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A bst ract

T his paper considers theproblem of implement ing constrained Walrasian al-

locat ions for exchangeeconomies with in¯ nitely many commodit ies and ¯ nitely

many agents. The mechanism we provide is a feasible and cont inuous mech-

anism whose Nash allocat ions and strong Nash allocat ions coincide with con-

st rained Walrasian allocat ions. T hismechanism allows not only preferencesand

init ial endowment s but also coalit ion pat terns to be privately observed, and it

works not only for three or more agents, but also for two-agent economies, and

t hus it is a uni¯ ed mechanism which is irrespect ive of the number of agents.

1 I nt r oduct ion

Thispaper considerstheproblem of double implementat ion of const rained Walrasian

allocationsin Nash and st rong Nash equilibria using a feasibleand cont inuousmech-

anism for pure exchange economies wi th in¯ nitely many commodit ies and ¯ nitely

many agents.
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It is by now widely acknowledged that the ¯ nite-dimensional set t ing is too re-

strictively modeled in many economic situat ions such as intertemporal decisions,

uncertainty, and di®erent iated commodit ies. In¯ nite dimensional models have be-

comeprominent in economics and ¯ nancebecausethey capturenatureaspectsof the

world that cannot be examined in ¯ nite dimensional models. It has become clear

that economic models capable of addressing real policy quest ions must be both

stochast ic and dynamic. A dynamic model requires in¯ nite dimensional spaces. I f

t imeis modeled ascontinuous, then t imeseriesof economic data reside in in¯ nitedi-

mensional funct ional spaces. Even if t imeis modeled asbeing discrete, weare forced

to use in¯ nite dimensional models when we are to make realist ic models of money

or growth. Other features of the world that arguably requires in¯ nite dimensional

modeling are uncertainty and commodity di®erent iation.

Incentive mechanism theory in general and implementat ion theory in part ic-

ular, however, have ignored the economic environment with in¯ nite-dimensional

set t ings. There are numerous papers on implementat ion of (const rained) Walrasian

allocationsin various solution conceptsin implementat ion literature, includingHong

(1995), Hurwicz (1972, 1979), Hurwicz, Maskin, and Post lewaite (1995), Nakamura

(1990), Peleg (1996), Post lewaite and Wet tstein (1989), Schmeidler (1980), Suh

(1994), and Tian (1990, 1999, 2000). All the mechanisms ment ioned above only

work with the ¯ nite-dimensional economic environments, and there are no mech-

anisms given in the literature which implements Pareto and individually rational

allocations for economies with in¯ nite-dimensional commodity spaces.

This paper givesa mechanism that Nash implements const rained Walrasian allo-

cations for exchange economies with an in¯ ni te-dimensional commodity space. The

commodity space we adopt are all the sequence spaces lp(1 5 p 5 1 ) and the

Lebesgue spaces Lp(1 5 p 5 1 ). Thus, we allow for commodity spaces which are

general enough to include most of the spaces used economic analysis. It will be

noted that our implementat ion result holds on a very large domain of economic

environments. Only the st rict monotonicity condit ion is assumed. No continuity

and convexity assumpt ions on preferences are needed, and further, preferences may
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be nontotal or nont ransit ive. The mechanism is simple and natural . I t is a type of

\ market game" and thusit is similar to theWalras rule: the st rategiesof themecha-

nism are \ prices" and \ quant it ies" , and agents' consumpt ions are chosen from their

budget sets. The \ natural" mechanism design provides at least a partial response

to a common concern about much of the implementat ion literature, namely that the

implement ing mechanisms are highly unrealist ic and impossible for a real player to

use. In addition, the mechanism works not only for three or more agents, but also

for a two-agent world.

We should emphasize that the cont inuous and feasible mechanism design in the

in¯ nite-dimensional set ting di®ers in important ways from the continuous and fea-

sible mechanism design in the ¯ nite-dimensional set t ing. There are mainly four

di± culties that arise in in¯ nite-dimensional set tings, but do not arise in ¯ nite-

dimensional set t ing: (1) the feasible sets may not be compact ; (2) there may not

exist a compact and convex subset of the positive cone of the dual space; and (3)

the wealth map may not be joint ly continuous as a function of quantit ies and prices

so that the feasible correspondence may not cont inuous, and (4) the projection of a

point to a convex compact set may not beunique so that the feasibleoutcome func-

t ion may not be single-valued. The ¯ rst three di± culties are needed to be solved in

order toshow thefeasiblecorrespondenceiscontinuousso that theoutcomefunct ion

obtained from the projection mapping to the feasible set is continuous. The fourth

di± culty should be solved for the outcome function to be a single-valued function.

To understand why these di± cult ies arise in the in¯ nite-dimensional set ting, we

discuss brie°y below these issues which dist inguish a feasible and cont inuous mech-

anism design in the in¯ nite-dimensional sett ing from the feasible and cont inuous

mechanism design in the ¯ nite-dimensional set ting, and the ways in which we deal

with them.

The¯ rst of thesedi± cultiesis that thefeasibleset may not general ly be compact

in a given topology of the commodity space, in many cases, the best we can hope

for is that they will be compact in some weaker topology. In order to be sure that

opt imizat ion solut ions exist , wewill need to assumethat such a weak topology does
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indeed exist and the feasible correspondence are suitably continuous in this weak

topology. These assumptions will be sat is̄ ed for the class of in¯ nite-dimensional

spaces we consider.

The second di± culty concerns the existence of a compact and convex subset

of the posit ive cone of the dual space. In the ¯ nite-dimensional set ting, the unit

simplex is convex and compact . In the in¯ nite-dimensional set ting, however, such

a compact and convex set may not exist . To be sure the existence of such a set

so that we can prove that the feasible correspondence is continuous, we adopt an

assumpt ion int roduced by Mas-Colell (1986) that, together with other assumpt ions

we makein thepapers, can guarantee the existence of a convex and compact subset

of a posit ive cone.

The third di± culty is that the wealth map pcot x may not be joint ly cont in-

uous. We need this joint cont inuity of the wealth map to prove that the feasible

correspondence is cont inuous. In the ¯ nite-dimensional sett ing, this map is jointly

cont inuous. In the in¯ nite-dimensional set ting, in order that the feasible correspon-

dence is compact-valued and there exist a convex and compact subset of positive

cone L¤
+ , we are led to consider a weak topology on the commodity space. Unfor-

tunately, as shown by Mas-Colell and Zame (1992), such a pair of choices may lead

to failure of joint continuity. Thus, we need to make sure that the wealth map is

joint ly cont inuous for the commodity space under consideration.1

The fourth of these di± culties is about the single-valuedness of the feasible

outcome funct ion. In the ¯ nite-dimensional set ting, the single-valued and feasible

outcome funct ion can be obtained by a project ion mapping from each proposed

allocation that may not be feasible to the feasible correspondence. In other words,

the outcome determined by the mechanism is the point in the feasible set that is

closest to the proposed allocation, i.e., which minimizes the distance between the

proposed outcome and any point in the feasible set for a given message. I t is known

that such a project ion in the ¯ nite-dimensional set t ing is unique if and only if the

1The second and third di± cul ties do not arise, if t he feasible set s have nonempty int erior. In

such a case, one can easily prove the feasible correspondence is cont inuous.
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feasible set is closed and convex. Furthermore, the projection is cont inuous (cf

Mas-Colel l (1985)). In the in¯ nite-dimensional set t ing, however, the project ion is

generally not unique. In order to be sure that single-valued project ion exists, we

will need to assumethefunct ional spaces areeither the sequencespaces or Lebesgue

spaces. Fortunately, we can prove the projection is unique for either the sequence

spaces or Lebesgue spaces.2 In fact, as we will show, these four di± cul ties can

be solved with suitable choices of a compat ible topologies for these two classes of

in¯ nite-dimensional spaces.

The remainder of the paper is organized as follows. Section 2 presents not ions,

dē nitions, and solution conceptswhich will beused in the paper. Section 3presents

a speci¯ c mechanism that is feasible and continuous. Sect ion 4 proves the equiva-

lence among Nash allocat ions, st rong Nash allocations, and const rained Walrasian

allocations and the mechanism doubly implements the const rained Walrasian cor-

respondence. Finally, some concluding remarks are given in Sect ion 5.

2 N ot at ion and D e¯ n it ions

2.1 Economic Environment s

To make this paper relatively self-contained, we begin with a brief review of the

basic propert ies of ordered normed spaces.

A normed space is a real vector space L equipped with a norm, i.e., a funct ion

k ¢k : L ! [0; 1 ) such that kxk = 0 if and only if x = 0; k¸ xk = j¸ jkxk for all x 2 L

and ¸ 2 <; kx + yk 5 kxk + kyk for all x; y 2 L:

By the dual space of L we mean the space L¤ of cont inuous linear funct ionals

p : L ! < . As usual, if p 2 L¤, then value hx;pi will also be denoted by p ¢x, i.e.,

hx;pi = p ¢x. The dual space of L is also a normed space, when equipped with the

norm kpk = supf kp¢xk : x 2 L; kxk 5 1g.

In addit ion to the normed topologies, we shall be interested in several other

topologies on normed spaces. The weak topology on L, denoted by ¾(L; L¤), is the

2I t seems this has only been proved for Hi lbert space (cf. Gariepy and Ziemer (1995)).
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weakest topology with respect to which all the elements of L¤ are continuous. The

weak-star topology on L¤, denoted by ¾(L¤;L), is the weakest topology on L¤ with

respect to which al l the elements of L are cont inuous.

A normed lattice (or cal led normed Riesz space) is a normed space L, together

with a part ial order · on L (i.e., a re°exive, ant isymmet ric, t ransi tive relat ion on L)

that satis̄ es: x · y implies x + z · y + z for all x;y;z 2 L; x · y implies ¸ x · ¸ y

for all x; y 2 L and ¸ 2 < + + ; every pair of elements, x; y 2 L has a supremum (least

upper bound) x _ y and an in¯ mum (greatest lower bound) x ^ y; jxj 5 jyj implies

kxk 5 kyk, where jx j is theabsolute value of x that is dē ned by jxj = x+ + x¡ with

x+ = x _ 0 (positive part of x) and x¡ = x ^ 0 (negative part of x). The notat ion

x ¸ y is, of course, equivalent to y · x. Also, x > y means x ¸ y and x 6= y. x is

posi tive if x ¸ 0 and x 6= 0. Denote by L+ = f a 2 L : 0 · ag the set of all positive

elements of L; L+ is referred to the positive cone. L+ may somet imes be cal led the

nonnegative cone.

In a Riesz pair hL;L0i , a posit ive vector x 2 L+ is st rictly posit ive, writ ten

x > > 0, if px > 0 for each 0 < p 2 L0. Denote by L+ + = f a 2 L : 0 < ag

the set of all st rict ly posit ive elements L; L+ is referred to be the st rict ly positive

cone. A st rict ly posit ive vector is also called a quasi-interior point. An equivalent

characterizat ion is that an element x 2 L is st rict ly positive if and only if the

sequence f kx ^ yg converges in norm to y as k tends to in¯ nity for each y 2 L+ .

Notethat if thepositiveconeL+ of L has non-empty (norm) interior, then the set of

strictly posit ive elements coincides with the interior of L+ . However, many Banach

lat t ices contains strict ly posit ive elements even though the posit ive cone L+ has an

empty interior. For more informat ion about normed spaces and normed lat tices, we

refer to Aliprant is and Border (1994).

We formalize the not ion of an economy in the usual way. Exchange economies

under consideration have a commodity space L that is the one either in the family

of Lp(S; §; ¹ )-spaces or in the family of lp-spaces, where 1 5 p 5 1 , S is the set of

states, § the set of a ¾-algebra of subsets of S, and ¹ a ¯ nite and posit ive measure

dē ned on § and Lp(S; §; ¹ ) is the class of all ¹ -measurable functions f for which
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R
§ jf jpd¹ < 1 for 1 5 p < 1 and L1 is the space all ¹ -measurable funct ions with

¯ nite essent ial supremum in which the L1 -norm is dē ned kf k1 = esssupf =

supf jt : ¹ (f x : jf (x)j = tg) > 0g. When t ime is modeled as a sequence of discrete

dates, one may use a space lp. For instance, space l1 plays a major role in the

neoclassical theory of growth and discreet-t ime dynamic macroeconomic models. I f

there is an exhaust ible resource in a sett ing, the l1 may be an appropriate set t ing

for the t ime series. When function spaces arise in models of uncertainty or time is

cont inuous, one may use a space Lp(S;§ ; ¹ ).

For x; y 2 Lp, dē ne x = y if x(s) = y(s) for ¹ -almost all s 2 S. We can endow

Lp with the following part ial order relat ion · . We say x · y if x(s) 5 y(s) for

¹ -almost all s 2 S. We say x < y if x · y and there exists a ¹ nonnull subset E 2 S

such that x(s) < y(s) for ¹ -almost all s 2 E. We say x < < y if x(s) < y(s) for

¹ -almost all s 2 S. Thus, the Lebesgue vector spaces Lp (1 5 p 5 1 ) with the

above dē ned part ial orders are clearly Banach lat tices.

We assume that there are n agents in economies. Denote by N = f 1;2; : : : ;ng

the set of agents. Each agent 's characteristic is denoted by ei = (Pi ; ºwi ), where

Pi is the st rict (irre°exive) preference dē ned on L+ which may be nontotal or

nont ransi tive,3 and ºwi 2 L+ + is the initial endowment of the agent . We assume

preference relat ion Pi is st rict ly monotonic in the sense that (xi + v0)Pixi for any

v0 2 L+ n f 0g. To require well-behaved preferences that they admit support ing

prices, we assume that the canonical conjugate Ri of Pi is uniformly proper on the

order interval [0; ºw], where ºw =
P n

i = ºwi .4

3I f we dē ne the binary relat ion Ri by a R i b i f and only if : bPi a where : st ands for \ i t is not

t he case that " , t hen R i is t he weak (re° exive) preference and is cal led the c̀anonical conjugate' of

Pi (see Kim and Richter (1986). If concept s used in this paper such as Nash equil ibrium and the

const rained Walrasian al locat ions are int erpreted in terms of t he Ri , t hen the resul ts obtained in

this paper for Pi are, in part icular, valid for t he R i .
4The concept of properness was int roduced by Mas-Colell (1986). The preference relat ion R i

is said t o be proper at x wi t h respect t o t he total endowment ºw, if there is an open cone ¡ x at

0, containing ºw, such that x ¡ ¡ x does not intersect s the preferred set f x0 2 L+ : x0Ri xg, i.e., if

x0Ri x, t hen x ¡ x0 62 ¡ x . The interpretat ion is that t he total endowment is desirable, in t he sense

that loss of an amount ®ºw (® > 0) cannot be compensated for by an addit ional amount ®z of any
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An economy is the full vector e = (e1; : : : ;en) and the set of all such economies

is denoted by E.

It will not generally be t rue in the in¯ nite dimensional set ting that the feasible

consumption set is compact in the norm topology of the commodity space. To avoid

this di± culty, we should explicitly assume the existence of a Hausdor®vector space

topology ¿ such that the feasible consumption set is compact. Thus we have the

following notion.

A Hausdor® topology ¿, on the Banach lat tice L, will be called compatible if

(a) ¿ is weaker than the norm topology of L,

(b) ¿ is a vector space (i.e., the vector space operat ions on L are cont in-

uous in the topology ¿),

(c) all order intervals [0;z] in L are ¿-compact .

The topology will vary according to the underlying Banach lat t ice L; it may be

thenorm topology itself, or theweak topology, or theweak-star. For instance, if the

commodity space is the Lebesgue space Lp, 1 5 p < 1 , the compat ible topology

will be the weak topology. This follows from the fact that the Lebesgue space

Lp, 1 5 p < 1 , are normed vector lat tices with cont inuous norm, order intervals

are weakly compact (see Aliprantis and Burkinshaw (1985, Theorem 12.9). I f the

commodity space is L1 (l1 ), the compat ible topology wi ll be the weak¤ topology.

Recall that Alaoglu's theorem implies that order intervals are weak¤ compact (see

Aliprantis and Burkinshaw (1985, Theorem 9.20)). Finally, i f the commodity space

is the space of sequences lp, 1 5 p < 1 , the compat ible topology wil l be the

norm topology.5 This follows from the standard result that order intervals in lp,

1 5 p < 1 , are norm compact.

commodi ty bundle z, if z is su± cient ly smal l. The preference relat ion Pi i s said t o be uniformly

wit h respect t o ºw on the order int erval [0; ºw] if it is proper at every w 2 [0; ºw], and we can choose

the properness cone independent ly of w.
5I f t he commodi ty space is l 1, t he weak and norm topologies have the same compact set , so

there is certainly nothing to be gained by taking for ¿ the weak topology. This is one of t he few

set t ings in which the feasible consumpt ion will be norm compact .
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2.2 The Const r ained W alr asian A llocat ions

By an allocation, we mean an n-tuple x := (x1; : : : ; xn) 2 Ln .

An allocat ion x 2 Ln is feasible if xi 2 L+ for all xi 2 L+ , and

nX

i = 1

x i 5
nX

i = 1

ºwi ;

An allocation x¤ = (x¤
1; x¤

2; : : : ; x¤
n ) 2 Ln isaWalrasian al location for an economy

e if there is a price vector p¤ 2 L¤
+ n f 0g such that

(1) p¤ ¢x¤
i 5 p¤ ¢ºwi for all i 2 N ,

(2) for all i 2 N , there does not exist xi 2 L+ such that

(2.a) xi Pi x¤
i ;

(2.b) p¤ ¢xi 5 p¤ ¢ºwi ;

(3)
P n

j = 1 xj 5
P n

j = 1 ºwj .

The n + 1-tuple (x¤
1; : : : ; x¤

n ;p¤) is then called a Walrasian equilibrium. Denote by

W(e) the set of all Walrasian al locat ions.

An allocat ion x¤ = (x¤
1; x¤

2; : : : ; x¤
n) 2 Ln is a constrained Walrasian allocation

for an economy e if there is a price vector p¤ 2 L+ n f 0g such that

(1) p¤ ¢x¤
i 5 p¤ ¢ºwi for all i 2 N ,

(2) for all i 2 N , there does not exist xi 2 L+ such that

(2.a) xi Pi x¤
i ;

(2.b) p¤ ¢xi 5 p¤ ¢ºwi ;

(2.c) xi 5
P n

j = 1 ºwj ,

(3)
P n

j = 1 xj 5
P n

j = 1 ºwj .

The n + 1-tuple (x¤
1; : : : ; x¤

n; p¤) is then called a const rained Walrasian equilibrium.

Denote by Wc(e) the set of all such allocat ions.
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R emark 1 From the above dē nit ion, we can see that every ordinary Walrasian

allocation (compet it iveequilibrium allocation) is a constrained Walrasian allocat ion

and that a const rained Walrasian allocation di®ers from a Walrasian allocation only

in the way that each agent maximizes his preferences not only subject to his budget

constraint but also subject to total endowments available to the economy.

An allocation x is Pareto-e± cient with respect to st rict preference pro¯ le P =

(P1; : : : ; Pn) if it is feasible and there does not exist another feasible allocat ion x0

such that x0
i Pi xi for all i 2 N .

An allocat ion x is individual ly rational with respect to P if : ºwi Pi xi for all

i 2 N .6

It can be easi ly shown that every const rained Walrasian al locat ion is Pareto-

e± cient and individually rat ional.7

An coali tion C is a non-empty subset of N .

A group of agents (a coalit ion) C ½ N is said to block an allocation x if there

exists some allocat ion (x0; y0) such that

(i)
P

i 2C x0
i 5

P
i 2C ºwi ,

(ii) x0
iPix i for al l i 2 C.

A feasible allocat ion x is said to be in the core of e if there does not exist any

coalit ion C that can improve upon x.

Note that an al locat ion cannot beimproved upon by N if and only if i t is Pareto

e± cient , and an allocat ion cannot be improved upon by any single person if and

only if it is individually rational. Also every const rained Walrasian allocat ion is in

the core of e.

6This de¯ ni tion coincides wit h t he convent ional dē nit ion when Pi is the asymmet ric part of a

re° exive, transit ive, and total preference R i .
7For weak preferences, Thomson (1985) showed that a const rained Walrasian al locat ion may

not be (regular) Pareto-e± cient (i .e., there is no way of making everyone at least well o® and one

person bet ter o®) even if preferences sat isfy local non-sat iat ion. However, when preferences sat isfy

st rict monotonici ty, it is (regular) Pareto-e± cient by Theorem 2.iv of T ian (1988).
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2.3 M echanism

Let F be a social choice rule, i.e., a correspondence from E to the commodity space

L. In the rest of the paper, we will use the const rained Walrasian correspondence

as a social choice rule.

Let M i denote the i -th message (st rategy) domain. It s elements are writ ten as

mi and called messages. Let M =
Q n

i= 1 M i denote the message (strategy) space.

Let X : M ! L denote the outcome function, or more explicit ly, X i (m) is the i -th

agent's outcome at m. A mechanism consists of hM ;X i dē ned on E. A message

m¤ = (m¤
1; : : : ;m¤

n) 2 M is a Nash equi libr ium (NE) of the mechanism hM; hi for

an economy e if for any i 2 N and for all mi 2 M i ,

: X i (m
¤=mi ; i ) Pi X i (m

¤); (1)

where (m¤=mi ; i ) = (m¤
1; : : : ;m¤

i ¡ 1; mi ;m
¤
i + 1; : : : ;m¤

n ). The outcome X (m¤) is then

called a Nash (equilibrium) allocation. Denote by VM ;h(e) the set of all such Nash

equilibria and by NM ;h(e) the set of all such Nash (equilibrium) allocations.

A mechanism hM ;hi fully Nash-implements the constrained Walrasian corre-

spondence Wc on E if, for all e2 E , NM ;h(e) = Wc(e).

R emark 2 Note that the above dē nit ion which was due to Hurwicz [5, p. 219]

allowsthesocial choicecorrespondenceWc and theset of Nash equilibria to beempty

for the main purpose of this paper is to study the equivalence of the constrained

Walrasian correspondence and the set of Nash equilibrium allocat ions under the

minimal possible assumptions.8 A stronger dē nit ion of full Nash-implementat ion

used in the literature is that not only NM ;h(e) = F(e) but also NM ;h(e) 6= ; for all

e 2 E. Thus, if we rest rict the domain of Wc to the one on which Wc i s nonempty-

valued, our results, to be presented below, will be equivalent for both dē nitions.

A message m¤ = (m¤
1; : : : ; m¤

n ) 2 M is said to be a strong Nash equi libr ium of

the mechanism hM ; hi for an economy e 2 E if there does not exist any coalit ion C

8Of course, i f we impose more assumpt ions on preferences, by using the resul ts such as in Zame

(1987), one can prove the exist ence of constrained Walrasian equi libria.
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and mC 2
Q

i 2C M i such that for all i 2 C,

X i (mC; m¤
¡ C ) Pi X i (m

¤): (2)

X (m¤) is then called a strong Nash (equi libr ium) al location of the mechanism for

the economy e. Denote by SVM ;X (e) the set of all such st rong Nash equilibria and

by SNM ;X (e) the set of all such st rong Nash (equi librium) allocat ions.

The mechanism hM; hi is said to doubly implement the const rained Walrasian

correspondence Wc on E, if, for all e 2 E, SNM ;N (e) = NM ;X (e) = Wc(e).

A mechanism hM ;hi is individual ly feasible if X (m) 2 L+ for all m 2 M .

A mechanism hM ;hi is weakly balanced if for all m 2 M

nX

j = 1

X j (m) 5
nX

j = 1

ºwj : (3)

A mechanism hM ;hi is feasible if it is individually feasible and weakly balanced.

Sometimes we say that an outcome funct ion is individually feasible, balanced,

or cont inuous if the mechanism is individually feasible, balanced, or continuous.

3 A Feasi ble and Cont inuous M echanism

In thissect ion, wepresent a simplefeasible and cont inuousmechanism which doubly

implements the constrained Walrasian correspondence on E. The mechanisms we

use in the paper is reminiscent from the those given in T ian (1992, 2000) in the

¯ nite-dimensional context .

Let ¢ ½ L¤
+ be a weak¤-compact and convex set such that p ¢ºw = 1 for every

p 2 ¢ . By Theorem 9.1 in Mas-Colell and Zame (1991), such a set exists.

For each i 2 N , let the message domain of agent i be of the form

M i = (0; ºwi ] £ ¢ £ Ln ; (4)

where (0; ºwi ] = f wi 2 L+ : 0 < < wi · ºwi g. A generic element of M i is mi =

(wi ;pi ; x i1; :::; xi n ) whose components have the following interpretations. The com-

ponent wi denotesa profession of agent i 's endowment , the inequality 0 < < wi 5 ºwi

12



means that the agent cannot overstate his own endowment bundle; on the other

hand, the endowment can be understated, but the claimed endowment wi must be

strictly posit ive. The component pi is the price vector proposed by agent i and is

used as a price vector of agent i ¡ 1, where i ¡ 1 is read to be n when i = 1. The

component x ij is interpreted as the t rade that agent i is wil ling to make to agent j

(a negat ive xi j means agent i wants to get ¡ x ij amount of goods from agent j ).

Dē ne agent i 's price vector pi : M ! ¢ by

pi (m) = pi+ 1; (5)

where n + 1 is to be read as 1. Note that although pi (¢) is a funct ion of proposed

price vector announced by agent i + 1, for simplicity, we can write p(¢) as a funct ion

of m without loss of generality.

Dē ne a feasible correspondence B : M ! ! Ln
+ by

B(m) = f x 2 Ln
+ :

nX

i = 1

xi 5
nX

i = 1

wi &

pi (m) ¢x i 5
1

1 + kpi ¡ pi (m)k
pi (m) ¢wi 8 i 2 N g; (6)

which isnonempty, convex, and ¿-compact for all m 2 M by theset isnorm bounded

by the total endowments and ¿-closed. We will show the following lemma in the

Appendix.

Lemma 1 B(¢) is ¿-continuous on M .

Let ~x j =
P n

i = 1 x ij which is the sum of contribut ions that agents are willing to

make to agent j and ~x = (~x1; ~x2; :::; ~xn ) .

The outcome function X : M ! Ln
+ is given by

X (m) = f x 2 Ln
+ : min

x2B (m)
kx ¡ ~xkg; (7)

which is the closest to ~x.

We then have the following lemma.

Lemma 2 X (¢) is a single-valued continuous function.
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Proof. Since the distance function d(~x; y) = k~x ¡ yk is continuous in y, we know

that d will reach its maximum on B(m). Thus, X is a nonempty correspondence.

We want to show X is in fact a single-valued function on B . If ~x 2 B(m), then

d(~x;B (m)) = 0, and thusX (m) = ~x. So we only consider the case where ~x 62 B(m).

Suppose by way of cont radict ion that there are two points x1 and x2 in B (m)

such that kx1 ¡ ~xk = kx2¡ ~xk = d(~x;B (m)) for somem 2 M . Since B(m) isconvex,

the convex combinat ion x¸ = ¸ x1 + (1¡ ¸ )x2 2 B(m) with 0 < ¸ < 1, and thus, by

Minkowski's inequality, we have

kx ¸ ¡ ~xk = k¸ (x1¡ ~x)+ (1¡ ¸ )(x1¡ ~x)k 5 k¸ (x1¡ ~x)k+ k(1¡ ¸ )(x1¡ ~x)k = d(~x;B (m)):

Thus, we must have

k¸ (x1 ¡ ~x) + (1¡ ¸ )(x2 ¡ ~x)k = k¸ (x1 ¡ ~x)k + k(1 ¡ ¸ )(x2 ¡ ~x)k

Notice that the Minkowski's inequality become equalit y if and only if there is

some t = 0 such that

¸ (x1 ¡ ~x) = (1¡ ¸ )t(x2 ¡ ~x):

Taking the norm on both sides and not ing that k(x1 ¡ ~x)k = k(x2 ¡ ~x)k, we must

have

¸ = (1¡ ¸ )t:

Consequent ly, we have

x1 ¡ ~x = x2 ¡ ~x

and therefore x1 = x2, a cont radiction. Thus, X is single-valued.

Final ly, since B(m) is a cont inuous correspondence, then, by Berge's Maximum

Theorem (Berge (1963)), we know X is a upper hemi-cont inuous correspondence.

However, since X is also single-valued, and thus it is a cont inuous function on B .

Also, since X (m) 2 Ln
+ and

nX

i = 1

X i (m) 5
nX

i = 1

ºwi (8)

for all m 2 M , the mechanism is feasible and cont inuous.
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R emark 3 Note that the above mechanism does not depend on the number of

agents. Thus it is a uni¯ ed mechanism which works for two-agent economies as well

as for economies with three or more agents. For two-agent economies, only the fea-

sible and cont inuous mechanism which Nash implements the const rained Walrasian

correspondence was given by Nakamura (1990). Here we give an even simpler feasi-

ble and cont inuous mechanism which doubly implements the const rained Walrasian

correspondence not only for economies with a ¯ nite dimensional consumption space

but also for economies with an in¯ ni te dimensional consumpt ion space.

4 Resul t s

The remainder of this paper is devoted to the proof of equivalence among Nash al-

locat ions, strong Nash allocat ions, and constrained Walrasian allocat ions. Proposi-

t ion 1 below provesthat every Nash allocation isa const rained Walrasian allocat ion.

Proposit ion 2 below proves that every constrained Walrasian allocation is a Nash

allocation. Proposit ion 3 below proves that every Nash equilibrium is a st rong Nash

equilibrium. To show these results, we ¯ rst prove the following lemmas.

Lemma 3 I f m¤ 2 VM ;X (e), then p¤
1 = p¤

2 = : : : = p¤
n, and thus p1(m¤) = p2(m¤) =

: : : = pn(m¤) = p¤ for some p¤ 2 ¢ .

Proof: Suppose, by way of contradiction, that p¤
i 6= p¤

i + 1 (i.e., p¤
i 6= pi (m¤)) for

some i 2 N . Then pi (m¤) ¢X i (m¤) 5 1
1+ kp¤

i
¡ pi (m¤)kpi (m¤) ¢w¤

i < pi (m¤) ¢w¤
i , and

thus there is x i 2 L+ such that pi (m¤) ¢xi 5 pi (m¤) ¢w¤
i and x i Pi X i (m¤) by st rict

monotonicit y of preferences. Now if agent i chooses pi = pi (m¤), x i i = xi ¡
P

t6= i x¤
ti ,

xi j = ¡
P

t6= i x¤
tj for j 6= i , and keeps w¤

i unchanged, then (0; : : : ;0;xi ;0; : : : ;0) 2

B(mi ;m
¤
¡ i ), and thus X i (mi ; m¤

¡ i ) = xi . Therefore, X i (mi ; m¤
¡ i ) Pi X i (m

¤). This

cont radicts X (m¤) 2 NM ;X (e). Thus we must have p¤
1 = p¤

2 = : : : = p¤
n , and

therefore p1(m¤) = p2(m¤) = : : : = pn(m¤) = p¤ for some p¤ 2 ¢ . Q.E.D.

Lemma 4 I f m¤ 2 NM ;X (e), then w¤
i = ºwi for al l i 2 N .
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Proof: Suppose, by way of cont radict ion, that w¤
i 6= ºwi for some i 2 N . Then

pi (m
¤) ¢X i (m

¤) 5 pi (m
¤) ¢w¤

i < pi (m
¤) ¢ºwi , and thus there is xi 2 L+ such that

pi (m
¤)¢xi 5 pi (m

¤) ¢ºwi and x i Pi X i (m
¤) by strict monotonicit y of preferences. Now

if agent i chooses wi = ºwi , x ii = x i ¡
P

t 6= i x¤
ti , xi j = ¡

P
t6= i x¤

tj for j 6= i , and keeps

p¤
i unchanged, then (0; : : : ; 0; xi ;0; : : : ; 0) 2 B(mi ;m

¤
¡ i ), and thus X i (mi ;m

¤
¡ i ) = xi .

Hence, X i (mi ;m
¤
¡ i ) Pi X i (m

¤). This contradicts X (m¤) 2 NM ;X (e) and thus w¤
i =

ºwi for all i 2 N . Q.E.D.

Lemma 5 I f X (m¤) 2 NM ;X (e), then pi (m¤) ¢X i (m¤) = pi (m¤) ¢ºwi .

Proof: Suppose, by way of cont radict ion, that pi (m
¤) ¢X i (m

¤) < pi (m
¤) ¢ºwi

for some i 2 N . Then there is x i 2 L+ such that pi (m¤) ¢xi 5 pi (m¤) ¢ºwi

and xi Pi X i (m¤) by st rict monotonicity of preferences. Now if agent i chooses

xi i = x i ¡
P

t6= i x¤
ti , xi j = ¡

P
t6= i x¤

tj for j 6= i , and keeps p¤
i and w¤

i unchanged,

then (0; : : : ;0;xi ;0; : : : ;0) 2 B(mi ; m¤
¡ i ), and thus X i (mi ;m¤

¡ i ) = x i . Hence,

X i (mi ; m¤
¡ i ) Pi X i (m¤). This contradicts X (m¤) 2 NM ;X (e). Q.E.D.

Proposi t ion 1 I f the mechanism hM ;X i dē ned above has a Nash equi librium m¤

for e 2 E, then X (m¤) is a constrained Walrasian al location with p¤ as a competitive

equi librium price vector, i.e., NM ;X (e) ½ Wc(e) for all e 2 E.

Proof. Let m¤ be a Nash equilibrium. Then X (m¤) is a Nash equilibrium

allocation. We wish to show that X (m¤) is a const rained Walrasian allocat ion. By

Lemmas 2 { 4, p1(m¤) = : : : = pn (m¤) = p¤ for some p¤ 2 ¢ , w¤
i = ºwi , and p(m¤) ¢

X i (m
¤) = p(m¤) ¢ºwi for all i 2 N . Also, by the construction of the mechanism, we

know that X (m¤) 2 Ln
+ and

P n
j = 1 X j (m¤) 5

P n
j = 1 ºwj . So weonly need to show that

each individual ismaximizing his/ her preferences. Suppose, by way of contradict ion,

that for someagent i , thereexistssome ~xi 2 L+ such that ~x i 5
P n

j = 1 ºwj , p(m¤)¢~xi 5

p(m¤) ¢ºwi , and ~x i Pi X i (m¤). Let xi i = ~xi ¡
P

t6= i x¤
ti , xi j = ¡

P
t 6= i x¤

tj for j 6= i ,

and keep p¤
i and w¤

i unchanged, then (0; : : : ;0; ~xi ;0; : : : ; 0) 2 B(mi ; m¤
¡ i ), and thus

X i (mi ; m¤
¡ i ) = ~x i . Therefore, we have X i (mi ; m¤

¡ i ) Pi X i (m¤). This cont radicts

X (m¤) 2 NM ;X (e). So X (m¤) is a const rained Walrasian allocation. Q.E.D.
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Proposi t ion 2 I f x¤ = (x¤
1; x¤

2; :::; x¤
n) is a constrained Walrasian allocation wi th

a competitive equi librium price vector p¤ 2 ¢ for e 2 E , then there exists a Nash

equi librium m¤ of the mechanism hM ; X i dē ned above such that X i (m
¤) = x¤

i ,

pi (m
¤) = p¤, for all i 2 N , i.e., Wc(e) ½ NM ;X (e) for al l e 2 E .

Proof. Since preferences sat isfy the st rict monotonicity condit ion and x¤ is a

constrained Walrasian allocat ion, we must have p¤ 2 ¢ ,
P n

j = 1 x¤
j 5

P n
j = 1 ºwj and

p¤ ¢x¤
i = p¤ ¢ºwi for i 2 N . Now for each i 2 N , let m¤

i = (p¤;x¤
i 1; :::; x¤

i n), where

x¤
i i = x¤

i and x¤
i j = 0 for j 6= i .

Then x¤ is an outcome with p¤ as a price vector, i.e., X i (m
¤) = x¤

i for all

i 2 N , and pi (m
¤) = p¤. We show that m¤ yields this allocation as a Nash allo-

cation. In fact , agent i cannot change pi (m¤) by changing his proposed price (i.e.,

pi (mi ;m¤
¡ i ) = pi (m¤) for all mi 2 M i ). Announcing a di®erent message mi by agent

i may yield an allocat ion X (mi ;m¤
¡ i ) such that X i (mi ; m¤

¡ i ) 2 L+ and

p(m¤) ¢X i (mi ; m¤
¡ i ) 5 p(m¤) ¢ºwi : (9)

Now suppose, by way of contradict ion, that m¤ is not a Nash equilibrium. Then

there are i 2 N and mi such that X i (mi ;m¤
¡ i ) Pi X i (m¤). Since X i (mi ; m¤

¡ i ) 5
P n

i = 1 ºwi , we must have, by the dē nit ion of the const rained Walrasian allocat ion,

p(m¤) ¢X i (mi ;m¤
¡ i ) > p(m¤) ¢ºwi . But this contradicts the budget constraint (9).

Thus wehaveshown that agent i cannot improvehis/ her utilit y by changing his/ her

own message while the others' messages remain ¯ xed for al l i 2 N . Hence x¤ i s a

Nash allocation. Q.E.D.

Proposi t ion 3 Every Nash equi librium m¤ of the mechanism dē ned above is a

strong Nash equilibrium, that is, NM ;X (e) µ SNM ;X (e).

Proof: Let m¤ be a Nash equilibrium. By Proposit ion 1, we know that X (m¤)

is a constrained Walrasian allocation with p(m¤) as a price vector. Then X (m¤) is

Pareto opt imal and thus the coalit ion N cannot be improved upon by any m 2 M .

Now for any coalit ion C with ; 6= C 6= N , choose i 2 C such that i + 1 62 C. Then

no strategy played by C can change the budget set of i since pi (m) is determined
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by pi + 1. Furthermore, because X (m¤) 2 Wc(e), it is the preference maximizing

consumption wi th respect to the budget set of i , and thus C cannot improve upon

X (m¤). Q.E.D.

Since every st rong Nash equilibrium is clearly a Nash equilibrium, then by com-

bining Proposit ions 1-3, we have the fol lowing theorem.

T heorem 1 For the class of exchange economies E , there exists a feasible and

continuous mechanism which doubly implements the constrained Walrasian corre-

spondence. That is, NM ;X (e) = SNM ;X (e) = Wc(e) for all e 2 E.

5 Concludi ng R emar ks

This paper gives a simple mechanism which doubly implements the constrained

Walrasian correspondence in Nash and strong Nash equilibrium for economies with

in¯ nitely many commodities. In¯ nite-dimensional commodity spaces arisenaturally

when weconsider economic act ivi ty over an in¯ nite t imehorizon, or with uncertainty

about the possible in¯ nite number of states of the world, or in a set ting where an

in¯ nite variety of commodity characterist ics are possible. The mechanism we give

is feasible, cont inuous, and allows coalit ion pat terns, preferences and endowments

to be unknown to the designer. Furthermore, preferences under considerat ion may

not be total, t ransit ive, cont inuous, and convex preferences. In addition, unlike

most mechanisms proposed in the literature, it gives a uni¯ ed mechanism which is

irrespect ive of the number of agents.

Though this paper only considersdouble implementation of theconst rained Wal-

rasian correspondence for economies with in¯ nite-dimensional spaces, one can simi-

larly consider implementat ion of other social choicerulessuch as Lindahl allocat ions

for economies with in¯ nitely many commodities.
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A ppendix

Proof of Lemma 1: First note that ¢ is weak¤ compact . Also, if xk ! x in

the norm topology of L, pk ! p in the weak¤ topology of L¤ and f pkg is order

bounded, pk ¢xk ! p¢x [Yannelis and Zame (1986, Lemma A, p. 107)]. Then B(¢)

has closed graph by the continuity of pi (¢) and pi (¢) ¢x. Since the range space of

the correspondence B(¢) is weakly bounded by the total endowments
P n

i= 1 wi , it

is weakly compact . Thus, B (¢) is upper hemi-continuous on M . So we only need

to show that B(m) is also lower hemi-cont inuous at every m 2 M . Let m 2 M ,

x = (x1; : : : ; xn) 2 B(m), and let f mkg be a sequence such that mk ! m, where

mk = (mk
1; : : : ;mk

n) and mk
i = (wk

i ; pk
i ; zk

i 1; : : : ; zk
i n ). We want to prove that there

is a sequence f xkg such that xk ! x, and, for all k, xk 2 B(mk ), i.e., xk =

(x1k; : : : ; xnk ) 2 Ln
+ , pi (mk ) ¢x i k 5 1

1+ kpk
i
¡ pi (mk )k

pi (mk ) ¢wk
i for al l i 2 N , and

P
i 2 N xi k 5

P
i 2 N wk

i . We ¯ rst prove that there is a sequence f x̂kg such that

x̂k ! x, and, for all k, x̂k 2 Ln
+ and pi (mk ) ¢x̂i k 5

pi (mk )¢wk
i

1+ kpk
i
¡ pi (mk )k

for all i 2 N . For

each i 2 N , two cases will be considered.

Case1. pi (m)¢xi < pi (m)¢wi

1+ kpi ¡ pi (m)k . Hence, for all k larger than a certain integer k0,

we have pi (mk ) ¢xi <
pi (mk )¢wk

i

1+ kpk
i ¡ pi (mk )k

by noting that pi (¢) is continuous. Let x̂i k = xi

for all k > k0 and x̂i k = 0 for k 5 k0. Then, we have pi (mk ) ¢x̂ i k <
pi (mk )¢wk

i

1+ kpk
i
¡ pi (mk )k

.

Case 2. pi (m) ¢xi = pi (m)¢wi

1+ kpi ¡ pi (m)k . Note that , since pi (m) > 0 and wi > 0 for all

i , we must have xi > 0. Let ! i = pi (m)¢wi

1+ kpi ¡ pi (m)k and ! i k =
pi (mk )¢wk

i

1+ kpk
i

¡ pi (mk )k
. Dē ne x̂i k

as follows:

x̂i k =

8
<

:

! i k

pi (mk )¢x i
xi if ! i k

pi (mk )¢xi
5 1

xi otherwise
:

Then x̂i k 5 x i , and pi (mk ) ¢̂xi k 5
pi (mk )¢wk

i

1+ kpk
i

¡ pi (mk )k
. Also, since ! i k

pi (mk )¢xi
! ! i

pi (m)¢xi
= 1,

we have x̂i k ! xi . Thus, in both cases, there is a sequence f x̂kg such that x̂k ! x,

and, for all k, x̂k 2 Ln
+ and pi (mk ) ¢x̂ i k 5

pi (mk )¢wk
i

1+ kpk
i
¡ pi (mk )k

for all i 2 N .

We now show that there is a sequence f ¹xkg such that ¹xk ! x, and, for all k,

¹xk 2 L+ and
P

i 2N ¹x ik 5
P

i 2N wk
i .

We ¯ rst show this for the sequence spaces lp. There are two cases will be con-
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sidered for each component of vector x = (x1; x2; : : : ; x t; : : :) with 1 5 t < 1 .

Case 1.
P

i 2 N xt
i <

P
i 2N wt

i . Hence, for all k larger than a certain integer k0, we

have
P

i 2 N xt
i <

P
i 2 N wtk

i . For each i 2 N , let ¹xt
i k = x t

i for all k > k0 and x̂ t
i k = 0

for k 5 k0. Then, we have
P

i 2 N xt
i k <

P
i2 N wtk

i .

Case 2.
P

i 2N x t
i =

P
i 2N wt

i . Note that , since wi > 0 for all i , we must have
P

i 2 N xt
i > 0. For each i 2 N , dē ne ¹xt

i k as follows:

¹xt
i k =

8
<

:

P
i 2 N wt k

iP
i 2 N

x t
i

xi if
P

i 2 N wt k
iP

i 2 N
xt

i
5 1

xt
i otherwise

:

Then x̂t
i k 5 x t

i , and
P

i 2N ¹x t
ik 5

P
i 2 N wtk

i . Also, since
P

i 2 N w tk
iP

i 2 N xt
i

!
P

i 2 N wt k
iP

i 2 N xt
i

= 1,

we have x̂t
i k ! xt

i . Thus, in both cases, there is a sequence f x̂kg such that x̂k ! x,

and, for all k, x̂k 2 L+ and
P

i 2 N xk
i 5

P
i 2N wk

i . Here x̂k = (x̂1
k ; x̂2

k ; : : :).

Similarly, we can show this for theLebesgue spaces Lp by considering two cases:

(1)
P

i 2N x i (s) <
P

i 2N wi (s) and (2)
P

i2 N xi (s) =
P

i 2N wi (s) for each s 2 S.

Final ly, let x0
k = min( ¹xk ; x̂k) with x0

i k = min(¹x i k; x̂i k ) for i = 1; : : : ; n. Then

x0
k ! x since ¹xk ! x and x̂k ! x. Also, for every k larger than a certain integer ¹k,

we have x0
k ¸ 0,

P
i 2N x0

ik 5
P

i 2N wk
i because x0

k 5 ¹xk and
P

i2 N ¹x ik 5
P

i 2N wk
i ,

and pi (mk ) ¢x0
i k 5

pi (mk )¢wk
i

1+ kpk
i ¡ pi (mk )k

for all i 2 N by not ing that x0
i k 5 x̂ ik . Let xk = x0

k

for all k > ¹k and xk = 0 for k 5 ¹k. Then, xk ! x, and xk 2 B(mk ) for all

k. Therefore, the sequence f xkg has all the desired propert ies. So Bx (m) is lower

hemi-cont inuous at every m 2 M . Q.E.D.
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