +Ωtz̃t +Φtk̃t−1

)
(9)

ct+1 ≈ C exp
(
ξt +Ωtz̃t+1 +Φtk̃t

)
(10)

where the vector ξt and the matrices Ωt and Φt are functions of θ, zt and
kt−1, to be described below. I assume that unique initial values for Ω and
Φ are available by log-linearising the model around its nonstochastic steady
state using standard methods (Klein 2000, Sims 2001). In other words, I
take it for granted that these matrices exist, that it is feasible to compute
them, and that they are unique. The first contribution of this paper is to
describe an efficient method for updating these approximations.

Suppose we use equations (9) and (10) to approximate equation (7). We
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can then substitute it into the right-hand side of equation (7).

A0 ◦ exp (D0ξt +D0Ωtz̃t +D0Φtk̃t

)
≈ Et

Nc∑

j=1

Aj ◦ exp
(
Bj k̃t−1 + Cj z̃t +Djξt +DjΩtz̃t

+DjΦtk̃t−1 + Ej k̃t + Fj z̃t+1 +Gjξt +GjΩtz̃t+1 +GjΦtk̃t

)

(11)

We can then use the law of motion for z, equation (4), to replace z̃t+1 in
(11):

A0 ◦ exp (D0ξt +D0Ωtz̃t +D0Φtk̃t

)

≈ Et

Nc∑

j=1

Aj ◦ exp
(
Bj k̃t−1 + Cj z̃t +Djξt +DjΩtz̃t +DjΦtk̃t−1

+Ej k̃t +Gjξt [Fj +GjΩt]Ttz̃t + [Fj +GjΩt]Rtǫt+1 +GjΦtk̃t

)

(12)

Conditional on date-t information, the only stochastic part in equation
(12) is ǫt+1. So we can factor it as

A0 ◦ exp (D0ξt +D0Ωtz̃t +D0Φtk̃t

)

≈
Nc∑

j=1

Aj ◦ exp
(
[Bj +DjΦt] k̃t−1 + [Dj +Gj ] ξt

+ [Cj +DjΩt + FjTt +GjΩtTt] z̃t + [Ej +GjΦt] k̃t

)

◦ Et exp ([Fj +GjΩt]Rtǫt+1) (13)

Each component of the expectation part is now in the form E(q′ǫt+1),
where q′ is a row of [Fj +GjΩt]Rt. In other words, it is equal to a value of
the moment generating function of ǫt+1. Since ǫ is multivariate normal, the
moment generating function is given by

E exp
(
q′ǫ
)
= exp

(
1

2
q′q

)
(14)
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Using (14) in (13), we obtain the following:

A0 ◦ exp (D0ξt +D0Ωtz̃t +D0Φtk̃t

)

≈
Nc∑

j=1

Aj ◦ exp
(
[Bj +DjΦt] k̃t−1 + [Dj +Gj ] ξt

+ [Cj +DjΩt + FjTt +GjΩtTt] z̃t + [Ej +GjΦt] k̃t

+
1

2
K [Fj +GjΩt]RtR

′

t [Fj +GjΩt]
′

)
(15)

where K is the nc×n2
c matrix that selects the diagonal elements of an nc×nc

matrix.
The coefficient matrices Tt and Rt are assumed to be known at the start

of time t, while the other coefficient matrices are determined by the economic
equations defining the model (and given the value of the structural parame-
ter vector θ). Taking the values of kt as given, the only free parameters are
in the ct-approximation.

The values of of the coefficients in equation (9) are characterised by the
fact that it is a first-order approximation of the policy function σ. We can
therefore identify Ω and Φ by log-differentiating equation (15), and approx-
imate ξt by ensuring that (15) holds with equality (to within a tolerable
accuracy).

For notational convenience, let the vectors Sj be defined as

Sj = (Aj/A0) ◦ exp
(
[Bj +DjΦ] k̃t−1 + [Dj +Gj ] ξt + [Cj +DjΩ+ FjTt +GjΩTt] z̃t

+ [Ej +GjΦ] k̃t +
1

2
K [Fj +GjΩt]RtR

′

t [Fj +GjΩt]
′

)

(16)

That is, we rewrite equation (15) in the form exp(D0c̃t) =
∑Nc

j=1 Sj .
Log differentiating then gives the following expressions.

Ωt = D−1
0

Nc∑

j=1

Sj∑Nc

m=1 Sm

[
Cj +DjΩt + FjTt +GjΩtTt + (Ej +GjΦt)

(
∂k̃t
∂z̃′t

+
∂k̃t
∂c̃′t

Ωt

)]

(17)

Φt = D−1
0

Nc∑

j=1

Sj∑Nc

m=1 Sm

[
Bj +DjΦt + (Ej +GjΦt)

(
∂k̃t

∂k̃′t−1

+
∂k̃t
∂c̃′t

Φt

)]

(18)
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Finally, the vector ξt can be calculated from

ξ = D−1
0 log




Nc∑

j=1

Sj


− Ωzt − Φkt−1 (19)

These three equations define a continuous self-map on the elements of
the coefficient matrices. In computations, it is possible to update Ω, Φ and
ξ by iterating the last three equations until convergence is achieved. Note
that although the first two equations have some similarity to the forward-
looking linear structures taken as inputs by the algorithms of Klein (2000)
and Sims (2001), those methods are not applicable here, since the Sj factors
are functions of the reduced-form solutions, and the final terms in equations
(17) and (18) are quadratic functions of Ω and Φ.

In practice, I used Anderson acceleration to speed up the convergence
of the fixed-point iterations (Anderson 1965). See Appendix B for more
details.

2.3 Constraints on predetermined variables

It is often of interest to consider constraints on the endogenous predeter-
mined variables of the form

C1k̃t ≥ C2 (20)

Based on the standard Kuhn-Tucker conditions, the choice variables c̃t will
be determined by the unconstrained Euler equation (7) when the constraint
(20) is slack; but when it is binding, some or all of the choice variables will
be determined by their feasibility conditions. The nature of those feasibility
conditions will vary from model to model, but I assume they can be written
as

Pcc̃t = Pcξc + PcΩcz̃t + PcΦck̃t−1 (21)

where Pc is a projection onto certain coordinates of c̃, and the coefficients
in Ωc and Φc are known (conditional on the structural parameters θ).

Solving the Euler equation (11) now requires allowing for the possibility
that the constraint (20) may bind next period. To address this, I make the
additional assumption that the g function that determines the unconstrained
value of k̃t (via equation 5) can be written, or at least approximated, in the
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form

k̃t =

Nk∑

j=1

Ak
j ◦ exp

(
Bk

j k̃t−1 + Ck
j z̃t +Dk

j c̃t

)
(22)

≈




Nk∑

j=1

Sk
j∑Nk

m=1 S
k
m

Bk
j


 k̃t−1 +




Nk∑

j=1

Sk
j∑Nk

m=1 S
k
m

Ck
j


 z̃t +




Nk∑

j=1

Sk
j∑Nk

m=1 S
k
m

Dk
j


 c̃t

= Ψtk̃t−1 + Γtz̃t +Υtc̃t (23)

The values of the matrices Ψt, Γt and Υt can be calculated given k̃t−1, z̃t
and θ. Forwarding this equation one period, and substituting it into (20),
we get

C1Ψtk̃t+C1ΓtT z̃t + C1ΓtRǫt+1

+ C1Υtξt + C1ΥtΩT z̃t + C1ΥtΩtRǫt+1 + C1ΥtΦtk̃t ≥ C2

That is,

[C1ΓR+ C1ΥΩR] ǫt+1 ≥ C2 − C1 (Ψ + ΥΦt) k̃t

− C1 (Γ + ΥΩ)T z̃t − C1Υξt

or more compactly,
Mǫt+1 ≥ p (24)

Thus, conditional on values for ξt, Ωt and Φt, the constraint (20) will be
slack in the next period if the shock vector ǫt+1 is in the region defined by
(24).

The approximate law of motion for c̃t+1 is now

ct+1 ≈





C exp

(
(I − Pc)ξt + (I − Pc)Ωtz̃t+1 + (I − Pc)Φtk̃t
+Pcξc + PcΩcz̃t+1 + PcΦck̃t

)
if (20) binds next period

C exp
(
ξt +Ωtz̃t+1 +Φtk̃t

)
otherwise

(25)
with the values of ξt, Ωt and Φt to be determined.

The moment generating function part of equation (13) can be calculated
using a generalisation of equation (14), for Gaussian random variables sub-
ject to inequality constraints (Tallis 1965). One can then derive analogous
expressions to (17) and (18) by log-differentiating the Euler equation. See
Appendix C for the derivation and results.

In summary, the approximation for c̃t in the form (9), when k̃t has a
boundary, can be calculated in the following steps.
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• Take z̃t and k̃t−1 as given.

• Find the fixed points ξt, Ωt and Φt of (69), (70) and (71) in Ap-
pendix C). These define the solution for c̃t, consistent with (25), on
the assumption that k̃t is not constrained in period t.

• Calculate k̃t using equation (5) and the unconstrained approximation.
If (20) holds, stop.

• Otherwise, set Pcc̃t using equation (21) and find the fixed point of
(69), (70) and (71) for the remaining coefficients.

3 Estimation method

While any nonlinear state-space algorithm could apply to the approximation
described in Section 2, its locally linear quality makes it particularly well
suited to the fully-adapted particle filter (Pitt & Shephard 1999). The stan-
dard particle filter approximates the posterior filtering density p(xt|yt, xt−1)
by sampling from the transition density p(xt|xt−1) and then reweighting
by p(yt|xt). The fully-adapted version samples directly from p(xt|yt, xt−1).
This is only possible if p(xt|xt−1) and p(yt|xt) are conjugate in x. When
it is possible, it can be several orders of magnitude more efficient than the
standard particle filter, particularly when the observations yt are highly in-
formative about the underlying state xt (Pitt, Silva, Giordani & Kohn 2012).
In this section I describe how to modify the approximation algorithm to take
advantage of those features.

The locally linear approximation of c̃t and k̃t gives a system in the fol-
lowing form:

c̃t = ξt +Ωtz̃t +Φtk̃t−1 (9)

k̃t = g
(
c̃t, z̃t, k̃t−1

)
(5)

z̃t = Ttz̃t−1 +Rtǫt (4)

The coefficient matrices Tt and Rt are assumed to be given (conditional
on last period’s information), but the others depend on z̃t. Since changes
in these coefficients in a single period are likely to be small, the previous
period’s values can serve as approximations to them. Additionally, we can
take a linear approximation of g() conditional on z̃t−1 and k̃t−1. This gives
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the following system:

ĉt ≈ ξt−1 +Ωt−1z̃t +Φt−1k̃t−1 (26)

k̂t ≈ κt−1 + Jt−1 (z̃t − z̃t−1) (27)

where κt−1 = g
(
ςt−1, z̃t−1, k̃t−1

)
, ςt−1 = ξt−1 + Ωt−1z̃t−1 + Φt−1k̃t−1, and

J =
(

∂g
∂c′

Ωt−1 +
∂g
∂z′

)
.

Suppose that the observation vector yt consists of elements of c̃t and k̃t
selected by projection matrices Zc and Zk, that is,

yt =

[
Zcc̃t
Zkk̃t

]

Using the approximations just derived gives

yt =

[
Zcξt−1 + ZcΦt−1k̃t−1

Zkκt−1 − ZkJt−1zt−1

]

︸ ︷︷ ︸
dt

+

[
ZcΩt−1

ZkJt−1

]

︸ ︷︷ ︸
Zt

z̃t (28)

which can be used as the observation in equation for a one-step Kalman
filter, using the law of motion for z̃t as the state equation (Harvey 1991).
Thus the updated estimate of z̃t, given last period’s state and the observation
yt, is

ẑt = Ttz̃t−1 +RtR
′

tZt
′
(
ZtRtR

′

tZt
′ +H

)
−1

(yt − ZtTtz̃t−1 − dt) (29)

whereH is the covariance matrix of measurement noise in yt. The covariance
of this estimate is given by

Pt = RtR
′

t

[
I − Z

′

t

(
ZtRtR

′

tZt
′ +H

)
−1

ZtRtR
′

t

]
(30)

The one-step-ahead forecast error and forecast covariance are given by

vt = yt − ZtTtz̃t−1 − dt (31)

and
Ft =

(
ZtRtR

′

tZt
′ +H

)
(32)

Based on an estimate ẑt, the implied values of the endogenous variables
are given by (26) and (27). When H is small, so that observations are very
informative about some elements of c̃t and k̃t, the resulting values of ĉt and

13



k̂t will match the observed yt, but will not in general be equal to the values
of c̃t and k̃t given by (9) and (5)—that is, after the coefficient matrices ξ, Ω
and Φ are updated conditional on z̃t = ẑt. However, this inaccuracy will be
of second-order importance. To see this, note that

c̃t(ẑt)− ĉt = ξ(ẑt)− ξt−1 + [Ω(ẑt)− Ωt−1] ẑt + [Φ(ẑt)− Φt−1] k̃t−1

≈ ∂ξ

∂z′
(ẑt − z̃t−1) + o

(
z̃2
)

Since the Taylor approximation of the policy function σ has an error of
magnitude o

(
∆z̃2

)
, the change ∂ξ

∂z′
∆z will be of a similar order of magnitude.

To recapitulate, these considerations suggest that a fully adapted particle
filter can be implemented using the following steps at each time t:

1. Begin with values for z̃
(m)
t−1 , k̃

(m)
t−1 , ξ

(m)
t−1 , Ω

(m)
t−1 and Φ

(m)
t−1 for particles

indexed by m = 1, . . . ,M . Denote this information set as F (m)
t−1 .

2. Calculate v
(m)
t and F

(m)
t from (31) and (32) for each particle, then re-

sample the particles using weights given by p(yt|F (m)
t ) = N(v

(m)
t , F

(m)
t−1 ).

3. Calculate ẑt and Pt from (29) and (30), then draw z̃
(m)
t ∼ N(ẑ

(m)
t , P

(m)
t ).

4. Calculate ξt, Ωt and Φt using equations (17), (18) and (19) from Sec-
tion 2. Update k̃t via equation (5).

An unbiased estimate of the likelihood is given by ℓ =
∏T

t=1
1
M

∑M
m=1 p(yt|F

(m)
t−1 ).

For proofs of its unbiasedness, as well as other properties, see Del Moral
(2004) and Pitt et al. (2012).

In the case where some elements of k̃t are constrained (Section 2.3), the
approximation for c̃t+1 is in the form of a finite mixture of linear Gaussian
transitions. It is straightforward to extend the fully adapted particle filter
to cover these cases, by conditioning on the forecast probabilities that the
constraint on k̃t will bind.

4 Example 1: Neoclassical growth

In this section, I consider a basic neoclassical growth model. I choose this
model because it is a useful and simple benchmark for solving and estimating
DSGEs, used for example by Schmitt-Grohé & Uribe (2004) and Gomme
& Klein (2011). The model is based on the decisions of a representative
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household, which chooses between consumption ct and investment in next
period’s capital stock kt.

I begin by showing how the model is written in the general framework of
Section 2. I then evaluate the accuracy of the resulting approxmimations.

4.1 The model

The household’s goal is to maximise discounted lifetime utility, given by

U =
∞∑

t=0

βt c
1−γ
t

1− γ

subject to a feasibility constraint

ct + kt = Atk
α
t−1 + (1− δ)kt−1 , (33)

where δ ∈ [0, 1], and a productivity shock

logAt = ρ logAt−1 + ǫt ǫt ∼ N(0, σ2
ǫ ) . (34)

where ρ ∈ (0, 1). The solution of the model consists of equations (33) and
(34) plus a consumption Euler equation,

c−γ
t = βEt

{
c−γ
t+1

[
αAt+1k

α−1
t + 1− δ

]}
(35)

4.2 Approximation

In terms of the notation in Section 2, here the choice variable is ct, the
endogenous predetermined variable is kt, and the exogenous forcing variable
is At. Equation (34) is exactly in the form of equation (4); thus d = 0,
Tt = T = ρ, and Rt = R = σǫ. Note that the nonstochastic steady state of
A is 1, so that ãt = logAt. Equation (33) corresponds to equation (5):

K exp(k̃t) = K
α
exp(ãt + αk̃t−1) + (1− δ)K exp(k̃t−1)− C exp(c̃t) (36)

Equation (35) corresponds to (7):

exp (−γc̃t) = Eβα
(
K
)(α−1)

exp
[
−γc̃t+1 + (α− 1)k̃t + ãt+1

]

+ Eβ(1− δ) exp (−γc̃t+1) (37)

Thus, in the notation of equation (7), A0 = 1, A1 = βα
(
K
)(α−1)

, A2 =
β(1− δ), B1 = B2 = 0, C1 = C2 = 0, D0 = −γ,D1 = D2 = 0, E1 = (α− 1),
E2 = 0, F1 = 1, F2 = 0, G1 = G2 = −γ.
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Using the Gaussian mgf (14) and the linear approximations (9) and (10)
then gives

exp (−γξt −γΩtãt − γΦtk̃t−1

)
=

βα
(
K
)(α−1)

exp

[
−γξt + (1− γΩt)ρãt + (α− 1− γΦt)k̃t +

σ2 (1− γΩt)
2

2

]

+ β(1− δ) exp

(
−γξt − γΩtρãt − γΦtk̃t +

σ2γ2Ω2
t

2

)
(38)

which is equal to equation (15).
The constraint is

k̃t = log
[
K

(α−1)
exp(ãt + αk̃t−1) + (1− δ) exp(k̃t−1)

−C

K
exp(ξt +Ωtãt +Φtk̃t−1)

]
(39)

4.3 Results

How accurate is the approximation described in Section 4.2? I performed
a simulation study to compare it to several other benchmarks. I chose
standard values for most of the parameters: β = 0.96, α = 1/3, ρ = 0.9,
δ = 0.05, and σǫ = 0.02. For the risk-aversion parameter γ, I chose the
rather low value of 0.5, to place more emphasis on the nonlinear character
of the model. If γ is large, then the model is almost log-affine and accurate
approximation is less important. I made this choice because the intention
is to demonstrate a method that can be usefully applied to more complex
models with stronger nonlinear features.

Since this model has only one shock, it is possible to calculate the expec-
tation in equation (35) numerically, given a policy function c̃t = σ(z̃t, k̃t−1),
and therefore to estimate the policy functions Euler error. (This procedure
is of course not feasible for larger models.) I used a 50 × 50-point grid on
zt ∈ [−0.2, 0.2] and k̃t−1 = [−0.6, 0.6] to do so.

I applied this method to calculate the Euler errors for three different
methods: the locally linear approximation proposed in this paper, a log-
linearisation, and a second-order perturbation. The loglinearisation can be
calculated using standard methods (Klein 2000, Sims 2001). The second-
order perturbation is described in Schmitt-Grohé & Uribe (2004), Kim et al.
(2008) and Gomme & Klein (2011).

Figure 2 shows the squared Euler errors for each approximation method,
on a logarithmic scale. The quadratic approximation is comparable to the
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locally linear one at certain points of the grid close to the origin. However,
the quadratic approximation does not maintain this accuracy in the tails
of the state variables. The upper left and lower right panels of the Figure
are evaluated at values of k̃t−1 around 5 standard deviations away from
the steady state. They illustrate one advantage of the local linearisation
method: while these values of the state variable would rarely be encountered
in a simulation, they would be more common in estimation, since the level
of the nonstochastic steady state is a function of the structural parameters.
Thus, while searching through the parameter space using a given series of
real observations, it is advantageous to maintain accuracy throughout the
state space.

The average Euler errors are summarised in Table 1. The average
squared errors, in the first column of results, were estimated with respect to
the stationary distributions of z and k. The ‖η‖∞ estimates were calculated
with the state variables restricted to a distance of three standard deviations
from their steady states.

Method Eη2 ‖η‖∞
Loglinear 4.8× 10−8 2.3× 10−3

Second-order 9.2× 10−10 1.4× 10−4

Locally linear 1.1× 10−13 6.7× 10−7

Table 1: Average Euler errors for different
approximation methods

5 Example 2: A basic New Keynesian model

In this section, I consider a baseline New Keynesian macro model. There are
many possible variations on the basic structure. I use a simplified version
of the model based on Amisano & Tristani (2010) and Fernández-Villaverde
et al. (2012).4 It includes a representative household with a utility function
separable in consumption ct and hours worked lt; a continuum of profit-
maximising goods producers in monopolistic competition, with sticky prices;
and a government sector that sets the interest rate through a Taylor rule,
subject to a zero lower bound. Investment is not modelled, with the capital
stock instead being taken as fixed.

4See also Woodford (2003) and Gaĺı (2008) for further details and background.
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Figure 2: Squared Euler errors for the growth model (log scale), shown as
a function of zt, calculated for various values of kt−1, using linear (black),
quadratic (blue) and locally linear (red) approximation methods.
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5.1 The model

The household’s objective is to maximise utility, given by

Ut =

∞∑

h=0

βhebt+h−1

(
C1−γ
t+h

1− γ
− eet+h

1

1 + φ
l1+φ
t+h

)
(40)

where Ct is consumption, lt is hours worked, bt is an exogenous disturbance
representing demand-side shocks, and et is an exogenous disturbance rep-
resenting labour-supply shocks. The maximisation is subject to a budget
constraint

PtCt +Bt = Wtlt +Rt−1Bt−1 (41)

The household’s income is derived from a nominal wage Wt and a gross
return Rt−1 paid on risk-free nominal bonds Bt−1. This can be spent on
consumption and on saving for next period. Pt is the level of the consumer
price index in period t. To keep the model simple, I assume that taxes and
transfers offset any profits accruing to the household.

The resulting first-order conditions of the household are

λt = Etβe
btλt+1

Rt

Πt+1
(42)

C−γ
t = λt (43)

Wt

Pt
λt = eet lφt (44)

Equation (42) is an intertemporal consumption Euler equation, connecting
the marginal utility of consumption λt with its expected value next period,
deflated by a time preference factor β ∈ (0, 1) and the expected real interest
rate. Πt+1 is the ratio of the consumer price index in period t+1 and period
t.

Equation (44) is an intratemporal optimality condition, equating the

marginal disutility of labour (lφt ) to the marginal benefit of increased con-
sumption (Wt

Pt
λt).

There is a continuum of firms in a monopolistically competitive market.
The production function of the representative firm is

Yt(i) = Atlt(i)
α (45)

Here At is a technology shock and lt(i) is the amount of labour hired by firm
i. It follows that real marginal cost for the representative firm is given by

MCt =
Wt/Pt

At
(46)
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I make the standard assumption that firms are able to change their price
with fixed probability θp each period (Calvo 1983). The firm’s problem
is to choose a price in order to maximise expected profits subject to this
constraint, and subject to a constant elasticity of demand θ. Let the aux-
iliary variables G1,t and G2,t equal the present values of marginal cost and
marginal revenue. The profit maximisation conditions are then given by

θG1,t = (θ − 1)G2,t (47)

G1,t = λtMCtYt + βebtθpEtΠ
θ
t+1G1,t+1 (48)

G2,t = Π⋆
t

(
λtYt + βebtθpEt

Πθ−1
t+1

Π⋆
t+1

x2,t+1

)
(49)

Aggregate CPI inflation is given by

1 = θpΠ
θ−1
t + (1− θp)(Π

⋆
t )

1−θ (50)

If the model is loglinearised around its nonstochastic steady state, with
steady-state inflation logΠ = 0, then equations (47) to (50) collapse into
the familiar New Keynesian Phillips curve.

The market clearing conditions are

Yt = Ct (51)

Bt = 0 (52)

Interest rate policy is set according to

Rt = max



1, R1−ρrRρr

t−1

[(
Πt

Π

)φπ
(
yt
y

)φy

]1−ρr

mtηr,t



 (53)

This is a standard Taylor Rule for monetary policy, constrained by the zero
lower bound. The exogenous process mt is a persistent monetary-policy
shock (similar to a time-varying inflation target) and ηr,t is a transitory one.

The model is closed by specifying the laws of motion for the exogenous
processes. These are assumed to be as follows:

At = A1−ρAAρa
t exp(σaǫa,t) (54)

bt = ρbbt−1 + σbǫb,t (55)

mt = ρmmt−1 + σmǫm,t) (56)

et = ρeet−1 + σeǫe,t) (57)

ηr,t = σrǫr,t) (58)
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5.2 Approximation

It is straightforward to express this model in the form used in Section 2.
As in the growth model example, the expressions in equations (7) and
(5) are exact in this case. While the algebra involved in these expres-
sions is not difficult, it is not as compact as in the previous example, so
is reported in Appendix D. In brief, the choice variables of the model
are c̃t = (π̃t, π̃

⋆
t , G̃1,t, G̃2,t, λ̃t, l̃t, M̃Ct, ỹt), the predetermined variables are

k̃t = (r̃t), the exogenous variables are z̃t = (̃bt, ãt, m̃t, êt, ηr,t), and the shocks
are ǫt = (ǫa,t, ǫb,t, ǫm,t, ǫe,t, ǫr,t).

When the interest rate logRt is at the zero lower bound, the Euler
equation for consumption (42) becomes slack, with consumption instead
being pinned down by the household budget constraint (41). Substituting
the market-clearing condition (52), this is

Ct =
Wt

Pt
lt = Y γ

t l
φ+1
t exp(et) = A

−(φ+1)
α

t Y
γ+φ+1

α
t exp(et)

so Yt = A
−(φ+1)

α(1−γ)−(1+φ)

t exp

(
α

α(1− γ)− (1 + φ)
et

)
(59)

using (45), (51), and (44). All other equations of the model, including the
forward-looking equations determining inflation (48) & (49), remain valid.
In periods where the zero lower bound was binding, I replaced the relevant
coefficients in the previously estimated locally linear approximation with
those given by (59), (43), (45) and (46), in the interests of speed.

For each set of parameter values considered, the locally linear approxi-
mation was recalculated at each time period. The iterations of the Anderson
method (Appendix B) were continued until all coefficients were stable to at
least three decimal places. Because the coefficients were very similar across
the particle swarm at each time period, I updated the approximation only
once each period, at the previous period’s mean value of z̃t−1 and k̃t−2—that
is, the sample mean of the particle swarm after the resampling step. This
produced loglikelihood estimates that were indistinguishable from the case
where the approximation was updated individually for each particle, and
enabled a considerable improvement in speed.

5.3 Estimation

I used a fully-adapted particle filter, as described in Section 3, to estimate
the model on US data, using 50 particles. For comparison, I estimated
a loglinearised version of the model using the Kalman filter. I chose the
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number of particles for the nonlinear estimation by taking repeated estimates
of the loglikelihood at the estimated mode of the linear approximation. With
50 particles, the estimates of the loglikelihood had a standard deviation of
around 0.9, which is optimal for a Metropolis Hastings run (Pitt et al. 2012).

In the linear case, the parameters of the model are β, θ, θp, φ, φπ,
φy, Π, ρr, ρb, σb, α, γ, ρa, σa, ρe, σe, σr, ρm, and σm, a total of 19 free
parameters.5 For the nonlinear model, one βi and γi GARCH coefficient for
each exogenous shock adds ten additional parameters. I chose independent
prior distributions for these parameters based on those used in Smets &
Wouters (2003), Smets & Wouters (2007), and Amisano & Tristani (2010).
They are summarised in Table 5.3.

The observable variables are log yt, ∆ logΠt and Rt. I used quarterly
data from 1984Q4 to 2011Q4 in the FRED (Federal Reserve Economic Data)
database from the Federal Reserve Bank of St. Louis. For log yt, I used
quarterly chain-volume GDP (code GDPC1); for ∆ logΠt, quarterly CPI
inflation for all urban consumers, excluding energy (code CPILFESL PCH);
and for Rt, the Federal Funds rate (code FEDFUNDS).6 Following Smets
& Wouters (2003) and Amisano & Tristani (2010), I substracted a loglinear
trend from the GDP series prior to estimation. The other two series were
estimated relative to the steady state implied by each draw of the parameter
vector. All data series were seasonally adjusted prior to estimation.

I assumed that the data series were observed with a small amount of
noise. Specifically, each observation was assumed to be affected by a mean-
zero iid Gaussian shock with variance 10−8. (This is negligible compared to
the size of the structural shocks; it is simply a convenient device for avoiding
stochastic singularity.)

For both the linear and nonlinear estimation, the parameters were esti-
mated using an adaptive random walk Metropolis Hastings algorithm (Haario,
Saksman & Tamminen 2001). The MCMC chains for both models were ini-
tialised at the estimated mode of the linear model. In both cases, I took
100,000 draws, discarding the first 50,000 as a burn-in, with adaptation
beginning after 1000 draws.

The code for both estimation methods was written predominantly in
MATLAB, with some parts of both methods written in C++. The loglinear
approximation was carried out using Dynare (Adjemian, Bastani, Karamé,
Juillard, Maih, Mihoubi, Perendia, Ratto & Villemot 2012). I ran the code

5The steady-state level of technology, A, was calibrated to 1.
6I used the ex-energy CPI series because the rapid change in energy prices in late 2008

is difficult to account for in a simple DSGE model.
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on an Intel Core i7-880 workstation.

Parameter Interpretation Distribution Mean Std. dev

Demand-side parameters
β Discount factor Beta 0.99 0.01
γ Consumption elasticity Gamma 1 0.2
ρb Demand shock persistence Beta 0.8 0.05
σb Demand shock volatility Gamma 0.01 0.005

Supply-side parameters
φ Labour supply elasticity Gamma 1 0.5
α Labour share of output Beta 0.7 0.1
θp Price stickiness Beta 0.7 0.05
θ Degree of imperfect competition Gamma 7 2
ρa TFP persistence Beta 0.8 0.05
σa TFP shock volatility Gamma 0.01 0.005
ρe Supply shock persistence Beta 0.6 0.2
σe Supply shock volatility Gamma 0.01 0.005

Policy parameters
ρr Interest rate smoothing Beta 0.5 0.2
φπ Central bank inflation response Gamma 1.2 0.2
φy Central bank output response Gamma 0.5 0.2
Π Steady-state gross inflation Normal 1.005 0.0005
ρm Policy shock persistence Beta 0.6 0.2
σm Policy shock volatility Gamma 0.01 0.005
σr Interest-rate shock volatility Gamma 0.01 0.005

Table 2: Prior distributions for New Keynesian model

5.4 Results

Using the locally linear approximation method, the estimation run took
around 75 times longer than in the linear case (Table 3). This is in the
vicinity of the fastest possible time; with 50 particles, we must perform a
one-step Kalman filter calculation 50 times per observation. The additional
overhead, which is mainly due to having to update the nonlinear approx-
imation, could perhaps be reduced by redesigning the model, for instance
by substituting out some of the jump variables. I chose not to do that in
this case, in order to demonstrate that this paper’s nonlinear approximation
method is feasible to use on a reasonably sized multivariate model.
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Turning to the results, we see that the nonlinear model fits the data
considerably better (Table 4). Its marginal logposterior is around 12 points
higher than the linear model’s, indicating that a Bayes Factor ratio would
decisively prefer it.7 The Table also reports the Deviance Information Cri-
terion (DIC), which rewards parsimony by penalising the difference between
the mean logposterior and the logposterior of the mean (Spiegelhalter, Best,
Carlin & Van Der Linde 2002). This criterion also indicates that the non-
linear model fits better.8

The posterior estimates for individual parameters are somewhat different
for the linear and nonlinear models (Table 5.4). The nonlinear model’s
estimates are more precise for most components. But its estimates of other
components, notably θ and φ, are significantly more diffuse.

6 Conclusion

A locally linear approximation of a DSGE model has two features that can
make it useful in estimation. Because it can be recalculated at each value of
the latent state vector, it maintains a high degree of accuracy throughout the
possible state space. And, because it is conditionally linear, it fits naturally
into the framework of fully-adapted particle filtering.

7I estimated the marginal logposteriors of both models using the method of Gelfand &
Dey (1994), as implemented by Geweke (1999).

8The Akaike Information Criterion (Akaike 1974) and the Bayesian Information Crite-
rion (Schwarz 1978) both favour the nonlinear model, since the latter has a higher marginal
logposterior and both models have the same number of free parameters.
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Method Total time Time per 100 draws

Linear 25 min 1.5 s
Nonlinear 32 hrs 116 s

Table 3: Estimation time for New Keynesian model

Method Marginal logposterior DIC

Loglinear 1564.8 -3246.7
Locally linear 1577.2 -3317.5

Table 4: Estimation results for New Keynesian model

Parameter Linear Nonlinear
Mean 90% CI Mean 90% CI

Demand-side parameters
β 0.992 [0.99,0.99] 0.992 [0.99,0.99]
γ 1.83 [1.5,2.2] 1.53 [1.2,1.9]
ρb 0.854 [0.83,0.88] 0.887 [0.86,0.91]
σb 0.00273 [0.0022,0.0032] 0.00214 [0.0018,0.0026]

Supply-side parameters
φ 0.669 [0.23,1.2] 1.43 [0.68,2.2]
α 0.703 [0.54,0.84] 0.881 [0.8,0.95]
θp 0.786 [0.71,0.86] 0.65 [0.59,0.71]
θ 7.09 [5,10] 5.9 [3.5,8.7]
ρa 0.794 [0.75,0.83] 0.8 [0.75,0.84]
σa 0.00196 [0.00079,0.0037] 0.00125 [0.00055,0.002]
ρe 0.988 [0.97,1] 0.992 [0.98,1]
σe 0.0065 [0.0044,0.0088] 0.00938 [0.0067,0.012]

Policy parameters
ρr 0.902 [0.81,0.97] 0.902 [0.82,0.97]
φπ 1.59 [1.3,1.9] 1.7 [1.4,2]
φy 0.279 [0.15,0.45] 0.146 [0.084,0.22]
Π 1.005 [1.004,1.006] 1.0051 [1.004,1.006]
ρm 0.923 [0.88,0.96] 0.962 [0.92,0.99]
σm 0.00244 [0.0018,0.0031] 0.00173 [0.0012,0.0024]
σr 0.000673 [0.00039,0.00095] 0.00138 [0.001,0.0017]

Table 5: Posterior estimates for New Keynesian model
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A The model used for Figure 1

Figure 1 is based on the model described in Campbell & Cochrane (1999).
The model assumes that the representative agent’s consumption process is

∆ logCt = g + νt (60)

where ν ∼ N(0, σ2). The agent’s utility function is given by

Ut = Et

∞∑

t=0

βt (Ct −Xt)
1−γ

1− γ
(61)

where Xt is the (external) habit stock, interpreted as the minimum level of
consumption required to maintain a well-defined utility (i.e., the household
must ensure that Ct > Xt). The surplus consumption ratio St is defined by

St =
Ct −Xt

Ct

and s̃t = logSt − logS is the deviation of logSt from its mean S.
The law of motion of s̃t is assumed to be

s̃t = φs̃t−1 +

(
1

S

√
1− 2s̃t−1 − 1

)
νt (62)

where the disturbance νt is the same as the consumption innovation in equa-
tion (60), and the steady-state level of St is given by

S = σ

√
γ

1− φ
(63)

On that basis, it can be shown that the equilibrium price-dividend ratio of
a financial asset satisfies

Pt

Dt
= βtEt

[
exp [γ(s̃t − s̃t+1) + (1− γ)(g + νt+1)]

(
1 +

Pt+1

Dt+1

)]
(64)

Figure 1 shows an approximation to the solution for ∆ log Pt

Dt
as a func-

tion of νt, conditional on ŝt−1 = −.45. This point is well below the steady
state, but has a reasonable chance of being observed. (Close to the steady
state, the first- and second-order approximations will work much better, by
construction.) The parameter values used are rf = 0.0025, g = .00444,
σ = .00555, γ = 2.372, φ = 0.97.
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B Computation of ξ, Ω and Φ

I computed the locally linear approximations using Anderson acceleration
applied to the fixed-point equations (17), (18) and (19) (or 69, 70 and
71). Briefly, Anderson acceleration is similar to Newton’s method for root-
finding; the Jacobian is estimated by regressing previous fixed-point resid-
uals on the corresponding fixed-point outputs. The algorithm provides
quadratic convergence, like Newton’s method, but is often more robust.

Write xk = (ξk, vecΩk, vecΦk) for the kth estimate of the fixed point,
gk+1 for the output of the fixed-point equations applied to xk, and let fk+1 =
gk+1 − xk be the residual. Let Fk+1 be the matrix with columns given by
fi − fk+1, for i = (k −mk), . . . , k; the number of columns, mk, is given by
min(k,m), where m is a control parameter of the algorithm. After some
experimentation, I chose m = 5. Let Gk+1 be the similar-sized matrix with
columns given by gk−mk−1 to gk+1, and Xk+1 consist of xk−mk−1 to xk+1.

The next iterate is then given by solving the least-squares problem

ϑ =
(
X ′

k+1Xk+1

)
−1

X ′

k+1fk (65)

then setting α = ( 1
1+

∑
ϑ
, ϑ1
1+

∑
ϑ
, . . . ), and calculating the next iterate as

xk+1 = βGk+1α+ (1− β)Xk+1α

where β ∈ (0, 1] controls the speed of adjustment. I used β = 1.
There are various methods for computing equation (65); see Fang & Saad

(2009) and Walker & Ni (2011); I used the QR decomposition. Following
those two sources, I restarted the iterations whenever the condition number
of the R matrix exceeded 105 (indicating that the accuracy of the least-
squares solution had degraded) and whenever ‖fk‖ > 0.2‖fk−1‖.

C Derivation of constrained approximations

Let π equal the probability that the constraint (20) will bind in the period
t+ 1. Applying the result from Tallis (1965),

E
(
exp q′ǫ | Mǫt+1 ≥ p

)
=

1

1− π
exp

(
1

2
q′q

)
Φ

(
Mt− p√
M ′M

)
(66)

E
(
exp q′ǫ | Mǫt+1 < p

)
=

1

π
exp

(
1

2
q′q

)
Φ

(
p−Mt√
M ′M

)
(67)
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where Φ is the standard normal CDF, M = [C1ΓR+ C1ΥΩR], and

p = C2 − C1 (Ψ + ΥΦt) k̃t − C1 (Γ + ΥΩ)T z̃t − C1Υξt

Setting q = 0 in (66), it follows that

π = Φ

(
p√

M ′M

)
(68)

These formulas apply in cases where the restriction matrix C1 has only one
row. Solutions for multiple restrictions are provided by Tallis (1965).

Using (66) and (67) in (12), we can separate the constrained and uncon-
strained cases using the linearity of the expectations operator and the tower
property of conditional expectations. Doing so gives the following:

A0 ◦ exp (D0ξt +D0Ωtz̃t +D0Φtk̃t

)

≈ Et

Nc∑

j=1

Aj ◦ exp
(
Bj k̃t−1 + Cj z̃t +Djξt +DjΩtz̃t +DjΦtk̃t−1

+Ej k̃t +Gjξt + [Fj +GjΩt]Ttz̃t + [Fj +GjΩt]Rtǫt+1 +GjΦtk̃t

)

=

Nc∑

j=1

(1− π)Aj ◦ exp
(
Bj k̃t−1 + Cj z̃t +Djξt +DjΩtz̃t +DjΦtk̃t−1

+Ej k̃t +Gjξt + [Fj +GjΩt]Ttz̃t +GjΦtk̃t

)

· E [exp ([Fj +GjΩt]Rtǫt+1) | Mǫt+1 ≥ p]

+

Nc∑

j=1

πAj ◦ exp
(
Bj k̃t−1 + Cj z̃t +Djξt +DjΩtz̃t +DjΦtk̃t−1

+ Ej k̃t +Gj [(I − Pc)ξt + Pcξc]

+ [Fj +Gj [(I − Pc)Ωt + PcΩc]]Ttz̃t +Gj [(I − Pc)Φt + PcΦc] k̃t

)

· E [exp ([Fj + (I − Pc)Ωt + PcΩc]Rtǫt+1) | Mǫt+1 < p]
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=

Nc∑

j=1

Aj ◦ exp
(
[Bj +DjΦt] k̃t−1 +Djξt + [Cj +DjΩt + FjTt] z̃t + Ej k̃t

)

·
(
Φ

(
Mt1 − p√

M ′M

)
exp

(
Gjξt +GjΦtk̃t +GjΩtT z̃t

+
1

2
K [Fj +GjΩt]RtR

′

t [Fj +GjΩt]
′

)

+Φ

(
p−Mt2√

M ′M

)
exp (Gj [(I − Pc)ξt + Pcξc]

+Gj [(I − Pc)Φt + PcΦc] k̃t +Gj [(I − Pc)Ωt + PcΩc]T z̃t

+
1

2
K [Fj +Gj [(I − Pc)Ωt + PcΩc]]RtR

′

t [Fj +Gj [(I − Pc)Ωt + PcΩc]]
′

))

where
t1 = [Fj +GjΩt]Rt

and
t2 = [Fj +Gj [(I − Pc)Ωt + PcΩc]]Rt

Log-differentiating with respect to z̃t and k̃t then gives analogous expres-
sions to (17) and (18). First we rewrite this expression more compactly:

exp (D0ξt +D0Ωtz̃t +D0Φtk̃t

)
=

Nc∑

j=1

Sj

=

Nc∑

j=1

W 0
j ◦
[
Φ

(
Mt1 − p√

M ′M

)
W 1

j +Φ

(
p−Mt2√

M ′M

)
W 2

j

]

Then log-differentiating gives

Ωt =D−1
0

Nc∑

j=1

Sj∑Nc

m=1 Sm

∂ logW 0
j

∂z̃′t

+D−1
0

Nc∑

j=1

1
∑Nc

m=1 Sm

W 0
j ◦
[
− ∂p

∂z̃′t
φ

(
Mt1 − p√

M ′M

)
W 1

j +
∂p

∂z̃′t
φ

(
p−Mt2√

M ′M

)
W 2

j

+Φ

(
Mt1 − p√

M ′M

)
∂W 1

j

∂z̃′t
+Φ

(
p−Mt2√

M ′M

)
∂W 2

j

∂z̃′t

]
(69)

where

W 0
j = Aj ◦ exp

(
[Bj +DjΦt] k̃t−1 +Djξt + [Cj +DjΩt + FjTt] z̃t + Ej k̃t

)
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W 1
j = exp

(
Gjξt +GjΦtk̃t +GjΩtT z̃t +

1

2
K [Fj +GjΩt]RtR

′

t [Fj +GjΩt]
′

)

W 2
j = exp

(
Gj [(I − Pc)ξt + Pcξc]

+Gj [(I − Pc)Φt + PcΦc] k̃t +Gj [(I − Pc)Ωt + PcΩc]T z̃t

+
1

2
K [Fj +Gj [(I − Pc)Ωt + PcΩc]]RtR

′

t [Fj +Gj [(I − Pc)Ωt + PcΩc]]
′

)

M = [C1ΓR+ C1ΥΩR]

p = C2 − C1 (Ψ + ΥΦt) k̃t − C1 (Γ + ΥΩ)T z̃t − C1Υξt

t1 = [Fj +GjΩt]Rt

t2 = [Fj +Gj [(I − Pc)Ωt + PcΩc]]Rt

∂ logW 0
j

∂z̃′t
= Cj +DjΩt + FjTt + Ej (Γ + ΥΩt)

∂p

∂z̃′t
= −C1 (Γ + ΥΩt)T − C1 (Ψ + ΥΦt) (Γ + ΥΩt)

∂W 1
j

∂z̃′t
= W 1

j GjΩtT +W 1
j GjΦt (Γ + ΥΩt)

∂W 2
j

∂z̃′t
= W 2

j Gj [(I − Pc)Ωt + PcΩc]T+W 2
j Gj [(I − Pc)Φt + PcΦc] (Γt +ΥtΩt)

Likewise,

Φt =D−1
0

Nc∑

j=1

Sj∑Nc

m=1 Sm

∂ logW 0
j

∂k̃′t−1

+D−1
0

Nc∑

j=1

1
∑Nc

m=1 Sm

W 0
j ◦
[
− ∂p

∂k̃′t−1

φ

(
Mt1 − p√

M ′M

)
W 1

j +
∂p

∂k̃′t−1

φ

(
p−Mt2√

M ′M

)
W 2

j

+Φ

(
Mt1 − p√

M ′M

)
∂W 1

j

∂k̃′t−1

+Φ

(
p−Mt2√

M ′M

)
∂W 2

j

∂k̃′t−1

]
(70)

where
∂ logW 0

j

∂k̃′t−1

= Bj +DjΦt + Ej (Ψt +ΥtΦt)

30



∂p

∂k̃′t−1

= −C1 (Ψt +ΥtΦt) (Ψt +ΥtΦt)

∂W 1
j

∂k̃′t−1

= W 1
j GjΦt (Ψt +ΥtΦt)

∂W 2
j

∂k̃′t−1

= W 2
j Gj [(I − Pc)Φt + PcΦc] (Ψt +ΥtΦt)

Finally, we can update ξ in the same way as before:

ξ = D−1
0 log




Nc∑

j=1

Sj


− Ωzt − Φkt−1 (71)

D New Keynesian example

The New Keynesian model used in Section 5 is characterised by 8 equations
for the choice variables: (47), (48), (49), (43), (42), (50), (45) and (44);
one equation for the endogenous predetermined variable (53); and three
equations for the exogenous shocks (54), (55) and (56).

Using the notation of Section 2, the components of the state vector are

c̃t =




g̃1,t
g̃2,t
π̃⋆
t

λ̃t

ỹt
π̃t
l̃t

m̃ct




k̃t = [r̃t] z̃t =




ãt
b̃t
m̃t

ẽt
ηr,t




and the model’s coefficient matrices are

A0 =




(θ − 1)G2

G1
G1
Π⋆

Y −γ

1
θpΠ

θ−1

l
MC




D0 =




0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 1 −1 0 0 0 0 0
0 0 0 0 −γ 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 (θ − 1) 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1



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A1 =




θG1

λMC Y
λY
λ
1

−(1− θp)(Π
⋆)1−θ

Y
1
α

lφ/λ




B1 = 08×1 C1 =




0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 1 0 0 0
0 0 0 0 0
− 1

α
0 0 0 0

−1 0 0 1 0




D1 =




1 0 0 0 0 0 0 0
0 0 0 1 1 0 0 1
0 0 0 1 1 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 (1− θ) 0 0 0 0
0 0 0 0 1

α
0 0 0

0 0 0 −1 0 0 φ 0




E1 =




0
0
0
0
1
0
0
0




F1 = 08×5

G1 =




0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 1 0 −1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0




A2 =




0
βθp

(
Πθ
)
G1

βθp
(
Πθ−1

)
G2
Π⋆

0
0
1
0
0




B2 = 08×1 C2 =




0 0 0 0 0
0 1 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0




D2 = 08×8 E2 = 08×1
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F2 = 08×5 G2 =




0 0 0 0 0 0 0 0
1 0 0 0 0 θ 0 0
0 1 −1 0 0 (θ − 1) 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0




When the constraint on the interest rate is binding, the matrices for
equation (21) are given by

Pc =




0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


 Ωc =




−γYa 0 0 −γYe 0
Ya 0 0 Ye 0

1
α
(Ya − 1) 0 0 Ye

α
0

(γ + φ
α
)Ya − 1 + φ

α
0 0 (γ + φ

α
)Ye + 1 0




and
Φc = 04×1

where

Ya = − (φ+ 1)

α(1− γ)− (1 + φ)
and Ye =

−α

φ+ 1
Ya

The coefficients in equation (23) are

Ak = 1 Bk = ρr Ck = [0, 0, 1, 0, 1] Dk = [0, 0, 0, 0, φy, φπ, 0, 0]

and the coefficients in equation (20) are C1 = 1, C2 = − logR.
Finally, the steady state of the model is:

R =
Π

β
Π⋆ =

(
1− θpΠ

θ−1

1− θp

) 1
1−θ

Y =


Π⋆ (θ − 1)

θ

1− βθpΠ
θ

(1− βθpΠθ−1)
1

φ
α+γ




λ = Y −γ l = Y
1
α MC = Y

φ
α
+γ

G1 =
Y 1+ φ

α

1− βθpΠθ
G2 =

θ

θ − 1
G1
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Adjemian, S., Bastani, H., Karamé, F., Juillard, M., Maih, J., Mihoubi,
F., Perendia, G., Ratto, M. & Villemot, S. (2012), Dynare: Reference
manual, version 4, Dynare Working Paper 1, CEPREMAP.

Akaike, H. (1974), ‘A new look at the statistical model identification’, IEEE
Transactions on Automatic Control 19(6), 716 – 723.

Amisano, G. & Tristani, O. (2010), ‘Euro area inflation persistence in an
estimated nonlinear DSGE model’, Journal of Economic Dynamics and
Control 34(10), 1837–1858.

Amisano, G. & Tristani, O. (2011), Exact likelihood computation for non-
linear DSGE models with heteroskedastic innovations, Working Paper
1341, ECB.

Anderson, D. G. (1965), ‘Iterative procedures for nonlinear integral equa-
tions’, J. ACM 12(4), 547–560.

Calvo, G. A. (1983), ‘Staggered prices in a utility-maximizing framework’,
Journal of Monetary Economics 12(3), 383–398.

Campbell, J. Y. & Cochrane, J. H. (1999), ‘By force of habit: A
Consumption-Based explanation of aggregate stock market behavior’,
Journal of Political Economy 107(2), 205–251. ArticleType: research-
article / Full publication date: April 1999 / Copyright c© 1999 The
University of Chicago Press.

Del Moral, P. (2004), Feynman-Kac formulae: genealogical and interacting
particle systems with applications, Springer, New York.

Fang, H.-r. & Saad, Y. (2009), ‘Two classes of multisecant methods for
nonlinear acceleration’, Numerical Linear Algebra with Applications
16(3), 197–221.

Fernández-Villaverde, J., Gordon, G., Guerrón-Quintana, P. A. & Rubio-
Ramı́rez, J. (2012), ‘Nonlinear adventures at the zero lower bound’, Na-
tional Bureau of Economic Research Working Paper Series No. 18058.
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