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TRANSFER METHOD FOR CHARACTERIZING THE EXISTENCE OF
MAXIMAL ELEMENTS OF BINARY RELATIONS ON COMPACT OR
NONCOMPACT SETS*

JIANXIN ZHOUt AND GUOQIANG TIANG

Abstract. This paper systematically studies the existence of maximal elements for unordered binary
relations on compact or noncompact sets in a general topological space, This is done by developing 5
method, called transfer method, to derive various necessary and sufficient conditions that characterize the
existence of maximal elements for a binary relation in terms of: (1) (generalized) transitivity conditions
under certain topological assumptions; (2) topological conditions under certain (generalized) transitivity
assumptions; and (3) (generalized) convexity conditions under certain topological assumptions. There are
two basic approaches in the literature to prove the existence by providing sufficient conditions. One assumes
certain convexity and continuity conditions for a topological vector space and the other assumes certain
weakened transitivity and continuity conditions for a general topological space. The results unify those o
approaches and generalize almost all of the existing results in the literature,

Key words. binary relations, maximal elements, transfer continuities, transfer transitivities, transfer
convexities
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1. Introduction. Let Y be a topological space and u:Y -R be a Function, The
classical Weierstrass theorem states that u attains its maximum on any nonempty
compact set X < Y if u is upper semicontinuous. As generalizations of the Weierstrass
theorem, Tian and Zhou [18] proved two theorems that give necessary and sufficient
conditions for u to attain jts maximum on a nonempty compact set by introducing the
notion of transfer continuities. The idea behind this is quite simple. To characterize
the existence of maximal points for a function u, for given u(x)>u(y), we really do
not have to know the topological relations between x and a neighborhood A (y) of .
All_ we need to know is the topological relations between a neighborhood of y and a
point x' in the upper part of u(y), i.e., whether x can be transferred to x', a point in
the upper part of u(y) such that u(x') > (2)u(y"): y’e M(y), and if so, u is said to be
transfe.r (weakly) upper continuous on X. However, in many cases in economics, decision
analysis, optimization, and game theory, a binary relation is not representable by a
ful'zction even for an ordering. Thus many results are given in the literature to prove the
ex1sten.ce of maximal elements of a binary relation for this case. See, e.g., Yu[22]
Bor\_veln [4], Luc [10], and others who study the existence of maximal elements for a
Dal'tlal_OFdering induced by a convex cone in a topological vector space; and Fan[7],!
Schmeidier [13], Sonnenschein [14], Shafer [11], Shafer and Sonnenschein [12),
Bergstrom [3], Walker [19], Yannelis and Prabhakar [21], Campbell and Walker [5),
g}an [16],[ 17], and others Wwho study the existence of maximal elements for unordered

inary relations by assuming either certain convexities or certain transitivities (at least
acyclicity). Most of the results provide only sufficient conditions.
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In this paper we systematically study maximization of binary relations. Note that
there are two basic approaches to unordered binary relations in the literature: one
through “‘weak” (i.e., reflexive) binary relations, and the other through “strict” (i.e.,
irreflexive) binary relations. Kim and Richter [9] made the connection between these
two approaches and proved that these two approaches are equally valid: definitions and
theorems in one approach correspond in parallel to definitions and theorems in the other
approach. So in this paper we, without loss of generality, deal with only “strict” binary
relations.

Let Y be a set and X © Y be a subset. Denote by “>" an “irreflexive (strict)
binary relation’” on Y and “Z” the completion of “>,” i.e., x Z y means that y>x
does not hold, and thus “Z=” is a “reflexive (weak) and complete binary relation.”
Here v > x is read “y is strictly preferred (or dominated) to x” and y is said to be a
dominator to x. Let A be a subset of Y and ye Y. Denote by y>(Z)A if y>(Z)x
forall xe A and y is said to be a dominator (maximizer) to A.

An element x* e X is said to be a maximal element of the binary relation “>"" on
Xif xzX, i.e., x* has no dominator in X.

Our objective in this paper is to study the existence of maximal elements for a
binary relation “>" on a nonempty compact or noncompact set. We characterize the
existence in terms of: (1) certain topological conditions, (2) certain (generalized)
transitivity conditions, and (3) certain generalized convex (geometric) conditions. We
extend the notion of transfer continuities further to transfer transitivities and transfer
convexities. We call this notion the transfer method. The basic idea behind it is as
follows. For topology, given x> y, the conventional continuity conditions describe
topological behavior or relations between x and a neighborhood of y. For transitivity,
given a finite subset X,={x,, x,, - - -, X,}, conventional transitivities describe “rela-
tions™ within the finite set X,, i.e., the ““internal relations.” For geometry and algebra,
given a finite subset X,={x,, x,, - * *, x,}, conventional convexity conditions describe
“relations” between this finite set and its convex hull. To characterize the existence
of maximal elements for “>,” when x>y, we do not have to know the topological
relations between x and a neighborhood of y, the internal relations of the finite subset
Xo, and the geometric and algebraic relations between the finite set and its convex
hull. We only need to know, for topology, the topological behavior or relations between
a neighborhood of y and an element x' in its “upper” part (so x can be transferred
to a certain element x’ in the “upper” part of a neighborhood of y); for transitivity,
the relations between the finite subset X, and an element x' in the “upper” part of
the finite subset X, i.e., the “external relation”; for geometry, the relations between
the finite set X, and the convex hull of a corresponding finite subset in the part not
“below” X,. Conditions describing the topological relations between a neighborhood
of y and an element in its “upper” part are called transfer continuities; conditions
describing the relations between the finite subset X, and an element in its “upper”
part are called transfer transitivities; and conditions describing the geometric relations
between the finite subset X, and the convex hull of a corresponding finite set in the
part not “‘below” X, are called transfer convexities.

This paper consists of four sections. In § 1, we introduce various transfer conditions
and we explore their connections with conventional conditions and some of their
properties as preliminaries for further development. In § 2, we characterize the existence
of maximum elements for binary relations on nonempty compact sets by giving
necessary and/or sufficient conditions in terms of: (1) transfer transitivity conditions
under certain transfer continuity assumptions, (2) transfer continuity conditions under
certain transfer transitivity assumptions, and (3) transfer convexity conditions under
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certain transfer continuity assumptions. In § 3, we first discuss some properties of the
definitions in § 1, and then provide several theorems to characterize the existence of
maximum elements for binary relations on nonempty noncompact sets by also giving
necessary and/or sufficient conditions in terms of various transfer conditions. In §4,
as concluding remarks, we first indicate that our results can be used to give conditions
under which the maximum correspondence in Walker’s Maximum Theorem is noy.
empty valued, which is required for many applications in decision analysis and game
theory and serves as part of our motivation for this work. Then we show how 1
maximization problem, with respect to a (weak) binary relation, can be converted t
a maximization problem, with respect to a (strict) binary relation, so our approach
can be applied.

L.1. Transfer transitivities. In the following definition, whenever K = X, “to K"
will be replaced by “on X or omitted.

DeFINITION 1. Let K be a subset of a set X. A binary relation “>" defined on
X 1is said to be:

(1) Transfer n-maximal to K, if for each finite subset {x1, %2, * *, X, } = X there
exists x'€ K such that x'={x,, x,, -+ *, X, };

(2) transfer finitely maximal to K, if it is transfer n-maximal to K for all n=

1,2,--

(3) n-acyclic on X, if x,> x,> + - >x, implies x,Zx; for all k=1,2,-++,n
(1-acyclic just means x=x for all xe X );

(4) acyclic on X, if it is n-acyclic for all n = 1,2, -,

(5) transfer n-strict maximal to K, if for all Yo X in X with y,>x;, i=1,2,++ 5
there exists x'e K such that x'> {x, s Xo, e, Xe b

(6) transfer finitely strict maximal to K, if it is transfer n-strict maximal to K for
al n=1,2,---;

(7) n-link transitive on X, if y>=xoZx Z -+ - Zx,>z implies y> z;

(8) link transitive on X, if it is n-link transitive on X for all n=0, 1,2,-+;

(9) fully transitive on X, if its completion “Z" is transitive on X, i.e., x=yZ:
imply xz z.

Remark 1. Here we can see that many definitions in the literature have been
unified. The way we define those transitivities makes it easier for us to save terminologies
and to see implications among different transitivities. For instance, in Definitions 1(1),
1(3), 1(5), and 1(7), the case for n+1 implies the same case for n. Conventionally:

1) a l-acyclic “>" is said to be irreflexive, i.e., not x> x or x= x for all xe X;
. '(2) a 2-acyclic “> is said to be asymmetric, i.e., x>y and not y > x, which
implies x =y, and is also said to be a “preference” relation;
] (3) a Q—link transitive “>" is said to be (weakly) transitive in [5]. Therefore, a
0-link transitive > » induces a partial ordering;

(4) a 1-link transitive “> > is said to be extratransitive in [5].

ite rfi(:'g::iks ii'ncn?:lfi Ifreferranm: relgti_ons‘have been adopted very often in (multiple-
8) vector optimization (cf. Yu [22], Borwein [4], Tanaka [15],

F . '
o:;zo.[s]’ a}r;d Luc[10]). Therein (weak) cone preferences are defined to induce partial
appr;l:fﬁ' ere we show that a cone preference is just a very special case of our

conelif: ;.( Eet acs_uEset of a real topological vector space Y and let C be a convex
e =—C. Define (see, e.g., [10]) the (weak) cone preference “Z.” in

Ybyyz, xij ; .
e i’ J; h; J:v ;lfeand onlyZ if y—xe C Thus its asymmetric part of =, denoted by >.,
’ ¢ never y =.x and not x =, ¥, defines a strict preference relation, Then

a s * . . . '
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0 xeX such that x* >, i.e, either x*~x2 C or x*~xe CNC forall x& X. For
qch a (weak) cone preference, we can define a (strict) cone preference relation “>"
i Yby y> x if and only if x—ye C\(C N C7), and write its completion “=” by xz y
yhenever y > x does not hold, ie., x=y if either x~y2 C or x—yeC N C~. Now
following our definition, a maximal element of “>” on X is an element x*e X
ach that x*= x, for all x€ X, i.e., in this case x*—x¢ C or x*~xe CNC™ for
JlxeX. Thus x* is an efficient point of “Z.” if and only if it is a maximal point
of >

It may be remarked that the above-defined (strict) cone binary relation *“>" is
(link transitive on X, i.e., z>y> x implies z> x. To see this we only need to show
hatx¥e C\(CNC7) and y'e C\(CNC7) imply x'+y'e C\(CNC7). Since C is a
convex cone, x'+y'€ C\(C N C7) implies x'+y € (CNC") and y'e C implies —y'€
¢ Then x' = (x'+ ¥')+(—y') e C and leads to a contradiction.

Thus our approach is very general and includes the cone preference as a special
ase. It then frees us, in considering vector optimization, from using linear structures
and from restricting a binary relation to being defined by a cone. We believe our
ransfer method can be applied to cone preference to both derive and characterize the
esistence of maximal elements.

Remark 3. Campbell and Walker [5] overlooked the fact that the pseudotransitivity
in [5], defined by “‘x; > X, = x3 > x4 implies x; > x; when x, 7 x;,” is weaker than the
Llink transitivity when > is asymmetric. The pseudotransitivity and 1-link transitivity
are equivalent by noting that-the pseudotransitivity implies the O-link transitivity (since
the pseudotransitivity and the O-link transitivity together clearly imply the 1-link
tansitivity). To see this, suppose that x>y >z (which implies x# z by the asym-
metricity), but z = x. Then we have y > zZ x> y. The pseudotransitivity implies y>y
but this is impossible.

Since our objective is to characterize the existence of maximal elements for a
binary relation, to better understand those transitivities stated in Definition 1, it is
beneficial for us to restate some of these transitivities in terms of maximization
terminologies.

LeMMA 1. Let “>" be a binary relation on a set X.

(1) For any fixed integer n=1,2,3, - - , the binary relation is n-acyclic on X if and
aly if any n elements {x,, X5, * * , X,} & X have an internal maximal element, i.e., there
exists x, € {x,, X5, * *, X,} such that x; ={x,, X, * * *, X,}. Consequently, the binary rela-
lion is acyclic on X if and only if for any integer n, any finite subset {xy, X, * <+, Xa}= X
has an internal maximal element.

(2) The binary relation is acyclic if it is 0-link transitive.

Proof. (1) The second part of (1) follows from the first part, so we only need to
prove the first part. The cases n=1,2 are obvious. For n> 2, to prove the “only if”
part, we assume that the binary relation is n-acyclic and that there exists n elements
{t,, %, -+, x,} = X without an internal maximal element. These elements therefore
form a k+1 cycle for some integer k with 3 =k =n. Without loss of generality, we
assume that the k+1 cycle is of the form x> x;> =+ > X > X1, Since the binary
rlation is k-acyclic, we have x, = X, > X;, and this is impossible.

To prove the “if” part, we assume that for each fixed integer n>2 the binary
relation has an internal maximal element for any n elements in X. This implies that
the binary relation has an internal maximal element for any k elements in X with
35k=n. Let {x;, X,, * - -, X} be k elements in X with x; > X,> « * + > X;. Since x> x,
villforce a k+ 1 cycle to form, i.e., these k elements have no internal maximal elements,
and reduce to a contradiction, we must have x;Z X and thus the binary relation is
k-acyclic for all 1=k=n.
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(2) Without loss of generality, if there is a cycle of the form X > Xyt > x> x,
for some 1=k =n, 0-link transitivity will lead to x,> x;—a contradiction. 0

LEMMA 2. The binary relation is 1-link transitive on X if and only if for any integer
n and any x; and y, with Yi>X, i=1,2,+ -+ n, there exists 1S k=n such thal Y >
{x, x5, , x,}.

Proof. The “if” part is obvious. For if Y > X1 >x,> z, then either y> {x,, z} or
%2> {x,, z}. But x, = x,, so ¥>{x;, z} and thus “>" is 1-link transitive. Now we prove
the “only if* part by mathematical induction. When n=1 it is obviously true. Suppose
it is true for all n=m. Now for n=m+ 1, if y;>x;, 1=i=m+1, then, according to
the assumption on n= m, there exists y,, 1= k = m, such that Vi A{x, x0,0 0, xp b IF
Yi> Xpy1, it is done. Otherwise we have VYma1> Xyt Z Y > {X1, X2, + +, X, }. By the
l-link  transitivity, we obtain Ymir>{x1, %5, <+, x,}.  Then ., >
{x;, x5, - - " Xy Xy} O

Remark 4. Definitions 1(3), 1(4), 1(7), and 1(8) are of conventional types and
Definitions 1(1), 1(2), 1(5), and 1(6) are of transfer types. By consulting Lemmas 1
and 2 we can see how we applied the transfer method to the conventional Definitions
1(3), 1(4), 1(7), and 1(8) (we simply allow the dominator or maximal element to
elements to exist inside or outside the n elements) to obtain, respectively, Definitions
1(1), 1(2), 1(5), and 1(6). Therefore, they are very natural generalizations of the
conventional assumptions. It is these transfer conditions that enable us to avoid the
asymmetric assumption. When K = X we have the following implications among
various transitivities stated in Definition 1, while none of their converses hold (@
means that the binary relation is asymmetric):

9
@ ;
y
(8)
-
(7
Z N (n>0)

(4) (6)

Vo g

A @ ©

(same n) ~ # (same n)

(1)

where
(3)=(1) follows from Lemma 1(1);
(7)=>(6) follows from Lemma 2; ;
(7)=(4) follows from Lemma 1(2); ]
(5')=>(1) because if n elements have no maximal element, each one of them has
a dominator; then (5) guarantees the existence of an outside dominator (a maximal
element under asymmetry) to all these n elements;
(4)=(2) follows from Lemma 1(1).

NFxt we provi_de two examples to demonstrate that for a binary relation the acyclic
Cond}thH .str'xctly implies the transfer finitely maximal condition, while the acyclic
condition is independent of the transfer finitely strict maximal condition.
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Example 1. Let Y =C, the complex plane. Define a binary relation “>" for any
Z|,ZZE Y by
_(either |z:|<|z|and z, z, are on the same ray from the origin
) z1>z iff — = 0
or |2,| = |2a| but z, = "z, for 0< 9 = /2.
Let X be the unit disk on the complex plane C. Then for each r,0<r=1, we have a

cycle
(1, 0)> (0, =r)> (=1, 0)> (0, r)>(r, 0).

However, the origin is the unique maximal point on X, which is strictly preferred to
any other point. So “>" is transfer finitely strict maximal (of course, transfer finitely

maximal) on X
Example 2. Let Y =C, the complex plane. Define a binary relation “>"" for any

Z},ZZE Y by
) . {either |z <2, and arg (z,) =arg (z,)
@ Aazn W, |z, = |2,] but z, = €”z,, for 0 < 8 = /2.

Here the argument of the origin, arg (0), is regarded as zero. Let X be the unit disk
on the complex plane C. Then for each r, 0 <r=1, we have a cycle

(r, 0)> (0, —r)>(—r, 0} > (0, r) > (1, 0).

However, the origin is the unique maximal point on X, thus “>" is transfer finitely
maximal on X. Indeed, we have (0,0)> (0, r) for all 0<r=1, and (0,0)= any other
points (where > does not hold). If we let X be the upper half of the unit disk, including
the bottom line, then it is easy to see that > is acyclic, but is not transfer finitely
strict maximal on X. So we can see that the acyclic condition and the transfer finitely
sirict maximal condition are two independent conditions. We point out here that the
(link transitive condition and the transfer finitely strict maximal condition are also
independent.

1.2. Transfer continuities and convexities.

DEFINITION 2. Let X be a subset of a topological space Y and let z be any point
inY; denote N'(z) a neighborhood of z The binary relation > defined on Y is said
to be:

(1) upper continuous on X, if for any xe X and ye Y, x>y implies that there
exists A'( ¥) such that x> N¥(y);

(2) weakly upper continuous on X, if for any x€ X and y€ Y, x> y implies that
there exists A'(y) such that x = N(y).

For convenience, in further developments we define the weakly upper contour
correspondence U, : X »2Y by U, (x)={ye Y: yzx} for each x€ X, and we define
the strictly upper contour correspondence U,: Y 2% by U(x)={ye X: y>x} for
tacchxe Y.

Remark 5. Note that “>" is upper continuous on X if and only if U, has
(relatively) open lower sections on X, i.e., if and only if U;'(x) is open for all xe X.
The upper continuity is called the lower continuity in [3] and [20] and the weakly
Upper continuity in [5] is called the weakly lower continuity. The reason we call them
“upper” is that when the binary relation “>" is represented by a real-valued function
on Y our definitions coincide with the usual upper semicontinuities.

Let Z be a convex subset in a topological vector space E. A correspondence
P:Z+2% is said to be SS-convex (refer to Shafer and Sonnenschein) if x £ co P(x)
forall x e Z. Here we used co A to denote the convex hull of a set A.
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DEFINITION 3. Let Z be a convex subset of a topological vector space E and let
§# X = Z. A correspondence P: Z - 2% ig said to be generalized SS-conpex on X (cf.
[17]) if for every finite subset {1, %, , %} of X and X0 €CO{Xy, Xy, + +, X, }, ;¢
P(x,) for some 1=j=m.

Remark 6. Note that the SS-convexity implies the generalized SS-convexity. The
converse statement may not be true unless X =Z.

Let Z be a convex subset in a topological vector space and let = X c Z A
correspondence G : X - 2% is said to be FS-convex (refer to Fan [17] and Sonnenschein
[14]) if for any finite set {x1, %, -+, x,} e X, co {x1, %, -, x,}c Uil G(x;). Next

convexities. Once the definitions are compared, the ideas behind the transfer method
become clear,

In the following definition, whenever K = X, “to K will be replaced by “on X*
OT omitted.

DEFINITION 4. Let X be a set of a topological space Y and K = X be a subset.
The binary relation “>” on Y is said to be

(1) transfer upper continuous to K, if for any xe X and Y€ Y, x>y implies that
there exist x’e K and N(y) such that x'> N(y);

(2) transfer pseudoupper continuous to K, if for any x € X and Y€ Y, x>y implies
that there exist x'e K and N(y) such that x'>y and x'= N(yp);

() transfer weakly upper continuous to K,ifforany xe X and ye ¥, x> y implies
that there exist x'e K and N (y) such that x'> N(y).

DEFINITION 5. Let X be a topological space and let Z be a convex subset in a
topological vector space. A correspondence G: X - 27 is said to be transfer FS-convex
on X if for any finite set {1, %, ,x,}= X there exists a corresponding finite set
Ly, 3)eZ such that for any subset iy ya, .y} (1=s=n) of
{yl,Y2, C L Yok we have

Co {J’n:}’iz, o ye U G(x;),
re=1

where {x;, x5, -+ x,}is a corresponding subset of {x,, x,,- - -, x,}

DEFINITION 6. Let X be a topological space and let Z be a convex subset in a
topological vector space. A correspondence P: Z - 2% is said to be transfer SS-convex
on X if for any finite set (X1, %, x,}< X there exists a corresponding finite set
uye o plez such that for any subset is v,y (1=s5=n) of
1,32, " ¥ab and yyeco 1%, Y2, * - -, yis} we have X & P(p;0).

DEFINITION 7. Let 7 be a convex subset in a topological vector space and let
=X <Z The binary relation > (Z) is said to be transfer SS-convex (transfer FS-
con;;;x) on X if U;: Z»2% (y, X ~>2%) is transfer SS-convex (transfer FS-convex)
on X,

Remark 7. Conventional convexity conditions give relations between a finite set
{’fh ¥2, 7+, X,} and its convex hy]] co{xy,x,, -+, x,}. Transfer convexity conditions
glve re}atlons between a finite set 1%, %, +, x,} and the convex hull of a correspond-
Ing finite set {y,, y, ... » Ya}, Which may differ from {x1, %5, ¢+, x, 1

v .DEI‘-“INITION 8. Let X and Y be two topological spaces. A correspondence G: X ~»
27 s said to be transfer closed-valued on X if for every x€ X, y € G(x) implies that
there exists x'e x such that y ¢ ¢| G(x'), ie.,, y 2 the closure of G(x').

. In the remainder of this section we prove several lemmas that give the interconnec-
tions between different definitions and that will be useful in later proofs.
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Lemma 3. (1) Let Y be a topological space and let §# X < Y. Then the correspon-
dence U,: X 27 is closed-valued on X if and only if “>" is upper continuous on X;
the correspondence U,,: X -2 is transfer closed-valued on X if and only if “>" is
transfer upper continuous to X.

(2) Let Z be a convex subset in a topological vector space and let § 7% X < Z. Then
the correspondence U, : X - 2% is FS-convex on X if and only if U,: Z 2% is generalized
8S-convex on X, and the binary relation “>" is transfer SS-convex on X if and only if
"= is transfer FS-convex on X.

Proof. The proof follows immediately from the definitions. 0

LEmMMA 4. Let Z be a nonempty convex subset of a topological vector space and let
83 X< Z Suppose “>" is a binary relation on Z such that U,,: X > 2% is finitely closed
for each xe X (i.e., the intersection of U, (x) with any finite-dimensional subspace of Z
is closed). Then “> is transfer finitely maximal on X if and only if > (Z) is transfer
SS-convex (transfer FS-convex) on X.

Proof. By [6], U, has the finite intersection property if and only if U, is transfer
FS-convex on X and therefore if and only if U, is transfer SS-convex on X. It is clear
that U, has the finite intersection property if and only if “>"" is transfer finitely
maximal on X. d

LEMMA 5. Let Y be a topological space and let §# X < Y and let “>"" be a binary
relation on Y. Then N ..xcl U,(x) =N ex U,(x) if and only if U, is transfer closed-
valieed or equivalenily if and only if *“>"" is transfer upper continuous on X.

Proof. Sufficiency. 1t is clear that Nyex U, (x) <= Nyex ¢l U,(x). So we only need
to show Nyex ¢l U, (x) < N ex Uy(x). Suppose y 2N ex U,(x). Then y g U, (z) for
some ze X, Since U, is transfer closed-valued on X, there exists some z'€ X such
that ye cl U,(z') and then y £ N, .x cl U,(x).

Necessity, Assume N, cxcl Uy(x)=N,ex Uy(x). If yeU,x), then ypg
Nyexcl Uy(x)=N,ex Uy(x) and thus y& cl U,(x') for some x'eX. Thus U, is
transfer closed-valued on X, 0

2. Maximization of binary relations on compact sets. There are two basic
approaches in the literature to showing nonemptiness of the set of maximal elements
on a nonempty compact set without assuming transitivity of the binary relation. One
approach, under some convexity and continuity conditions, was developed by Fan [7],
Sonnenschein [14], Shafer[11], Shafer and Sonnenschein [12], Yannelis and Prabhakar
[21], and Tian [16], [17], among others. The other approach may be found in Bergstrom
[3], Walker [19] (under acyclic and upper continuity assumptions), and Campbell and
Walker [5] (under the 1-link transitivity, compactness for the space, and weakly upper
continuity for the binary relation). In this section we generalize and unify the two
approaches by giving several theorems that characterize the existence of maximal
elements for a binary relation on a compact set. Theorem 1 characterizes the existence
of maximal elements of a binary relation on a compact set in terms of transfer continuity
(topological condition) for a given weakened transitivity condition. Theorem 2 charac-
lerizes the existence of maximal elements of a binary relation in terms of transfer
ransitivity for a given weakened topological condition (transfer continuity) and
Theorem 3 characterizes the existence of maximal elements of a binary relation in
terms of geometric conditions (transfer convexities) for a given weakened topological
condition. (transfer continuities).

LemMA 6. Let X be any subset of a topological space Y and let “>" be any binary
relation on Y.
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(1) If *>” has a maximal element on X, then ““>" is transfer finitely maximal o

X
(2) If “>” has a maximal element on X, then “> is transfer weakly upper

continuous on X.

(3) If “>" is transfer upper continuous on X, then the set of all maximal elements
on X is closed (possibly empty) in X. If “> is fully transitive and the set of all maximaj
elements on X is nonempty and closed, then “>" is transfer upper continuous,

Proof. The proof follows immediately from the definitions. a

Tueorem 1. Let X be a nonempty compact topological .space and let the binary
relation *“>> on X be transfer finitely strict maximal on X, Then “>" has a maximal
element on X if and only if “>"" is transfer wealkly upper continuous on X,

Proof. Sufficiency. Suppose, by way of contradiction, that “>" does not have a
maximal element. Then for each y € X, there exists x € X such that x > ». By the transfer
weakly upper continuity of “>,” there exist x'€ X and a neighborhood A'(y) such
that x'= y’ for all y' e #(y). It follows that X = Uyex#(y}. Since X is compact, there
exist finite points {y,, y,, ** +, y,} such that X = U?r., N(y;). Let x! be the associated
point such that x!= y’ for all '€ #(y,). Since we assume that there is no maximal
element, for the finite subset {x/, X3, +, X,}, by the transfer finitely strict maximal
property there exists x'e X such that x"> x!, for all i = 1,2,- -, n. However, x'e A(y)
for some j=1,2,- -+ n We have x;zx'. It leads to a contradiction. So X has a
maximal element.

Necessity. This follows from Lemma 6(1). 0

THEOREM 2. Let X be a nonempty compact topological space.

(1) Assume that the binary relation “>" is transfer upper continuous on X, Then
the set of all maximal elements on X is nonempty and compact if and only if’ *>" is
transfer finitely maximal on X,

(2) Assume that the binary relation “>" on X is asymmelric (i.e., 2-acyclic) and
Jully transitive. Then the set of all maximal elements on X is nonempty and compact on
X if and only if “>» iy transfer upper continuous on X,

. P‘r‘oof of (1). The necessity follows from Lemma 6(1). We prove the sufficiency.
$1nc? > is transfer finitely maximal on X, for every finite subset {x,, - - -, x,}, there
Is x’€ X such that for each i=1,2,-++,nx'>x; or x'=x. Define U, (x)=
gy ;X : J’§ ?}) T_hrl_l]s U, and then cl U, have the finite intersection property. By Lemma
cl,emz;)t{s 0; § ;vhizix' Canw(x)#ﬁ on the compact set'X. So the set of all maximal

Proof of (é) g lsfﬁx.ex Us(x) =N ex ol U, (x), is nonempty and compact.
necessity. Noti . " ¢ sulliciency follows from part (1) and we only need to prove the

¥. INotice that under the full transitivity, for any nonmaximal element y and
any nonmaximal element ; E:;’Zt)lc ;{ ?1122 e ts e't o al ma,'dma] omonts 18 closed,
for any maximat element x we have jc) >y f‘con 1211m§ no aximal 6'1 en}‘e nf; ?‘herefore,
upper continuous, q Yy tor all y"e #(y). That is, “>" is transfer

the “”I::SSYT:}:O::‘T 1 tg.ent'arahzes the res.ults of Campbell and Walker [5] by relaxing
also generalizfs theon lml-“ty anq the 1-link transitivity (pseudotransitivity) of “>." It
o Theaes o resu ts.of Tian and Zhoy [18] by relaxing the full transitivity of
Shafer and Sonor) f}fr{erallzes the res.ults of Fan [7], Sonnenschein [14], Shafer [11],
the upper contimur, emn[12], Yar.lnehs and Prabhakar [21], and Tian [17] by relaxing
Theorem 2(1) also1 Y and ( generalized) SS-convexity of “>" and the convexity of X.
the upper conting| fezrel:iahzes t.:h_e results of Bergstrom [3] and Walker [19] by relaxing
to the existence of y d acyclicity of > . Thus our results unify two basic approaches
maximal elements by giving necessary and sufficient conditions.

kA
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Remark 8. If we compare the conditions of Theorems 1 and 2(1), we can find
that there is a trade-off between the transfer transitivities and the transfer continuities
(a trade-off between transitivity conditions and topological conditions): If one condi-
tion is weakened, then the other must be strengthened and vice versa. Many theorems
we give below will also have this trade-off relation.

Theorem 3 below, which is obtained in Tian [16], is a special case of Theorem 2
(which needs to assume that X is a subset of a topological vector space). We state it
here as an alternative.

TuEOREM 3. Let Z be a nonempty convex compact subset of a topological vector
space and let §7# X < Z. Let ““>> be a transfer upper continuous binary relation on X.
Then the set of all maximal elements of *“>” on X is nonempty and compact if and only
if *>" is transfer SS-convex on X.

Lemma 3(2) and Lemma 4 give partial interconnections between Theorem 2(1)
and Theorem 3,

Remark 9. At this point, it is quite natural to conjecture that the transfer finitely
strict maximal condition in Theorem 1 might be further weakened, or to ask, for a
binary relation on a compact set: What is the weakest possible transitivity condition
under which the existence of maximal elements is equivalent to the transfer weakly
upper continuity? This question is related to our understanding of the fundamental
structures of mathematics, namely, topology, transitivity, and their interconnections.
So far it is still an open question. However, Campbell and Walker [5] provide a clue.
They construct an example [5] in which a binary relation is weakly upper continuous
(and thus is transfer weakly upper continuous) and 0-link transitive but fails to have
amaximal element on a nonempty compact set. Therefore, under the transfer weakly
upper continuity, any transitivity condition proposed, other than the transfer finitely
strict maximal condition, must be weaker than the 1-link transitive condition and
independent of or stronger than the 0-link transitive condition.

For any function u, we can define a fully transitive binary relation “>"" as follows:
x>y if and only if u(x) > u(y). Thus the transfer continuities of a function u can be
similarty defined. As direct consequences of the above theorems, we provide two
corollaries that are generalizations of the classical Weierstrass theorem and are obtained
in Tian and Zhou [18].

CoroLLARY 1 [18]. Let X be a nonempty compact topological space and let u
X->RU {—00} be a function. Then u attains its maximum on X if and only if u is transfer
weakly upper continuous on X.

CoRroLLARY 2 [18]. Let X be a nonempty compact topological space and let u: X -
RU{~00} be a function. Then the set of maximum points of u on X is nonempty and
compact if and only if u is transfer upper continuous on X.

The following examples show that the above corollaries are very useful for us to
see whether or not the maximum points of functions exist—even though these functions
are very discontinuous.

Example 3. Consider a function u defined on the interval X =[0,1] by

(3) u(x) = {

We can easily see that u is not upper semicontinuous. In order to see that u is transfer
upper continuous, for any neighborhood ¥ < [0, 1], we may choose any rational number
¥’'such that sup {x|xe #}=x'=1. In addition, by Corollary 2, we know the set of all
maximal points is nonempty and compact. In fact, x =1 is a unique maximum point
of u on [0, 1].

1+x if x is a rational number,
b otherwise.
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Example 4. Consider the so-called Dirichlet function u defined on the interyy
X =[0,1] by

(4)

() 1 ifxisanirrational number,
u(x)= eo . .
0 if xis a rational number.

Note that u defined by (4) is clearly not transfer upper continuous. However, it j
transfer weakly upper continuous by choosing x’ as any irrational number. Thus, by
Corollary 1, u has a maximum point. We can also easily see that the set of maximuy
points of u on [0, 1]is a set consisting of all irrational numbers and thus is not compag,
Example 5. Now if a function u is defined on the interval X =[0, 1] by

x if0=x<1,

) “(x)={0 ifx =1

then u is not transfer weakly upper continuous on X, This is because for y=1and
x€ (0, 1), we cannot find any x’ € X and neighborhood #'(y) of y such that u(z)s u(x')
for all ze N(y). Thus, by Corollary 1, we know that u does not have any maximum
point. In fact, we can easily see that u does not have a maximum point on [0, 1.

3. Maximization of binary relations on noncompact sets. For application purposes

the compactness assumption of a set is sometimes too restrictive, especially when
solving problems with data in infinite dimension. In this section we prove several
theorems that give necessary and/or sufficient conditions for the existence of maximal
elements of a binary relation on noncompact sets in terms of topological conditions
(transfer continuities) for given transitivities, or in terms of transfer transitivities for
given topological conditions (transfer continuities), or in terms of transfer convexities
for given topological conditions. Thus, by applying our transfer method, we generalize
almos} all of the results in the literature and all results in the last section. Furthermore,
by using the “transfer” feature of our transfer method, we are able to provide an
approach with potential applications in constrained maximization.
. Recall that the function u in Example 4 is not transfer upper continuous, but it
Iseasy tosee that it is transfer pseudo-upper continuous. So the transfer upper continuity
strictly lmp_lies the transfer pseudo-upper continuity. To show that the transfer pseudo-
UPPer continuity strictly implies the transfer weakly upper continuity, we set up the
following example,

_Example 6. Let X =K be the unit disk in the complex plane C, Define a binary
relation “>* on X by

2>z, ifarg(z)> arg (z,),

for all 2, 7,6 7. Since for the origin 0, jts argument arg (0) is not defined, 0 z for

ffl {iz :r(:)u: d, ltsht;ansfer we_akly UPper continuous. But when we observe the behavior
pseudo-upper > point 2 —.(x, 0) for x> 0, we can see that “>" is not transfer
i Pper continuous, Obviously, “>* is 0-link transitive. As a matter of fact, “>"

f2>222> 2, then we have arg (z,)> arg (z,) and

1s also 1-link transitive. For i

ar > ; s
8(23)>arg (24), which also implies that z3#0. Tt follows that arg (z) = arg (z).
> is 1-link transitive.

erefore, arg (zy) >arg(z,) or Z1> z4. Thus *
that for a binary relation > » under the 1-link

t The above €Xample shows

ransitivity, t inui

iy gﬁnl;?t ;ra;ifer pseudo-upper continuity strictly implies the transfer weakly
* “TOWever, when a preference relation “>” is fully transitive, it is

€asy to see that A
upper continuit;hggrf}?: fer Pseudo-upper continuity is equivalent to the transfer weakly
) question may be asked: What is the weakest possible transitivity

—,
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Condition under which the transfer pseudo-upper continuity is equivalent to the transfer
Weakly upper continuity. We need to consider another question before we can answer
this one.

For a binary relation ‘“>" defined on a set X, if x€ X is not a maximal element
Of “>" on X, then there exists an element y € X such that y > x. We may be concerned
With the question of whether or not there exists a maximal element x* e X such that
X* > x. In general, the answer is no. But under certain transitivity conditions, the answer
is yes.

LemMMA 7. Ifthe binary relation > iy 2-link transitive on X and > has a maximal
element, then for any nonmaximal element x € X there exists a maximal element x* € X
Such that x* > x.

Proof. Suppose, by way of contradiction, that there is a nonmaximal element y e X
Such that y = x* for every maximal element x* on X. Then there is an element ze X
Such that z > y. Note that z must be a nonmaximal element since y = x™* for all maximal
¢lements x* on X. So there is an element x € X such that x>z > y. Let x* be any
Mmaximal element on X. Then we have z>y = x* = x > z, which implies that z> z by
the 2-link transitivity—a contradiction. [

It can be seen in the above proof that 2-link transitivity can be replaced by a
Weaker condition “x; Z x,Z x> x,=>x, Z x,.”

LemMA 8. Let “>" be a 2-link transitive binary relation on a topological space X.
Then “>" is transfer weakly upper continuous if and only if it is transfer pseudo-upper
continuous.

Proof. We only need to show that under the assumption, the transfer weakly upper
continuity implies the transfer pseudo-upper continuity. When *“ > " is transfer weakly
upper continuous and x > y, there exists x'e X and #(y) of y such that x'= ¥#(y). If
> has a maximal element on X, by Lemma 7, there exists a maximal element x*e X
such that x* > y and x™ = N(y). If “ > does not have a maximal element on X, notice
that the 2-link transitivity implies the transfer finitely strict maximal condition; then
there exists x,€ X such that x> {x, x'}, or xo>x>y and xo>x'Z (). Then it
follows that x,>y and x,Z #(y), by noting that the 2-link transitivity implies the
0-link transitivity, Therefore, > > is transfer pseudo-upper continuous. il

In the following, we provide various necessary and sufficient conditions to charac-
terize the existence of binary relations on noncompact sets.

THEOREM 4. Let X be a topological space.

(1) The set of all maximal elements of the binary relation *“>"" on X is nonempty
and closed if there exists a nonempty compact set K < X such that **>" is transfer finitely
maximal and transfer upper continuous to K.

(2) Assume that the binary relation “>" on X is 2-acyclic and fully transitive. Then
the set of all maximal elements on X is nonempty and closed if and only if there exisis a
nonempty compact set K < X such that **>" is transfer upper continuous to K.

(3) Assume that the binary relation “>"" on X is 2-acyclic and fully transitive. Then
the set of all maximal elements on X is nonempty and compact if and only if there exists
g nonempty compact set K < X such that “>" is iransfer upper continuous to K and for
each ye X\ K, there exists x € K such that x> y.

Proof of (1). By the existence result in Theorem 2(1), we can see that ‘> has
a maximal element x* on K. Suppose “>" has no maximal element on X. By the
transfer upper continuity to K, there exists x € K such that x> x*, This leads to a
contradiction. The closedness of the set of all maximal elements follows Lemma 6(3).

Proof of (2). The sufficiency follows from (1) and the necessity is similar to that
of Theorem 2(2). Just let K ={x*}, where x* is any maximal element on X.
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Proof of (3). The sufficiency is similar to that of (2) and we only need to no
that all the maximal elements must be in K. The proof of the necessity is similar
that of Theorem 2(2) by letting K be the set of maximal elements on X. 0

CorOLLARY 3. Let X be a topological space and u: X - R be a function, Then

(1) the set of all maximal elements of u on X is nonempty and closed if and onlyjf
there exists a nonempty compact set K < X such that u is transfer upper continuous to X

(2) the set of all maximal elements of u on X is nonempty and compact if and only
if there exists a nonempty compact set K = X such that u is transfer upper continuous o
K and for each y € X\K there is x € K with u(x)> u(y).

Tueorem 5. Let X be a topological space. Suppose that the binary relation “>"
on X is 1-link transitive. Then X has a maximal element if there exists a noneriply
compact set K <= X such that “>" is transfer pseudo-upper continuous to K.

Proof. By Theorem 1, “> " has a maximal element x* on K. Suppose that *>"
has no maximal element on X. Then there exist yeXandxe K suchthat x > yz y>x*
by the transfer pseudo-upper continuity to K. But this implies x> x* by the 1-link
transitivity, which contradicts the fact that x* is a maximal element of * > * on K So
“>" has a maximal element on X, ]

Remark 10. Note that in the example provided by Campbell and Walker [5] the
binary relation is not only 0-link transitive and weakly upper continuous but also
transfer pseudo-upper continuous on a compact set. However, it fails to have a maximal
element. So the 1-link transitive assumption in Theorem 5 cannot be replaced by the
0-link transitivity. 0

THEOREM 6. Let X be a topological space and let the binary relation **>" on X e
such that there exists q nonemply compact set Ky« X such that “>" is transfer finitely
strict maximal to K, . Then X has a maximal element ifand only if there exists a nonemply
compact subset K, < X such that “> is transfer weakly upper continuous to K,.

Proof. The necessity is trivial. Just let K, ={x*}, where x* is any maximal element
on X. We only need to prove the sufficiency.

' When there exists a nonempty compact subset K, < X such that “>*’ is transfer
ﬂmt?ly strict maximal to K, let K =K, U K;. Then “>" is transfer finitely strict
maximal and transfer weakly upper continuous to K. By Theorem 1, there is a maximal
element x* on K. Suppose, by way of contradiction, that *> ** has no maximal element
on_X. Thep there exists an element Y€ X such that y> x*. But “> * is transfer finitely
;S:I;C:: ina)nmal to .K_; for the nonmaximal element x* e X there exists x € K such that

,a COIltl’EEdlCtlon. So X has a maximal element in K. a

_The following corollary is a complete characterization for a function to attain its
maximum valyes,
the seCt(ZfRZlLll;::;: n;i‘.le;Iet Xbea topologf‘cal space ar-zd let u: X >R be a function. Then
compact set K o x suc}fn:}fms of u on X is nonempty if and only if there exists a nonemply

at u is transfer weakly upper continuous to K.

THeOR ; ,

Assume ;})’an 7. Let X be a topological space and let *“>* be a binary relation on X.
(;) therfz is an element xoe X such that ¢ U.(x0) is compact in X,
(2) U, is transfer upper continuous on X,

Then the set o i .
if / all maximal elements of “>> on X i nonempty and compact if and only
8 transfer finitely maximal on x.

SUﬂi-cimZi g?;ceﬂii?iley follows fl‘?m Lemma 6(1). We only need to show the
property on X and s ‘j transfer finitely maximal on X, U, has a finite intersection
© does ¢l U,. Now cl U,(x)Nel Uy,(x,) is compact and has a

finite intersect
0N property as well. So Niex el Uy (x) %@ and is compact. Since condi-

‘
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tion (2) is equivalent to M,ex U, (x) =N ex ¢l U,(x), N ex U,(x) is nonempty and
compact, (1

Similarly, we can extend Theorem 3 to cover binary relations on sets that are not
convex or compact.

THEOREM 8 [16]. Let Z be a nonempty convex subset of a topological vector space,
X a nonempty subset of Z, and ““>"" a binary relation on Z. Assume that

(1) there is a vector xy€ X such that cl U, (x,) is compact in Z;

(2) U, is transfer upper continuous on X,

(3) for each y € Z\ X, there exists x € X such that x> y.

Then the set of all maximal elements of “>" on X is nonempty and compact if and only
if *>"is transfer SS-convex on X.

TuEOREM 9. Let X be a topological space and *>" be a transfer upper continuous
binary relation on X. Then the set of all maximal elements on X is nonempty and closed
if and only if there exists a nonempty compact subset K < X such that *“>"" is transfer
Jinitely maximal to K.

Proof. The necessity is trivial. Just let K ={x*}, where x* is any maximal element
on X. We only need to prove the sufficiency. First we show that

(6) N el Uy (x)N K #§.
xeX
In fact, since “>" is transfer finitely maximal to K, for any finite subset
{x;, %3, +,x,} = X, there exists ye K such that x=x, i=1,2,- -, n. That is,
N Uw(x,') NK# g.

i=1

It follows that

A ol Uy(x) N K %9,
i=1

However, for each x € X, the set ¢l U, (x)N K is compact and therefore

N ¢l Uy (x)N K #§.

xeX

Due to the assumption that “> " is transfer upper continuous, Lemma 5 reads

n (Jw(x) = cl Uw(x)a
xeX xeX
which is a nonempty closed subset in X. This completes the proof. O

Remark 11. Theorems 7 and 9 are generalizations of Theorem 2(1). They coincide
if X is compact. Note that there is a trade-off between Theorem 7 and Theorem 9.
Assumption (1) in Theorem 7 has been removed in Theorem 9, but the condition that
*>*" is transfer finitely maximal on X in Theorem 7 has been strengthened to the
condition that ““>> *’ is transfer finitely maximal to a compact subset K = X. As a result,
the conclusion in Theorem 7 that the set of all maximal elements is nonempty and
compact becomes weaker in Theorem 9. ]

4. Concluding remarks. In this section we give some further remarks.
Let E (environment space) and Y (action space) be two topological spaces; let
F:E -2 be a nonempty-valued correspondence; and let “>,” be a family of the
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binary relations on Y that depends on the parameter e € E. Define a binary correspon-
dence P: Ex Y~2Y by

Ple,y)={xeY: x >y}

for (e, y)e Ex Y. To study a family of maximization problems with respect to the
parameterized binary relation > we define the maximum (marginal) correspon-
dence M :E 2", for each e E, as

M(e)={ye F(e): P(e,y) N F(e)=g}.

Berge [1], [2, p. 116] first studied various continuity properties of the maximum
correspondence M(e) for a simple case where

M(e)={ye F(e): u(e, Y)=u(e x),¥xe F(e)}

for some function u: EX Y- R. He proved that if u is a continuous function and F
is a nonempty compact-valued continuous correspondence, then the maximum corres-
pondence M is nonempty compact-valued and upper semicontinuous, Since then, this
theorem, called Berge’s Maximum Theorem, has become one of the most useful and
powerful theorems in economics, optimization, and game theory. Walker [20] extended
Berge’s Maximum Theorem to maximization with respect to binary relations. He gave
conditions under which M is an upper semicontinuous correspondence with compact
(but possibly empty) values. In [18], a further generalization is obtained by giving
necessary and sufficient conditions, but M is still possibly empty-valued. Just as Berge's
Maximum Theorem can be used to prove the existence of Nash equilibrium and
equilibrium for the generalized game with payoff functions, Walker’s Maximum
Theorem can be used to prove the existence of Nash equilibrium and equilibrium for
the generalized game without ordered binary relations if the nonemptiness of the
maximum correspondence M (€) can be guaranteed. It is worth indicating that our
work in this paper is partially motivated by this problem and the results established
here can be applied to giving various conditions under which M(e) are nonemply
valued,

Let Y bea topological space and X< v be a subset. For a given (weak) binary
relation “>*" on Y, if a maximal element on X with respect to “=*" is defined as
an element x*e X such that for each xe X, either x* =* x or x* and x cannot be
compared, then we can define 3 (strict) binary relation “>* as the asymmetric pari of
“Z*ie., y>x whenever ¥ Z* x and not x =* y and write the completion “=" of
“>"by y=x whenever x > ¥ does not hold. Then follow our definition that a maximal
element of “>" on X is an element x* € X such that x*= x for all x ¢ X, which reads:
For each x € X either x* = x or x* and x cannot compare. So these two definitions
for maximal elements on X coincide and a maximization problem with respect to the
(weak) binary relation can be converted to a maximization problem with respect to
the (strict) binary relation. Note that the above-defined (strict) binary relation “>
is always asymmetric (2-acyclic).

Finally, we would like to mention that the results stated in the above sections can
also be used to prove the existence of greatest elements for a weak (reflexive) binary
relat?on “Z*"Let Ybea topological space and X < Y be a subset. For a weak binary
relation “=*" o y, , point x*€ X is said to be a greatest element of = * on X if
x* é* x for all x e X. For thig weak binary relation “ = *,” we can define a strict binary
relation “>*" ag follows. x >*y if and only if not y Z*x. Then we can easily see
that x*e X is a greatest element of =* on X if and only if x* is a maximal element
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o “>* on X. Thus proving the existence of a greatest element of a weak binary
elation is equivalent to proving the existence of a maximal element of the reduced

grict binary relation.
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