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Abstract

T his paper considers the problem of implementing constrained Walrasian al-
locations for exchange economies with in™ nitely many commodities and ™ nitely
many agents. The mechanism we provide is a feasible and continuous mech-
anism whose Nash allocations and strong Nash allocations coincde with con-
strained Walrasian allocations. T hismechanism allows not only pr eferences and
initial endowmentsbut also coalition patterns to be privately observed, and it
works not only for three or more agents, but also for two-agent economies, and

thusit isa uni” ed mechanism which is irrespective of the number of agents.

1 Introduction

Thispaper considersthe problem of doubleimplementation of constrained Walrasian
alocationsin Nash and strong Nash equilibria using a feasible and continuous mech-
anism for pure exchange economies with in™ nitely many commodities and ~ nitdy

many agents.
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Enterprise Research Center and the LewisFaculty Fellowship at Texas A& M University is gratefully
acknowledged.



It is by now widdy acknowledged that the ~nite-dimensional settingistoo re-
strictively modeled in many economic situations such as intertemporal decisions,
uncertainty, and di®erentiated commodities In” nite dimensional models have be-
come prominent in economics and ~ nance becausethey capture nature aspectsof the
world that cannot be examined in ™ nite dimensona modéds. It has become clear
that economic modes capable of addressing real policy quegions must be both
stochastic and dynamic. A dynamic model requires in™ nite dimensional spaces |f
timeis modeled as continuous, then time series of economic data residein in™ nitedi-
mensonal functional spaces. Even if timeis modeled asbeing discrete, we are forced
to use in” nite dimensional models when we are to make realisic modeds of money
or growth. Other features of the world that arguably requires in™ nite dimensonal
modding are uncertainty and commodity di®erentiation.

Incentive mechanism theory in general and implementation theory in partic-
ular, however, have ignored the economic environment with in™ nite-dimensonal
settings. T here are numerous papers on implementation of (congrained) Walrasian
alocationsin various solution conceptsin implementation literature, indudingHong
(1995), Hurwicz (1972, 1979), Hurwicz, Maskin, and Post lewaite (1995), Nakamura
(1990), Pdeg (1996), Postlewaite and Wettstein (1989), Schmedler (1980), Suh
(199%4), and Tian (1990, 1999, 2000). All the mechanisms mentioned above only
work with the ~nite-dimensonal economic environments, and there are no mech-
anisms given in the literature which implements Pareto and individually rational
alocations for economies with in™ nite-dimensona commodity spaces.

This paper givesa mechanism that Nash implements congrained Walrasan allo-
cations for exchange economies with an in™ nite-dimensional commodity space. The
commodity space we adopt are all the sequence spaces Ip(15 p 5 1) and the
Lebesgue spaces Lp(15 p5 1 ). Thus we allow for commodity spaces which are
general enough to indude mog of the spaces used economic analysis. It will be
noted that our implementation result holds on a very large domain of economic
environments. Only the strict monotonicity condition is assumed. No continuity

and convexity assumptions on preferences are needed, and further, preferences may



be nontotal or nontransgtive. The mechanism is smple and natural. It is a type of
\market game" and thusit issmilar totheWalrasrule: the grategiesof the mecha-
nism are\prices" and \ quantities”, and agents' consumptions are chosen from their
budget sets. The \natural" mechanism design provides at least a partial response
to a common concern about much of theimplementation literature, namey that the
implementing mechanisms are highly unredlistic and impossible for a real player to
use. In addition, the mechanism works not only for three or more agents but also
for a two-agent world.

We should emphasze that the continuous and feasble mechanism design in the
in" nite-dimensional setting di®rsin important ways from the continuous and fea-
sible mechanism design in the "nite-dimensional setting. There are mainly four
dix culties that arise in in" nite-dimensional settings, but do not arise in " nite
dimensional setting: (1) the feasible sets may not be compact; (2) there may not
exist a compact and convex subset of the positive cone of the dual space; and (3)
the wealth map may not be jointly continuous as a function of quantities and prices
so that the feasible correspondence may not continuous, and (4) the projection of a
point to a convex compact s may not beunique sothat the feasible outcome func-
tion may not be single-valued. The "rst three di+ culties are needed to be solved in
order toshow thefeasible correspondenceiscontinuous so that the outcome function
obtained from the projection mapping to the feasble set is continuous. The fourth
di+ culty should be solved for the outcome function to be a single-valued function.

To understand why these di+ culties arise in the in™ nite-dimensional setting, we
discuss brie°y bdow these issues which distinguish a feasble and continuous mech-
anism design in the in” nite-dimensional setting from the feasble and continuous
mechanism desgn in the " nite-dimensional setting, and the waysin which we deal
with them.

The™ rst of thesedi+ cultiesis that the feasible set may not generally be compact
in a given topology of the commodity space, in many cases the bes we can hope
for isthat they will be compact in some weaker topology. In order to be sure that

optimization solutions exist, wewill need to assumethat such a weak topology does



indeed exist and the feasible correspondence are suitably continuous in this weak
topology. These assumptions will be satis ed for the dass of in™ nite-dimensonal
spaces we consider.

The second dit culty concerns the existence of a compact and convex subset
of the posgtive cone of the dual space. In the "nite-dimensional setting, the unit
simplex is convex and compact. In the in™ nite-dimensional setting, however, such
a compact and convex set may not exid. To be sure the existence of such a set
so that we can prove that the feasible corregpondence is continuous, we adopt an
assumption introduced by Mas-Colell (1986) that, together with other assumptions
we makein the papers, can guarantee the exigence of a convex and compact subset
of a positive cone.

The third dit culty is that the wealth map pcot x may not be jointly contin-
uous. We nead this joint continuity of the wealth map to prove that the feasble
correspondence is continuous. In the ~nite-dimensonal setting, this map is jointly
continuous. Inthein nite-dimensional setting, in order that the feasible corregpon-
dence is compact-valued and there exist a convex and compact subset of positive
cone L%, we are led to consider a weak topology on the commodity space. Unfor-
tunatey, as shown by Mas-Colell and Zame (1992), such a pair of choices may lead
to failure of joint continuity. Thus, we need to make sure that the wealth map is
jointly continuous for the commodity space under consideration.’

The fourth of these dit culties is about the single-valuedness of the feasble
outcome function. In the ~nitedimensonal setting, the single-valued and feasble
outcome function can be obtained by a projection mapping from each proposed
alocation that may not be feasible to the feasible correspondence. In other words,
the outcome determined by the mechanism is the point in the feasible s& that is
dosest to the proposed allocation, i.e, which minimizes the distance between the
proposed outcome and any point in the feasible set for a given message. It isknown

that such a projection in the ™ nite-dimensional setting is unique if and only if the

"The second and third di+ culties do not arise, if the feasible sets have nonempty interior. In

such a case, one can easily prove the feasible correspondence is continuous.



feasible st is closed and convex. Furthermore, the projection is continuous (cf
Mas-Coldl (1985)). In the in™ nite-dimensional setting, however, the projection is
generally not unique. In order to be sure that sngle-valued projection exists, we
will need to assumethefunctional spaces are either the sequence spaces or Lebesgue
spaces. Fortunately, we can prove the projection is unique for either the sequence
spaces or Lebeggue spaces.? In fact, as we will show, these four di+ culties can
be solved with suitable choices of a compatible topologies for these two classes of
in” nite-dimensional spaces.

The remainder of the paper is organized as follows Section 2 presents notions,
de nitions, and solution concept swhich will be used in the paper. Section 3presents
a geci” ¢ mechanism that is feasble and continuous Section 4 proves the equiva-
lence among Nash allocations, srong Nash allocations and constrained Walrasian
alocations and the mechanism doubly implements the constrained Walrasian cor-

respondence. Finally, some concluding remarks are given in Section 5.

2 Notation and De nitions

2.1 Economic Environments

To make this paper rdativey sdf-contained, we begin with a brief review of the
basic properties of ordered normed spaces.

A normed space is a real vector gpace L equipped with a norm, i.e., a function
kak:L ! [0;1) suchthat kxk= 0if and only if x = 0; k, xk = j, jkxkfor all x 2 L
and , 2 <; kx + yk5 kxk + kyk for all x;y2 L:

By the dual space of L we mean the space L" of continuous linear functionals
p:L! <. Asusua, ifp2 L then value hx;pi will also be denoted by p ¢x, i.e.,
hx;pi = p¢x. The dual space of L isalso a normed space, when equipped with the
norm kpk = supfkp¢xk : x 2 L;kxk 5 1g.

In addition to the normed topologies, we shall be interested in several other
topologies on normed spaces. The weak topology on L, denoted by %4L;L"), isthe

2]t seems this has only been proved for Hilbert space (cf. Gariepy and Ziemer (1995)).
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weakes topology with respect to which all the elements of L* are continuous. The
weak-star topology on L®, denoted by 34L";L), is the weakest topology on L® with
respect to which all the elements of L are continuous

A normed lattice (or called normed Riesz space) is a normed space L, together
with apartial order - onL (i.e., are’exive, antisymmetric, trangtiverdationon L)
that satis es: x - y impliesx+z - y+ zforal x;y;z2L;x- yimplies,x - .y
foral x;y2L and, 2 <, ; every pair of elements, x;y 2 L has a supremum (leagt
uppe bound) x _ y and an in” mum (greatest lower bound) x * y; jxj 5 jyj implies
kxk 5 kyk, wherejxj istheabsolute value of x that isde ned by jxj = x, + X; with
X+ = X _ 0 (positivepart of x) and x; = x* 0 (negative part of x). The notation
X , yis of course equivalent toy - x. Also, x > ymeansx , yand X 6 y. X is
postiveif x , 0 and x 6 0. Denoteby L, = fa2 L :0- agthesa of al positive
dementsof L; L, isreerred tothepositivecone. L, may sometimes be called the
nonnegative cone.

In a Riesz pair h:LY, a positive vector x 2 L, is strictly postive, written
x>> 0, ifpx > Ofor each0 < p 2 LO Denoteby L,, = fa2 L : 0 < ag
the set of all strictly postive elementsL; L, isreferred to be the grictly positive
cone. A drictly podtive vector is also called a quas-interior point. An equivalent
characterization is that an element x 2 L is strictly positive if and only if the
sequence fkx A yg converges in norm toy ask tends to in" nity for eachy 2 L, .
Notethat if thepositiveconel ., of L has non-empty (norm) interior, thenthe set of
strictly positive elements coincides with theinterior of L. . However, many Banach
lattices contains strictly positive elements even though the positive cone L, has an
empty interior. For more information about normed spaces and normed lattices, we
refer to Aliprantis and Border (1994).

We formalize the notion of an economy in the usual way. Exchange economies
under consideration have a commodity space L that is the one @ther in the family
of Lp(S;§;")-spaces or in the family of Ip-spaces, where 15 p5 1, S isthe st of
states, § the st of a 34algebra of subsetsof S, and' a ™ nite and positive measure

denedon § and Lp(S; §;") isthe dass of all '-measurable functions f for which



R§jfj|°d1 <1 for15 p<1 and L isthe space all ' -measurable functions with
“nite essential supremum in which the Ly -norm is de” ned kf ky = esssupf =
supfjt : ' (fx :jf (x)j = tg) > 0g. When time is modéded as a sequence of discrete
dates, one may use a space |l,. For instance, pace |1 plays a major rolein the
neoclasscal theory of growth and discreet-time dynamic macroeconomic modds. |f
there is an exhaustible resource in a setting, the 11 may be an appropriate setting
for the time series When function gpaces arise in modd s of uncertainty or timeis
continuous, one may use a space Lp(S;§;").

For x;y2 Lp, de nex = y if x(s) = y(s) for ' -almost all s2 S. We can endow
Lp with the following partial order reation - . Wesay x - vy if x(s) 5 y(s) for
T-amost alls2 S. Wesay x < yif x - y and thereexistsa ' nonnull subset E 2 S
such that x(s) < y(s) for '-almost all s2 E. Wesay x << y if x(s) < y(s) for
'-amost all s 2 S. Thus, the Lebesgue vector spacesL, (15 p5 1) with the
above de” ned partial orders are clearly Banach lattices.

We assume that there are n agents in economies. Denoteby N = f1;2;:::;ng
the set of agents. Each agent's characteristic is denoted by g = (P;;W;), where
Pi isthe strict (irre°exive) preference de ned on L, which may be nontota or
nontrandtive® and %; 2 L, ., is theinitial endowment of the agent. We assume
preference rdation P; is strictly monotonic in the sense that (xi + vo)Pix; for any
vo 2 L, nfOg. To require wdl-behaved preferences that they admit supporting
prices, we assume that the canonical conjugate R; of P; is uniformly proper on the

P
order interval [0;W], where®v = = [ W;.4

31f we de nethebinary relation Ri by a Ri bif and only if : bP; awhere: stands for \it isnot
thecasethat", then R isthe weak (re° exive) preference and is called the ‘canonical conjugate' of
Pi (see Kim and Richter (1986). If concepts used in this paper such as Nash equilibrium and the
constrained Walrasian allocations are interpreted in terms of the Ri, then the reaults obtained in

this paper for P; are, in particular, valid for the R;.
*The concept of properness was introduced by Mas-Colell (1986). The preference relation R;

is said to be proper at x with respect to the total endowment W, if there is an open cone j x at
0, containing W, such that x j jx does not intersects the preferred set fx°2 L, :x°R; Xg, i.e, if
x°Rix, then x j x°8 j . The interpretation is that the total endowment is desirable, in the sense

that loss of an amount ®W (® > 0) cannot be compensated for by an additional amount ®z of any



An economy is the full vector e = (ey;:::;€en) and the set of all such economies
is denoted by E.

It will not generally betrue in thein™ nite dimensional setting that the feasble
consumption set is compact in the norm topology of the commodity space. To avoid
this di+ culty, we should explicitly assume the existence of a Hausdor®vector space
topology ¢ such that the feasible consumption set is compact. Thus we have the
following notion.

A Hausdor®topology ¢, on the Banach lattice L, will be called compatible if

(a) ¢ isweaker than the norm topology of L,

(b) ¢ isavector space (i.e, the vector space operationson L are contin-

uousin thetopology ¢),

(c) all order intervals [0;z] in L are ¢-compact.

Thetopology will vary according to the underlying Banach latticeL; it may be
thenorm topology itsdf, or theweak topology, or theweak-star. For instance, if the
commodity space is the Lebesgue space L,, 15 p < 1, the compatible topology
will be the weak topology. This follows from the fact that the Lebesgue space
Lp, 15 p< 1, arenormed vector lattices with continuous norm, order intervals
are weakly compact (see Aliprantis and Burkinshaw (1985, Theorem 12.9). If the
commodity spaceisLq (l1 ), thecompatible topology will be the weak® topology.
Recall that Alaoglu's theorem implies that order intervals are weak®™ compact (see
Aliprantis and Burkinshaw (1985, Theorem 9.20)). Finally, if the commodity space
is the space of sequences I, 1 5 p < 1, the compatible topology will be the
norm topology.® This follows from the standard result that order intervals in Ip,

15 p< 1, arenorm compact.

commodity bundle z, if z is sut ciently small. The preference relation P; is said to be uniformly
with respect to W on the order interval [0; W] if it is proper at every w 2 [0; W], and we can choose

the properness cone independently of w.
51f the commodity space is |;, the weak and norm topologies have the same compact set, so

there is certainly nothing to be gained by taking for ¢ the weak topology. This is one of the few

settings in which the feasible consumption will be norm compact.
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2.2 The Constrained Walrasian Allocations
By an allocation, we mean an n-tuple x := (x1;:::;xn) 2 L".
An allocation x 2 L" is faasibleif xj 2 L, for all xj 2 L, , and
X X
Xi 5 Wi
i=1 i=1
An alocation x® = (x3;x53;:::;Xp) 2 L" isaWalrasian allocation for an economy

e if thereis a price vector p* 2 L} nf0Og such that
(1) p*¢xi 5 p" ¢t forali 2N,
(2) for ali 2 N, theredoesnot exist x; 2 L, such that
(2a) xi Pixj
(2b) p"¢xi 5 p° oWi;

P
(3 juix 5 LW

W (e) the st of all Walrasian allocations.
An allocation x* = (x§;x5;:::;X,) 2 L" is a constrained Walrasian allocation

for an economy e if thereis a price vector p* 2 L, nf0g such that
(1) pP¢xi 5 p" ¢ foralli 2 N,
(2) forali2 N, theredoesnot exist x; 2 L, such that
(2a) xi P x{;
(2b) pexi 5 pf oW
P
(2¢c) xi5 4%,

P P
(3 jn=1Xj5 jn=1\ﬂlj.

Denote by W,(e) the set of all such allocations.



Remark 1 From the above de nition, we can see that every ordinary Walrasian
alocation (competitive equilibrium allocation) is a constrained Walrasian all ocation
and that a condrained Walrasian allocation di®ers from a Walrasan allocation only
in the way that each agent maximizes his preferences not only subject to his budget

constraint but also subject to total endowments available to the economy.

An alocation x is Pareto-et cient with respect to strict preference pro’le P =
(Py;:::;Py) if it is feasible and there does not exist another feasible allocation x°
such that x?P; x; for all i 2 N.

An allocation x is individually rational with respect to P if : W; P; x; for all
i2N.6

It can be easly shown that every condrained Walrasian allocation is Pareto-
et dent and individually rational.”

An coalition C isa non-empty subset of N.

A group of agents (a coalition) C 2N is said to block an alocation x if there
exists some allocation (x%y9 such that

P P
(i) i2cXP5 oW,

(ii) x®Pix; for alli 2 C.

A feadble allocation x is said to be in the core of e if there does not exist any
coalition C that can improve upon X.

Note that an allocation cannot beimproved upon by N if and only if it is Pareto
et dent, and an allocation cannot be improved upon by any single person if and
only if it isindividually rational. Also every congrained Walrasian allocation is in

the core of e.

5T his de” nition coincides with the conventional de nition when P; is the asymmetric part of a

re° exive, transitive, and total preference Ri.
"For weak preferences Thomson (1985) showed that a constrained Walrasan allocation may

not be (regular) Pareto-et cient (i.e., thereis no way of making everyone at least well o®and one
person better o®) even if preferences satisfy local non-satiation. However, when preferences satisfy

strict monotonicity, it is (regular) Pareto-ex cient by Theorem 2.iv of Tian (1988).
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2.3 Mechanism

Let F be asoca choicerule, i.e., a correppondence from E to the commodity space
L. In therest of the paper, we will use the constrained Walrasian correspondence
as a social choicerule.

Let M; denote the i-th message (strategy) domain. Its elements are written as
m; and called messages. Let M = QL M; denote the message (strategy) space.
Let X :M ! L denotethe outcome function, or more explicitly, Xi;(m) isthei-th
agent's outcome at m. A mechanism consigs of M ;X i de ned on E. A message
m® = (m3;:::;my) 2 M is a Nash eqilibrium (NE) of the mechanism hM; hi for

an economy e if for any i 2 N and for all m; 2 M,
: Xi(m®=m;;i) P Xi(m"); (1)

where (m"=m;;i) = (m‘{‘;:::;m{‘i pmis;me, 4;::05mp). Theoutcome X (m®) is then
called a Nash (equilibrium) allocation. Denote by Vi n(€) the set of all such Nash
equilibria and by Nm :n(e) the sat of all such Nash (equilibrium) allocations.

A mechanism hM;hi fully Nash-implements the constrained Walrasan corre-

spondence W on E if, for all e2 E, Nmn(€) = We(e).

Remark 2 Note that the above de nition which was due to Hurwicz [5, p. 219]
allowsthesocial choice correspondence W and the set of Nash equilibria to beempty
for the main purpose of this paper isto study the equivalence of the constrained
Walrasian correspondence and the set of Nash equilibrium allocations under the
minimal possible assumptions.2 A stronger de nition of full Nash-implementation
used in the literature is that not only Ny.,(e) = F(e) but also Ny .(e) & ; for all
e2 E. Thus, if werestrict the domain of W, to the one on which W, is nonempty-

valued, our reaults, to be presented below, will be equivalent for both de nitions

A message m® = (mf;:::;m;) 2 M is said to be a strong Nash equilibrium of

the mechanism HM ; hi for an economy e 2 E if there does not exist any coalition C

80f course, if we impose more assumptions on preferences, by using the results such as in Zame

(1987), one can prove the existence of constrained Walrasian equilibria.
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and mg 2 QIZC M; such that for all i 2 C,
Xi(me;m? ¢) Pi Xi(m®): (2

X (m*) is then called a strong Nash (equilibrium) allocation of the mechanism for
the economy e. Denote by SV :x (€) the set of all such strong Nash equilibria and
by SNm:x (€) theset of all such strong Nash (equilibrium) allocations.

The mechanism hM; hi is said to doubly implement the constrained Walrasian
correspondence W on E, if, for all e2 E, SNy:Nn(€) = Nm:x(e) = We(e).

A mechanism hM ;hi is individually feaside if X(m)2 L, for alm2 M.

A mechanism hM ;hi is weakly balanced if for all m 2 M

Xj(m)5  @;: (3
j=1 j=1
A mechanism hM ; hi isfeagbleif it isindividually feasible and weakly balanced.
Sometimes we say that an outcome function is individually feasible, balanced,

or continuous if the mechanism isindividually feasble, balanced, or continuous

3 A Feasible and Continuous M echanism

In thissection, we present a simple feasible and continuous mechanism which doubly
implements the constrained Walrasian correspondence on E. The mechanisms we
use in the paper is reminiscent from the those given in Tian (1992, 2000) in the
“nite-dimensional context.

Let ¢ Y2 L} bea weak®-compact and convex set such that p ¢ = 1 for every
p2 ¢. By Theorem 9.1 in Mas-Colell and Zame (1991), such a set exists.

For each i 2 N, let the message domain of agent i be of the form

Mi = (O;#M]L ¢ £L"; (4)

where (0;%] = fw; 2 L, : 0<< w; - g A generic dement of M; ism; =
(Wi;pr;Xit; i Xin) whose components have the following interpretations T he com-

ponent w; denotesa profession of agent i's endowment, theinequality 0 << w; 5
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means that the agent cannot overgate his own endowment bundle; on the other
hand, the endowvment can be understated, but the claimed endowment w, musg be
strictly positive. The component p; is the price vector proposed by agent i and is
used as a price vector of agent i | 1, whereij 1isreadtoben wheni = 1. The
component xjj is interpreted asthetradethat agent i is willing to make to agent j
(anegative xjj means agent i wantsto get | xj; amount of goods from agent j).

De ne agent i'spricevector pp :M ! ¢ by

pi(mM) = pis1; (5

where n + 1isto beread as 1. Note that although pi(9 is a function of proposed
price vector announced by agent i + 1, for simplicity, we can write p(¢ as a function
of m without loss of generality.

De ne a feasible corregpondence B : M | | L7 by

X X
B(m) = fx2LY: x5 wi &
i=1 i=1

1
p(M) ¢xi 5

1+ kpij pi(m)

which isnonempty, convex, and ;-compact for all m 2 M by theset isnorm bounded

Bmow8i2Ng  (f

by the total endowments and ¢-closed. We will show the following lemma in the

Appendix.
Lemma 1 B(q is ¢-continuous on M.

P
Let xj = {_{xjj which isthe sum of contributions that agents are willing to
maketo agent j and x = (%1;%2;:5%n) .

The outcome function X: M | LT isgiven by
X(m)=fx2L"Y: min kx| xkg; (7)
x2B(m)

which isthe closest to x.

We then have the following lemma.
Lemma 2 X (9 is a singe-valued continuous function.

13



Proof. Since the distance function d(x;y) = kx| yk is continuous in y, we know
that d will reach its maximum on B(m). Thus, X is a nonempty correspondence.
We want to show X isin fact a single-valued function on B. If x 2 B(m), then
d(x;B(m)) = 0, and thusX (m) = x. Sowe only consider the case where x 8 B (m).

Suppose by way of contradiction that there are two points x1 and x2 in B(m)
such that kx1j xk = kx2j xk = d(x;B(m)) for somem 2 M. Since B(m) isconvex,

the convex combination x = X1+ (1] ,)x22 B(m) withO< , < 1, and thus, by

5

Minkowski's inequality, we have
kx, i oxk= K, (x17 %)+ (Ti L) (X1i ¥)k S K, (x1i ¥)k+ k(1j ,)(x1j ¥)k = d(x;B(m)):
Thus, we must have

K,(Xvi %)+ (17 )20 k=K, (xq§ x)k+k(1j ,)(x2i %)k

Notice that the Minkowski's inequality become eguality if and only if there is
somet = 0 such that
Lxapox) = (10 )txei x):
Taking the norm on both sides and noting that k(x1| x)k = k(x2j x)k, we mug

have
L= (1)t

Consaquently, we have

X1j X=Xz2j X

and therefore x1 = X2, a contradiction. Thus, X is sngle-valued.

Finally, since B(m) is a continuous correspondence, then, by Berge's Maximum
Theorem (Berge (1963)), we know X is a upper hemi-continuous correspondence.
However, snce X is also single-valued, and thus it is a continuous function on B.

Also, since X(m) 2 L and

i=1 i=1

for all m 2 M, the mechanism is feasible and continuous.

14



Remark 3 Note that the above mechanism does not depend on the number of
agents. Thusit isauni” ed mechanism which works for two-agent economies as well
as for economies with three or more agents. For two-agent economies only the fea-
sible and continuous mechanism which Nash implements the constrained Walrasian
correspondence was given by Nakamura (1990). Here we give an even simpler feasi-
ble and continuous mechanism which doubly implements the constrained Walrasian
correspondence not only for economies with a ™ nite dimensional consumption space

but also for economies with an in™ nite dimensional consumption space.

4 Results

The remainder of this paper isdevoted to the proof of equivalence among Nash al-
locations strong Nash allocations, and constrained Walrasan allocations. Proposi-
tion 1 bdow provesthat every Nash allocation isa constrained Walrasian allocation.
Propostion 2 beow proves that every constrained Walrasian allocation is a Nash
alocation. Propostion 3 bdow provesthat every Nash equilibrium is a strong Nash

equilibrium. To show these reaults, we " rst prove the following lemmas.

Lemma 3 If m" 2 Wy .x(€e), then pj = p5 = :::= pp, and thus p1(m™) = pp(m*) =

2ii= pn(m®) = p° for somep"2 ¢ .

Proof: Suppose, by way of contradiction, that pi' 6 p, ¢ (i.e, pf & pi(m®)) for
somei 2 N. Then pi(m*®) ¢Xi(m®) 5 Wp(m“) ¢w; < pi(m*) ¢w?, and
thus thereisx; 2 L, such that p(m”®) ¢xi 5 pi(m”®) ¢w; and x; P; X;(m?®) by drict
monotonicity of preferences. Now if agent i choosesp = pi(m®), Xii = Xii  igi Xti»
Xij = | P t6i x{‘j for j & i, and keeps w;' unchanged, then (0;:::;0;x%;;0;:::;0) 2
B(m;j;m?), and thus X;(m;;m7;) = x;. Therefore, X;(mj;m7;) P X;(m?®). This
oontradicts X (m®) 2 Ny .x(e). Thus we must have pf = p5 = ::: = pj, and

therfore p1(m®) = pp(m”®) = ::: = pp(mM®) = p* for omep® 2 ¢ . Q.E.D.

Lemma4 1fm"2 Nu.x(e), thenw = &; for all i 2 N.
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Proof: Suppose, by way of contradiction, that w* & %; for somei 2 N. Then
pi (m?) ¢Xi(m®) 5 p(m®) ew < p(m®) ¢W;, and thusthereis x; 2 L, such that
pi(m?)ex; 5 p(m®) dv; and x; P; X;(m?) by strict monotonicity of preferences. Now
if agent i choosesw; = Wi, Xii = Xi j i i Xiis Xij = i i tei Xqj forj € i, and keeps
P’ unchanged, then (0;:::;0;x;0;:::;0) 2 B(m;;m ) and thus X (m;j;m -) = Xj.
Hence, Xi(mi;m?;) Pi Xi(m®). ThlscontradlctsX( )2 Nux (e and’[huswin =
@ for ali 2 N. Q.E.D.

Lemma 5 If X(m®) 2 Ny x (€), then pi(m*) ¢Xi(m®*) = p(m®) ¢W;.

Proof: Suppose, by way of contradiction, that pi(m®) ¢X;(m®) < pi(m®) ¢V
for somei 2 N. Then there is x; 2 L, such that p(m®) ¢xi 5 p(m”) ¢W
and x; P; Xij(m®) by drict monotonicity of preferences. Now if agent i chooses
Xii = Xij i t6i Xti» Xij = 1 eiXqj for j 6 i, and keeps pf and wj’ unchanged,
then (0;:::;0;%;;0;:::;0) 2 B(mi;m;’i) and thus X;(m;;m ) = X;. Hence,
Xi(mi;m?;) Pi Xi(m®). Thiscontradicts X (m®) 2 N x (). Q.E.D.

Proposition 1 If the mechanism hM;Xi de ned above has a Nash equilibrium m*®
for e2 E, then X (m®) isa constrained Walrasan allocation with p* as a competitive
equilibrium price vector, i.e., Nm:x (€) 2 Wg(e) for al e2 E.

Proof. Let m® be a Nash equilibrium. Then X(m®) is a Nash equilibrium
alocation. We wish to show that X (m®) is a congrained Walrasian allocation. By
Lemmas 2 { 4, p1(m°) = :::= pn(m®) = p" for omep® 2 ¢, wi = &, and p(m”) ¢
Xi(m®) = p(m®) ¢ for all i 2 N. Also, by the construction of the mechanism, we
know that X (m®) 2 L" and P {1 Xj(m") 5 P i~ 1%;. Soweonly need to show that
eachindividual ismaximizing his' her preferences. Suppose, by way of contradiction,
that for someagent i, thereexistssomex; 2 L, suchthat x; 5 P "W, p(m*)ex 5
p(m®) ¢Wi, and x; P; Xi(m®). Let Xii = X5 | P t6i Xti» Xij = | teixt“j forj 61,
and keep pf" and wi" unchanged, then (0;:::;0;%;;0;:::;0) 2 B(m;j;mY;), and thus
Xi(mi;m?;) = xi. Therefore, we have Xi(mi;m?;) Pi Xi(mF). This contradicts
X(m®) 2 Ny.x(e). So X(m®) isa constrained Walrasian allocation. Q.E.D.
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Proposition 2 If x® = (xJ;x5;::5;x;) is a constrained Walrasian allocation with
a competitive equilibrium price vector pe 2 ¢ for e 2 E, then there exists a Nash
equilibrium m*® of the mechanism M ;Xi de ned above such that X;(m®) = x7,
p(m®) = pr, for alli 2 N, i.e, We(e) 2Nu:x (e) for ale2 E.

Proof. Since preferences satisfy the grict monotonicity condition and x* is a
P P
constrained Walrasan allocation, we must have p* 2 ¢, J” 1X( 5 j”_1 % and

p" ¢x; = p*¢W; for i 2 N. Now for eachi 2 N, let mi® = (p=;xiy; 5 x,), where
xii = Xi and xj; = Ofor j 6 i.

Then x" is an outcome with p™ as a price vector, i.e, Xi(m") = x; for all
i 2 N, and p(m®) = p*. We show that m*® yields this allocation as a Nash allo-
cation. In fact, agent i cannot change pi(m®) by changing his proposed price (i.e.,
pi(mi;m?;) = pi(m*) for al mi 2 Mj). Announcing a di®erent message m; by agent

i may yleld an alocation X (mi;m?;) such that Xi(mi;m?;) 2L, and
p(m?) ¢Xi(mi;m7;) 5 p(m") ¢i: (9)

Now suppose, by way of contradiction, that m*® isnot a Nash equilibrium. Then
thereare i 2 N and m; such that Xi(mi;m?;) P Xi(m®). Since Xi(mi;m?;) 5
i "%, we mugt have, by the de” nition of the congrained Walrasian allocation,
p(m®) ¢Xi(mi;m’;) > p(m®) ¢&;. But this contradicts the budget constraint (9).
Thus we have shown that agent i cannot improve his/ her utility by changing his’ her
own message while the others' messages remain “xed for all i 2 N. Hence x" isa

Nash allocation. Q.E.D.

Proposition 3 Every Nash equilibrium m® of the mechanism de ned above is a
strong Nash equilibrium, that is, Npm-x () 1 SNm:x (€).

Proof: Le m*® be a Nash equilibrium. By Propostion 1, we know that X (m®)
is a constrained Walrasian allocation with p(m®) as a price vector. Then X (m®) is
Pareto optimal and thusthe coalition N cannot be improved upon by any m2 M.
Now for any coalition C with ; 8 C 6 N, choosei 2 C suchthat i + 18 C. Then
no strategy played by C can change the budget set of i since pj(m) is determined
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by pi+1. Furthermore because X (m®) 2 W¢(e), it is the preference maximizing
consumption with respect to the budget set of i, and thus C cannot improve upon
X (m®). Q.E.D.

Since every strong Nash equilibrium is dearly a Nash equilibrium, then by com-

bining Propasitions 1-3, we have the following theorem.

Theorem 1 For the class of exchange economies E, there exists a feasible and
continuous mechanism which doubly implements the constrained Walrasian corre-

spondence. That is, Nm:x (€) = SNm:x (6) = Wc(e) for all e2 E.

5 Concluding Remarks

This paper gives a simple mechanism which doubly implements the constrained
Walrasian correspondence in Nash and strong Nash equilibrium for economies with
in" nitdy many commaodities. In” nite-dimensional commodity spaces arise naturally
when we consider economic activity over anin™ nitetimehorizon, or with uncertainty
about the possible in™ nite number of sates of the world, or in a stting where an
in"nite variety of commodity characterigics are possible. The mechanisn we give
is feagble, continuous, and allows coalition patterns, preferences and endowments
to be unknown to the designer. Furthermore, preferences under consideration may
not be total, transitive, continuous, and convex preferences. |n addition, unlike
most mechanisms proposed in the literature, it gives a uni” ed mechanism which is
irrespective of the number of agents.

Though this paper only considers doubleimplementation of the constrained Wal-
rasian correspondence for economies with in™ nite-dimensional spaces, one can simi-
larly consider implementation of other social choicerulessuch as Lindahl allocations

for economies with in™ nitely many commodities
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Appendix

Proof of Lemma 1: First note that ¢ is weak™ compact. Also, if xx ! X in
the norm topology of L, px ! p in the weak™ topology of L* and f pkg is order
bounded, pk ¢xk ! p¢x [Yanndisand Zame (1986, Lemma A, p. 107)]. Then B (¢
has dosed graph by the continuity of pi(¢ and pi(¢9 ¢x. Since the range space of
the correspondence B (¢ is weakly bounded by the total endowments P Loowg, it
is weakly compact. Thus, B(¢ is upper hemi-continuous on M. So we only need
to show that B(m) is also lower hemi-continuous at every m 2 M. L m 2 M,
X = (Xq;::1;X,) 2 B(m), and let fmyg be a sequence such that m, | m, where
mk = (mf;::;mk) and mi¢ = (W ;255000 25). We want to prove that there
is a sequence kag such that xx ! x, and, for all k, xxk 2 B(my), i.e, Xk =
(Px1k;:::;xnk) 2 L7, p(mk) ¢xik 5 mp(mk) ¢wX for ali 2 N, and
on Xik B jon WK, We “rst prove that there is a sequence f Rkg such that
R | X, and, for al k, Rk 2 L" and pi(mk) ¢Rik 5 fgékﬂgﬂ— for all i 2 N. For
eachi 2 N, two cases will be considered.
Case1. pi(m)ax; < KEE(.._%“TV'm_ Hence, for all k larger than a certain integer k°

we have pi (my) ¢x; < —m‘&m‘— by noting that pi(¢ iscontinuous Le % = X;

1+k[.*| p
for all k > k%and %k = O for k5 k°. Then, we have p;(mk) ¢Rik < W%'
Case 2. pi(m) ¢xj = ﬁ%—é‘%— Note that, since pi(m) > 0 and w; > O for all
i, we mugt have xi > 0. Let | = o™ and |k = f%k%.m'_) D€ ne Rix
as follows: 8
< Lk o Dk
Rik = p(mk)GXiX' i P (M) &Xi 51
CX otherwise
Then %ik 5 xi, and pi (Mk) Rik 5 f%(m";m— Also, since ( e | pi(r'ni)qxi =1,
we have Rik ! Xxi. Thus, in both cases, therelsasequenoefkkg such that %x ! X,
and, for all k, 2« 2 LT and pi(mk) ¢Rik 5 1+kpk for ali2N.
We now show that there is a sequence fXkg such that Xk ! x, and, for al k,

= P
X 2Ly and oy Xk S on W|k

We “rst show this for the sequence spaces Ip. There are two cases will be con-
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P P
Casel. X< o,y W Hence, for al k larger than acertain integer k% we

haveP oy X< oy WK Foreachi 2N, let %!, = x! for al k> k%and ®!, = 0

P
fOI’ k 5 ko TSG’], we have i2N Xitk < i2N W}k.
Case2. oy X! = oy W. Notethat, sncew; > 0 for all i, we must have
ion X' > 0. For each i 2 N, de ne !, as follows:
8 p P
< _pi2N W}kx_ if pion WK 5 1
t o XA . xt
Xik = i2N 7~ i2N A
xt otherwise
P P P tk tk
t t t tk ; ioN Wi joN Wim
Then %, 5 xj,and ., X{, 5 oy W~ Also, since PiZN X ! PiZN = 1,

wehave®!, | xi. Thus, in both cases, thereis a sequence f #cg such that & ! x,

and, for all k, ® 2 L, andPiZinKS P

on WK, Here e = (R);%2;::2).
Similarly, we can show this for the Lebesgue spaces L, by consdering two cases:
(1) i ian Xi(s) < i i2n Wi(s) and (2) i i2n Xi(S) = jon Wi(s) for each s 2 S.
Finally, let x0 = min(xk;®k) with x% = min(Xik; %) for i = 1;:::;n. Then
x01 xsincexx! xand&k! x. Also, for every k larger than a certain integer k,
we have x? | 0, P on X% 5 P oy WK because x? 5 Xk and oy Xik 5 P o WK,
and pi (mi) ¢, 5 % for all i 2 N by noting that x 5 Ric. Let xx = x¢
for all k > k and x, = O for k 5 k. Then, x, ! X, and x, 2 B(my) for all
k. Therefore, the sequence f xg has all the desired properties. So Bx(m) is lower

hemi-continuous at every m2 M. Q.E.D.
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