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Furthermore, the sequences 7"w, and T"w, are increasing and decreasm
respectively. Hence by Dini’s theorem both converge to u(x) uniformly On
bounded intervals. So does T,v as

T"wi(x) < T"v(x) < T "wy(x).
This completes the proof.

Remark. By Theorem 1 we can get an estimate for the nonzero solutiop
u(x), if it exists. Assume that the function v(x) satisfies

To(x) < v(x), for 0<x<ec

Then
u(x) < ov(x) for 0<x<c

In particular we have the following.

COROLLARY 2. Let {v,(x)}>_, be a sequence of positive increasing
Jfunctions such that

lim v,(x)=0, Jor x=0,

n— o

and
Tv,(x) < v,(x), for xz=0.

Then the equation Tu(x)=u(x) has no positive solutions.

In a forthcoming paper we will use Corollary 2 to prove that if ¢(x)=
\/)_c and a(x, y)= f(x— y) is an invariant kernel given by the function

flx)=e=",

then Eq. (2) admits no nonzero solutions.
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This paper generalizes the Fan—Knaster-Kuratowski-Mazurkiewicz (FKKM)
theorem of Ky Fan (“Game Theory and Related Topics,” pp. 151-156, North-
Holland, Amsterdam, 1979; and Math. Ann. 266, 1984, 519-537) and the Ky Fan
minimax inequality by introducing a class of the generalized closedness and
continuity conditions, which are called the transfer closedness and transfer
continuities. We then apply these results to prove the existence of maximal elements
of binary relations under very weak assumptions. We also prove the existence of
price equilibrium and the complementarity problem without the continuity
assumptions. Thus our results generalize many of the existence theorems in the
literature. © 1992 Academic Press, Inc.

1. INTRODUCTION

The classical Knaster-Kuratowski-Mazurkiewicz (KKM) theorem is a
basic result for combinatorial mathematics, which is equivalent to many
basic theorems such as- Sperner’s lemma, Brouwer’s fixed point theorem,
and Ky Fan’s minimax inequality. Since Knaster, Kuratowski, and
Mazurkiewicz [8] gave this theorem, many generalizations of the KKM
theorem have been given. The most important generalization is the
Fan-Knaster-Kuratowski-Mazurkiewicz (FKKM) theorem which was
obtained by Ky Fan [4,5] and can be used to prove and/or generalize
many existence theorems such as fixed point and coincidence theorems for
non-compact convex sets and intersection theorems for sets with convex

* I thank A. Mas-Colell, J. Zhou, and an anonymous referee for useful comments and
suggestions. Of course, any remaining errors are my own.

457
0022-247X/92 $5.00

Copyright © 1992 by Academic Press, Inc.
All riohts of renroduction in anv form reserved.




458 GUOQIANG TIAN

sections (cf. Fan [5]). This paper offers a further generalization of the
KKM theorem and the FKKM theorem of Fan [4, 5] by introducing a
class of generalized closedness conditions, which are called the transfer
closedness and transfer continuities. We then use our FKKM theorem
(Theorem 3) to generalize the Ky Fan minimax inequality by relaxing the
compactness and convexity of sets, the lower semi-continuity and
quasi-concavity of functions. Since the Ky Fan minimax inequality is 4
fundamental variational inequality, many existence theorems for varia-
tional inequalities and convex analysis can also be generalized by our
minimax inequality.

As applications of these results to economics and optimization theory,
we generalize a class of existence theorems on the maximal elements of
binary relations, price equilibrium, and the complementarity problem by
relaxing the compactness and convexity of choice sets, the closedness
(openness) of upper (lower) contour sets, and the continuity of excess
demand functions. The motivation comes from economic applications
showing that the feasible sets or the budget constraints are generally not
(weakly) compact in an infinite dimensional commodity space and are not
convex in the case of the indivisibility of commodities. Thus, relaxation of
convexity of choice sets enables us to deal with the existence of maximal
elements even though commodities are indivisible. Further, it may be
remarked that Theorem 3, the minimax inequality in Theorem 4, and the
existence theorems on maximal elements (Theorems 5 and 6) below are
equivalent to one another. "

The plan of this paper is as follows. Section 2 states some notation and
definitions. Section 3 gives generalizations of the FKKM theorem by

relaxing the closedness condition. In Section 4, we generalize the Ky Fan

minimax inequality. Section 5 gives the existence theorems on maximal
elements of strict and weak preferences which may be nontotal-non-
transitive. Finally, in Section 6, we use our minimax inequality to prove the
existence of price equilibrium and the complementarity problem.

2. NOTATION AND DEFINITIONS

Before the formal discussion, we begin with some notation and defini-
tions. Let S be a subset of a topological (vector) space T and let Dc S.
Denote the collections of all subsets, convex hull, closure, and interior of
the set D by 2°, co D, cl D, and int D, respectively. Denote by clg D and
intg D the relative closure and relative interior of D in S. Throughout the
paper all topological vector spaces are assumed to be Hausdorff and
denoted by E.

L
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Let X be a topological space. A function f: X - Ru { 00} is said to be
Jower semi-continuous if for each point x', we have

lim inf £(x) > f(x'),
or equivalently, if its epigraph epi f={(x,a)eX X R: f (x)<a}isa closefi
subset of XxR. A function f: X —>Ru {+o0} is said to be upper semi-
continuous if — f is upper semi-continuous.

perNITION 1 (FS-Convexity!). Let Y be a convex subset of E an‘d let
£ X Y. A correspondence F: X — 2" is said to be FS-convex on X if for
every finite subset {x;, x5, ... X, of X

CO{X ), Xgy s X} < |J F(X;).
j=1
Remark 1. Note that the FS-convexity of F implies that every point
xe X is a fixed point of F(x), ie., x € F(x).

DEFINITION 2 (SS-Convexity?). Let Y be a convex subset of E.
A correspondence F: Y —2" is said to be SS-convex if x¢co F(x) for

all xe Y.

DEFINITION 3 (y-Diagonal Quasi-Concavity). Let Y be a convex sgbset
of E and let &J # X< Y. A function ¢(x, y): Xx Y ->RuU {iOO}‘IS said to
be y-diagonally quasi-concave (y-DQCV) in x, if for every finite subset
{X{, s Xy} = X and any x; eco{x, .., X, }, we have

inf  #(x;, x;) <.

1<j<m
Remark 2. The above definition on y-DQCV is more general than that
of Zhou and Chen [21]. Here we do not require that X=1Y and X be

convex.

Remark 3. Tt is easily shown that a function ¢: X'x Y — ﬂiu {£oo}is
y-DQCV in x if and only if the correspondence F:X — 2% defined by
F(x)={yeY: ¢(x;, y)<v} for all xe X is FS-convex on X.

In the literature, there are two approaches to nontransitive-nontotal
preference theory: one through “weak” (i.e., reflexive) preferences ('sei, €.g.,
Sonnenschein [13] and Shafer [12°), and the other through “strict (ie.,

{ The FS is for Fan [4] and Sonnenschein [13].

2 The SS is for Shafer and Sonnenschein [12]. "
3 Both Sonnenschein and Shafer assume that preferences are complete, and work with a

weak preference relation as the underlying source of the strict preferences.
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irreflexive) preferences (see, e.g., Schmeidler [11 , Mas-

apd_ Mgs-Colell (10], Yannelis and Prabhal[(ar][ZO],S 'IC‘iZIIf“[Il:g%) (~3rale
d1§t1nct10n becomes important when preferences are not total Kin.1 he
Richter [7] made the connection between the weak preferencé appr o
and the strict preference approach. We will generalize the exli)st(;aCh
theorems on maximal elements for both types of preferences by relaxin rt]}(ie
compactness and convexity conditions. Suppose that the (weak or stg ict)
preferenpe relation is defined on Z and is a subset of Z x Z. Here 7 s
b_e considered as a consumption space. Let 3= be the weak preference rm lay
tion. An element (x, y) in >= is written as x> y and read as “x is at l:aa-
as goqd as 'y.” Let > be the strict preference relation. An elements (x )
In > 1s written as x> y and read as “x is (strictly) preferred to DA iT(})))
each x, the weakly upper, weakly lower, strictly upper, and strictly'low :
contour setsl (sections) of x are denoted by U, (x)= {rezZ: y»= xt;r
LW-(1x) =U,'(x)={yeZixxy}, U(x)={yeZ y>x}, and L (/x_) -
U)i (x)={yeZ: x>y}, respectively. ’

n some cases, not all points in Z can be chosen, so let B < i

set, which may be considered as, say, the budget set or feasiti:bseeta.l ehoice

DEFINITION 4 (Greatest Element). A weak binary relation }= is said to
have a greatest element on the subset B of Z if there exists a point x*e B
such that x* = x for all xe B, or equivalently N,z U, (x)# ¢S on B.

DEFINITIO-N 5 (Maximal Element). A strict binary relation > is said to
have a maximal element on the subset B of Z if there exists a point x*e B

such that =1 x> x* for all xe B, ie., U,(x*)=
o , 1e., U = f on B, where — st
it is not the case that.” ands for

“Remark 4. 1In gen(_aral there is no relationship between the > -greatest
elements and > -maximal elements. However, when > is the asymmetric
part of the pref_erepce 7, >-greatest elements are >-maximal elements and
further they coincide if > is also complete. *

3. GENERALIZATIONS OF THE FKKM THEOREM
We begin by stating the FKKM theorem due to Fan [4, 5] which is a

general.ization of the KKM theorem by relaxing the compactness and
convexity conditions.

4 . . .
The strict Prefgrence > is said to be the asymmetric part of 3= if x 3= y but not y = x. The
preference > is said to be complete if, for any x, y e X, either XZyoryzEx .
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TueoREM 1 (FKKM Theorem). Ina Hausdorff topological vector space,
Jet Y be a convex set and J# X< Y. Let F: X — 2% be a correspondence

such that
(a) for each xe X, F(x) is a relatively closed subset of Y,
(b) Fis FS-convex on X;

(c) there is a nonempty subset X, of X such that the intersection
N xe xo F(x) is compact and X, is contained in a compact convex subset of Y.

Then (\xcx F(x) # O

Here, by relaxing the closedness condition, we extend Theorem 1 by
relaxing the closedness and FS-convexity of F(x). Accordingly, we
introduce

DEFINITION 6 (Transfer Closedness). Let X and Y be two topological
spaces. A correspondence G: X — 27 is said to be transfer closed-valued on
X if for every xe X, y¢ G(x) implies that there exists a point x’ € X such

that y ¢cl G(x').

DeFINITION 7 (Transfer Openness). Let X and Y be two topological
spaces. A correspondence P: X — 27 is said to be transfer open-valued on X
if for every x € X, y e P(x) implies that there exists a point x’ € X such that
yeint P(x').

Remark 5. Observe that a correspondence is transfer closed-valued if it
is closed-valued; a correspondence is transfer open-valued if it is open-
valued by letting x’ = x. Also a correspondence P: X — 27 is transfer open-
valued on X if and only if the correspondence G: X — 27, defined by, for
every xe X, G(x)= Y\P(x), is transfer closed-valued on X.

THEOREM 2. In a Hausdorff topological vector space, let Y be a convex
set and @ # X Y. Let F: X > 2" be a correspondence such that
(2a) F is transfer closed-valued on X;
(2b) the correspondence cly F: X — 2% is FS-convex on X;

(2c) there is a nonempty subset X, of X such that the intersection
Nxex, cly F(x) is compact and X,, is contained in a compact convex subset

of Y.
Then (e x F(x) # O&.

Remark 6. Observe that in case F(x) is closed in Y, Condition (2a) in
Theorem 2 is satisfied by letting x'=x. Theorem?2 then reduces to
Theorem 1. Also Condition (2b) does not require that F satisfy the
FS-convexity condition. Further, Conditon (2c) is satisfied if Y is compact.
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Proof of Theorem 2. We first prove that Nxexcly F(x)= Nxex F(x). It
is clear that ), ., F(x)c ), xcly F(x). So we only need to show
Nxexcly F(x) = N, x F(x). Suppose, by way of contradiction, that there is
some y in (), ycly F(x) but not in Nxex F(x). Then y ¢ F(x) for some
x € X. By Condition (2a), there is some x’ € X such that yécly F(x'), a con-
tradiction. For x € X, let K(x)=cl, F(x). Then K(x) satisfies all conditiong

- of Theorem 1 and thus, by Theorem 1, Neex F(x)= Neex K(x)# . 1

Remark 1. Even though the transfer closedness of F, in general, is not
a necessary condition for Theorem 2, it is, however, very weak. In fact, it
is a necessary and sufficient condition for Neexcly F(x)=,. x F(x). The
proof of sufficiency is given in the proof of Theorem 2. Here we show it is
also a necessary condition. Indeed, suppose (V,cxcly F(x)=(,. x F(x).
For every xe X, if y¢ F(x), then y¢ Nxex F(x)=N,excly F(x) and thus
yécly F(x') for some x'e X. So F is transfer closed-valued. Thus it is the
weakest condition which enables us to use the finite intersection property
to show the nonemptyness of (), ., F(x). On the other hand, surprisingly,
Tian and Zhou [18] recently proved that the transfer closedness of upper
sections (contour sets) of a function f, defined by

Fix)={yeX: f(y) = f(x)},

is a necessary and sufficient condition for the set of maximum points of the
function f to be nonempty and compact when X is a compact set.®> Thus
this result generalizes the classical Weierstrass theorem by giving a
necessary and sufficient condition. In Section 5, we will generalize this
result to the existence of greatest elements of ordering relations.

Theorem 2 does weaken the closedness and FS-convexity conditions of F

in Theorem 1. The following simple examples show that Theorem 2 is not
included in Theorem 1.

ExampLE 1. Let Y=[0, 1] and let X consist of all rational points in Y
and thus X is non-compact and non-convex on Y. Let F: X — 2¥ be defined
by, for all x € X, F(x) consisting of all rational points in the interval [x, 1].
Note that F(x) is non-closed except for x =1 and the FS-convexity condi-
tion is not satisfied, so we cannot apply Theorem 1. But Hypotheses (2a),
(2b), and (2c) of Theorem 2 are satisfied. Indeed, for every xeX, if
Y ¢ F(x), we can find a point x’e X, say x’ =1, such that yé¢cl, F(1) and
cly F is FS-convex since cly F(x) =[x, 1] for all xe X. If we let X, consist

* This condition can be equivalently stated as follows: If for points x, ye X, S(y)< fix)
implies that there exists a point x’e X and a neighborhood #7(y) of y such that f(z) < f(x')

for all ze A"(y). A function f which satisfies this condition is said to be transfer upper
continuous. :
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of all rational points in [1/2, 1], then Nxexo Sy F(x)= {l}fis ;or;xlp:l.z; axtl)d
X, is contained in a compact convex subset [1/2,1] of Y. Hence, by
0

Theorem 2, (). x F(x)# -

ExAMPLE 2. Let Y=[0,2]1cR and let X= 0, 1/4) L (1/3, 1)'I‘vlvlh1chf is
-compact and non-convex. For each xe X, let F(x)‘= (x, 2] en, for
e e X, F(x) is not closed in Y and the FS-convexity condition is not
ant)i,sf)iced isince x¢ F(x)) so we cannot apply Theorem 1. B'ut all the
::;potheses of Theorem 2 are satisfied. In fact, for any xeJX, if y¢l’7(;c]),
then y<x. If we take any x' with x'<x’ apd x'eX, we llavle ;f)[x'fhe,;
ie, yécly F(x'). So Condition (2a) is satxsi"1ed. Let' Xo-.-( /h , 1). n

’ cly F(x)=[1,2] is compact and XO‘IS cqntalned in t”e compac
Q)ilevg& s}l,lbset [0, 1]. Thus Condition (2c) is satisfied. C;)ndmorll) (Zelzl)sﬂls
clearly satisfied. Hence (,cx F(x)# & by Theorem 2. (It can be y
verified that (. x F(x) = Nxexcly F(x)=[1,2]# &)

It may be remarked that Example 2 also shows t.hat Theoiegﬂ. ca;not
guarantee y* € X even if y*€(Vxe + F(x).¢ If we require that y* be 1nh. ,hwiz
need to strengthen Condition (2¢) and have the following theorem whic
the key mathematical tool in this paper:

THEOREM 3. Suppose all the conditions in Theorem 2 hold except that
Hypothesis (2c)‘is replaced by

(3¢c) there exists a nonempty set XocX sucif that f(')r ea.ch ye Y\X,

there exists a point x € X, with y ¢ cly F(x) and X, is contained in a compact

convex subset of Y.

Then Xn(nxeXF(x))¢g D

ition (3c), we know that =

P of Theorem 3. By Condition ( ,
N roo{IY}{x) < X,. Since X, is contained in a compact convex subset of
Yxelt)y0 is compact. Hence, by Theorem 2, Nxe XF(x);.éQ. Now for afny
y,e N F(x), we must have ye D< X, for otherwise y¢cl, F(x) for
xeX E)

some x € X,. Hence yeX. |

4. GENERALIZATIONS OF THE KY FAN MINIMAX INEQUALITY
| i ini i iti f Fan [3], Allen
i 14, 15] generalized the minimax inequalities o ‘
[lgla:ng thil Snd Chen [21] by relaxing the convexity of sets apd
sho;ved that they are equivalent to the FKKM theorems. We now give

further generalizations of the Ky Fan minimax inequality by relaxing the

6 This is also true for Theorem 1.-

_—‘—J;——_
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lower semi-continuity and y-diagonal quasi-convexity conditions. We firs¢
introduce

DEFINITION 8 (y-Transfer Lower Semi-Continuity). Let X and Y be two
topological spaces. A function ¢: XxY—>RuU{+o} is said to be
y-transfer lower semi-continuous in y if for all xe X and ye ¥, ¢(x, y)>y
implies that there exists some point x'€ X and some neighborhood 4 (»)
of y such that ¢(x’, z) >y for all ze 4 (p).

THEOREM 4. Let Y be a nonempty convex subset of a Hausdorff topologi-
cal vector space E, let S3# XY, let yeR, and let ¢: X xY > RuU {ioo}
be a function such that

(4i) it is y-transfer lower semi-continuous in y;

(4ii) for every finite subset {x,, X3, .., X,,} Of X, cO{x, X3, oy X, } <
Uiy cdy{yeY: $(x;, )<y}

(4iii) there exists a nonempty subset C = X such that for each y e Y\c
there exists a point xe C with yeinty{ze Y: §(x, z) >y} and C is contained
in a compact convex subset of Y.

Then there exists a point y* € X such that ¢(x, y*)<y for all xe X.

Proof of Theorem 4. For xe X, let F(x)={yeY:4(x, y)<y}. Then,
by Conditions (4i) and (4ii), F(x) satisfies Conditions (2a) and (2b) of
Theorem 3. By Condition (4iii) and the definition of F, we know that for
each ye Y\C there exists a point xeC with y¢cl, F(x). Hence, by
Theorem 3, X N (), x F(x))# &. Thus there is a point y* € X such that
#(x, y*)<y for all xe X. |

Remark 8. Note that Condition (4i) is satisfied if @(x, y) is lower
;emijcontinuous in y, Condition (4ii) is satisfied if ¢ is y-diagonally
quasi-concave in x€ X, and Condition (4iii) is satisfied if X=Y and Y is
compact.

Remark 9. Theorem 4 generalizes the minimax inequality of: Fan [3]
by relaxing the quasi-concavity and lower semi-continuity of ¢ and the
convexity and compactness of X; Allen [1] by relaxing the quasi-concavity
and lower semi-continuity of ¢ and the convexity of X; Zhou and Chen
[21] by rélaxing the y-diagonal quasi-concavity and lower semi-continuity
of ¢ and the convexity of X; Tian [14] by relaxing the y-diagonal quasi-
concavity and lower semi-continuity of ¢; and Tian [15] by relaxing the
y-diagonal quasi-concavity of ¢.

Remark 10. Similar to those in Zhou and Chen [21] and Tian [14],
Theorem 4 can also be proved independently of Theorem 3 by using the
Brouwer’s fixed point theorem.
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Remark 11. Theorem 3 and Theorem 4 are in fact equivalent. This is
because Theorem 3 can also be derived from Theorem 4 by defining
¢: XxY->RuU{+o} by

y if (x,y)eG
+ 00 otherwise,

0=

where yeR and G={(x, y)eXxY: yeF(x)}, and then applying
Theorem 4.

5. THE EXISTENCE OF MAXIMAL BINARY RELATIONS

In this section, we use Theorem 3 to prove the following theorems
(Theorems 5, 6) which give sufficient conditions for the existence of a
greatest element for weak preferences and a maximal element for strict
preferences on non-compact and non-convex infinite dimensional choice
sets. It will be noted that the weakly upper (strictly lower) contour sets
may not be closed (open). The preference relations may be nontransitive-
nontotal. Thus we can obtain the demand correspondence even though the
budget set is non-compact (for instance, with zero prices for some com-
modities) and non-convex (e.g., with indivisible commodities), preferences
are nontransitive-nontotal, and further the weakly upper (strictly lower)
contour sets may not be closed (open).

DEerFINITION 9 (Transfer Upper Continuity). Let Z be a topological
space and let (J # B< Z. A preference relation > defined on Z is said to
be transfer weakly upper continuous on B if for all xe B and yeZ, x>y
implies that there exists a point x’ € B and a neighborhood .4°(y) of y such
that x’ >z for all ze A'(y).

DEeFINITION 10 (Transfer Weakly Upper Continuity). Let Z be a
topological space and let (§ # B < Z. A preference relation > defined on Z
is said to be transfer weakly upper continuous on B if for all xe Band ye Z,
x> y implies that there exists a point x’€ B and a neighborhood A47(y) of
y such that x’' =z for all ze #(y).

Remark 12. Tt is clear that a preference relation > is transfer upper
continuous on B if and only if U,,: B— 27 is transfer closed-valued on B.

DErFINITION 11 (Generalized SS-Convexity). Let Y be a convex subset
of E and let Z#XcY. A correspondence F:X—2" is said to be
generalized SS-convex on X if for every finite subset {x,, x,, ..., x,,} of X
and xy€co{xy, X3, .., X}, X; ¢ F(x,) for some 1 <j<m.
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Remark‘ 13. Note that the SS-convexity of F implies the generalized
SS-convexity. The converse statement may not be true unless X =Y.

The following theorem shows the existence of greatest elements on g
non-compact and non-convex set for weak preferences.

THEOREM 5. Let Z be a convex subset of a Hausdorff topological vector

space E, let : :
sﬁch ot et 3 # BcZ, and let = defined on Z be a weak binary relation

(51) U, is transfer closed-valued on B;
(5ii) cl, U, is FS-convex on B;

(51i) there exists a nonempty set C < B such that for each yeZ\C

there exists a point x € C with y ¢cl, U, (x) and C is contained in a compact
convex subset of Z.

Then = has a greatest element on B.

Proof of Theorem 5. The proof is a consequence of Theorem 3. For
xeB, let F(x)=U,(x). Then F(x) satisfies all the assumptions of
Th}aorem 3. Hence, by Theorem 3, BN (V.5 U, (x))# &. Thus there is a
point y* in BN (.5 U, (x)) which means y*>>x for all xe B. |

Remark 14. Theorem 5 is also equivalent to Theoremr3 since we can
get Theorcm.3 from Theorem 5 by defining a relation >> on Z by, for each
xe€ X, y>x if and only if y € F(x), and then applying Theorem 5.

Wl}qn preference relations become orderings (i.c., relations are reflexive
transﬂxye, and total), the transfer closedness of U, completely characterize;
the cx1‘stence of greatest elements of >>. The following propositions
gener_ahze the well-known Weierstrass theorem by giving necessary and
sqfﬁment conditions and are slight extensions of the results obtained in
Tian and Zhou [18] to preference relations. For the completeness, we give

the prootts of these propositions even though they are essentially the same
as those in Tian and Zhou [18].

PROPOSITION 1. Let B be a nonempty compact subset in a topological
space and let = be an ordering. Then > attains its maximum if and only if
7= is transfer weakly upper continuous on B.

‘ Proof Sufficiency. By way of contradiction, suppose > does not attain
its maximum on B. Then for each y e B, there exists a point x € B such that
x> y. By the transfer weakly upper continuity of =, there exists a point
x'e B and a neighborhood A4"(y) such that x' =y’ for all y'e #'(y). It

eamemn oot .
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follows that B<{J, .5 A(y). Since B is compact, there exist finite points
(P15 V25 = y,} such that B= J7_, #'(y)) Let x; be the associated point
such that x/ 3= y’ for all y’ e A (y,). For the finite subset {x, X}, .., X}, =
has a greatest point, say, X}, 1€, X} >x, for i=1,2, .., n. Since > has no
maximum point on B By the hypothesis, x| is not a maximum point of =
on B, thus there is x€ B, such that x>x}. But xe A (yj) for some
1< j<n, therefore x>x1Zx;>x, a contradiction. Hence > attains its
maximum on B.

Necessity. This is trivial. Just let x’ be any maximal element of >>. Then
x'zy forall yeB. |

Sometimes, we want the set of greatest elements of > to be not only
nonempty but also compact, say, we want the demand correspondence to
be nonempty and compact in order to use fixed point theorems to show the
existence of competitive equilibrium or equilibrium for abstract economies
(cf. Tian [17]). Then we have the following proposition.

PROPOSITION 2. Let B be a nonempty compact subset in a Hausdorff
topological space and let > be an ordering. Then the set of greatest elements
of = is nonempty and compact if and only if U, is transfer closed-valued on
B, ie., if and only if = is transfer upper continuous on B.

Proof. Necessity (= ). Suppose that the set of greatest elements of >
is nonempty compact. Since > is an ordering, then for every xe€ B, if
y¢ U, (x) for some ye B, y¢ U, (x'), where x' € B is a greatest element of
> on B. Since the set of greatest elements is compact, there exists a
neighborhood A7(y) of y such that y' ¢ U, (x') for all y'e #'(y). Thus,
yé¢cl, U,(x'). Hence U, is transfer closed-valued on B.

Sufficiency (< ). Since U, is transfer closed-valued, Nycscl U, (x)=
Nxcp U, (x). Now for any finite subset {X;, X3, .., X} =B, >» has a
greatest element, say, x;, on the finite set, ie., x, = x; for i=1, .., m. Then
x,€ U, (x;) for i=1, .., m. Therefore, F#N™, U, (x) =N, clz Uylx))
Hence the family of sets {cl, U,(x): x€ B} has the finite intersection
property on B. Also, since {cl,U,(x): xeB}isa family of closed subsets
in the compact set B, &J#NcenClz U, (x)=\xes U,(x) which means
that there exists a point x* € B such that x* > x for all xe B. Since the set
of greatest elements ()..pclz U,(x) is a closed subset of B, it is
compact. [

Theorem 3 can also be used to prove the existence of maximal elements
on a non-compact and non-convex set for strict preferences.

TuroreM 6. Let Z be a convex subset of a Hausdorff topological vector
space E, let 3+ B< Z, and let > be a strict binary relation on Z such that
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(6a) L, is transfer open-valued on B;
(6b) int, U, is generalized SS-convex on B,

(6c) there exists a nonempty set C < Z such that for each ye Z\C
there exists a point x € C with yeint, L (x) and C is contained in a compact
convex subset of Z.

Then > has a maximal element on B.

Proof of Theorem 6. Let F(x)=Z\L(x). Then {xe X: U,(x)=F} =
Nxex F(x), F is transfer closed-valued, and Condition (6¢) implies Condi-
tion (3c). So we only need to show that U,, is FS-convex. Suppose, by way
of contradiction, that there exists a point x, € co{x, x,, ..., x,,} of Z which
is not in cl; F(x;)=Z\int; L,(x) for all j. Then x,eint; L,(x;), so
x;eint; U(x,) for all j, which contradicts the generalized SS-convexity of
int; U (x,). Hence, by Theorem 3, (), .y F(x)# J. So there exists some
point x* € X such that U, (x*)=. |

Remark 15. Theorem 6 generalizes the results of Sonnenschein [13]
and Yannelis and Prabhakar [20] by relaxing the openness of the strictly
lower contour sets and the compactness and convexity of the choice sets.
Note that Theorem 5 can be also derived from Theorem 6 if we define a
strict binary relation > on Z by x> y if and only if 7y > x and then
apply Theorem 6. Thus our Theorem 3, Theorem 4, Theorem 5, and
Theorem 6 are equivalent to one another.

It may be interesting to know the relationships among the various
convexities for preference relations. For example, many economists (say
Shafer and Sonnenschein [12], Border [2], Yannelis [20], etc.) use the
SS-convexity hypothesis to prove existence theorems in economics when
preferences are nontotal-nontransitive. Is this hypothesis weaker than the
convexity of U,(-) or the weak-convexity’ of relation > when > is an
ordering? The following proposition proves that these convexity conditions
are equivalent to one another when a preference relation becomes an
ordering.

PROPOSITION 3. Let preference relation = on Z be an ordering, and let
> be the asymmetric part of =. Then the following statements are equivalent
to one another.

(1) The relation 2= is weakly convex on Z.
(2) U, (x) is convex for every xe€ Z.
(3) U,(x) is convex for every xe Z.

" A relation 3= is weakly convex if y = x implies Ay + (1 —A)x=xforall 0K A< 1.
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(4) U, is SS-convex on Z.
(5) U, is FS-convex on Z.

Proof. Implications from (1) to (2), (2) to (3), (3) to (4), and (5) to (1)
are obvious. We only need to show that (4) implies (5). Indeed, suppose,
by way of contradiction, that there exists a point x; in the convex hull of
some finite subset {x,, x,, .., x,,} of Z which is not in U, (x;) for any j.
Then x,eL,(x;), so x;€Uy(x;) for all j. But then x;ecoU(x,), a
contradiction. |i

6. PriCE EQUILIBRIUM AND THE COMPLEMENTARITY PROBLEM

In this section we will study the existence of price equilibrium and com-
plementarity by using Theorem 4. The equilibrium price problem is to find
a price vector p which clears the markets for all commodities (ie., the
excess demands f(p) <0 for the free disposal equilibrium price or f(p)=0)
under the assumption of Walras’ law. Here we give an existence theorem
on price equilibrium by relaxing the lower semi-continuity of the excess
demand functions. For simplicity, we only work with the Euclidean space
R" + 1'

THEOREM 7. Let A, be the closed standard n-simplex and let
fi4,-R""! be an excess demand function such that

(i) the function ¢:4,x4,— R defined by ¢(p,q)=p-f(q) is
O-transfer lower semi-continuous in ¢,

(ii) forallped,, p-f(p)<0 (Walras Law).

Then there exists a price vector q* € 4, such that f(q*)<0.

Proof of Theorem 1. Let ¢(p,q)=p-f(q). Then ¢ satisfies all the
conditions of Theorem 4 with y=0 (by noting 4, is compact so that
Condition (4iii) is satisfied) and thus there exists some g* € 4, such that
#(p,q*)=p-f(qg*)<0 for all pe 4,. Hence f(¢*)<0. 1

Remark 16. The O-transfer lower semi-continuity of ¢(p,-) means that,
if the excess demand f(q) at price vector ¢ is not affordable at price vector
p, then there exists a price vector p’ such that the excess demand f(z) at
any price vector which is sufficiently close to g is also not affordable at the
price vector p’. Note that, since p >0, this condition is satisfied if every
component of f is lower semi-continuous by letting p’ = p.

We now consider a mathematically more general problem which is
known as the nonlinear complementarity problem.

409/170/2-12
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Let X be a convex cone of a vector space, let f: X — E* (dual of E). The
problem is to find a p such that f(p)e X* < E* (which is the polar cone)
and {p, f(p)>=0. In particular, if C=R"*', then the condition that
S(p)e X* becomes f(p)<0. In the following, we give an existence theorem
on the complementarity problem which generalizes the results of
Karamardian [6, Theorem 3.1] and Allen [1, Corollary 2].

THEOREM 8. Let X be a cone in a Hausdorff topological vector space E
and let f X - E* be a mapping such that the function ¢: X xX - Ry

{ + 0} defined by, for every (p, q)e X x X, ¢(p, q) = {p—q, £(q) ), satisfies
the following conditions:

(i) @(p, q) is O-transfer lower semi-continuous q e X;

(ii) there exists a nonempty set Dc X such that for each qe X\D
there exists some pe D and some neighborhood A '(q) of q with ¢(p,z)>0
for all ze A'(q) and D is contained in a compact convex subset of X.

Then there exists a price vector q*€X such that f(q*)eX* and

<q*, f(g*)>=0.

Proof of Theorem 8. Since ¢ is linear in p, it satisfies Condition (4ii) of
Theorem 4. Conditions (4i) and (4iii) are clearly satisfied. Then by
applying Theorem 4 to ¢(p, q) with y =0, we have the existence of some
g* € X such that ¢(p, g*) <O for all pe X. That is, {p—q*, f(g*)> <O for
all peX. From Lemmal of Allen [1], we have {g¢*, f(g*)>=0. So
flg*)ex*. |
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