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This paper considers explicit representations for very general (discrete and con-
tinuous-time) intertemporal consumption-maximization models which allow the in-
stantaneous preferences of the consumer and the time-preference factors to vary over
time and for the the non-existence of utility functions, more than one generation
of consumers with a given probability of death, many commodities, and, further, a
wide class of preferences which do not necessarily satisfy the so-called “regularity
conditions” (such as differentiability, strict convexity, boundedness, or continuity)
and include most of the well-known preferences in the literature.

1 Introduction

The dynamic consumption-optimization model has been widely used in many fields of
economics, such as dynamic macroeconomics, optimal-growth models, life-cycle models,
the balance of payments in international trade, and dynamic consumer demand systems.}
Because of the importance of this model, there has been continued interest in setting
forth conditions for obtaining the existence and/or some properties of the solutions of the
policy functions. Owing, however, to the considerable mathematical difficulties involved,
various restrictive conditions such as the so-called regularity conditions (e.g. differen-
tiability, strict convexity, boundedness, or continuity)) the stationarity assumption (e.g.,
preferences of consumers and/or time-preference factors are invariant over time periods),
and the one-commodity assumption, have usually been imposed on instantaneous prefer-
ences. Also, closed-form solutions have been obtained only under restrictive assumptions
on instantaneous preferences, time-preference factors, and agents’ horizons. No results
are available for “irregular” assumptions. These restrictions on preferences, the time-
preference factors, and agents’ horizons obviously limit our understanding of dynamic
consumption-maximization problems under more general situations. They also limit the
relevance of these problems to practical applications. For these reasons, economists con-
tinually strive to weaken the conditions for the intertemporal utility-maximizing model.

In this paper, we consider systematically explicit representations for very general (dis-
crete and continuous time) intertemporal consumption maximization models, which al-
low for preferences of the consumer and the time-preference factors to vary over time;

*We thank M. R. Baye and G. Lozada for useful comments and suggestions.
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1For references to some of these see Tian and Chipman (1989) and Chipman and Tian (1992).
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the non-existence of utility functions; more than one generation of consumers lacing a
constant probability of death; many commodities; and a wide class of preferences which
do not necessarily satisfy the regularity conditions. These preferences include most of
the well-known preferences in the economic literature such as the Leontief-Kantorovich,
linear, lexicographic (preferences that cannot even be represented by a utility function),
Cobb-Douglas and its extensions (such as Klein-Rubin-Samuelson-Geary preferences),
CES, Brown-Heien S-branch-tree, homothetic, and parallel preferences. They also in-
clude those preferences represented by indirect utility functions of the “Gorman polar
form” and “generalized Gorman form” (cf. Chipman and Moore (1990)). Thus our mod-
els include most of the existing models (say, Levhari and Srinivasan (1969), Lluch (1973),
Cooper and Mclaren (1983), Blanchard (1985), Tian and Chipman (1989)) from which
closed-form solutions can be obtained as special cases. We also derive the aggregate
consumption-savings and demand functions.

We also note that the essence of monotonic transformations in intertemporal models 1s
that they only change allocations for the consumption-savings profiles over time periods,
but within each time period preferences of consumers do not change. That is, monoto-
nic transformations affect the instanthneous demand only through the total consumption
function ¢(t) and thus the functignal form of the demand function %(-) is invariant with
respect to any monotonic transformation. Note that this interpretation includes the in-
variance of monotonic transformations of static models as a special case. Indeed, for the
static model, which is a special case of the intertemporal model—since wealth (income)
is exogenously given and preferences are invariant under monotonic transformations—the
demand is invariant under monotonic transformations. Even though monotonic transfor-
mations affect the path of consumptions over time, it is still necessary to make suitable
monotonic transformations for some instantaneous utility functions to obtain interior
and/or explicit solutions for the consumption-savings functions (i.e., it is for guaranteeing
that consumption in each period is positive (to smooth the consumption path over time)
and/or for obtaining the closed-form solutions). For instance, when the Cobb-Douglas
utility function is used as an instantaneous utility function, its logarithmic transformation
has been used (see, e.g., Lluch (1973), Ashenfelter and HHam (1979), Tian and Chipman
(1989)). Also, a concave monotonic transformation maps a concave monotonic (indirect)
utility function into itself so that it does not change the essence of the consumer’s prob-
lem and thus is innocuous.? Further, what kind of monotonic transformation should be
used depends on the problem being dealt with and assumptions on the behavior of the
consumer over time periods. If we know the forms of the transformations, the coefficients
of the monotonic transformation functions can be determined by empirical estimation.
MaCurdy (1983) and Blundell and Walker (1986) have studied the problem of monoto-
nic transformations with general forms and derived the particular functional forms, so
that the parameters of the transformations can be estimated. In this paper, we will give
explicit solutions for a class of instantaneous preferences whose instantaneous indirect
utility functions before or after transformation have the same functional form as one re-
sulting from the Box-Cox transformation.® Since closed-form solutions can be obtained,
the coeflicients may easily be estimated.

ZThis is because the intertemporal optimization literature usually only assumes the intertemporal
allocations are characterized by the monotonic and concave (indirect) utility functions under which many
results on the behavior of individual can be preserved.

3A mapping F : R — R is called a Box-Cox transformation if F(v) = [v* - 1]/a.
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In dealing with the consumption-maximization problem, we use the approach of max-
imizing a discounted indirect utility function (defined on the budget space) instead of a
discounted (direct) utility function (defined on the commodity space) over a time horizon.
After obtaining the solutions of the total consumption-expenditure and savings functions,
we can derive the demand functions by, say, the Antonelli-Allen-Roy partial differential
equation. This approach has a number of advantages. First, it reduces the dimensional-
ity of the consumption-maximization problem so that the problem becomes simpler and
avoids the one-commodity assumption. Second, it enables us to deal with the consumer’s
optimum problem with non-stationary preferences. Since preferences or tastes of individ-
uals are not invariant over time periods, the assumption of stationarity of preferences is
obviously neither realistic nor necessary because explicit solutions can be obtained and
the time-inconsistency problem does not arise in our model even if preferences change over-
time. Third, it permits us to study consumer behavior under more general preferences.
Common assumptions on instantaneous preferences are that the (direct) utility functions
representing preferences exist, are differentiable, and guarantee interior solutions (that
is, the individual consumes all commodities in strictly positive amounts). These severely
limit our analyzing the consumer’s behavior: for, for some preferences, (direct) utility
functions do not exist (e.g., lexicographic preferences), or are not differentiable (e.g.,
the Leontief-Kantorovich utility function), or do not guarantee interior solutions (e.g.,
linear utility functions). On the other hand, not only does this approach allow for corner
solutions in the commodity space; it does not require assuming the utility function to exist
and be differentiable in the commodity space, since kinks and corners in the commodity
space do not preclude differentiability in the budget space. In fact, we do not even require
preferences in the commodity space to be continuous (e.g., lexicographic preferences).

This paper also extends Blanchard’s (1985) overlapping-generations model, in which a
finite horizon is introduced through the assumption that at each time period agents face
a constant probability of death, to more general assumptions. The main advantage of
this approach is its flexibility, since the agent’s horizon is a parameter that can be chosen
arbitrarily. In particular, when the instantaneous probability of death goes to zero, we
obtain the infinite-horizon case as a limiting case.

2 The Model and Assumptio‘ng

In the basic model we will study, individuals, as in Blanchard (1985), are assumed to
face a given probability of death g, which is independent of age. The density functions
for the constant probability of death are f(u) = (1 + u)_‘ﬁ for the discrete-time case
and f(p) = pe ™ for the continuous-time case. The expected remaining lifetime for an
individual of any age is given by Y2 t(1 + p) 7' = 1/p = [0 tpem#tdt. Thus as p
goes to zero life expectancy goes to infinity and reduces to the standard infinite-horizon
case. The size of a cohort born at time s, at time ¢, is (1 +u)_(‘_s)ﬂ‘f—u for the discrete-time

case and pe*!~*) for the continuous-time case. Thus the size of the population at any

time tis 3. [#‘;] [l—h]t o= f_too pe#t=5)ds.

Because of uncertain lifetime, all loans require—in’ addition to regular interest
payments—the purchase of life insurance, as in Yaari (1965) and Blanchard (1985). In
case of death, the estate is transferred to the life insurance company. It is assumed that
there is a large number of agents, and, therefore, competition among insurance compa-
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nies implies that the percentage purchased is equal to the probability of death. Thus, if
an agent’s nonhuman wealth is b, he will receive ub if he does not die and pay w if he
dies. Suppose that at time ¢ agents consume m consumption goods z(¢)—a vector in the
commodity space X(t) C RY. Denote by p(t) € RT,, c(t) € R;, and Q(t) the price
vector, the total consumption expenditure, and the budget space whose typical element
is (p(t),c(t)) € RT*!. Denote by >, and >? the instantaneous preference relation defined
on X(t) and the instantaneous indirect preference relation induced by >, and defined
on Q(t). Let u(-) be the instantaneous (direct) utility function (if it exists) generated
by >, let v(-) be the instantaneous indirect utility function generated by >7, and let
z(t) = h(p(t), c(t)) be the demand function generated by >,.

Since we do not presume the existence of a utility function, we cannot define the
indirect utility function in the conventional way, by substituting the demand function
into the utility function. Here we will adopt a definition of the indirect utility function
given by Chipman and Moore (1976, 1980, 1990):

vi(p'(1),¢'()) Z ve(p"(2), " (1)) HfE (p(2), (1)) =7 (p"(2), "(2)), (1)

where the indirect preference >} indhced by >, is defined by the condition:
o
('), (1) =7 (p"(2), (1)) iff A(p'(2), /(1)) = R(P"(2), (1)) (2)

It is obvious that the above definition of indirect utility function is a more general
definition since an indirect utility function under the usual definition is an indirect utility
function under the definition of Chipman and Moore. Also Chipman and Moore (1976)
showed that v,(p(t), c(t)) is positively homogeneous of degree 0 in (p(t),c(¢)) and nonde-
creasing in ¢(t), and satisfies the Antonelli-Allen-Roy partial differential equations * if it

is differentiable: Bou(p(), 1))/ Opi(1)
vilplt), Pi
z:(t) = — . 3
O = = Gup(0). (0))/5e(1) @)
In order to solve the decision functions explicitly, we need to specify a class of pref-

erences and concave monotonic transformations F(-). The preferences considered in this
paper are characterized by

WOREC) 3 Flolott) ) = { [ LD/ a} L@

where —oco < a < 1, ¢(t) — ¥u(p(t)) > 0, g:(p(t)) > 0, and ¥,(p(t)) and g.(p(t)) are
homogeneous of degree one in p(t) (cf. Chipman and Moore (1990)). Here ,(p(t)) may
be interpreted as the consumer’s subsistence or minimum-required expenditure. Thus,
the indirect utility functions of preferences after some transformations have the same
functional form as one resulting from the Box-Cox transformation.® Note that when
a = 0, the logarithmic form of Fy(v,(p(t), c(t))) can be obtained as a special case:

Fi(ui(p(t), (1)) = loge(t) — ¢(p(t))] — log g:(p(1)), (5)

4Those three authors all assumed that -, is representable by a differentiable direct utility function
defined on the interior of the commodity space R (for references see Chipman and Moore (1980)).
However, Chipman and Moore (1976) gave a simple proof not requiring differentiability (or even existence)
of the utility function.

®Note that this does not mean the transformation F is the same as the Box-Cox transformation (see
Example (e) and Remark 2 below).
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which is widely used in the literature.
Denote by c(s,t +v) and b(s,¢ + v) the consumption and savings for time t + v of an

agent born at time s, who makes his plan at time ¢. Denote by y(s,t+v) and ¢, 14u(p(t+v))
labor income and the minimum-required expenditure at time ¢ +v of an agent born at
time 5.6 We will assume that the instantaneous preferences are specified by the set E(?)
so that the closed-form solutions for the consumption-savings and demand functions can
be obtained for this class of preferences. In order to guarantee that the solutions exist,
we also assume that 32000 ®(t)y(s,t +v), 200 O () hseru(p(t +0)), Jy° B()y(s,t +v)dL,
and f;7 ®(t)is,+o(p(t + v))dt are bounded, where

o(t) = { LR (r) + )7t if t is discrete ©

t
e~ Jolr(n)+4ldr if t is continuous,

where r(t) = the interest rate on savings and R(t) = 14 r(t). Denote aggregate variables
by uppercase letters. Since aggregate consumption and savings at ¢ 4+ v are the sum
(or integral) of consumption and savings from all cohorts. Thus relation between any
aggregate variable Z(t + v) and an individual counterpart z(s,t +u) is

Z(t+v) = { i [ﬁ] E=

f::: pe V=92 (s, 1 + v)ds

t4v—s
z(s,t+v) il ¢ is discrete
|7 st 40 -

if t is continuous.

Thus C(t+v), B(t+v), Y(t+v), and ¥, (p(t +v)) are aggregate consumption, savings,
Jabor income, and the minimum-required expenditure at time t + v, respectively.

3 Examples of Preferences

Before discussing the main results of this paper, we show that preferences represented by
E(t), in fact, are very rich by providing a number of examples of preferences which are in
E(t) specified by (4). These preferences are well-known in the literature.
(a). The preference relation =; generated by the Leontief-Kantorovich direct utility
function (cf. Leontief (1956), Kantorovich (1965)): ’
L]
w(z(t)) = min{a;(t)z1(t), az(t)za(t), - - - L am(D)zR(t)} ait) >0 Vi (8)

Its indirect utility function is given by
<(t)
vi(p(t), c(t)) = . 9
al(t;_ ag(t)

am(t)

(b). The preference relation generated by the linear utility function

w(z(t)) = Y at)ai(t)  alt)>0 Vi, (10)

i=1

6Here, for generality, we allow the minimum-required expenditure to be different for people of different

ages.
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whose indirect utility function is then given by

w(p(t),e(t)) = 2200 (1)
a(t) o a;(t) v]}.

ps(t) ’
S=1<s
{ ps(t) ~ pi(t)

(c). The preference generated by the lexicographic ordering:

where s € S with

z(t) = 2'(t) iff 21 (8) > (1) or z,(t) = zi(t) & z;(t) > z;(1), (12)
forall: < j (7 =2,3,...,m). The indirect function is given by’

wlplt). () = . 13)

¢
(d).. The preference generated by the Klein-Rubin-Samuelson-Geary utility function
(cf. Tian and Chipman (1989) f6r references):

2(t)) = [[lz: — %", a(t) >0& f:a,-(t) =1, (14)
=1 i=1
whose indirect utility function is then
v _ i a0 elt) = (1) o1
pt0.e(0) =1 (0 )20), (15)

(e). The preference generated by the utility function

u(2(t)) = = _(di(t)e™™O=W) ay(t) > 0,di(t) >0 Vi (16)

(cf. Arrow and Hurwicz (1958)) for which the indirect utility function is

. . " a0 o Gilt)ai(t)pi(t)
(p(t), c(t)) P{ }Zd ) p{( gak(t)lgdk(t)ak(t);(t)) /P(t)}

where 1
pi(t) | palt) Pm (1)
P(t) = + Lo AT
D=0t ant e
(f). The preference generated by the utility function:
= a;(t)
u(z(2) ; =(0) y>0 Vi (18)

“For the detailed arguments, see Chipman and Moore (1976).
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whose indirect utility function is
2
S (pilt)a; (1)) "
v,(p(t),c(t)) = C(t) ( )
(g). The preference generated by a homothetic ordering:
z(t) ¢ 2'(t) if and only if Azy(t) >, Az}(t) for A > 0. (20)

Then the indirect utility function has the form

wlplt) () = — . (21)

where x;(p(t)) is a function of p(t).
(h). The preference generated by the parallel utility function

w(z(t)) = z1() + W(za(),. .., za(t)), (22)
where W (¢) is a concave function in (z,(t),...,z,(t)). The indirect utility function then
has the form (De()

a(t)c
vi(p(t), c(t)) = +G(p(1)), (23)

pi(t)
where G(t) is a function of p(¢) only. For detailed discussions about the last two preference
orderings and their applications, see Chipman and Moore (1976, 1980). In addition to the
above preferences, the Cobb-Douglas utility function, the Modified CES utility function,®
and the Brown-Heien S-branch-tree utility function are also in £(t) (cf. Brown and Heien
(1972)). Tian and Chipman (1989) obtained explicit solutions for logarithmic transfor-
mations of those utility functions. Note that example (f) above is simply a monotone
transformation F(v) = —1/v of a CES utility function with elasticity of substitution 1/2.

Remark 1 To see that the above preferences are in E(t), we can take the Box-Cox
transformation Fy(v;) = [vZ — 1]/ if the preferences are specified by (a)—(d) and (g)-(h),
and take the transformation Fi(v,) = [(logvs)* — 1]/ agif the preferences are specified by
(e) and Fi(ve) = [| vs 7™ —1]/a if they are specified by (f). Note that 1,(p(t)) = 0 under
preferences specified by (a)-(c) and (f)-(g) and (,/):(p(t)) = p(t) - 7(t) under preferences
specified by (d).

As a final example, the preferences represented by an indirect utility function of the
generalized Gorman polar form specified by Chipman and Moore (1990):

_ [5()elt) = v(p(1))]
~ [a(@(®)) + B(1)e(t)] (24)

are in E(t) since, as shown by Chipman and Moore (1990), they can be equivalently
represented by an indirect utility function of the Gorman polar form. Here a(t) and ~(t)
are both positively homogeneous of degree one, a(p(t)) + B{t)c(t) > 0 and é(t)a(t) +
B(t)v(p(t)) > 0 for (p(t),c(t)) € RT*", and not both F(t) and 8(¢) are equal to zero. We
note that all of the above eight examples except (c) are special or limiting cases of (24).

vi(p(t), e(?))

8That is, the CES utility function with shifted origin—cf. Tian and Chipman {1989), formula (16) on
p. 102.
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4 The Discrete-Time Consumer Problem

Let E; and 8(k) be the mathematical expectation given information known at ¢ and the

pure time-preference factor or subjective rate of discount with #(¢) > 0 and 3 72,(1 +

)7 B(t+3) < 00.® We assume that the agent’s intertemporal optimization problem at ¢

is :

S .
a

max EB(t)™ > B(t+5)
j=0
Here for ease of notation v(s,t+7) = vy ;(p(t+7), (s, t+7)), ¥(s,t+7) = s (Pt + 7)),
and g(t +3) = gess (plt + ).
Given the constant probability of death, and if the only source of uncertainty is about
the time of death, the above problem is equivalent to the following problem:

(—oo < a<1). (25)

Hﬁ( cgs,t+j(!—¢{§)s,t+jl]a -1
—_7 g(t+s =
0+ )g (L4 )78+ 7) a (—o<a<l), (26)
]

If the agent has assets (s, 24 j —l) at time t+j — 1, he receives r(t+j — 1)b(s,t+j—1) in
interest and ub(s,t+ j — 1) from the insurance company at time ¢ + j. Thus his dynamic
budget constraint is

c(s,t+7) + (s, t+7) = [R(t +5 = 1)+ plb(s,t +j — 1) + y(s,1 +j) (27)

with b(s,t — 1) given.
In addition to the above budget constraint, the terminal condition (or borrowing
constraint):

lim ®(t + j)b(s,t +j) = 0. (28)

J—ro0

is needed to prevent the consumer from borrowing arbitrarily large amounts.
Solving the budget constraint (27) for &(s,t + j — 1) recursively forward and using the
terminal condition (28), we obtain the lifetime budget constraint:!°

B4 )Y Bt G+ K)elo, 45+ K) = wls, L+ ), (29)
k=0

where

w(s,t+5) = [RE+7~ 1) +ulb(s,t+7 - 1)+ @7 (t+5) > S(t+j +k)y(s,t+35 +k)
k=0

which consists of nonproperty (earned) income plus property income and can be considered
as the permanent income of the consumer.

We first consider the case @ < 1. The Euler equation (the first-order necessary condi-
tion) is given by:

(st +7+1) —d(s,t+7+1) = p(t +j)le(s, t +5) —9(s, t + )], (30)
°It is usually assumed that 8(k) = 8%, which is a special case here.

1%Note that 3 5o, ®(t + j + k)e(s,t + § + k) must be bounded since Yoo @+ i+ E)y(s, i+ 7 +k)is
assumed to be convergent.

where
p(t+3)

Thus
k-1
(s, t+i+k)=]]
=0
= (c{s,t+37)—¢
+ip(s,t + 37+

Substituting the above eqt

(els,t +3) = 9(s,

UJ(S, t+ ]) -
where

P(s, b+

The %(s,t+) may be inte
expenditure; it can be con

14p)*4
Suppose Y-, [SH

Then we obtain the consu

C(S,i—{—j) ==

)

which is linear in lifetime ¢
and a mixture of preferen
be obtained from the bud

b(s,t+j) = ——
2
+[F

As the indirect utility
a = 0), the solution ¢(s,t

C(S,tﬂ'):z

Note that if we further
to the result obtained in ’

e(s,t+7)
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-oblem where , L
p(t+35) = [ (1+p)Bt+4)glt+5+1) ] o
rmation known at ¢ and the [R(t+7)+ plB(t+ 5+ g(t +5)*
ith B(t) > 0 and 3°°2,(1 + ? Thus
1| optimization problem at ¢ k-1
es,t+5 +k) = ot +5+7)cls,t +5) = $(s,t+ 7)) + $(s,t+ ] + &)
=0

(—oo < a < 1) (25)

"b(svt""j) = 1/),,t+j(P(t+j)),

urce of uncertainty is about
owing problem:

(—o<a<1).  (26)

es r(t+7—1)b(s,t+j—1) in
me ¢t + j. Thus his dynamic

— 1) +y(s,t+7) (27)

al condition (or borrowing

(28)
 large amounts.

sively forward and using the
aint;!°

v(s,t+7), (29)

Ot 4+ k(s t+ 5+ k)

)

icome and can be considered

first-order necessary condi-

) = (s, t+ 7)), (30)

o ®(L+ 7+ B)y(s, t+ 5 + k) is

S(t+7 + k)1 + 1" B+ )t + 5 + k)a} =

=(c(s,t+j)—¢(s,t+j))[ (t+ 7)B(t+ 7 + k)g(t + 5)*

+(s,t+ 7+ k).

Substituting the above equation into (29) and then rearranging it, we have

: N [ (4 + KB+ gt + 5 + R
o) ~vtets ) 3 [ ] -

k=0

w(s,t+j) - 1/;(51t +])a
where

P(s,t+7) =@ (t+7) Yy O(t+j+k)p(s,t+5+k).

NE

k

Il
=1

The (s, t+j) may be interpreted as the present value of minimum-required consumption
expenditure; it can be considered as the permanent necessary expenditure.

1
Suppose ., [(1+“g(‘f{(_i]jgiz&):ﬁg;gfggi+k)a] *~" is bounded under the choice of a.

Then we obtain the consumption decision function:

. w(s, t+7)— (s, t+3 .
(s, +5) = ()= ¥ll¥d) ity @)
o0 [t @tiak (it ke | 7
k=0 ®(t+5)oB{t+i+k)g(t+5)

which is linear in lifetime discounted wealth with the necessary expenditures as intercepts
and a mixture of preference and price terms as slope. *The savings function at time { can
be obtained from the budget constraint: '

w(s,t+7) — (s, t+7)

o0 [t Bleki )B4k &
k=0 | 6(e47)7B(tFi+h)o(1+7)

HR(E+7—1) +plbls,t+5—- 1) +y(s, t+7)— (s, t+7). (32)

b(s,t+j) =

As the indirect utility functions (after transformation) are log-linear in ¢(s,t+j) (i.e.,
a = 0), the solution ¢(s,t + j) is simply

w(s,t +.7) - 1/)(5,1! +])
Bt+3) 1 e B+ + k)1 + p)F

Note that if we further assume that (¢t +5) = gt+? with B < land g =0, (33) reduces
to the result obtained in Tian and Chipman (1989):

(s, t+7) = (1= B)w(s, £ +7) — (s, t + )] + (s, t + ). (34)

(s, t+7) = +9(s,t + 7). (33)

T T Y S —— TR
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Remark 2 When 1(s,k) = 0 for all k£ > s,!! the consumption decisions specified by (33)
are the same even if preferences are different.

The intertemporal demand functions can be obtained from the Antonelli-Allen-Roy
p.d.e. In particular, those of the instantaneous demand functions from the preferences
specified by (a)-(g) can be obtained by substituting the solution ¢(s,t) into the corre-
sponding static demand functions. For example, when the preference is given by the
Leontief-Kantorovich utility function at time ¢t + 7, the instantaneous demand function is

@(t+7)>B(t+5+k)g(t+5)>

a,-(s,t+j)(_mzﬂ+m+_m+.._+mm) ’

ar1(s,t43) T az(s,t+y) am(st+7)

[w(s, ¢ +7) — (s, t + 1) 352, [(1+u)"<I>(t+j+k)"'ﬁ(t+j)g(t+j+k)°] =
zi(s,t +7) = -

(35)

when the preference at time ¢ + j is given by the Klein-Rubin-Samuelson-Geary utility
function,

. a;(s,t+7 4+ 7) — A+ '
fEi(S,t-f-J) — ( +])[w(3 ]) 1/J(S ])] - +’}’1’(S,i _+_]) (36)
. o EO(t47+k) 3 {t+5)g(t+i+k)2 | a~1
pilt+7) Xz [“’“‘Z,(tij)iﬂ()Higgfffj)i : ]

P

We can specialize the above solutions to the case in which (k) = 8%, R(k) = R,
y(s,k) = @y(s,k —1), ¥(s,k) =0 for all k > s, g(k) = g(p(k))"?, and p;(k + 1)/pi(k) =
6 > 0 (i.e., the inflation rates for all goods are the same over time periods) for all ; and k.

Then g(p(t +j +1))/9(p(t + 7)) = g(0p(t + 7))/ g(p(t + ) = 8, and y(s, t + k) = ¢*y(s,1)
with ¢/(R + i) < 1. Thus, p(t + 7) becomes

L[ tm ]
e = (insy]

and equation {31) becomes

[ (e . = 9 .
C(s,t+]);[m] ~(Rw)b(s,tﬂ—1)+§(m>ky(s,t+J>.

Choose a such that [M] *™" < 1% Then the consumption-savings functions become

B(R+u)=
o(s,t+j) = (1 - (%)j> {(R%u)b(s,tjtj —1)+ R—%}—%y(s,t%—j)
(37)
and

)H(R-i-,u)b(s,t-l‘j—l)

b(s,t +5) ((H”W

B(R + p)=
fome ) 144
(ﬁ(R+u)R)+p — y(s,t+ 7). (38)

1 This is true if the instantaneous preferences are specified by, e.g., those in (a)-(c) and (£)~(g).

124 sufficient condition for g(k) = g(p(k)) is that the instantaneous preferences of the consumer are
stationary.

13The choice of @ makes it possible to obtain the solutions with various values of R, 8, y, and 3.

In particular, when a =

0,
. 1+
c(s,t+7) = g—(—l_:

and

b(svt+j) = :B(R

Now we consider the sps
after transformation is line:
P(s, k) =0, g(k) = g(p(k))

more general situation can

1, g(p(t+35))/9(p(t)) = 6.

under this specification car

max -——

(1+,

subject to the lifetime bud

oC

S R+4™

k=0

We want to find the so
Case 1. Suppose 3/(
Sorco(R+u)Fe(s,t+k) -
{c(s,t + k) } which satis
c(s,t + k) is not a single-v
Case 2. Suppose /(1
O < (R+p)B/(1+

income at time ¢ but noth
o, +3) = |

Case 3. Suppose §/(1

#)0) > (B(R+ w)/(1+ p
by delaying consuming hi:

Remark 3 For a linear ir
restrictions on the interes
function is not single-valt
seem to be realistic. Sin
¢(s,t + j), monotonic tra:

The aggregate consumpti

C(t+].)="




on decisions specified by (33)

rom the Antonelli-Allen-Roy
nctions from the preferences
lution ¢(s,t) into the corre-
e preference is given by the
ntaneous demand function is
»k)°ﬂ(t+j)g(t+j+k)°] =
(t+i+k)g(t+5)e

+ 2= ;

am(3yt+j)

(35)

bin-Samuelson-Geary utility

ich A(k) = 8%, R(k) = R,
k)2, and pi(k +1)/pi(k) =

time periods) for all 7 and &.

9, and y(s,t + k) = ¢*y(s,t)

E:Rv)kst+ﬂ

on-savings functions become

R+ p .
1)+ my(sat+])
(37)
1)
¢
—y(s,t+ 7). (38)

hose in (a)-(c) and (f)—(g).

preferences of the consumer are

us values of R, 8, , and 8.
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In particular, when & = 0, we have

(1+p—p)

T+ y(s,t+7) (39)

c(s,t+7j) = (R+pw)b(s,t+7—-1)+

e
R+p—2¢

and

(R+u-a)+m "

Now we consider the special case @ = 1. That is, the indirect utility function before or
after transformation is linear in ¢(s, ¢+ ). For simplicity, we assume R(k) = R, B(k) =
P(s, k) =0, g(k) = g(p(k)), pi(k +1)/pi(k) = 0 for all s and k > s. The problem under a
more general situation can be similarly analyzed. Since g(p(k)) is homogeneous of degree
1, g(p(t+37))/g(p(t)) = 6. Thus the consumer’s intertemporal optimization problem (26)
under this specification can be written as

b(s,t+7) = B(R+ p)b(s,t+j— 1)+ s,t+3j).  (40)

p - 8 YV .
T me(p(D) ; [(1 T #)9] [e(s,t+7) = g(p())] (41)

subject to the lifetime budget constraint

Z[R+p] “*e(s,t+ k) =ZR+u 17 *y(s,t + k) + b(s,t — 1). (42)
k=0 k=0

We want to find the solutions for the above problem.

Case 1. Suppose 8/(1 + p)0 = (R4 u)™'. Then Y 52,(8/(1 + p)0)*c(s,t + k) =
SRR+ p)Fels,t+k) =Y joo(R+p) *y(s, t+ k) + b(t — 1). Therefore, any sequence
{e(s,t + k) } which satisfies the budget constraint is an optimal solution. Note that
c(s,t + k) is not a single-valued function but a correspondence.

Case 2. Suppose /(1+p)0 < (R+p)™". Since (R+p)8/(1+p)0 <1, (R+u)8/(1+
1)) < (R4 p)B/(1+ p)6)! for all j > 0, the consumer maximizes by spending all his
income at time ¢ but nothing in the following time periods. That is

e(s,t+4) = { TR+ (st k)4 blt—1) {7 =0 (43)

‘ otherwise.

Case 3. Suppose 3/(1+u)f > (R+u)™ . Since (R+p)8/(14+u)f > 1, (R+p)B/(1+
)0 > (B(R+ p)/(1 + p)0)* for all j > k, the consumer can always increase his utility
by delaying consuming his income. Thus the optimal solution does not exist.

Remark 3 For a linear indirect utility function in ¢(s,t +7), Case 1 imposes very strong
restrictions on the interest rate, time preference, and inflation. Also, the consumption
function is not single-valued. The behavior of the consumer in Cases 2 and 3 does not
seem to be realistic. Since the preferences specified by (a)-(g) except (e) are linear in
¢(s,t + 7), monotonic transformations are, sometimes, indeed necessary.

The aggregate consumption-savings functions can be obtained from (7), (31), and (32)

. W(s,t+35)—V(t+j :
Ct+j)= ( /) Lt) o+ V(L +)) (44)
S0 [ (LRG0 sa)altt ) | 7
k=0 S(t+5)2 Bt +5+k)g{t+3)>
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and

W(t+j) - 9(t+7)

Y e (+p)*@(t4+j+k)B(t+5)g(t+i+k)> =
k=0 S(t+5)2B(t+7+k)g(t+35)

+R(t+7-1)+pu]B(t+j - 1)+ Y(t+7)— ¥t +]). (45)

B(t+j) = -

5 The Continuous-Time Consumer Problem

Instead of assuming that time is discrete, we will take the point of view—both more
realistic and analytically more convenient—of continuous time. The results in continuous
time parallel very closely those in discrete time.

As in Section 3, we assume that the source of uncertainty is only about the time of
death. Thus the consumer’s intertemporal optimization problem at ¢ is

max/ e~ f:+v[5(7)+u]d‘r Ec(syt + ’U) - ¢(3,t + v))/g(t + v) - 1dv (46)
0 1o’
subject to the dynamic budget Constraint:

c(s,t +v)+ b(s,t +v) = y(s,t +v) + [r(t + v) + p]b(t + v) (47)

with b(t) given. Here 6(v) is the pure time-preference factor or subjective rate of discount
with 6(v) > 0 and b(s, t+v) is the derivative of b(s,t+v) with respect to time. We assume

t4v
that [ e” [+l g, converges. In addition, the terminal condition (or borrowing

constraint):

lim ®(t + v)b(s,t +v) =0 (48)

VOO0

is needed to prevent the consumer from borrowing arbitrarily large amounts.
The Euler equations (the first-order necessary conditions) are

ae” [ ) badr (€8, L+ v) — P(s, L+ 0)* )

) = Ao (49)
rt+v)+pu = _iE:iZ; (50)

Solving the differential equation forward, we get

Ot + v+ u)g(t+ v+ u)® =
B+ o)l + )"
t+viu

wewT Jpy | 10 uldr +¥(s,t +v+u)). {(51)

cs,t+v+u) = (c(s,t+v)—9(s,t+v))

Solving the dynamic budget constraint (47) for &(s,t + v) forward and using the ter-
minal condition (48) , we obtain the lifetime budget constraint:

(I>“1(t+v)/‘oo Q(t+v+u)e(t+ v+ uldu = w(s,t + v), (52)

where
w(s,t +v) = b(s,1
The above budget constrai

that of the earned income
Substituting (51) into t

e(s,t+v) = (-
b

where ¥(s,t +v) = ®7(t-

The demand functions
particular, those demand f
be obtained by substitutin
functions. As Fiy,(vi(p(i
(i.e., @ = 0), the solution i

(s, t +

Remark 4 The consumpt
utility is logarithmic, &(u)
If o =0, 6(u) =6, ¥(s,
Polar form and the Box-C
ren (1983), and further, if
preference ordering and %

The aggregate consum

Clt+v)= —

Il
6 Problem Wi

This section discusses the
not only about the time o
cannot obtain closed-form
or after transformation ar
for the consumption with
to be zero (see, e.g., Levk
form solutions can be obt
by (a)-(c) and (£)-(g) in

results can be obtained sis
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u} a-1
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folttv) —1, (46)

)+ bt +v) (47)
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107

where
w(s,t +v) =b(s,t +v) + 7' (t + v)/ Ot + v+ wyls, t + v+ u)du.
0

The above budget constraint states that the present value of the expenditure is equal to

that of the earned income plus property income.
Substituting (51) into the above equation and solving it for ¢(s,t + v), we have

UJ(S,t + ’U) _ ¢(Sat + v)

- v
s S(t+vtu)g(thotu) | 5T oy f:u +“[5(T)+u]f17du
0 ®(t+v)g(t+v)

c(s,t+v)= + (s, t +v), (53)

where ¥(s,t +v) = &7}t +v) fooo Bt + v+ u)(s,t + v+ u)du.

The demand functions can then be obtained from the Antonelli-Allen-Roy p.d.e. In
particular, those demand functions generated by the preferences specified by (a)-(g) can
be obtained by substituting the solution ¢(s, ¢ + v) into the corresponding static demand
functions. As Fyyo(vis(p(t +v),¢(s,t +v))) = log(c(s,t +v) — (s, t +v)) —log g(t + v)
(i.e., « = 0), the solution is simply

w(s,t +v)

+ ¥(s,t+v). (54)
t+via
j;)oo e~ [5(T)+p]d‘rdu

c(s,t+v) =

t+v

Remark 4 The consumption function given by (53) is very general. If the instantaneous
utility is logarithmic, 6(u) = 6, ¥(s,u) = 0, we obtain the results of Blanchard (1983).
If u =0, 6(u) = &, P(s,u) = ¥(p(u)), and preferences are specified by the Gorman
Polar form and the Box-Cox transformation, we obtain the results of Cooper and Mcla-
ren (1983), and further, if preferences are specified by the Klein-Rubin-Samuelson-Geary
preference ordering and (s, u) = v(u) - p(u), we obtain the results of Lluch (1973).

The aggregate consumption can be obtained from (7) and (53):

W(t+v) — (t + vy
foo [@(t+u+u)g(t+u+u2] a1 ea—’:ﬂﬁfvﬂu[&(f)w]ﬁdu

0 S(t+v)g{t+v)

+U(t+v).  (55)

C(t-l-v) =

6 Problem With More General Uncertainty

This section discusses the consumer’s problem in which the sources of uncertainty are
not only about the time of death but also about prices and interest rates. In general, we
cannot obtain closed-form solutions for this case unless the indirect utility functions before
or after transformation are quadratic (i.e., unless certainty equivalence holds). However,
for the consumption with random-return models in which wage income y(s,t) is assumed
to be zero (see, e.g., Levhari and Srinivasan (1969) and Sargent (1987, p. 31)), closed-
form solutions can be obtained for some preferences (say, for those preferences specified
by (a)-(c) and (f)-(g) in Section 2). We only consider the case of discrete time. The
results can be obtained similarly for continuous time.

—
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We now assume that the uncertainty about the time of death is independent of the un-
certainty about the other sources. Then consumer’s intertemporal optimization problem
at ¢ can be written as

b P

B > T (o0 (ot +i)els,t+1))), B<1 (56)

max

subject to the budget constraint
(8,8 +7)+b(s,t +7) =[R(t+j — 1)+ plb(s, t + 5~ 1). (57)

Here R(t + j — 1)b(s,t + j — 1) can be interpreted as the consumer’s wealth or assets.
The consumer has the option of either consuming all his wealth or “investing” part of it.
We assume that p(t + j) and R(t + j) are the sequence of independently and identically
distributed random variables. E.,; denotes the conditional mathematical expectation on
prices and interest rate at time ¢t + j. In addition to the above budget constraint, the
terminal condition (or borrowing cqnstraint) is

Hm ©(f + j)b(s,t + j) = 0. (58)

j—o0
Consider those preferences and monotonic transformations F4;(-) such that
Fii (v (p(t + 7), e(t + 7)) = log e(s, 1 + j) — log g(t + j). (59)
The Euler equation for this specification then is

1 B R+t
(s, t+7)  T4p Tels,it+j+1)

(60)

It is easily verified that ¢(s,t +7) = (1 — T%)[R(t +7— 1)+ pulb(s,t 4+ j — 1) satisfies the
Euler equation. Since logc(s,t + j) is strictly concave, we know that the optimal policy
functions for consumption and savings are ¢(s, t+j5) = (1— %)[R(H-j—l)—{—,u]b(s, t+5—-1)
and b(s, ¢ +§) = FEolR(t+ — 1)+ pb(s,  + — 1)

Similarly, the demand functions can then be obtained from the Antonelli-Allen-Roy
p.d.e.
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